62 research outputs found

    The potential of low-cost 3D imaging technologies for forestry applications: Setting a research agenda for low-cost remote sensing inventory tasks

    Get PDF
    Limitations with benchmark light detection and ranging (LiDAR) technologies in forestry have prompted the exploration of handheld or wearable low-cost 3D sensors (<2000 USD). These sensors are now being integrated into consumer devices, such as the Apple iPad Pro 2020. This study was aimed at determining future research recommendations to promote the adoption of terrestrial low-cost technologies within forest measurement tasks. We reviewed the current literature surrounding the application of low-cost 3D remote sensing (RS) technologies. We also surveyed forestry professionals to determine what inventory metrics were considered important and/or difficult to capture using conventional methods. The current research focus regarding inventory metrics captured by low-cost sensors aligns with the metrics identified as important by survey respondents. Based on the literature review and survey, a suite of research directions are proposed to democratise the access to and development of low-cost 3D for forestry: (1) the development of methods for integrating standalone colour and depth (RGB-D) sensors into handheld or wearable devices; (2) the development of a sensor-agnostic method for determining the optimal capture procedures with low-cost RS technologies in forestry settings; (3) the development of simultaneous localisation and mapping (SLAM) algorithms designed for forestry environments; and (4) the exploration of plot-scale forestry captures that utilise low-cost devices at both terrestrial and airborne scales

    Machine Vision-Based Crop-Load Estimation Using YOLOv8

    Full text link
    Labor shortages in fruit crop production have prompted the development of mechanized and automated machines as alternatives to labor-intensive orchard operations such as harvesting, pruning, and thinning. Agricultural robots capable of identifying tree canopy parts and estimating geometric and topological parameters, such as branch diameter, length, and angles, can optimize crop yields through automated pruning and thinning platforms. In this study, we proposed a machine vision system to estimate canopy parameters in apple orchards and determine an optimal number of fruit for individual branches, providing a foundation for robotic pruning, flower thinning, and fruitlet thinning to achieve desired yield and quality.Using color and depth information from an RGB-D sensor (Microsoft Azure Kinect DK), a YOLOv8-based instance segmentation technique was developed to identify trunks and branches of apple trees during the dormant season. Principal Component Analysis was applied to estimate branch diameter (used to calculate limb cross-sectional area, or LCSA) and orientation. The estimated branch diameter was utilized to calculate LCSA, which served as an input for crop-load estimation, with larger LCSA values indicating a higher potential fruit-bearing capacity.RMSE for branch diameter estimation was 2.08 mm, and for crop-load estimation, 3.95. Based on commercial apple orchard management practices, the target crop-load (number of fruit) for each segmented branch was estimated with a mean absolute error (MAE) of 2.99 (ground truth crop-load was 6 apples per LCSA). This study demonstrated a promising workflow with high performance in identifying trunks and branches of apple trees in dynamic commercial orchard environments and integrating farm management practices into automated decision-making

    A precise forest spatial structure investigation using the SLAM+AR technology

    Get PDF
    IntroductionForest spatial structures are the foundations of the structure and function of forest ecosystems. Quantitative descriptions and analyses of forest spatial structure have recently become common tools for digitalized forest management. Therefore, the accuracy and intelligence of acquiring forest spatial structure information are of great significance.MethodsIn this study, we developed a forest measurement system using a mobile phone. Through this system, the following tree measurements can be achieved: (1) point cloud of tree and chest diameter circle to measure tree diameter at breast height (DBH) and position coordinates of tree by using simultaneous localization and mapping (SLAM) technology, (2) virtual boundary creation of the sample plot, and the auxiliary measurement function of tree with the augmented reality (AR) interactive module, and (3) position coordinates and single-tree volume factor to calculate the spatial structural parameters of the forest (e.g., Mingling degree, Dominance index, Uniform angle index, and Crowdedness index).The system was tested in three 32 x 32 martificial forest plots.ResultsThe average DBH estimations showed BIAS of -0.47 to 0.45 cm and RMSEs of 0.57 to 0.95 cm. Its accuracy level met the requirements of forestry sample surveys. The tree position estimates for the three plots had relatively small RMSEs with 0.17 to 0.22 m on the x-axis and 0.16 to 0.26 m on the y-axis. The spatial structural parameters were as follows: the mingling degree of plot 1 was 0.32, and the overall mixing degree of tree species was low. The trees in plots 2 and 3 were all single species, and the mixing degree of both plots was 0. The dominance index of the three plots was 0.56, 0.51, and 0.51, indicating that the competitive advantage of the whole orest species was not obvious. The uniform angle index of the three plots was 0.55, 0.59, and 0.61, indicating that the positions of trees in the three plots were randomly distributed. The crowdedness index of plot 1 was 1.03, indicating that the degree of aggregation of the trees was low and showed a random distribution trend. The crowdedness index of the other plots were 1.36 and 1.40, indicating that the trees in the plots show a trend of uniform distribution, and the uniformity of plot 3 is higher than that of plot 2, but the overall uniformity is relatively weak.DiscussionThe findings of this study provide support for the optimization of forest structures and improve our conceptual understanding of forest community succession and restoration, in addition to the informatization and precision of forest spatial structure surveys

    Assessing the performance of a handheld laser scanning system for individual tree mapping—A mixed forests showcase in Spain

    Get PDF
    Producción CientíficaThe use of mobile laser scanning to survey forest ecosystems is a promising, scalable technology to describe the 3D structure of forests at a high resolution. We use a structurally complex, mixed-species Mediterranean forest to test the performance of a mobile Handheld Laser Scanning (HLS) system to estimate tree attributes within a forest patch in central Spain. We describe the different stages of the HLS approach: field position, ground data collection, scanning path design, point cloud processing, alignment between detected trees and measured reference trees, and finally, the assessment of main tree structural attributes diameter at breast height (DBH) and tree height considering species and tree size as control factors. We surveyed 418 reference trees to account for omission and commission error rates over a 1 ha plot divided into 16 sections and scanned using two different scanning paths. The HLS-based approach reached a high of 88 and 92% tree detection rate for the best combination of scanning path and point cloud processing modes for the HLS system. The root mean squared errors for DBH estimates varied between species: errors for Pinus pinaster were below 2 cm for Scan 02. Quercus pyrenaica, and Alnus glutinosa showed higher error rates. We observed good agreement between ALS and HLS estimates for tree height, highlighting differences to field measurements. Despite the complexity of the mixed forest area surveyed, our results show that HLS is highly efficient at detecting tree locations, estimating DBH, and supporting tree height measurements as confirmed with airborne laser data used for validation. This study is one of the first HLS-based studies conducted in the Mediterranean mixed forest region, where variability in tree allometries and spacing and the presence of natural regeneration pose challenges for the HLS approach. HLS is a feasible, time-efficient, scalable technology for tree mapping in mixed forests with potential to support forest monitoring programmes such as national forest inventories lacking three-dimensional, remote sensing data to support field measurements.European Union’s Horizon 2020 and Innovation Program Marie SkƂodowska-Curie - (Grant 956355)Junta de Castilla y León y Fondo Europeo de Desarrollo Regional (FEDER) - (projects “CLU‑2019‑01 and CL‑EI‑2021‑05—iuFOR Institute Unit of Excellence”)Fondo Europeo de Desarrollo Regional (FEDER), project Interreg COMFOR‑SUDOE - (grant SOE4/P1/E1012

    An Integrated Method for Coding Trees, Measuring Tree Diameter, and Estimating Tree Positions

    Get PDF
    Accurately measuring tree diameter at breast height (DBH) and estimating tree positions in a sample plot are important in tree mensuration. The main aims of this paper include (1) developing a new, integrated device that can identify trees using the quick response (QR) code technique to record tree identifications, measure DBH, and estimate tree positions concurrently; (2) designing an innovative algorithm to measure DBH using only two angle sensors, which is simple and can reduce the impact of eccentric stems on DBH measures; and (3) designing an algorithm to estimate the position of the tree by combining ultra-wide band (UWB) technology and altitude sensors, which is based on the received signal strength indication (RSSI) algorithm and quadrilateral localization algorithm. This novel device was applied to measure ten 10 × 10 m square plots of diversified environments and various tree species to test its accuracy. Before measuring a plot, a coded sticker was fixed at a height of 1.3 m on each individual tree stem, and four UWB module anchors were set up at the four corners of the plot. All individual trees\u27 DBHs and positions within the plot were then measured. Tree DBH, measured using a tree caliper, and the values of tree positions, measured using tape, angle ruler, and inclinometer, were used as the respective reference values for comparison. Across the plots, the decode rate of QR codes was 100%, with an average response time less than two seconds. The DBH values had a bias of 1.89 mm (1.88% in relative terms) and a root mean square error (RMSE) of 5.38 mm (4.53% in relative terms). The tree positions were accurately estimated; the biases on the x-axis and the y-axis of the tree position were -8.55-14.88 cm and -12.07-24.49 cm, respectively, and the corresponding RMSEs were 12.94-33.96 cm and 17.78-28.43 cm. The average error between the estimated and reference distances was 30.06 cm, with a standard deviation of 13.53 cm. The device is cheap and friendly to use in addition to its high accuracy. Although further studies are needed, our method provides a great alternative to conventional tools for improving the efficiency and accuracy of tree mensuration

    Optimizing the Sampling Area across an Old-Growth Forest via UAV-Borne Laser Scanning, GNSS, and Radial Surveying

    Get PDF
    Aboveground biomass, volume, and basal area are among the most important structural attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-growth forests exhibiting a complex structure over a rugged topography. We defined a methodology to optimize the plot size and the (total) sampling area, allowing for structural attributes with a tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a CHM model derived via UAV laser scanning, while the sampling area was based on the calculation of the absolute relative error as a function of allometric relationships. The allometric relationships allowed the structural attributes from trees’ height to be derived. The validation was based on the positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the GLONASS constellation alone (showing the highest visibility during the survey), and then using the GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20% within this work), the proposed methodology allowed the portion of the forest surface (≀60%) to be sampled to be quantified to obtain a low average error in the calculation of the above mentioned structural attributes (≀13

    Accurate derivation of stem curve and volume using backpack mobile laser scanning

    Get PDF
    Forest inventories rely on field plots, the measurement of which is costly and time consuming by manual means. Thus, there is a need to automate plot-level field data collection. Mobile laser scanning has yet to be demonstrated for deriving stem curve and volume from standing trees with sufficient accuracy for supporting forest inventory needs. We tested a new approach based on pulse-based backpack mobile laser scanner (Riegl VUX-1HA) combined with in-house developed SLAM (Simultaneous Localization and Mapping), and a novel post-processing algorithm chain that allows one to extract stem curves from scan-line arcs corresponding to individual standing trees. The post-processing step included, among others, an algorithm for scan-line arc extraction, a stem inclination angle correction and an arc matching algorithm correcting for the drifts that are still present in the stem points after applying the SLAM algorithm. By using the stem curves defined by the detected arcs and tree heights provided by the pulse-based scanner, stem volume estimates for standing trees in easy (n = 40) and medium (n = 37) difficult boreal forest were calculated. In the easy and medium plots, 100% of pine and birch stems were correctly detected. The total RMSE of the extracted stem curves was 1.2 cm (5.1%) and 1.7 cm (6.7%) for the easy and medium plots, respectively. The RMSE were 1.8 m (8.7%) and 1.1 m (4.9%) for the estimated tree heights, and 9.7% and 10.9% for the stem volumes for the easy and medium plots, correspondingly. Thus, our processing chain provided stem volume estimates with a better accuracy than previous methods based on mobile laser scanning data. Importantly, the accuracy of stem volume estimation was comparable to that provided by terrestrial laser scanning approaches in similar forest conditions. To further demonstrate the performance of the proposed method, we compared our results against stem volumes calculated using the standard Finnish allometric volume model, and found that our method provided more accurate volume estimates for the two test sites. The findings are important steps towards future individual-tree-based airborne laser scanning inventories which currently lack cost-efficient and accurate field reference data collection techniques. The tree geometry defined by the stem curve is also an important input parameter for deriving quality-related information from trees. Forest management decision making will benefit from improvements to the efficiency and quality of individual tree reference information.</p

    A method for measuring banana pseudo-stem phenotypic parameters based on handheld mobile LiDAR and IMU fusion

    Get PDF
    Diameter and height are crucial morphological parameters of banana pseudo-stems, serving as indicators of the plant’s growth status. Currently, in densely cultivated banana plantations, there is a lack of applicable research methods for the scalable measurement of phenotypic parameters such as diameter and height of banana pseudo-stems. This paper introduces a handheld mobile LiDAR and Inertial Measurement Unit (IMU)-fused laser scanning system designed for measuring phenotypic parameters of banana pseudo-stems within banana orchards. To address the challenges posed by dense canopy cover in banana orchards, a distance-weighted feature extraction method is proposed. This method, coupled with Lidar-IMU integration, constructs a three-dimensional point cloud map of the banana plantation area. To overcome difficulties in segmenting individual banana plants in complex environments, a combined segmentation approach is proposed, involving Euclidean clustering, Kmeans clustering, and threshold segmentation. A sliding window recognition method is presented to determine the connection points between pseudo-stems and leaves, mitigating issues caused by crown closure and heavy leaf overlap. Experimental results in banana orchards demonstrate that, compared with manual measurements, the mean absolute errors and relative errors for banana pseudo-stem diameter and height are 0.2127 cm (4.06%) and 3.52 cm (1.91%), respectively. These findings indicate that the proposed method is suitable for scalable measurements of banana pseudo-stem diameter and height in complex, obscured environments, providing a rapid and accurate inter-orchard measurement approach for banana plantation managers
    • 

    corecore