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Abstract: Aboveground biomass, volume, and basal area are among the most important structural
attributes in forestry. Direct measurements are cost-intensive and time-consuming, especially for old-
growth forests exhibiting a complex structure over a rugged topography. We defined a methodology
to optimize the plot size and the (total) sampling area, allowing for structural attributes with a
tolerable error to be estimated. The plot size was assessed by analyzing the semivariogram of a
CHM model derived via UAV laser scanning, while the sampling area was based on the calculation
of the absolute relative error as a function of allometric relationships. The allometric relationships
allowed the structural attributes from trees’ height to be derived. The validation was based on the
positioning of a number of trees via total station and GNSS surveys. Since high trees occlude the
GNSS signal transmission, a strategy to facilitate the positioning was to fix the solution using the
GLONASS constellation alone (showing the highest visibility during the survey), and then using the
GPS constellation to increase the position accuracy (up to PDOP~5−10). The tree heights estimated
via UAV laser scanning were strongly correlated (r2 = 0.98, RMSE = 2.80 m) with those measured in
situ. Assuming a maximum absolute relative error in the estimation of the structural attribute (20%
within this work), the proposed methodology allowed the portion of the forest surface (≤60%) to
be sampled to be quantified to obtain a low average error in the calculation of the above mentioned
structural attributes (≤13%).

Keywords: LiDAR; Global Navigation Satellite System (GNSS); semivariogram analysis; stand
structural attributes; tree height; aboveground biomass; growing stock volume; basal area

1. Introduction

Most geomatic techniques (conventional traverse surveying and GNSS [1], LiDAR [2],
photogrammetry [3], remote sensing [4], geographical information systems [5]) have been
used, in recent years, to characterize forests’ and trees’ planimetric positions. In particular,
the development of remote sensing technology in recent decades has been revolutionary
for forestry applications (acronyms and symbols are reported in Appendix A).

The most significant progress is due to the introduction of airborne laser scanning
(ALS) and recently of unmanned aerial vehicle-borne laser scanning (UAVLS) or unmanned
laser scanning (ULS) [6]. ALS and UAVLS have been successfully used to measure tree
height [7–10], and to estimate a wide range of canopy properties, including crown diame-
ter [11], canopy structure [12], leaf area [13], canopy fuel [14], and canopy gaps [15]. Forest
structural attributes such as basal area, volume, and aboveground biomass can be modelled
or inferred from these direct measurements [16–23]. ALS has been widely investigated
for applications in forest inventories [24–28]. Furthermore, the applicability of ALS for
detecting characteristics such as structural attributes of old-growth forests is currently
rapidly increasing [29–32]. Recent studies have strongly supported the conservation of
old-growth forests as an effective global strategy to tackle observed and forecasted effects
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of climate change [33,34]. It is now well recognized that old-growth forests play an effective
role in biodiversity conservation at the landscape and stand scales [35,36] and in ecosystem
services provision such as carbon storage [37,38]. In the assessment of old-growth forests,
the structural attributes are usually characterized in the field by sampling a number of
plots [29,39–41]. The design of fixed-size plots, randomly or systematically located within
the investigated area, is considered a consolidated and effective way to estimate ecological
attributes [42]. Several studies have analyzed the effect of sample plot size on the estima-
tion of forest structural attributes [22,43–47]. Plot size is a key sampling design parameter
because it can reduce or inflate potential edge effects, influencing the accuracy of forest
stand attributes [44]. Standard practice in establishing ALS-based models for estimating
plot- or stand-level structural attributes often employs a two-stage sampling approach with
in situ measurements frequently simultaneous with ALS acquisitions [48]. This two-stage
procedure can be cost-intensive and time-consuming, especially in forests characterized
by complex structure and topography. The topography often includes steep slopes, deep
valleys, peaks, and rock outcrops. Typically, these conditions occur in Mediterranean old-
growth forests located in remote and impervious mountain areas [49–51] characterized by
low levels of accessibility. Our specific objectives were to implement a methodology (1) to
determine a representative plot size, given the spatial variability of the heights of the trees,
and (2) to estimate a sampling area allowing the structural attributes to be characterized
with a satisfactory level of accuracy. Indeed, such a methodological approach is particu-
larly important in surveying impervious areas characterized by a low accessibility level.
Technically, it was necessary to deal with the limits of the GNSS positioning in mountain
forested areas. We suggested a strategy to fix the initial solution based on the constellation
of which the largest number of satellites is visible, regardless of which constellation they
belong to.

2. Materials
1.1. Study Area

The study was carried out in northwest Sicily (Italy) in an old-growth forest stand
(37◦51′29′′ N, 13◦25′42′′ E) (Figure 1). The stand is located in a narrow valley at altitudes
of 1000–1050 m, northwest exposed, within the “Bosco della Ficuzza, Rocca Busambra,
Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve, and part of the Special
Areas of Conservation (SAC) “Monti Sicani, Rocca Busambra, Bosco della Ficuzza”. This
latter is included in the Natura 2000 network (ITA020048, Habitat Directive 92/43/EC).
The stand (~1.2 ha) is dominated by downy oak (Quercus pubescens Willd.) with other
broadleaves such as holm oak (Quercus ilex L.), field maple (Acer campestre L.), and sweet
chestnut (Castanea sativa Mill.). It has escaped natural and anthropogenic disturbances
such as wildfires, harvesting, and gathering of deadwood for at least 80 years. During
this period, the stand moved towards late-successional developmental stages with high
levels of structural complexity, including a multi-layer canopy, canopy gaps created by tree
mortality, large old trees, and accumulations of standing and lying deadwood [52]. The
bioclimate is Mediterranean pluviseasonal–oceanic with mesomediterranean thermotype
and subhumid ombrotype [53]. Soils can be classified as leptosols [54] (https://www.fao.
org/3/i3794en/I3794en.pdf, accessed on 11 February 2022). According to the approach of
forest accessibility [5], the study area was classified as barely accessible.

1.2. Forest Structural Attributes Data

A field survey was carried out in May 2016, on the old-growth forest stand, including
large old trees, deadwood, lying and leaning trees, as well as canopy gaps (Figure 2). We
measured the diameter at breast height (DBH, m) and height (H, m) of living trees. Field
reference data were used to derive single-tree attributes such as basal area (G, m2), growing
stock volume (V, m3), and aboveground biomass (AGB, Mg).

https://www.fao.org/3/i3794en/I3794en.pdf
https://www.fao.org/3/i3794en/I3794en.pdf


ISPRS Int. J. Geo-Inf. 2022, 11, 168 3 of 20ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 3 of 21 
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Busambra, Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve in Sicily (dark grey, 

Frame A, Projected CRS ETRF2000-RDN2008 UTM zone 33N-EPSG: 6708). The location of Sicily 
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A total of 413 trees belonging to 11 species was censused, of which 100 were large old 

trees with DBH > 0.04 m. V, G, and AGB per hectare were estimated to be 293.5 m3, 27.8 

m2, and 227.2 Mg, respectively. Large old trees represented 71% of V, 60% of G, and 69% 

of AGB. 

Note that in natural deciduous forests, such as our old-growth forest stand, the tree 

detection rate in situ is lowered by the dense canopy structure. In addition, the treetop 

often does not correspond to tree position at breast height. This is the case for irregular 

canopy shape and tree leanings (Figure 2a,b) from ALS data [55]. 

The ability of ALS to record suppressed and lying trees is limited by the uppermost 

canopy layer [10,21]. Moreover, the exact identification of treetop locations from the point 

Figure 1. The location of the old-growth forest (white triangle) in the “Bosco della Ficuzza, Rocca
Busambra, Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve in Sicily (dark grey,
Frame A, Projected CRS ETRF2000-RDN2008 UTM zone 33N-EPSG: 6708). The location of Sicily
within the Italian territory (light grey, Frame B, Geocentric CRS RDN2008-EPSG: 6706).
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Figure 2. Structure of the old-growth forest stand: (a) leaning and lying trees; (b) dominant and
suppressed trees and deadwood; (c) canopy gap.

A total of 413 trees belonging to 11 species was censused, of which 100 were large
old trees with DBH > 0.04 m. V, G, and AGB per hectare were estimated to be 293.5 m3,
27.8 m2, and 227.2 Mg, respectively. Large old trees represented 71% of V, 60% of G, and
69% of AGB.

Note that in natural deciduous forests, such as our old-growth forest stand, the tree
detection rate in situ is lowered by the dense canopy structure. In addition, the treetop
often does not correspond to tree position at breast height. This is the case for irregular
canopy shape and tree leanings (Figure 2a,b) from ALS data [55].

The ability of ALS to record suppressed and lying trees is limited by the uppermost
canopy layer [10,21]. Moreover, the exact identification of treetop locations from the
point clouds can be challenging for intermediate and suppressed trees, even with human
inspections [10]. Therefore, suppressed trees were excluded from the following analyses.
The resulting 276 trees, classified as the dominant, codominant, and intermediate crown,
were used as reference field data and matched with ALS-detected trees.
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1.3. UAV-Borne Laser Scanning Data

UAVLS data were acquired on 4 May 2016 under leaf-on conditions using a YellowS-
can Mapper, mounted on a remotely piloted aerial system, with the following technical
specifications: 1.8 m-diameter octocopter, characterized by a Global Positioning System
(GPS) waypoint navigation, auto take-off, and landing. The YellowScan Mapper is a class 1
laser working in the near-infrared (at 905 nm). The planimetric absolute accuracy of the
integrated system is 0.10 m + 1% of the flying altitude, the vertical accuracy is 0.10 m + 0.5%
of the acquisition altitude, while the precision is 10 cm. The range resolution is 4 cm. The
LiDAR instrument was integrated with an internal inertial navigation system (INS) and
GPS+ receiver (GPS plus GLONASS, Global’naja Navigacionnaja Sputnikovaja Sistema)
acquiring in real-time kinematics (RTK). The system weight and autonomy were about
2 kg and 3 h, respectively [56]. The UAV operated up to 50 m above treetops, recording a
maximum of three returns per laser pulse. The scan angle range was ±50◦. The scanned
area was composed of seven parallel and partly overlapping strips, acquired at a flight
speed of ≈0.5 m/s, resulting in an acquisition duration of 35′. The strips were labelled as
S1–S7 from north to south.

1.4. Topographic and Expeditious Surveys

The topographic phase consisted of a closed traverse of GNSS benchmarks together
with a radial-line survey. A GNSS Topcon Hiper-Pro, both GPS and GLONASS, receiving
in double-frequency and equipped with an FC-100 controller, was used for the static survey
of two reference landmarks, while for the closed traverse survey, a Leica TPS 1105 total
station (Hexagon AB, Sweden) and topographic right-angle prisms were employed. The
system is characterized by an angle measurement accuracy of 3′′ (1 mgon) and a distance
measurement (Infrared sensor, IR) accuracy (ISO 17123-4) in standard mode of 2 mm.

The commercial software for the topographic geolocation of the trees was the following:

− MAGNET Tools and Topcon Tools ver. 8.2.3, developed by Topcon Corporation (Tokyo,
Japan). The software allows data processing from different devices such as total sta-
tions, digital levels, and GNSS receivers, and it is used in most technical–scientific
applications [57–59]. Topcon Tools includes different models for tropospheric correc-
tion, such as the Modified Hopfield Model [60–62] with the NRLMSISE meteorological
model, in extenso the United States Naval Research Laboratory Mass Spectrometer
Incoherent Scatter Radar model [63]. Baseline processing can take place either with
the GPS or GLONASS constellations or a combination of the two (GPS+).

− Meridiana ver. 2020, developed by Geopro (Topcon Positioning Italy, Ancona, Italy).
The tool allows the geographical congruence to be analyzed and outliers of the total
station data to be checked, assuming a given set of tolerances. Depending on the data
available, the software uses the following calculation methods: roto-translation (rigid
or least-squares, with fixed or variable scaling factor), Snellius, and Ex-center.

− The theoretical number of satellites, for the given cutoff angle, was calculated using
the Trimble GNSS planning online software [64].

The expeditious phase consisted of some radial-line surveys using a hypsometer and
a compass. Indeed, twelve additional reference landmarks were placed in the area, and
their coordinates were determined using a Recon N324 GNSS receiver (by Trimble Inc.,
Sunnyvale, California, USA) (≈2 m accuracy in absolute method). The landmarks were
placed on the boundary, both in the corners and in the midpoint of each side, as well as in
the gaps occurring within the area. This allowed the maximum distance between the trees
and the nearest landmark (≤30 m) to be limited. The coordinates of the living trees were
determined by recording horizontal distance and azimuth readings for every tree from the
nearest landmark, using the Vertex IV hypsometer (Haglöf, Långsele, Sweden) and the
Tandem/360PC/360R DG Clino/Compass (Suunto, Vantaa, Finland). The accuracy of the
hypsometer is <1% of the distance, while the precision of the compass is 20′.
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3. Methods
1.5. Data Collection

The surveys consisted of the structural characterization of the forest, as well as the
tree positioning.

The DBH and H of living trees >0.03 m were measured using a caliper (Silvanus type
1208) and a hypsometer, respectively [65]. We also classified the species and the tree crowns
as dominant, codominant, intermediate, or suppressed [66]. Species-specific allometric
equations were used to predict V and AGB [67], which combine DBH and H.

For the tree topographic positioning, the choice of a specific technique instead of
another is dependent on various factors. Some limits can be overcome by integrating
different geomatics techniques, for instance, the total station and GNSS surveys.

Indeed, while it is always possible to apply classical topographic approaches, such as
conventional traverse (with total stations), according to Meyer et al. [68] the use of GNSS
positioning is degraded by the influence of the canopy, which naturally obstructs the sky
and reduces signal acquisition. Many factors are responsible for the decrease of accuracy
in positioning of the forest trees, including multipath, cycle slip, low signal-to-noise ratio
(SNR, −), and low dilution of precision (DOP, −).

The feasibility of surveying in GNSS kinematic mode was excluded, since even with
the aid of micro-electro-mechanical systems (MEMS), it allows a horizontal accuracy not
higher than 15–50 m to be achieved [69]. In addition, the poor GSM signal in the study
area led to the discarding of the use of low-cost mobile phone sensors, although given
the technological development of these sensors [70,71], their use is increasingly spreading.
Since the planimetric positioning of the trees depends on the availability and quality of
the GSM signal, the accuracies achieved by the authors are modest, in the range of 5–15 m.
Fan et al. [72], on the other hand, by equipping the mobile phone with an additional
Red Green Blue-Depth (RGB-D) MMS Simultaneous Localization and Mapping (SLAM),
reported being able to position the trees with sub-meter accuracy.

Therefore, it was decided to survey some of the forest control points, according
to [73,74], and, based on Valbuena et al. [75], a closed traverse survey of under canopy
GNSS benchmarks with a radial-line survey was employed, allowing the axis of a number
of trees to be positioned at breast height.

Regarding the differential correction of GNSS data, applications have benefited from
Continuously Operating Reference Stations (CORS) for three-dimensional positioning. Sci-
entific and technical applications of the CORS networks have been developed for real-time
positioning (Network Real-Time Kinematic (NRTK)), as well as for data post-processing. In-
deed, the GNSS CORS network allowed a reliable differential correction to be received using
approaches such as the Virtual Reference Station (VRS), the Flächen-Korrektur-Parameter
(FKP), or the Multi Reference Station (MRS).

The University of Palermo (UNIPA) materialized a GNSS CORS network in the western
part of Sicily (Italy) providing daily data in Receiver Independent Exchange (RINEX) format
(at 30′′ rate) and hourly raw data (at 1′′ rate); the network is made up of eight CORSs
serving near 740,000 hectares, equipped with Topcon NET G-3 GPS and GLONASS enabled
receivers [76]. Its data have been used for regional integration of the long-term national
dense GNSS network solutions in Europe [77]. It has been also used for the computation
of the National Dynamic Network (Rete Dinamica Nazionale (RDN2)) EUREF Permanent
Network (EPN) in Italy; this subnetwork is managed by the Italian Military Geographic
Institute (Istituto Geografico Militare Italiano (IGMI)).

Preliminary analyses [76] allowed its operating service and the quality of the recorded
data to be verified during the first period of the testing procedure (2008–2012).
Dardanelli et al. [78] compared different survey methods to check the congruence of the
solutions. The NRTK positioning was obtained with different methods (VRS, FKP, and
Nearest Station), and a Precise Point Positioning solution was calculated with two different
scientific software, namely RTKLIB and the Canadian Spatial Reference System Precise
Point Positioning (CSRS-PPP). Among the NRTK methods tested in Dardanelli et al. [78],
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VRS has shown the lowest average difference with the static solution; thus, the VRS was
employed in this case study.

The occupation time of the GNSS Topcon Hiper-Pro was 90′ (Figure 2a) at a rate of
1′′, with the cut-off angle fixed to 15◦. Four baselines (panel b) connected the reference
landmarks with the CORS situated in Prizzi (PRIZ, baseline length = 19,890 m, Figure 3) and
Palermo (PALE, baseline length = 26,270 m). The positioning mode used within the Topcon
Tools was the Code-based differential (CODE DIFF). The position dilution of precision
(PDOP) metric, as well as the number of GPS and GLONASS satellites, were reported. The
PDOP was evaluated according to the scale given by Mikulski [79]. Based on Kissam [80],
the traverse included the least-squares adjustment over three repetitions.
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1.6. UAVLS Data Processing

UAVLS data were processed using LAStools package software (rapidlasso GmbH) and
QGIS (QGIS Development Team) open-source software. The procedure consisted of several
steps: (i) firstly all point clouds covering the study area were merged into one layer, using
the lasmerge tool (of the LAStools package); (ii) then, the mosaic was obtained by merging
strips S1 to S7; (iii) in the further step, filtering and classification allowed outliers and noisy
points due to, for instance, backscatter by flying objects (low, isolated, and air points) to be
removed and to separate points belonging to the ground and the above vegetation (lasnoise
with the option wilderness and lasground tools); (iv) after classifying the cloud into the
ground and non-ground points, the tree heights for each point above the ground were
computed using the lasheight tool; (v) the point cloud was interpolated on a regular grid
using the las2dem tool, thus generating the digital terrain model (DTM, m) and the digital
surface model (DSM, m). The DTM was created from the last returns (ground points), while
the DSM was created from first returns only (non-ground points); vi) finally, the canopy
height model (CHM, m) was computed pixel-by-pixel by differencing the DSM and DTM
models [81].

Return density per square meter was evaluated for all the scan lines on a regular grid,
as well as the first and third returns density of the merged points. Based on this latter
elaboration, we evaluated the relationship between the density of the points belonging to
the area between two contours lines and the average values of the altitude and slope. We
selected intervals in altitude of 5 m (from 1005 to 1035 m).

The trees’ heights (HCHM, m) were extracted by the CHM using QGIS, while the DSM
was used to determine the tree positions from the ALS data. Positions of dominant, codom-
inant, and intermediate trees were discriminated by checking null slopes (a maximum
threshold was set to 0.2%) and negative curvatures.

1.7. Semivariogram Analysis

Tree height is one of the main forest structural parameters. The pattern of its
spatial autocorrelation can be investigated with semivariogram analysis [82–84]. The
semivariogram measured the spatial dependence between sampled heights. It was
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computed as the sum of squared differences of heights between all pairs of the points
belonging to a given class of distance [82]. A semivariogram is typically characterized
by the nugget effect, the sill, and the range [85,86]. In this application, the nugget effect
reflects the semivariance of the tree heights at lag distance near zero. The sill is the value
of the maximum variance of a model component showing a horizontal asymptote. The
length is the lag distance at which the semivariance reaches the sill and reflects the scale
characteristics of the data in the area. To determine the optimal plot size for estimating
forest structural attributes, the lengths of the semivariograms were computed for both
tree heights measured in situ with the hypsometer and derived by processing the CHM
model. By sampling a plot of dimensions equal to (or greater than) the semivariogram
length, we sampled an area characterized by the maximum semivariance, at least for
model components showing a horizontal asymptote. Indeed, if the linear component of
the semivariance occur, it is required to sample a (sufficient) number of plots to reach
the area representativeness. Semivariograms were computed using Surfer by Golden
Software LLC.

2. Results and Discussion
2.1. Tree Positioning via GNSS CORS and Total Station

After checking the overlapping of the data from the two permanent stations of PRIZ
and PALE, and the two reference landmarks (Figure 3b), the attention was turned to the
assessment of the position PDOP (Figure 4).
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Figure 4. PDOP times series: (a) CORS PALE and PRIZ (blue and red lines, respectively); (b) V1 and
V2 reference landmarks (black and green lines, respectively). Non-overlapping times between the
permanent stations and the landmarks’ acquisitions are shaded in grey.

The PDOP were excellent [79] (<3) for the two CORS, which were materialized in
accordance with EPN requirements at suitable sites with good satellite visibility, while
for the two reference landmarks, the PDOP values were moderate–poor, mostly between
5 and 10 (Figure 4b). These PDOP values, which did not meet the standards, were due
to the poor signal reception that characterized the acquisitions in the forest, where the
presence of very high trees and trees close to each other (heights up to 32 m, with an
average distance and standard deviation equal to 4.3 ± 2.5 m and a maximum distance
equal to 13.4 m) occluded the satellites’ signal transmissions. Better visibility of the
GLONASS constellation (Figure 5) than that of the GPS (Figure 6) was also found during
the measurement time window.

The software was not able to fix the solution using GPS first, so according to
Dardanelli [87], the solution was initially fixed using the GLONASS constellation alone,
which was more accessible, and then the use of the GPS signal allowed the precision of the
coordinates of the reference landmarks to be improved (up to centimetric precision) in the
short observation period (80′). The maximum number of satellites for the given position,
measurement period, and elevation cut-off was over imposed (dashed red line). It was
shown that the visible number of satellites at the receiver height (2 m) was much lower
than the number of satellites potentially available. The wavelength of the carrier wave
indeed only partially passes through the trunk–branches–canopy system (wavelength
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in the range 18.71–23.79 cm for the GLONASS and in the range 19.03–24.42 cm for the
GPS satellites). The number of GLONASS satellites potentially available was lower
than that of the GPS. However, the decrease in the number of satellites visible under
the crown was stronger for the GPS than for the GLONASS constellation. This resulted
in a higher number of GLONASS satellites available than that of the GPS. In addition,
the morphology of the mountain area obstructed the visibility of the satellites in some
azimuthal sectors until a minimum elevation angle was reached by the satellites [88].
Indeed, in the sectors 50–130, 153–173, and 238–251 degrees (clockwise from north), the
satellites became fully visible above an elevation of 22◦.
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(b) V1 and V2 (black and green lines, respectively). Non-overlapping periods between the permanent
stations and the landmarks acquisitions are shaded in grey. The maximum number of satellites for
the given position, measurement period, and elevation cut-off (dashed red line).

Therefore, the radial-line survey linked the GNSS reference landmarks V1 and V2
(under canopy) allowed the trees in the chosen reference system to be positioned (projected
CRS ETRF2000-RDN2008 UTM zone 33N-EPSG: 6708) according to Valbuena et al. [75].
Misclosure root mean squared error (RMSE) was centimetric for both planimetric and
altimetric calculations.

Twelve trees, which were visible from a benchmark located in the northern boundary
of the study area (V1 of the closed traverse survey), were positioned using a radial
line survey through the total station. Distances were measured pointing at a reflector
placed on the tree trunk at breast height. These topographic positions allowed it to be
established whether those determined via the expeditious survey were reliable for the
comparison with the centers of the trees inferable from the ALS survey.
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2.2. LIDAR Statistics and Trees’ Topographic Positioning Accuracy

This section reports some statistics describing the merged UAVLS file, and then it
analyzes the accuracy in the positioning of the trees with GNSS survey and total station
compared to that achieved with the expeditious survey, as well as the accuracy of the
heights of the trees derived from laser scanners versus those measured in situ.

The point density (points per square meter) of each strip is reported in Figure 7 (strips
S1 to S7 from panel b to h, respectively). The maximum densities were 150, 245, 205, 602,
167, 205, and 244 point m−2 for the strips S1 to S7, respectively. The color scale was set for
the maximum range of variability (1–602, S4). A 5 class equal count diverging color scale
was adopted. The color scale was colorblind safe and print friendly.
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Figure 7. Topographic and LAS surveys: contour lines derived from the DTM with over-imposed
survey landmarks (black dots, panel (a), the positioning of the ground station (red dot), the positioned
trees (green dots); point density of the LAS scan lines with all returns are represented in earth tones
color scale. Lines scans are reported in panels (b–h) ordered from north to south.

Once the strips were merged, the number of first returns was 1,159,063, while the
number of intermediate returns (5140) was a small percentage (0.4%) of the first ones;
instead, the number of last returns (1,155,667) was almost the same number of the first
ones (99.7%), and slightly more than the number of single returns (1,010,546, 87.2% of the
first ones). The point density of all returns was 122.64 points per square meter, while the
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spacing of all returns was 0.09 m. Considering the average density of the returns, a spatial
resolution ≈5 times higher than the spacing should result in a standard error of the mean
not higher than ~20% of the standard deviation of the points generating the pixel value.
Thus, the spatial resolution for the DSM model was set to 0.5 m. The same spatial resolution
was then chosen for the DTM model.

First returns (Figure 8a) were represented through a 5 class equal count diverging
color scale. All the third returns belonged to the first class (panel b). Their density linearly
increased with the average altitude (r2 = 0.74) as well as with the average slope (r2 = 0.54).
First returns did not show any trend.
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Figure 8. Topographic and LAS surveys: (a) first return density of the merged scan lines; (b) third
return density of the merged scan lines.

The positions of the trees determined via the topographic survey are reported in
Figure 9a (dots). The distances between trees positioned via the expeditious survey and
via the topographic survey showed an average value of 4.71 m with a standard error
of 0.73 m. This average value was larger than the planimetric absolute accuracy of the
YellowScan Mapper integrated system, which was 0.6 m at the flying altitude (50 m).
However, considering the uncertainties due to the heterogeneity of (i) the size of the
crowns of the dominant trees (characterized by an average radius µ = 3.24 m with stan-
dard error σµ = 0.12 m); (ii) the eccentricity of the crown (µ = 0.84 m, σµ = 0.01 m); and
(iii) the tree leaning (µ = 23◦, σµ = 2.5◦) and tree height (µ = 16.5 m, σµ = 0.38, maximum
height = 32.4 m), it emerged that the accuracy of the expeditious positioning could be
considered acceptable.

Dominant, codominant, and intermediate live trees were superimposed as points to
the CHM model (Figure 9a). Gaps due to clearings were highlighted in grey. Gaps appeared
where dead trees lied on the ground.

Altitudes decrease from southwest to north (from 1034 down to 1008 m). The highest
HCHM values (up to 32.4 m) occurred in the southeast sector, while the lower heights
(~2.5 m) resulted in the northwest sector.

The height of the tree measured in situ with this last method was then compared
with the HCHM value of the nearest pixel characterized by an almost null slope and neg-
ative curvature (Figure 9b). HCHM showed a very strong correlation [89] (coefficient of
determination r2 = 0.98) with the heights of the trees measured in situ, with an average
underestimation of 6% (gain equal to 0.94). The root mean square error around the linear
trend line was 2.80 m. This value was larger than the integrated system vertical absolute
accuracy, which was 0.35 m in this acquisition.

2.3. Semivariogram Analysis

A semivariogram analysis allows the planimetric variability of the trees’ heights of
both CHM and H values to be quantified (Figures 10 and 11, respectively). The components’
parameters are reported in Table 1.



ISPRS Int. J. Geo-Inf. 2022, 11, 168 11 of 20ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 21 
 

 

 

 

(a) (b) 

Figure 9. (a) Graduated color map of the CHM (equal interval discretization) with over-imposed 

height of the trees measured in situ (equal interval, same color scale), EPSG: 6706; (b) scatterplot 

between HCHM and H (empty circles) with descriptive statistics (gain, determination coefficient r2, 

and RMSE) and linear trend line (in black). 

Dominant, codominant, and intermediate live trees were superimposed as points to 

the CHM model (Figure 9a). Gaps due to clearings were highlighted in grey. Gaps ap-

peared where dead trees lied on the ground. 

Altitudes decrease from southwest to north (from 1034 down to 1008 m). The highest 

HCHM values (up to 32.4 m) occurred in the southeast sector, while the lower heights (~2.5 

m) resulted in the northwest sector. 

The height of the tree measured in situ with this last method was then compared with 

the HCHM value of the nearest pixel characterized by an almost null slope and negative 

curvature (Figure 9b). HCHM showed a very strong correlation [89] (coefficient of determi-

nation r2 = 0.98) with the heights of the trees measured in situ, with an average underesti-

mation of 6% (gain equal to 0.94). The root mean square error around the linear trend line 

was 2.80 m. This value was larger than the integrated system vertical absolute accuracy, 

which was 0.35 m in this acquisition. 

4.3. Semivariogram Analysis 

A semivariogram analysis allows the planimetric variability of the trees’ heights of 

both CHM and H values to be quantified (Figures 10 and 11, respectively). The compo-

nents' parameters are reported in Table 1. 

Results showed that the empirical semivariograms (black line with black dots) were 

in both cases well interpretable by theoretical semivariograms (a panel, blue line) com-

posed of quadratic and linear components (b and c panels, respectively), as well as of a 

nugget effect. 

The empirical semivariogram of H was less uniform than that of the CHM, likely as 

a consequence of the smaller numerosity of the dataset. The semivariance first grew line-

arly and suddenly due to a noticeable variability of the height of the trees over short dis-

tances, until a lag distance where a knee occurred. Then, for longer lag distances, the sem-

ivariance kept increasing linearly although with a smaller slope. 

H = 0.94HCHM

r² = 0.98

RMSE = 2.80 m 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

H
(m

)

HCHM (m)

Figure 9. (a) Graduated color map of the CHM (equal interval discretization) with over-imposed
height of the trees measured in situ (equal interval, same color scale), EPSG: 6706; (b) scatterplot
between HCHM and H (empty circles) with descriptive statistics (gain, determination coefficient r2,
and RMSE) and linear trend line (in black).
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field, we preferred to neglect the effects of anisotropy on sampling plots. Indeed, any sam-

pling criteria accounting for the anisotropy behavior would have been difficult to follow 
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Figure 10. The empirical semivariogram of the CHM (black line with dots), with over-imposed
closest theoretical semivariogram (blue continuous line); the range of variability of the theoretical
semivariogram (dashed blue lines): (a) all the components of the semivariogram; (b) the quadratic
model; (c) the linear model.

Results showed that the empirical semivariograms (black line with black dots) were in
both cases well interpretable by theoretical semivariograms (a panel, blue line) composed of
quadratic and linear components (b and c panels, respectively), as well as of a nugget effect.

The empirical semivariogram of H was less uniform than that of the CHM, likely as a
consequence of the smaller numerosity of the dataset. The semivariance first grew linearly
and suddenly due to a noticeable variability of the height of the trees over short distances,
until a lag distance where a knee occurred. Then, for longer lag distances, the semivariance
kept increasing linearly although with a smaller slope.
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Table 1. The Semivariogram components’ parameters: (a) CHM and (b) H.

Nugget Effect Quadratic Nugget Effect Quadratic

Error
0.61

Scale 10.85 Error
0.78

Scale 23

Variance Length 20 Variance Length 20.31

Linear Anis. ratio 1.66 Linear Anis. ratio 1.86

Slope 0.32 Anis. angle 90 Slope 0.15 Anis. angle 111

Anis. ratio 1.40 Anis. ratio 2

Anis. angle 145.2 Anis. angle 106.3

(a) (b)

As reported in Table 1, both semivariograms were characterized by anisotropic behav-
ior. For the sake of simplicity, aiming to propose a sampling procedure to apply in the field,
we preferred to neglect the effects of anisotropy on sampling plots. Indeed, any sampling
criteria accounting for the anisotropy behavior would have been difficult to follow in an
operational scenario. The linear component reflected the heights of the trees varying in
the south–southwest direction, which roughly constituted a direction of maximum slope.
Indeed, the maximum slope between the southern and northern sides of the study area was
0.29 at 5◦ clockwise from north. The quadratic components (Figures 10b and 11b) showed
a sill that is variable with anisotropy (from ~10 to ~20 m). Therefore a size of 20 m was
chosen, allowing the value of the sill to be reached independently from the direction and
also allowing a higher number of trees to be sampled.

2.4. Sampling Area Optimization

Allometric relationships occur between tree height and the main structural variables
employed to describe a forest. Those empirical relationships refer to all the dominant trees
as a whole (in Figure 12a–c species are represented with different colors). Interpolation
curves of the 5th, 50th, and 95th percentile (lower dashed blue line, black continuous
line, and upper dashed blue line, respectively) were over-imposed to help interpret the
scatterplots. According to Popescu [21], interpolation curves showed an exponential trend.

The higher the H, the wider the dispersion of AGB(H), V(H), and G(H). Indeed, as the
main species of the population (Q. pubescens) extended to the tallest heights, it reached the
widest dispersions.
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Figure 12. Relationships between forest structural variables versus in situ tree heights (dominant,
codominant, and intermediate). Light green dots refer to downy oak, dark green dots refer to holm
oak, yellow dots refer to field maple, brown dots include sweet chestnut plus secondary species.
The exponential trend line (continuous black line) refers to all the species, while lower and upper
dashed lines refer to the 5th and 95th percentile curves, respectively. The regression equations are
also reported: AGB for the trend line (in black), and AGBL and AGBU for the 5th and 95th percentiles,
respectively (in blue). Forest structural variables include (a) AGB, (b) V, and (c) G.

The knee of the semivariogram ruled the gridding of the area into square plots of 20 m
side. Then, plots were randomly selected, to investigate the correlation between structural
attributes (AGB, V, and G) and tree height (H and HCHM) for given plots’ numerosity.

The whole plots selection (36 plots, sampling area S = 100) corresponded with sampling
the whole trees population. The corresponding values of AGB (Figure 13a–c), V (panels d,
e, f), and G (panels g, h, i) for S = 100 were assumed as reference values of the population,
thus corresponding to a null apparent relative error (ρAGB, ρV, ρG).

By progressively decreasing the sample size (30, 24, 18, 12, 6, of 36 plots) we charac-
terized gradually smaller surfaces. It should be noted that the presence of boundary plots
implies that the surfaces of the plots can be different. As the sample area decreased, the
absolute relative errors (|ρAGB|, |ρV|, |ρG| in Figure 10 upper, intermediate, and lower
panels, respectively) increased.

Given the dispersion of the structural attributes, it was decided to use the three allo-
metric relationships to quantify the relative errors in determining the structural attributes
for different sampling rates. The spatial distributions of AGB, as well as the upper and
lower variability AGBL and AGBU, were calculated from the average value of the HCHM of
a given number of selected plots and similarly for the other structural attributes V and G.

The interpolation curves of the mean and the 99th percentiles (dashed blue and black
curves, respectively) were superimposed to Figure 13 to facilitate its interpretation. The
logarithmic curves well described the trend of the data (in Figure 12), and they could
be used to quantify the size of the sampling area, assuming an acceptable value of the
maximum absolute relative error.

For instance, assuming a tolerable value of the maximum absolute relative error equal
to 20% (solid blue horizontal line) in the estimation of the structural attribute, it was
sufficient to sample the following:

− a forest surface between 51% (based on AGBL, panel c black curve) and 56% (based on
AGBU, panel b black curve), corresponding to an average error varying between 13%
(AGBL, blue dashed curve) and 12% (AGBU, blue dashed curve);

− a forest surface between 52% (based on VL, panel f black curve) and 60% (based on
VU, panel e black curve), corresponding to an average error varying between 12% (VL,
blue dashed curve) and 11% (VU, blue dashed curve);
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− a forest surface between 33% (based on GL, panel i, black curve) and 46% (based on
GU, panel h black curve), corresponding to an average error of 12% (for both GL and
GU, blue dashed curves).
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Figure 13. The absolute value of the relative error, |ρ|, of the structural attribute by varying the
percentile of the sampling area, S. Logarithmic trend lines refer to the 99th percentile (black continuous
line) and the average (dashed blue line). The values |ρ| are estimated from the HCHM by employing
the exponential trend curve, the lower, and the upper interpolation curves. In the upper panels, (a) AGB,
(b) AGBU, and (c) AGBL (upper panels); in the intermediate panels, (d) V, (e) VU, and (f) VL; in the
lower panels, (g) G, (h) GU, and (i) GL. A blue horizontal line indicates an acceptable error of 20%.

It emerged that the sampling area is a critically important sampling design parameter,
as it affects the estimation accuracy of structural attributes of the forest stand. Indeed, the
relative error exponentially decreased as the sampling area increased, in agreement with
previous studies reporting that the accuracy of the structural attributes estimates improved
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markedly in terms of coefficient of determination, RMSE, and bias as the sampling area
increased six-fold [38] or were duplicated [41]. Some authors suggested a minimum
sampling area (500 m2) to provide accurate estimates [16,39]. Several authors [16,38,39,41]
concluded that sampling larger areas does not significantly increase the accuracy of the
estimates, although it raises the fieldwork cost. In this manuscript, we do not propose a
value of sampling area; instead, we propose a methodology to determine the minimum area
to be sampled to estimates some forest structural attributes with an acceptable accuracy
based on the absolute value of the maximum relative error.

3. Conclusions

The manuscript reported a new methodology for minimizing the sampling area of an
old-growth forest, given a tolerable value of the maximum relative error. That area is then
characterized by an absolute value of the average relative error. The area is sampled by
taking a census of the trees within random plots. The plot size is obtained by analyzing the
semivariogram of the heights of the trees. Given a semivariogram component showing a sill,
the length (20 m in the present study) is assumed as the minimum dimension characterizing
almost the whole variance of forest structural attributes.

A UAV-onboard laser scanner allowed some important forest structural attributes
to be estimated with a given accuracy, including aboveground biomass, growing stock
volume, and basal area. In addition to UAV laser scanning, the methodology employs
GNSS, radial survey, and hypsometric measurements.

Since very high and close trees obstruct the GNSS signal transmission, a strategy to
facilitate the positioning was to fix the initial solution by processing only the GLONASS
satellites signals (whose visibility was the highest), and then to include the GPS signals to
ameliorate the positioning precision (PDOP < ~10).

The heights of the dominant, codominant, and intermediate trees measured in situ
were very strongly correlated (r2 = 0.98) with those estimated via UAV laser scanning.

Our findings highlighted that assuming a maximum absolute relative error in the
estimation of the structural attributes (20% within this work), it is sufficient to sample
a part of the investigated forest stand to characterize the whole study area with a low
average error (<13%). In particular, we obtained the following maximum values of the
sampling surfaces and average absolute errors: a sampling surface of 50% with 13% error
for estimating the aboveground biomass; 60% with 12% error for the growing stock volume;
and 46% with 12% error for the basal area.

For future studies, we are considering testing the methodology with airborne multi-
echo LiDAR products, recently acquired by the Italian “Ministry of the Environment and
Land and Sea Protection” (Ministero dell’Ambiente e della Tutela del Territorio e del Mare) as part
of an environmental remote sensing plan (Piano Straordinario di Telerilevamento Ambientale).
Indeed, a Digital Terrain Model and a Digital Surface Model (first and last returns) are
available upon request at 2 m spatial resolution.

Finally, although our methodology has been shown to simplify the characterization of
the forest structural attributes, it should be tested on other forest stands having different
topographic and structural complexity.
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Appendix A

Acronym and Symbol Meaning Unit

ALS Airborne laser scanning
CHM Canopy height model

CODE DIFF Code-based differential
CORS Continuously Operating Reference Stations
EPN EUREF Permanent Network

EUREF Reference Frame Sub-Commission for Europe
LiDAR Light detection and ranging
IGMI Istituto Geografico Militare Italiano

IR Infrared
INS Inertial navigation system
IUSS International Union of Soil Sciences

GLONASS
Global Navigation Satellite System (in Russian:

Global’naja Navigacionnaja Sputnikovaja
Sistema)

GPS Global Positioning System
GPS+ GPS plus GLONASS positioning
GNSS Global Navigation Satellite System

NRLMSISE
United States Naval Research Laboratory Mass

Spectrometer–Incoherent Scatter Radar
MEMS Micro-electro-mechanical systems
PALE CORS permanent station in Palermo
PRIZ CORS permanent station in Prizzi
UAV Unmanned Aerial Vehicle

UAVLS UAV-borne laser scanning
UNIPA University of Palermo

V1 and V2 GNSS reference landmarks
V3 Total station positioning

RGB-D Red Green Blue-Depth
RINEX Receiver Independent Exchange

RTK Real time kinematic
SAC Special Areas of Conservation

SLAM Simultaneous Localization and Mapping
AGB Aboveground biomass Mg
DBH Diameter at breast height (m)
DSM Digital surface model (m a.s.l.)
DTM Digital terrain model (m a.s.l.)

H Tree height measured in situ (m)
HCHM Tree height from CHM (m)

G Basal area (m2)
PDOP Position DOP (-)

RMSE Root mean squared error
(as the input

variable)
S Sampling area (m2)
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Acronym and Symbol Meaning Unit

SNR Signal-to-noise ratio (-)
UTC Universal Time Coordinated (hh:mm:ss)

V Growing stock volume (m3)

γ/2 Semivariance
(square of the
input units)

ρAGB Relative error of AGB (-)
ρG Relative error of G (-)
ρV Relative error of V (-)
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