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Remote sensing-based forest investigation and monitor-
ing have become more affordable and applicable in the 

past few decades. The current bottleneck limiting practical 
use of the vast volume of remote sensing data lies in the lack 
of affordable, reliable, and detailed field references, which 
are required for necessary calibrations of satellite and aerial 
data and calibrations of relevant allometric models. Con-
ventional field investigations are mostly limited to a small 
scale, using a small quantity of observations. Rapid devel-
opment in close-range remote sensing has been witnessed 
during the past two decades, i.e., in the constant decrease of 
the costs, size, and weight of sensors; steady improvements 
in the availability, mobility, and reliability of platforms; and 
progress in computational capacity and data science. These 
advances have paved the way for turning conventional ex-
pensive and inefficient manual forest in situ data collections 
into affordable and efficient autonomous observations.

Systems and operational protocols used in practices are 
the key factors affecting the quality of collected data and 
retrieved attributes. However, their roles and impacts have 
been insufficiently understood. This article aims to provide 
a comprehensive overview of state-of-the-art close-range 
remote sensing systems and commonly applied opera-
tional protocols to provide insightful understanding of the 
advantages, potentials, and challenges of the technologies 
and approaches in forest investigation. The characteris-
tics of different platforms, i.e., static, mobile, terrestrial, 
and unmanned aerial, are briefly reviewed on the basis of 

their potential and recent developments. The performance 
of different sensors, i.e., active, passive, professional, and 
consumer level, are investigated in the context of practical 
applications. The strengths and limitations of hardware 
systems and operation protocols are studied through re-
ported performance and benchmarking studies. Current 
challenges, new opportunities, and development trends are 
revealed through comparative and critical analyses.

It can be concluded that close-range remote sensing has 
fundamentally changed the landscape of forest in situ in-
ventories. The most significant impact is that the technol-
ogy has turned many previously impossible investigation 
scenarios into possible ones, reshaping the possibilities for 
future forest in situ observations by improving the automa-
tion, detail, accuracy, and comprehensiveness of data col-
lection. The urgent problems to solve include the limited 
completeness and geometric accuracy of data as well as 
insufficient processing power, which limit advanced and 
practical applications and call for further studies. This re-
view also provides practitioners useful guidance to select 
suitable systems and operational protocols when applying 
close-range remote sensing to collect tree and forest attri-
butes at individual tree and plot levels.

INTRODUCTION
Remote sensing-based forest observation detached from 
pure field surveys in the 1970s, when stereo photogramme-
try began to be applied to stand-based forest inventories and 
with the launch of the first Earth Resources Technology Satel-
lite (later known as Landsat). Since then, remote sensing for-
est observation and monitoring have experienced extensive 
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and progressive changes. Global and regional data coverage 
and their updates at different spatial and temporal resolu-
tions have become widely accessible and affordable in the 
past 20 years through various satellite programs [1]–[6]. 
The Landsat and Sentinel series provide free global coverage 
data, e.g., at 15–120- and 10–60-m spatial resolutions and 
16–18- and 10-day temporal resolutions, respectively. More 
frequent and flexible global data updates can be conducted 
by combining different satellite constellations, e.g., an aver-
age 2.9-day revisit interval through Landsat 8, Sentinel-2A, 
and Sentinel-2B [7]. High-spatial-resolution (~1 m) satellite 
data products are also freely available across a broad range 
of ecoregions, e.g., in the United States and Mexico [6].

Country- and province-scale aerial imageries with higher 
resolutions at decimeter and centimeter levels are routinely 
captured in many regions of the world. Notably, airborne 
laser scanning (ALS), also known as lidar, began to be used 
in forest observations in the 2000s [8]–[11] and has evolved 
into a global operative forest inventory technology. Area-
based inventories [8] have been operational since 2008. 
The pulse repetition frequency (PRF) increased about 1,000 
times during the past 25 years. Today, it is easy to reach 
pulse densities needed in individual tree inventories [12]. 
Meanwhile, point cloud generation from overlapped images 
[13], [14] and improved radiometry from digital photogram-
metry [15] were soon applied in forest observations. These 
data provide adequate supplies for various services, such as 
forest extent and change monitoring, forest type and prop-
erty estimation, risk management, and soil protection.

Nevertheless, a bottleneck limiting effective use of such 
a vast volume of remote sensing data lies in the lack of af-
fordable and detailed field references for necessary calibra-
tions of satellite and aerial data. Another limitation is the 
applied allometric models that often introduce estimation 
errors due to spatial, temporal, and budget limitations [16]. 
Such a lack of accurate and up-to-date field references limits 
the reliability of global and regional observations because of 
error propagation in upscaling. In current workflows, field 
references are primarily collected through in situ forest in-
vestigations in sample plots. Sample plots of selected shape, 
number, and size are distributed throughout the area of in-
terest according to a particular design [17], [18]. Individual 
tree attributes are measured within each sample plot and 
used to estimate plot-level forest attributes. Conventional 
field inventories are widely understood as time-consuming, 
labor-intensive, and costly. Yet, they are regarded as the most 
practical and reliable reference data source [19], [20]. Recent 
studies, however, found more evidence to question their re-
liability [21]–[23] and bias levels [19], [24], [25] in acquiring 
tree attributes that are not straightforward to measure.

Close-range remote sensing observes targets through a 
noncontact pattern and at a target-to-sensor distance rang-
ing from very short lengths to several hundred meters and 
even longer. Such an automated and close-to-target obser-
vation pattern opens the door for improving the efficiency 
of in situ investigations, especially for observing parts of 

trees that are not reachable from the ground within tradi-
tional, nondestructive field measurements. The application 
of close-range remote sensing in forest observations has a 
long history. Film cameras have been used to measure tree 
dimensions and canopy characteristics since the 1950s. Hy-
perspectral (HS) and ultrasonic sensors have been used to 
estimate leaf biochemical parameters and canopy volumes 
since the 1980s [26]. In recent decades, close-range remote 
sensing experienced rapid development. Its application 
landscape has changed dramatically due to the constant 
decrease in the cost, size, and weight of sensors; steady ad-
vances in the availability, mobility, and reliability of plat-
forms; and progress in communication capacity and data 
science. The technology was boosted in the late 1990s by 
the emergence of automated field data collection solutions, 
e.g., terrestrial LS (TLS), followed by the rapid miniaturiza-
tion of sensors and advances in platforms and computing 
sciences in the 2000s.

Today, the available data sources that have the potential 
to match the requirements of field observations are pro-
liferating at an unprecedented speed, and their applicable 
sensors range from survey-level instruments for profes-
sionals to ordinary consumer-level tools for citizens. The 
development of close-range remote sensing is on the way 
to turning conventional expensive, slow, and manual forest 
in situ field data collection into affordable, rapid, and au-
tonomous observations. Furthermore, with a high level of 
mobility and automation, close-range remote sensing has 
the potential to push the boundary of in situ forest obser-
vations from a plot level to a transect, stand, and even a re-
gional level and improve the level of detail (LoD) from the 
plot level to individual trees and, possibly, branches [27].

Based on this steady and rapid progress, close-range re-
mote sensing has become one of the most active research 
areas in forest science and remote sensing. Its advances can 
be seen from different perspectives. Considering the broad 
scope of the topic and limited space, this review is dedi-
cated to providing insightful information about and un-
derstanding of the current system, data, and commonly ap-
plied operational protocols. Among all factors, the system 
documents the physical world as digital representations, 
laying the foundation for all processing and applications. 
The protocols take specific designs to collect data to meet 
particular requirements that link the hardware, interpreta-
tion, and practices. Thus, the system and data acquisition 
protocol jointly determine the effectiveness of forest field 
observations through close-range remote sensing and joint-
ly define what information can be acquired, to what scale 
and extent, and at what accuracy.

While recent benchmarking showed that processing al-
gorithms directly decide the performance of remote sensing 
[28]–[32], little attention has been given to the role and im-
pact of the system and protocol until now. Automated algo-
rithms have been capable of retrieving primary information 
recorded in data [16]. The current limiting factors relate to 
data quality, i.e., what is recorded and at what LoD, according 
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to recent benchmarking studies of in situ forest attribute es-
timations [16]. Thus, the status, potential, and limitations 
of applied systems and protocols require more thorough 
understanding to clarify their roles and impacts in various 
processing and applications. Meanwhile, this review points 
out challenges that close-range remote sensing faces as well 
as development trends and new opportunities. In addition, it 
helps those interested in applying close-range remote sensing 
to their research and application tasks to find suitable sys-
tems and define appropriate operational plans. It also sup-
ports those who are developing methods for data processing 
by providing deeper understanding of various technological 
backgrounds of the data they are dealing with. Figure 1 illus-
trates the application scenario of the close-range, airborne, 

and satellite remote sensing, and the overview of the remote 
sensing of forests.

FOREST CLOSE-RANGE REMOTE SENSING 
IN THE LITERATURE
A literature study was made in November 2021. The analy-
sis focused on eight different forest close-range remote 
sensing technologies. Three were ground based, i.e., TLS, 
terrestrial photogrammetry, and mobile LS (MLS), includ-
ing handheld-, backpack- and personal-based LS, and five 
were unmanned aerial vehicle (UAV) based, i.e., UAV pho-
togrammetry, multispectral (MS), LS, HS and synthetic 
aperture radar (SAR) imagery. Together with keywords 
for technologies, two keywords were used for targets,  

Satellite Remote Sensing
Region/Country/Continental/
Global Scale

Airborne Remote Sensing
Region/Country Scale

Close-Range Remote Sensing
Plot/Stand Scale

Terrestrial Systems

Aerial Systems
Laser Scanning
Multispectral Imagery
Hyperspectral Imagery
Radar

Mobile Mapping
System

Global Navigation
Satellite System

Image-Based Point
Clouds/Imagery Laser Scanning

FIGURE 1. The overview of the remote sensing of forests and the application scenario of close-range, airborne, and satellite remote sensing.
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i.e., “forest*” and “tree*,” with an asterisk to include their 
plurals. The Web of Science database and core collection 
were employed to search the literature by using the plat-
form’s advanced search module. Altogether, 2,638 papers 
were found. The highest and lowest numbers of papers re-
lated to TLS, i.e., 1,176, and UAV-based SAR, i.e., four.

Figure 2 shows the number of papers published until 
2021. The total papers published before 2010 is reported as 
a sum and listed in the category “Prior to 2010.” The num-
ber of papers published in 2021 was reported but was not 
final since the period did not cover the whole year. Syn-
onyms used for each topic are listed in Table 1. The number 
of published papers is reported in Table 2. TLS and terres-
trial photogrammetry had the highest number of papers in 
2018. The total increased by 41 and 333% in comparison 
with what it was the previous year, 2017, respectively. The 
technical aspects of these sensors have become stable to 
some extent. MLS also had the highest number of papers 
in 2018. The number is expected to grow since mobile laser 
scanners are proliferating and their performance is advanc-
ing. UAV-based SAR had the least research work in the lit-
erature, i.e., only four papers, which indicates that UAV SAR 
is at a very early stage of forest application.

CURRENT FIELD MEASUREMENT METHODS
Tree species, diameter at breast height (DBH), and height 
are the most commonly measured individual attributes 
in conventional plot-wise forest inventories. Alone and in 
combination, and with the application of species-specific 
equations, i.e., allometric models, tree attributes are used 
to calculate and estimate various tree-, plot- and stand-level 
characteristics, e.g., basal area, volume, biomass, carbon 
stock, and so on. Also, these attributes are commonly used 
to estimate the growth and productivity of forest stands as 
well as the site quality (index). Other tree attributes of in-
terest are much less frequently measured in terms of spatial 
and temporal scales, usually because of limited resources, 
including time, tools, and budgets. Those features cover a 
broad spectrum of trees and forest attributes, depending 

on the application. They range from parts of an individual 
leaf to a plot and from biochemistries to spatial features, 
which include but are not limited to position, the first liv-
ing branch height, the crown area and length, tree health, 
and wood quality. The DBH is the essential tree attribute 
collected during forest field inventories. It strongly corre-
lates with tree volume and biomass and is directly used for 
basal area calculation [18], [33].

The impacts of individual tree attributes on a particular 
tree/forest parameter estimation can be notably different. 
Errors in tree height estimates have been found to have a 
more substantial influence on tree volume estimates than 
tree species misidentification [34]. Tree heights have also 
been recognized as an essential allometric factor in forest 
biomass estimates, and they must be included, although 
with extreme care, as measurement uncertainties may 
produce biased estimates of the carbon stock and biomass 
[35], [36]. In general, manual field mensuration can collect 
a wide range of forest attributes. However, the problem is 
that significant resources are required in most cases, which 
practically limits the amount, scale, and frequency of the 
practice.

SENSORS
Calipers and diameter tapes are the most commonly used in-
struments for DBH measurement, while Biltmore sticks and 
Bitterlich sector forks can be used with less precision [18]. In 
operational forest inventory, when many sample plots and 
trees have to be measured, calipers are preferred since they 
are easy and efficient to use [20], [37]. Tree height is defined 
as the vertical distance between the top of the crown and the 
base of a tree stem. Estimating individual tree heights is not 
a straightforward task, due to limited visibility of treetops 
and stem bases because of occlusion effects. The accuracy of 
tree height measurements has always been the focus of forest 
investigation and practice [38] since it can significantly influ-
ence the estimation and prediction precision of other impor-
tant tree and forest attributes (such as volume and biomass) 
that are not directly measured in the field [24], [35].
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FIGURE 2. The area graph represents the number of papers for each considered close-range remote sensing technology from 2010 to 2021. 
Papers published before 2010 are reported using a cumulative number in the category “Prior to 2010.”
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Tree heights can be measured directly or indirectly in 
the field. Many techniques have been developed during the 
past decades to facilitate measuring procedures and provide 
more reliable tree height estimates. Tape measurements of 
felled trees offer the most accurate results [39], [40], but this 
is destructive and rarely applicable. The height of standing 
trees can be directly measured using telescopic height poles 
for small trees, usually up to 10 [41], 15 [17], and 21 m [18]. 
Similarly, direct tree height measurement can be conducted 
by climbing trees [35], [41], [42]. 

Indirect methods employ ultrasonic and laser-based 
hypsometers and trigonometric principles [38], [41]. In the 

tangent method, tree height is calculated based on the tan-
gent function by using a measured vertical angle between 
the tree base and treetop and a slope distance to the tree 
stem. In the sine method, tree height is calculated based 
on the sine function via the measured slope distance to the 
treetop and base and a vertical angle between the tree base 
and top. Applying tangent and sine indirect approaches re-
quires clear visibility to the tree base and treetop, which 
can be limited in complex and dense forest structures. The 
tangent method, in particular, can produce errors in tree 
height measurement when trees are leaning, while the 
sine technique is much more resistant to errors. In general, 

TABLE 1. THE TERMS USED IN THE WEB OF SCIENCE ADVANCED SEARCH. 

TECHNOLOGY SEARCH CODE
NUMBER  
OF PAPERS

Terrestrial laser 
scanning (TLS)

TS=(“terrestrial laser scann*” OR “terrestrial lidar”) AND TS=(forest* OR tree*) 1,176

Unmanned aerial 
vehicle (UAV) pho-
togrammetry

TS=(UAV OR UAS OR drone* OR RPA OR RPAS OR “Unmanned Aerial Vehicle*” OR “Unmanned Aircraft 
System*” OR “Remotely Piloted Aircraft”) AND TS=(photogrammetry OR “Structure from Motion” OR 
sfm) AND TS=(forest* OR tree*)

522

UAV multispectral 
(MS)

TS=(UAV OR UAS OR drone* OR RPA OR RPAS OR “Unmanned Aerial Vehicle*” OR “Unmanned Aircraft 
System*” OR “Remotely Piloted Aircraft”) AND TS=(multispectral) AND TS=(forest* OR tree*)

402

Mobile LS TS=(“Mobile laser scann*” OR “Handheld laser scann*” OR “Personal laser scann*” OR “Backpack 
laser scann*” OR “Mobile lidar” OR “Handheld lidar” OR “Personal lidar” OR “Backpack lidar”) AND 
TS=(forest* OR tree*)

249

UAV LS (ULS) TS=(ULS OR “Unmanned laser scann*” OR “UAS borne laser scann*” OR “UAV borne laser scann*” OR 
“Drone borne laser scann*” OR “UAS based laser scann*” OR “UAV based laser scann*” OR “Drone 
based laser scann*” OR “UAS Laser Scanning” OR “UAV Laser Scanning” OR “Drone Laser Scanning” OR 
“UAV lidar” OR “UAS lidar” OR “Drone lidar”) AND TS=(forest* OR tree*)

152

Terrestrial 
photogrammetry

TS=(“terrestrial photogrammetry” OR “close range photogrammetry” OR “terrestrial structure from 
motion” OR “close range structure from motion” OR “terrestrial sfm” OR “close range sfm”) AND 
TS=(forest* OR tree*)

80

UAV hyperspectral 
(HS)

TS=(“UAS borne hyperspectral*” OR “UAV borne hyperspectral” OR “Drone borne hyperspectral” 
OR “UAS based hyperspectral” OR “UAV based hyperspectral” OR “Drone based hyperspectral” 
OR “UAS hyperspectral” OR “UAV hyperspectral” OR “Drone hyperspectral”) AND TS=(forest* OR 
tree*)

66

UAV synthetic ap-
erture radar (SAR)

TS=(“UAS borne SAR*” OR “UAV borne SAR” OR “Drone borne SAR” OR “UAS based SAR” OR “UAV 
based SAR” OR “Drone based SAR” OR “UAS SAR” OR “UAV SAR” OR “Drone SAR” OR “UAS borne syn-
thetic aperture radar*” OR “UAV borne synthetic aperture radar” OR “Drone borne synthetic aperture 
radar” OR “UAS based synthetic aperture radar” OR “UAV based synthetic aperture radar” OR “Drone 
based synthetic aperture radar” OR “UAS synthetic aperture radar” OR “UAV synthetic aperture radar” 
OR “Drone synthetic aperture radar”) AND TS=(forest* OR tree*)

4

TABLE 2. THE NUMBER OF PAPERS PUBLISHED UNTIL 2021 FOR EACH FOREST CLOSE-RANGE REMOTE SENSING 
TECHNOLOGY.

PRIOR 
TO 2010 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

TLS 35 27 30 46 60 67 84 102 113 159 149 153 151

UAV MS 3 0 3 4 3 4 2 9 23 40 67 121 123

UAV photogrammetry 5 1 5 4 8 3 13 34 55 89 97 118 92

UAV LS 2 3 1 2 1 3 4 3 14 8 27 41 42

Mobile LS 3 3 7 10 7 14 25 25 19 36 30 32 36

UAV HS 3 0 0 0 1 0 0 0 5 6 12 25 17

Terrestrial photogrammetry 0 5 1 2 4 2 1 7 3 13 14 12 9

UAV SAR 0 0 0 0 0 1 0 0 0 0 0 1 2

Papers published before 2010 are reported as a sum in the category “Prior to 2010.”
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there is a tendency to overestimate tree heights through 
the tangent approach and underestimate them via the sine 
method [18], [41].

Other length and height measurements typically use the 
same sensors as tree height estimation, e.g., the first branch 
height and the crown size. Absolute positions in forests are 
commonly collected by a GNSS device or the combination 
of a GNSS device and total station. Relative locations with 
respect to known positions, e.g., within a plot, are mea-
sured by, e.g., a range finder and a bearing compass.

DATA ACQUISITION
The DBH is usually measured in sample plots for all trees 
above a specified minimum threshold (e.g., 5, 7.5, or 10 cm, 
depending on the regulations) and for sample trees selected 
through the angle gauge method. Since trees do not have a 
circular form, the DBH is usually measured with calipers 
from two perpendicular directions (i.e., cross measure-
ment). The average (arithmetic) value is calculated. The 
work in [20] demonstrated that cross measurements con-
siderably improved precision compared to single measure-
ments. Diameter tapes measure circumference and give the 
DBH by recalculation, assuming a circular shape for the 
cross section. They are efficient when large trees (e.g., DBH 
>60 cm) are measured in dense forest structures [18] and 
when repeated and consistent measurements in permanent 
plots are needed [33]. DBH measurement using calipers 
and diameter tapes may seem straightforward but includes 
many potential sources of errors, such as the nonperpen-
dicular orientation of devices with respect to the vertical 
axis of the stem, branches and other deformities of stems at 
breast height, steep slopes, leaning trees, limited operator 
experience and expertise, and so on [20]. Approaches for 
solving these issues can be found in forest inventory manu-
als and books, e.g., [17] and [18]. Several studies compared 
DBH measurements using different devices, and all report-
ed no significant differences in accuracy between calipers 
and diameter tapes for operational use [33], [43]–[45].

Individual tree height estimates typically have lower ac-
curacy and precision than DBH measurements [20]. With 
commonly used hypsometers, errors in individual tree 
height estimates can be 1–5 m and more [19], [24], [46], 
[47], mainly due to the limited visibility of treetops, es-
pecially in more complex forest environments with dense 
canopy layers. Tree heights are the costliest data to collect 
in a practical forest inventory [48]. To reduce the expense, 
field tree height measurements are often conducted only on 
a selected number of trees within sample plots (a represen-
tative subsample), a considerably lower number than what 
is involved in DBH estimation. For trees without actual 
measurements, the height is usually estimated using local 
species-specific DBH–height models [17], [18]. Further sta-
tistical modeling is also required to obtain unmeasurable 
parameters (e.g., volume, biomass, and carbon stock) at 
plot, stand, and national levels. However, error propagation 
is expected but often not considered in practice [16].

All three direct tree height measurements are relatively 
slow and thus are not suitable for measuring a large num-
ber of trees in a practical forest inventory [41]. Compared 
to direct methods, indirect approaches using hypsom-
eters (ultrasonic and laser based) are more effective for 
larger samples, and therefore they are commonly used 
in practical forest inventories [19], [20], [49]. Regard-
less of the instrument and indirect method, tree height 
measurements are influenced by various factors, such as 
forest structure and complexity, tree species and crown 
shape, tree height, tree shape (e.g., leaning), topography, 
measuring distance, and human operators [16], [19], [25], 
[38], [46], [50], [51].

The importance and influence of various factors on the 
accuracy of field tree height measurements were investigated 
in [19], including measurement-related, topography-related, 
stand-related, and biometric characteristics of individual 
trees. The research included 2,388 trees of important Euro-
pean tree species [Pinus sylvestris L., Picea abies (L.) H. Karst., 
Larix decidua Mill., Abies alba Mill., Quercus robur L., Fagus 
sylvatica L., Alnus glutinosa Gaertn., and Betula pendula Roth]. 
Indirect tree height measurements using several standard in-
struments, i.e., clinometers, hypsometers, and range finders, 
were validated with measured lengths of felled trees. While 
the type of instrument showed a negligible impact on the ac-
curacy of tree height measurements, biometric (tree length, 
species, and age) and topographic (terrain slope and alti-
tude) factors were found to induce the most significant er-
ror. Heights of all species were underestimated, with relative 
error (RE) values ranging from –0.19 to –1.69% except for 
Q. robur, for which a systematic overestimation of 2.52% was 
observed. Overall, [19] obtained higher tree height measure-
ment accuracy for coniferous than deciduous species, with 
an RE ranging from –0.19 to 1.23% and –1.25 to 2.52%, 
respectively. The tendency to underestimate tree height was 
also reported in [47] by comparing indirect measurements 
via Vertex IV hypsometer and direct measurements of the 
lengths of 15 felled Pseudotsuga menziesii (Mirb.) Franco trees. 
Indirect measures resulted in a mean error of –0.66 m and a 
root-mean-square error (RMSE) of 1.02 m.

Tree positions are usually determined using one or sev-
eral reference positions and the relative distances and an-
gles to the plot reference point (e.g., the plot center). The 
plot center coordinate is collected in circular plots by a 
GNSS device. The relative stem location within the plot is 
measured by, e.g., a range finder and bearing compass. The 
accuracy of stem positions depends mainly on the accuracy 
of the GNSS used for measuring plot centers and corners. 
The first branch height is usually measured in the same 
manner as the total tree height, i.e., using hypsometers and 
range finders, and is commonly known as crown base height. 
It is used to define commercial stem height, i.e., the length 
of the stem from the stump to the height of the stem at the 
point of the first living stem fork (branch) or the smallest 
merchantable diameter, i.e., the minimum stem diameter 
that can to be used as timber.
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Crown dimensions (such as the crown length and crown 
radius) have various important applications in forestry 
practice and forest science, such as modeling tree growth 
and biomass, planning thinning operations and determin-
ing fertilizer trials, and so on [17], [52]. Crown length is 
calculated as the difference between the total tree height 
and crown base height. Crown radii are measured in four 
or eight cardinal directions from ground projections of 
the crown edge to stem center. Field measurements of tree 
crown dimensions are challenging, uncertain, and time-
consuming and therefore not a part of extensive forest in-
ventories [52]. The importance of proper training before in-
direct measurement was emphasized in [53]. Experienced 
surveyors do not introduce systematic error in measure-
ments [19], which is in line with findings in [20], where no 
statistically significant differences were found in the preci-
sion of tree height measurements by four trained operators 
who used the same instrument (a Vertex IV hypsometer).

TERRESTRIAL SYSTEMS
The static TLS system has the highest geometric data quality 
among all sensors and platforms at the plot level. The data 
acquisition itself is pretty fast if transportation and registra-
tion issues are not of concern. TLS has led recent develop-
ment and set standards for all solutions to study forest spatial 
characteristics. Mobile and portable systems significantly 
improve data collection efficiency and have the potential to 
be accepted as next-generation operational tools once they 
achieve geometric accuracy comparable to the TLS system. 
Terrestrial image-based point clouds can be collected using 
a wide variety of available professional and nonprofessional 
imaging sensors, thus providing a low-cost yet often less ac-
curate alternative data acquisition solution to laser sensors. 
While point clouds have shown advantages in studying for-
est spatial properties in the past two decades, imageries are 
still a convenient tool in forest in situ observations.

LASER SCANNING
TLS and its applications in various forest measurement tasks 
have been immensely studied during the past 20 years. 
Theoretically, TLS measurements can cover an area of inter-
est at random sizes by combining individual scans through 
data registration. Due to the static data acquisition pattern, 
i.e., measuring on a tripod at a single location, TLS is suit-
able for collecting data from small areas (e.g., sample plots) 
and individual trees at LoD 3 [27], i.e., suborder branches. 
Therefore, its most prominent application in forest sciences 
is acquiring auxiliary information, e.g., stem tapering and 
quality attributes [31], and detailed references for modeling 
that are costly to measure with traditional means or require 
destructive sampling [27], [54]–[56]. This section focuses on 
the most recent developments on plot and tree levels after 
2016, when a TLS-specific review was published, e.g., [27]. 
While early studies demonstrated the feasibility of applying 
TLS in forest in situ observations, these latest advances have 
begun to investigate the next steps toward best practices.

SENSORS
TLS, as, in general, any LS application, provides the ampli-
tude of a backscattered signal and other signal properties 
(e.g., the reflectance and waveform) characterizing target 
surfaces. It measures an environment with dense 3D point 
clouds, e.g., thousands or more returns ( , , )x y z  per square 
meter at a 10-m distance from the scanning position. Two 
common measurement types, i.e., phase shift and time of 
flight, exist in commercial systems, and the measurement 
principle seems to affect the incidence angle effect on in-
tensity. Time-of-flight scanners are less affected by the in-
cidence angle than phase-shift scanners, and they produce 
point clouds with less noise [57], [58].

Commercial TLS systems are under steady improve-
ment. Their size, weight, and cost decrease rapidly, while 
their measurement speed, accuracy, and practical operabil-
ity constantly increase. The most notable hardware advance 
is the introduction of MS and HS TLS. MS TLS simultane-
ously pulses a laser at several wavelengths, which combines 
accurate 3D coordinate and spectral information. Two up-
to-date dual-wavelength systems are the dual-wavelength 
Echidna lidar (DWEL) [59] and Salford advanced laser 
canopy analyzer (SALCA) [60]. Both have full-waveform 
digitization capacity. They have weights similar to first-gen-
eration commercial TLS devices, e.g., 19 kg without batter-
ies for DWEL and 15 kg for SALCA.

While a commercial MS TLS instrument has not be-
come available, researchers combined two TLSs operating 
at different wavelengths to combine spatial and spectral 
information in postprocessing [57], [61], [62]. The multi-
sensor approach has the advantage of high measurement 
efficiency. Commercial TLS devices measure at high speed, 
e.g., ~1 million points/s, have high range accuracy, and are 
eye safe to use in field operations. Their disadvantage is a 
time lag between consecutive scans, resulting in different 
point cloud geometries due to the wind effect and requiring 
additional work during postprocessing, e.g., finding linked 
points from different scanners.

HS TLS prototypes are being developed in laborato-
ries. The first HS TLS utilized a supercontinuum laser 
[63]. The laser spectrum is spread across a spectral range 
of 480–2,200 nm, enabling the tuning of specific channels 
recorded by an avalanche photodiode array module that is 
sensitive to a spectrum of 400–1,000 nm. This instrument 
can be used in a laboratory [64] and in outdoor conditions 
to monitor the spectral variance through time of natural 
and human-made objects to separate artificial targets from 
natural ones [65].

A smaller, portable version was recently developed to 
measure rock surfaces to nondestructively reveal differ-
ent rock types [66]. It weighs 15 kg and operates in the 
400–1,000-nm wavelength range. A similar HS TLS with 
32 channels was created using a supercontinuum laser [67]. 
A recent prototype demonstrated that an HS TLS could 
also employ longer wavelengths, expanding the spectrum 
to the short-wave infrared region [68]. A recently designed 
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acousto-optic tunable filter (AOTF)-based HS lidar (HSL) 
was with an improved spectral resolution at 10 nm [69]. Ta-
ble 3 summarizes the specifications of MS/HS TLS devices 
used in previous literature.

DATA ACQUISITION
TLS point clouds can be collected from one or multiple 
positions through single, multisingle, and multiple scan 
strategies [27]. Each approach has strengths and weak-
nesses. Data acquisition at a single viewpoint is easy, 
fast, and less expensive. Given clear plot visibility, it can 
record most trees, e.g., even in high-density forest plots 
[71]. The application of multiple viewpoints can reduce 
the number of visibility gaps. Still, it is more labor/cost 
intensive in the field and more computationally expen-
sive in postprocessing, due to the need for mutual match-
ing/registration. Multiple scans are combined either at a 
data level, i.e., the multiscan method, which requires 
coregistration of the matched point clouds at millimeter-
level accuracy, or at feature and decision levels, i.e., the 
multisingle scan approach, without building a merged 
data set. The multisingle scan technique has consider-
ably lower computational costs in comparison with the 
multiscan approach.

The most significant advantage of the multisingle scan 
technique comes from the ability to link data sets from di-
verse sources, e.g., lasers and imagery, and at various points 
in time, when merging multiple data sets at the data level 
is difficult due to different point distribution patterns and 
changes among points in time. Until now, multiple scans 
from one plot or stand required artificial reference targets 
to combine multiple point clouds to one that covered the 
entire area of interest [27], [55]. Marker-free automated 
registration has been studied in recent years [72]–[75], 
aiming at improving the usability of TLS in forest condi-
tions. The results showed that the methods do not reach 
the reliability of traditional approaches, where artificial 
reference targets were used. Lately, scanner manufactur-
ers have released products with automatic registration of 

separate point clouds. Those solutions are either hardware 
dependent or not yet verified for processing in varying for-
est conditions. 

From the tree modeling perspective, the TLS data acqui-
sition design significantly impacts the point cloud qual-
ity, i.e., how comprehensively and accurately each tree is 
digitized through point clouds. This is especially impor-
tant when data acquisition is carried out at the plot level 
and essential at the individual tree level. There has been 
increasing interest in obtaining the most detailed informa-
tion from trees that is possible. The authors of [76] investi-
gated the impacts of scan setups on the estimation of the 
stem volume of individual trees. They concluded that two 
scans from opposite sides of a tree at a distance of no lon-
ger than 50% of the tree height produced the most reliable 
stem volume estimates. For calibrating existing taper curve 
equations and estimating the stem volume for Scots pines, 
the work in [77] studied the effect the sample size had and 
found that a relatively small sample size of tens of Scots 
pines with a DBH of 5–40 cm is enough for consistent local 
volume estimates in southern boreal forests dominated by 
such trees.

The effects of the plot size, tree size, and scan pattern on 
tree detection were discussed in [31], [78], and [79]. The au-
thors of [31] studied the impact of forest structures, e.g., the 
growing stage, species, and structural distribution, on tree 
detection and attribute estimates and found that structures 
have significant effects on the attribute estimates. The au-
thors of [78] compared scan patterns and numbers in a tem-
perate forest. Five scan patterns (i.e., diagonal, rectangle, 
triangle, and hexagon) and seven scan numbers (i.e., vary-
ing between one and seven) were investigated using a phase 
shift-based Faro Focus3D X330. Twenty-three circular plots 
with a radius of 20 m were dominated by either Norway 
spruce [Picea abies (L.) H. Karst.] or European beech (Fagus 
sylvatica L.) or were a mixture of Norway spruce, Europe-
an beech, Scots pine (Pinus sylvestris L.), and fir [Abies sp. 
(Mill.)]. The stem density varied from 280 to 5,000 trees/
hectare. They reported that seven scanning locations at the 

TABLE 3. THE MS/HS TLS SPECIFICATIONS USED IN PREVIOUS LITERATURE. 

SENSOR
NUMBER OF 
CHANNELS

SPECTRAL RANGE OR 
WAVELENGTH (NM)

BEAM DIVERGENCE 
(MRAD)

RESOLUTION 
(MRAD)

WEIGHT 
(KG)

MEASUREMENT 
TYPE

DWEL [59] 2 1,064, 1,548 1.25 1 19 Time of flight

SALCA [60] 2 1,063, 1,545 0.56 1.05 15 Time of flight

FGI HSL [63], [66] 8
tunable

400–1,000 — — — Time of flight

HSL [70] 32
tunable

400–1,000 <5 0.17 — Time of flight

HSL VIS-SWIR [68] 8 540–1,460 — — — Time of flight

AOTF-HSL [69] 51 430–1,450 0.4 — — Time of flight

Faro X330 and S120 [62] 2 905, 1,550 0.16, 0.19 0.16 — Phase shift

Leica P40 and P20 [57] 2 808, 1,550 0.23, 0.2 0.08 — Time of flight

FGI: Finnish Geodetic Institute; SWIR: short-wave infrared range; VIS: visual.
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vertices of a hexagon and the center of a plot produced the 
highest tree stem detection rate, at 82.4%.

The authors of [79] tested the effect of the sample plot 
size and tree size distribution (a proxy for plot heterogene-
ity) on tree detection in southern boreal forest conditions. 
They found that a five-scan pattern minimized occlusion 
and provided favorable scanning geometry in plots of 11-m 
radius. Four scans were placed approximately evenly on the 
circumference of the sample plot and one at the plot center. 
Additionally, the researchers reported that larger trees were 
more reliably detected and that plot heterogeneity affected 
the number of stems and basal area per hectare. In general, 
smaller plot sizes and lower stem densities increased the 
detection rate [31], [71], [78], but individual plots might not 
follow this general conclusion, as shown in [71].

In [55], the authors reported the time-of-flight perfor-
mance of the Riegl VZ-400 scanner. They compared 27 TLS 
campaigns conducted mainly in tropical forests, collected 
in 10- (i.e., ),10 10#  20-, and 30-m grids, concluding that 
the 10-m grid produced uniform data regarding density, 
which is required for characterizing LoD 3, i.e., suborder 
branches, toward the top of the canopy. The same study 
mentioned that fewer scan locations suffice if, for example, 
tree stems are of interest. The work in [80], on the other 
hand, reported that the number of automatically detected 
branches decreased as the distance between the scanner 
and Scots pine crown increased, especially above the base 
height of the live crown, using a Faro Focus3D X 330 phase-
shift scanner. Despite a few recent studies, best practices for 
collecting TLS data are still unclear, especially in various 
forest environments and for different application purposes.

IMAGE-BASED POINT CLOUDS
Image-based point clouds for forest parameter acquisition 
recently gained widespread interest among researchers. 
The basic idea is to acquire forest structural parameters for 
quick, low-cost assessments of forest resources, such as tree 
positions and diameters, which can be used either as in-
ventory data for decision making and planning or utilized 
as calibration and verification data for satellite and air-
borne remotely sensed data. The systems used in acquiring 
image-based point clouds are typically lightweight, low-
cost, and easy-access camera types of sensors. Thanks to 
enormously increased computational power and software 
readiness, the data acquisition protocol and processing are 
easy to implement.

SENSORS
The principle behind image-based point clouds is to recon-
struct 3D point clouds from highly overlapping 2D images 
by using a dense image matching algorithm. The quality 
of the 3D point cloud is mainly affected by lens selection, 
camera settings, and sensor calibration. The performance 
of different lenses in the single-tree approach was investi-
gated in [81] and [82]. In [81], images were taken around 
a tree at 1–3-m distances and with an automatic shutter 

speed and light sensitivity (ISO) setting. The 25-mm fo-
cal length was found suitable to produce point clouds of 
individual trees. Both 35 and 50 mm failed to produce 
dense point clouds; the narrower field of view (FOV) of 
both lenses was assumed to cause low overlaps and con-
sequently the failure. The authors of [82] compared fish-
eye and nonfisheye types of lenses that had a 15- and 35-
mm focus length. Point clouds were reconstructed in both 
cases, and the results were not significantly different. Data 
acquisition using a fisheye lens was more efficient due to 
the large FOV.

The optimal camera settings are application dependent. 
In general, a large image size, small pixel size on the image 
array, low ISO, deep focus length, and high shutter speed 
are preferred: a large image size results in a high resolu-
tion, a small pixel size leads to a small ground sampling 
distance (GSD) at the same distance compared to a large 
pixel size, a low ISO reduces noise, a deep focus length 
achieves a large depth of field (so that objects both near 
and far from photographing positions can be clearly im-
aged), and a fast shutter speed helps avoid blurry images. 
For example, the image size is suggested to be at least 5 
megapixels and preferably 12 megapixels, achieved using, 
e.g., commercial software [83].

However, meeting all these requirements in practice 
could be challenging; e.g., a low ISO and a fast shutter 
speed can hardly be simultaneously achieved within dense 
forests with limited sunlight, which easily leads to blurry 
images. The influence of different blur levels in images was 
investigated in laboratory conditions [84]. The number of 
successfully detected targets was affected by even a small 
level of blur. Camera calibration is an indispensable pre-
requisite for using modern, mostly consumer-grade, digital 
cameras. Fortunately, it has been widely available in com-
mercial software. Yet, there is always room for additional 
research to enhance the models and processes employed 
with the many camera systems [85].

Alternatively, point clouds can be obtained with depth 
sensors. Research in forest conditions has only just be-
gun, and the main systems that are employed are Tango, 
by Google [86]–[88], and Azure Kinect, by Microsoft [86], 
[89]. They use optical and depth sensors to reconstruct the 
surrounding environment in point clouds. For DBH es-
timation in forests, the reported RMSE is mainly around 
1–2 cm when using Tango, e.g., between 1.61 and 2.1 cm 
across three plots [87], 0.73  cm over 80 trees [86], and 
1.26 cm across nine plots [88]. Azure Kinect was reported 
to get an 8.43-cm RMSE over 51 urban trees [89]. Similar 
projects have been introduced, such as ARKit, by Apple, 
and ARCore, by Google. Unlike Tango, they do not require 
depth sensors, thus enabling a greater number of devices 
to use them. On the other hand, their accuracy is worse 
than Tango’s. The problem with this type of technique is 
that direct sunlight causes failures in data acquisition, pri-
marily for infrared sensors. Therefore, dense forest with 
full coverage is beneficial for the acquisition [87], which 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on June 21,2022 at 08:17:03 UTC from IEEE Xplore.  Restrictions apply. 



MONTH 2022    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        11 

reduces the number of cases where a camera is exposed to 
direct sunlight.

The short functional distance is also a significant limi-
tation. The authors of [89] suggested that the distance be-
tween target trees and Azure Kinect be less than 3 m. The 
newest version of ARKit supports lidar, implemented on 
iPad Pro 2020 and iPhone 12 Pro and Pro Max. Lidar di-
rectly gives depth information and thus may solve the short 
functional distance problem. Currently, the lidar in these 
devices works up to 5 m. The performance and accuracy 
have not been studied. The systems’ practical advantage is 
that an operator can see a resulting point cloud right away 
in the field and then adapt the data acquisition approach 
for the environmental conditions. In addition to handheld 
cameras, images can be simultaneously taken through a 
multicamera system, e.g., [90] and [91]. Multicamera sys-
tems are typically stable and precalibrated, and they have 
sufficient overlaps among individual cameras, which, in 
principle, produces better image quality than single cam-
eras. Specially designed imaging systems target mainly pro-
fessional users and have some cost accessibility limitations.

DATA ACQUISITION AND GENERATION
Two popular methods for acquiring image-based point 
clouds are the stop-and-go and mobile/kinematic ap-
proaches. In the stop-and-go method, images are captured 
at stop positions. The operator moves from one imaging 
position to the next, with relatively small steps, to achieve 
the required photography baseline and overlap among con-
secutive images. Alternatively, successive images can be 
captured at selected positions within a plot [92] through 
the camera movement, e.g., vertical movement on a tele-
scopic pole [92]–[94]. The stop-and-go technique enables 
the operator to adjust the imaging settings to collect se-
quences with specific characteristics, e.g., camera positions 
and image overlaps. The stable camera position also makes 
it possible to use a slow shutter speed, low ISO, and high 
aperture, e.g., in dark environments. A camera mounted on 
top of a tripod, e.g., as in [95], provides the most stable im-
aging condition.

The camera continuously captures images along the oper-
ator’s movement in the mobile method, controlled by either 
a time or traverse interval [96], [97]. However, the fixed cam-
era settings and constant operator movements may result in 
blurry images (motion blur) if the shutter speed is relatively 
slow, leading to point cloud reconstruction failures [82]. 
Instead of holding the camera by hand, the authors of [96] 
mounted a camera on a 4-m-long pole to capture oblique 
images in the mobile data collection mode. However, using 
sticks in forests may be challenging when there is a dense 
canopy and understory, which causes collisions with branch-
es and thus results in lower-quality images with little overlap 
between consecutive images and a failure in image acquisi-
tion, as shown in [98]. Different results in [96] and [98] were 
most likely the result of a tree density that was almost four 
times higher (155 versus 547 stems/hectare).

Path selection in image collection is of particular im-
portance. Studies have used paths from outside/inside the 
plot or both. The work in [99] and [98] compared the re-
sults of DBH estimation from different paths. The applied 
method used inside and outside paths and was found to 
be more accurate in both studies. The DBH RMSE was 5.04 
versus 3.84 cm in [99] and 5.01 versus 4.41 cm in [98]. An 
example of an image-based point cloud produced using the 
stop-and-go method and the combination of outside and 
inside paths is given in Figure 3, which is the most accu-
rate point cloud within the experiment in [82]. Other point 
clouds from the study can be interactively seen on https://
mapy.tuzvo.sk/CRPmethods.

The point cloud generated from overlapped images is in 
a coordinate system defined by the image registration. To 
set the scale of an image-based point cloud requires at least 
one pair of points with a known distance in the field and 
their correspondences in the point cloud data. In principle, 
any known distances in the physical and data spaces can 
scale the data. Artificial targets, e.g., sticks with a known 
length, have been commonly used. Distances between trees 
were applied in [100]. Surveying level measurements from 
total stations was applied to improve accuracy in [95] and 
[96]. When a multicamera system is employed at fixed po-
sitions, mutual camera positions can be used to scale the 
point clouds [90], [101]. The authors of [101] confirmed that 
point clouds scaled by mutual camera positions have high 
accuracy. High-accuracy point clouds can be harnessed to 
obtain tree diameters and volumes with accuracy equiva-
lent to conventional inventory techniques.

Camera orientation influences which objects are record-
ed and what information can be extracted. A horizontal 
camera orientation increases image overlaps and potential-
ly improves image registration qualities. A vertical camera 
orientation increases coverage in the tree height direction 
but has a lower overlap rate if the same baseline is used as 
the horizontal orientation. The authors of [99] compared 
landscape and portrait orientations by using the outside 
path and achieved higher accuracy than the data set, where 

FIGURE 3. An example of an image-based point cloud from the 
stop-and-go method and the combination of the outside and 
inside paths.
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images from outside and inside were merged with a portrait 
orientation. The combination of horizontal and vertical 
camera orientations is applied in [92] to ensure that most 
plot areas can be seen from a limited number of images. The 
images were collected from a horizontal camera orientation 
at the plot center and locations about 6 and 12 m from the 
plot center in eight cardinal directions. Meanwhile, the im-
ages were taken at each location by using a vertical camera 
orientation, including heights of about 2, 3, and 5 m.

Other factors impacting image/point cloud quality in-
clude the target distance, baseline length, ray intersection 
angle, to name a few, which should also be considered dur-
ing the planning phase. The quality of a generated point 
cloud is limited by the operational range of a camera, even 
if the camera is set to a deep focus mode to achieve a large 
depth of field for the collected images. In [99], the authors 
compared stem point clouds generated from 5- and 20-m 
operational ranges. The stem points from the 5-m opera-
tional range were dense and accurate. In comparison, the 
stem points from the 20-m range were sparse and noisy, 
and such low-quality stem point clouds cannot be accu-
rately modeled for further stem parameter estimation. The 
baseline length consequently influences the image match-
ing and point cloud quality. Stem detection accuracy is 
lower using point clouds generated in wide-baseline situ-
ations than small-baseline situations (72 versus 84%) [99]. 
The work in [92] found that the main factors affecting the 
estimation of tree location are the tree size, tree species, and 
stem density, while the primary factors affecting the assess-
ment of DBH include the tree size and distance from a tree 
to the camera.

Compared with TLS, the strength of image-based meth-
ods is that they can automatically connect to other images, 
given proper overlap and sufficient matches. Camera orien-
tations are automatically reconstructed, enabling full hori-
zontal coverage of irregular objects, such as stems. On the 
contrary, TLS can rarely fully “hit” all parts of the horizon-
tal cross section unless a very high number of scanner posi-
tions is used, which is impossible in a way similar to that of 
photogrammetry. Meanwhile, the strength of image-based 
methods also becomes its weakness because a single pair of 
consequent images with ill conditions, e.g., insufficient over-
lapping, can result in a completely incorrect image block. 

Therefore, the accumulated errors may be so large that the 
detection and mensuration of targets become impossible.

Reported times needed for data acquisition [95], [96], 
[98], [99], [102] and image postprocessing [95], [99], [102] 
are summarized in Table 4. The time required to capture 
images highly depends on the data acquisition method. 
The mobile approach requires the shortest time for data 
acquisition, e.g., 0.5 s/image [96]. On the other hand, the 
stop-and-go mode with a tripod in dense forests takes 
much longer, e.g., 14 s/image, on average [95]. The im-
age processing time to a dense point cloud is difficult to 
compare. It mainly depends on computer configurations 
together with the software that is and its version. Addition-
ally, different settings for image matching and dense point 
cloud generation are used in postprocessing workflows, 
which highly impacts postprocessing time. It is worth not-
ing that postprocessing time is not a period where the op-
erator actively works with the software. In most postpro-
cessing, the operator is required only to start the process 
and evaluate the results.

The proportional time needed to capture one tree in the 
field when the plot-based approach is used varies among 
studies. To calculate the time, the number of trees that 
were successfully detected on a plot was used. The time 
needed varied from 0.1 to 2.7 min. For single-tree studies, 
the average time required to capture a single tree was 2 
min when a fisheye lens was used and the DBH RMSE was 
no higher than 0.5 cm [82]. Concerning the software, Agi-
soft Metashape (formerly Agisoft Photoscan) was mostly 
used across the reviewed studies, whereas a few studies 
employed Pix4D. This could be because of cost: Pix4D is 
more expensive.

IMAGERY
Besides the recent popularity of point cloud data, various 
terrestrial imagery-type sensors have a long history in forest 
in situ observations. Earlier studies using film cameras to 
measure tree diameters date to the 1950s, and many sys-
tems were proposed in the following years [121]. For terres-
trial imaging systems, key technical issues include camera 
calibration, feature extraction, scaling, and protocols. In 
particular, determining the scale among objects in an im-
age and the field is challenging, and a wide range of solu-
tions exists.

CONSUMER-GRADE CAMERAS
Individual trees can be measured at close to a professional 
level by using a digital camera with supporting equipment 
and particular protocols. The authors of [122] tested a la-
ser camera under typical boreal forest conditions, which 
integrated a Canon EOS 400D digital reflex camera with 
a Mitsubishi ML101J27 laser line generator. The laser cam-
era measured the diameters of trees from the center of a 
sample plot without visiting individual trees. The method 
semiautomatically processed the images and achieved ac-
curacies of 6 and 2.5 mm in terms of the standard error 

TABLE 4. THE DATA ACQUISITION AND POSTPROCESSING 
TIME REPORTED IN THE PLOT-BASED APPROACH.

STUDY

NUMBER 
OF 
IMAGES

DATA 
ACQUISITION 
TIME (MIN)

DATA ACQUISITION 
TIME PER DETECTED 
TREE (MIN)

PROCESSING 
TIME (H)

[99] 97–1,070 13–49 0.8–2.7 0.2–39

[102] 804–862 13–15 0.9–1 5.8–8.1

[96] 1,774 15 0.1 —

[98] 440–1,552 9–40 0.4–1.2 —

[95] 338–775 30–120 0.7–2.2 17–50.8
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and bias of diameter measurements, respectively [123]. An 
imaging system was developed to determine the stem curve 
of individual Scots pines in one image [124]. It consisted 
of a calibrated camera, laser distance measurement device, 
and calibration stick. Stem curves were determined by stem 
diameters from an image and a tapering model. Two [125] 
and four [121] photos were taken in orthogonal directions 
to derive the stem curve. Measurement settings (i.e., the in-
clination angle of the camera, viewing angle, and distance 
measurements) were also recorded in the field for data in-
terpretation in [125].

PANORAMA IMAGES
Panorama images have been used to determine stem loca-
tions in forest plots [126]. The positions were determined by 
field-measured DBHs together with angle and DBH mea-
surements of each tree in an image; 85% of the measured 
trees were within 0.5 m of the field-measured tree locations. 
Lately, smartphones have been used in in situ observations, 
following ideas similar to the studies mentioned in the pre-
ceding. More discussion is in the “Operations” section.

HEMISPHERICAL IMAGERY
Hemispherical, or fisheye, photography has been used in 
forest research since the 1950s [127]. It is the most widely 
used ground‐based method for describing canopy charac-
teristics and forest light regimes [128]. Since digital cam-
eras and computer processes became available, it has been 
increasingly employed to indirectly obtain foliation and 
canopy architecture. Hemispherical imagery is an indirect 
method to study light transmittance. It does not inherently 
vary with time and cloud cover, though the associated error 
level can occasionally be substantial [129]. The light trans-
mittance of the canopy can be described by the percentage 
of the incident solar radiation at a given site compared to 
the total incident solar radiation in the open through the 
same period [130], which requires gap positions and site 
geographical locations so that the sun track can be super-
imposed onto the hemisphere.

Hemispherical imageries are also used to estimate other 
plant canopy properties, e.g., to invert the leaf area index 
(LAI). Hemispherical photography is markedly cheaper 
than the alternatives [131]. However, the derived effective 
plant area index may be significantly affected by the ex-
posure of the photographs, and the determination of the 
declination angle of plant elements may be substantially 
different from that derived from a canopy analyzer, as dem-
onstrated in [132]. For canopy structures, original images 
are typically converted to black and white, and a threshold 
is used to determine, e.g., the canopy cover and openness. 
One of the main problems in applying hemispherical pho-
tography to determine the LAI is the selection of an optimal 
bright threshold to distinguish leaves from the sky [131].

The image quality also affects the features that are es-
timated; e.g., overexposure may lead to overestimating 
the sky fraction. In addition, the determination of the 

clumping index was also suggested to be part of plant area 
index measurements derived using optical and radiation 
methods [132] since clumping seems to be one of the main 
factors causing errors in LAI estimation [131]. Similarly, 
hemispherical photography from smartphones has been 
used as a cheap and fast alternative to conventional hemi-
spherical imageries. It was found that smartphone images 
provide results comparable to traditional cameras for de-
scribing forest canopies and light regimes [133].

HYPERSPECTRAL INSTRUMENTS
HS instruments have been widely used in terrestrial obser-
vations since HS remote sensing technology was developed 
in the 1980s [134], [135]. The first portable field reflectance 
spectrometer, from the Jet Propulsion Laboratory, produced 
spectra between 400 and 2,500 nm at a speed of at least 60 
s and promoted the development of more advanced and 
easily carried instruments [136]. As one of the most widely 
used field spectrometers, the Analytical Spectral Devices 
instrument can cover the intact and contiguous spectral 
range from 350 to 2,500 nm for determining vegetation 
spectrum [134] demand, and it takes no longer than 100 
ms to obtain a full spectrum. 

In situ HS measurements have conventionally provided 
test and calibration information for airborne and space-
borne observations. Lately, more and more studies have 
begun to focus on surveys of individual trees and small for-
est stands. Leaf-level measurements take leaf samples into 
laboratories to obtain spectra, physiological, and biochem-
ical parameters, such as leaf thickness, area, water content, 
chlorophyll, nitrogen levels, and so on. Statistical analyses 
indicate correlations between spectral indices and leaf bio-
chemical components, and their quantified results have 
been applied in rapid and nondestructive instruments for 
field measurements. For example, the SPAD-502, of Konica 
Minolta, a widely used leaf chlorophyll meter, uses spectral 
traits of two bands at 650 and 940 nm to measure leaf rela-
tive chlorophyll content [138].

Canopy-level measurements are always labor and cost 
consuming when using traditional ways of placing spec-
trometer probes vertically above the forest canopy. Imag-
ing spectrometers may address the problem via their mul-
tiangle scanning on the ground. Although most imaging 
spectrometers are air- and spaceborne, in situ measure-
ments take advantage of designing specific experiments to 
gain elaborate data sets, which significantly contribute to 
the establishment of models, such as PROSPECT, LIBERTY, 
and 5-SCALE. As more and more lightweight and easily car-
ried spectrometers came into use in recent years, UAV plat-
forms increasingly became popular alternatives to in situ 
canopy-level measurements. Besides, the combination of 
ground-level HS features with other characteristics has the 
potential to solve more challenges in forest monitoring. For 
example, HS features have been combined with lidar met-
rics to improve tree species recognition at the individual 
tree level [139], [140].
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MOBILE MAPPING SYSTEMS
Terrestrial mobile mapping systems (MMSs) offer benefits 
that eclipse stationary systems by providing movable obser-
vation positions along trajectories, or measurement paths, 
that require multiple passes to cover objects of interest from 
different directions, thus increasing work efficiency and the 
completeness of the data.

SENSORS AND SYSTEMS
MMSs integrate positioning and data collection sensors on 
a kinematic platform. Early MMSs for forest observations 
were generally based on all-terrain vehicles (ATVs), which 
later evolved into portable systems that were either car-
ried or held by a person. ATVs can be complemented with 
other vehicles, such as unmanned ground vehicles [103] 
and harvesters. There is ongoing development of harvest-
er-installed, real-time systems to monitor surroundings 
during operations. Here, vehicle-based systems are consid-
ered MLS, and systems carried by a person are viewed as 
personal LS (PLS). PLS can be further grouped into sub-
categories according to how a system is mounted, such as 
backpack and hand-held systems. Figure 4 illustrates an 
operational MLS mounted on an ATV and a backpack/
handheld PLS (PLShh).

The most prominent MMS sensors have been cameras 
and laser scanners [104], [105] since the advent of the tech-
nology about 15–20 years ago. GNSS receivers and inertial 
measurement units (IMUs) are typically tightly coupled 
and form the basis for positioning subsystems [104] to col-
lect platform movements and sensor orientation data. The 
system position and sensor orientation at any given time, 
to a discrete sampling time interval according to system 
specifications, are used for direct georeferencing of col-
lected data [106].

LS sensors on MMSs collect 3D point clouds up to thou-
sands of points per square meter or more at short ranges. A 
high point density is provided by the high pulse rate and 

scan frequency, and high data quality is achieved by the 
narrow beam divergence angle and millimeter-level rang-
ing precision. A GNSS IMU system determines the accuracy 
of an MLS point cloud. Errors vary through time because 
of system dynamics, scene characteristics, satellite visibil-
ity, and the GNSS/IMU grade. When GNSS signals are suf-
ficient for positioning, i.e., there are enough satellites and 
there is acceptable instantaneous constellation geometry, 
1–3-cm of position accuracy can be achieved with high-end 
MLS systems supported by trajectory postprocessing and by 
using real-time kinematic (RTK) positioning in urban and 
semiurban environments [107]. However, 1–3  cm of un-
certainty can introduce multiple copies of objects (e.g., tree 
stems, branches, and so on) in multipass data, with centi-
meters that differ from one another.

Recent studies showed that 0.2–0.7  m of absolute ac-
curacy could be achieved with postprocessed positioning 
using a tactical-grade GNSS IMU [108], [109] in boreal for-
ests. However, the accuracy can degrade to several meters 
[110]. In general, subcentimeter data cannot be achieved 
with low-cost IMUs, due to the high rate of positional drift 
in low GNSS visibility conditions and more significant 
angular uncertainty that increases the spatial point error 
for long-range measurements. Low-cost IMU solutions are 
usually coupled with simultaneous location and mapping 
(SLAM) to cope with the drift and provide real-time data. 

PLS is very similar to MLS concerning the type of sen-
sors used. The main difference is that all sensors are carried 
by a person with PLS, thus achieving high operability and 
efficiency even in rugged and soft terrain, confined spaces 
among/in trees, vegetation, and channels. Assuming that 
they are passable with an ATV, such environments take 
significant efforts to plan and collect data. In many cases, 
PLS has a higher level of mobility in comparison with MLS, 
offering flexibility in the data collection path to minimize 
object occlusion and maximize data coverage in areas with 
structural complexity. Such flexibility is mainly preferred 

(a) (b) (c)

FIGURE 4. Examples of mobile scanning: (a) ATV-mounted MLS, (b) backpack-borne MLS, and (c) handheld PLS.
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in forest observations, due to complex forest environments 
with rugged terrain and high stem density [111].

Initial PLS was conceived as a backpack LS [112] and 
soon applied to forest in situ observations [113]. Rapid de-
velopment of sensors and batteries led to the fast growth of 
lightweight PLS systems. Today, similar performance has 
been achieved in point measurement and scanning rates, 
as the first 22-kg PLS [112] can be realized using a 1.55-kg 
LS (RIEGL miniVUX-1UAV) with, however, a lower rang-
ing accuracy. PLS systems often use SLAM-type approach-
es to solve the system pose and improve trajectory accu-
racy, making them suitable for areas with weak and absent 
GNSS signals.

A prominent result of sensor miniaturization is the 
PLShh, which appeared in the early 2010s. PLShh mainly 
uses low-cost laser sensors because of their lighter weights. 
However, the collected data are consequently less accurate 
and noisier. Low-cost sensors also typically have a consid-
erable beam divergence and therefore reduce the laser’s 
penetration through dense understories with moving 
leaves [81], [114]. The range may also be limited, as shown 
in recent studies [114]–[118], limiting applicability in for-
ested areas. For example, ZEB1 and ZEB-REVO-RT had a 
declared a range of 30 and 15–20 m indoors and outdoors, 
respectively. Due to limited scanning ranges, the height es-
timation of taller trees is hindered or completely disabled. 
The agreement on height estimates between TLS and PLShh 
was found to be high for trees shorter than 20 m (RMSE: 
1.34 m), and low for trees taller than 20 m (RMSE: 9.44 
m) [116]. PLShh was also found to considerably underes-
timate tree heights when trees surpassed a certain height, 
in comparison to TLS-based estimates. Namely, the RMSE 
was 0.74 m for trees shorter than 10 m, whereas the RMSE 
was 3.79 m for an entire sample that included all trees. This 
revealed that the underestimation of tree heights above a 
certain height threshold (10 m) from certain PLShh is even 
more significant than for TLS, where TLS was also con-
firmed to underestimate tree heights above 15 m [24].

The authors of [116] found that the height threshold, 
above which PLShh estimations fail, depends on the maxi-
mum scanning range of the instrument and the illumination 
conditions. Namely, measurements of trees taller than 15 m 
are not recommended with instruments that have a limited 
scanning range (e.g., ZEB1 and ZEB-REVO) in unfavorable 
conditions (sunny days). Similar measurement range limita-
tions were also reported in [117], in a Mediterranean forest 
with an average tree height of 12.5 m and a standard devia-
tion of 3.9 m. Compared to field reference data, PLShh tree 
heights were underestimated, with a bias of –4.61 m and 
an RMSE of 2.15 m. New sensors are solving such hardware 
limitations. The work in [25] reported reliable tree height 
measurement using a new version of PLShh that had an ap-
proximately 100-m measurement range. Lately, consumer-
grade laser sensors have been added to smartphones. These 
low-cost sensors are expected to multiply in the future, pro-
viding more PLShh that is easy to use [91].

DATA ACQUISITION AND GENERATION
The application of MMSs in forest environments largely 
depends on the point cloud data quality, which primarily 
depends on the success of the strip adjustment and SLAM 
algorithms. Up to now, the performance of those algo-
rithms has not been satisfactory in complex forest condi-
tions. Ghost trees and tree parts exist around the actual 
positions; e.g., clusters from the same object scanned from 
several positions do not align correctly. For stem curve and 
volume estimations, a recent publication presents methods 
to overcome this spatial inaccuracy by using SLAM and in-
clination angle correction [119].

According to [114], the automatic coregistration proce-
dure of presented PLShh systems (ZEB-REVO-RT) is sensi-
tive to stem density in forest plots, especially in the case of 
a dense understory with moving leaves. Low stem densities 
hindered object recognition in the SLAM algorithm. In con-
trast, high stem densities and a dense understory resulted 
in slight offsets of the points at stems and the appearance of 
double stems in the point cloud. In [120], the coregistration 
failed for two out of 10 scanned plots because of the low 
and high stem densities. The relatively short measurement 
distance of the laser sensor could be a reason for the failed 
data correction.

For forest inventories, the GNSS IMU trajectory of an 
MLS was adjusted for reducing positional and attitude drift 
in postmission processing by adapting graph SLAM [109]. 
Features extracted from the point cloud were used to find 
correspondences among overlapping data measured at dif-
ferent times during mapping. The method was evaluated on 
three boreal forest test plots of 64 64m#  in a square. The re-
sults showed that the technique could improve point cloud 
quality. The internal consistency of tree stem locations was 
reduced from 10–20 cm to a millimeter level in terms of the 
distance residual standard deviation. The ability to correct 
absolute coordinates was found slightly weaker.

The quality of PLShh point clouds, and consequently tree 
detection and DBH estimation, are also directly related to 
the walking scheme, scan path density, and field conditions. 
Three walking scan paths were tested in [118]. It was found 
that walking around each tree improved the detection rate for 
small trees (DBH 10 cm).1  The path back and forth along 
straight lines and around each tree provided similar results, 
and the 10-m distance solution balanced the accuracy, cost 
and time. However, choosing a walking path that suits data 
processing is not straightforward. Obstacles, such as stones 
and branches, often block the operator’s way in field data col-
lection [111]. In addition, path selection is also limited by time 
and cost considerations. There has been very limited knowl-
edge of the best practices for data collection using MMSs.

GNSS
The GNSS receiver is another common sensor used in envi-
ronmental observations, such as in forests [141] and when 
testing soil moisture [142]. GNSS positioning is widely known 
to be problematic under forest canopy, e.g., [108], [142], and 
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[143]. The denser the canopy is, the less accurate the position-
ing solution [144], [145]. However, GNSS signals can be used 
as an informative indicator to measure some physical prop-
erties of forests, e.g., according to signal degeneration due to 
the mass of biomass. High correlations between the statistical 
features of GNSS signals and plot-level forest attributes were 
found in boreal forest conditions, including the mean tree 
height, mean DBH, basal area, stem volume, and tree bio-
mass. Prediction accuracies were evaluated using a reference 
data set of 292 sample plots. The relative RMSEs were 14.77–
20.98% for the mean tree height, 15.76–22.49% for the mean 
DBH, 15.76 and 33.95% for basal areas, and 27.76–40.55% 
and 26.21–37.92% for the plot-based stem volume and above-
ground biomass, respectively, when different combinations 
of receivers and constellations were used [141].

The GNSS-derived predictions were shown to be as ac-
curate as results derived from imaging spectrometry and 
aerial photographs, which were the best 2D remote sens-
ing techniques and far more precise than satellite-based 
2D techniques in terms of the correlation coefficients and 
RMSE. Although 3D techniques achieved more accurate 
predictions in most cases, GNSS-based predictions evident-
ly cost less. The correlation coefficients were higher when 
observables of several GNSS constellations were combined 
than when the coefficients of a single constellation were 
used, such as GPS and the GNSS. The combination of mul-
tiple GNSS constellations is expected to provide more ac-
curate statistical features. It will thus further improve pre-
dictions of forest attributes as the European Galileo and 
Chinese BeiDou systems come into full operation [141].

PERFORMANCE
Different systems record forests with varying efficiency, 
LoD, and quality. Figure 5 illustrates point clouds of one 
tree that were derived through TLS and PLShh, representing 
geometrical qualities and point distributions. In general, 

TLS provides the most accurate terrestrial point clouds at 
the millimeter level. The performance of state-of-the-art 
TLS for tree and forest attribute estimation was evaluated in 
an international benchmarking study [31]. The evaluation 
was conducted on tree and plot levels by using single- and 
multiscan TLS data within diverse sample plot conditions 
in boreal forests. Altogether, 18 research groups partici-
pated, contributing their algorithms to the benchmark-
ing, which revealed that the quality of a point cloud (i.e., 
its comprehensiveness) substantially influences the results 
of tree detection and the accuracy of forest attribute esti-
mates. In general, the tree attribute estimates are accurate 
as long as the objects (i.e., the trees) are comprehensively 
and precisely recorded in the data. Inaccurate tree and for-
est estimates typically happen at places where the quality of 
a point cloud is low.

The comprehensiveness of a point cloud is mainly af-
fected by the data acquisition design (e.g., single or multiple 
scans) and forest structure (e.g., species, density, develop-
ment stages, and terrain). The delineation of all trees within 
a sample plot when using TLS becomes considerably more 
difficult as the number of observation positions decreases 
and the plot’s structural heterogeneity increases. The com-
pleteness of tree detection decreased from ~90% in easy 
plots (600 stems/hectare, with a 20-cm mean DBH) and 
medium plots (1,000 stems/hectare, with a 15-cm mean 
DBH) to ~66% in complicated plots (2,000 stems/hectare 
and a 10-cm mean DBH) with the multiscan approach. 
While the completeness decreases sharply in complex stand 
conditions, the correctness of the algorithms appears sta-
ble, i.e., commonly above 90% in all three complexity cat-
egories, indicating that the detecting algorithms are mostly 
reliable. With single-scan data, most recent algorithms have 
approximately 75, 60, and 30% completeness in easy, me-
dium, and complex plots, respectively, and the correctness 
stays at roughly 90%.
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FIGURE 5. A tree shown in TLS and PLShh point clouds. (a) and (b) The TLS and PLShh point clouds of the whole tree. (c) The stem section, 
where the TLS data are in yellow and the PLShh data are in blue. (d) The upper section of the stem as illustrated in (c), giving more detail 
about the point cloud data. (e) The point distribution according to the height.
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The DBH estimations remained stable across three 
stand complexity categories for many algorithms. Robust 
algorithms had an RMSE range of 2–4 cm and RMSE of 
8–20% when using a single-scan approach. Multiscans 
reduced the RMSE to less than 2 cm and the RMSE to a 
range of 5–10% for easy and medium stands and 10–15% 
for difficult forest stands. Current algorithms can estimate 
the DBH with a close-to-zero bias and bias percentage for 
the easy and medium complexity categories when utilizing 
multiscan data. When a single-scan is applied, the bias and 
bias percentage are close to zero in all three stand complex-
ity categories when employing conservative and robust al-
gorithms.

The stem curve estimation was relatively stable in terms 
of stand conditions, i.e., a mean RMSE 1.3–6 cm from sin-
gle-scan data and 0.9–5  cm from multiscan data for all 
three stand complexity categories. The impact of the stand 
complexity on the percentage of the tree height covered 
(PHC) was greater than that of the RMSE. A higher PHC is 
expected more from multiscan data than from single-scan 
data. An interesting finding in the benchmarking is that 
the DBH and stem curve estimates had similar accuracy 
for a few algorithms in terms of the RMSE percentage for 
single and multiple scans and across the three complex-
ity categories. These results indicate that automated algo-
rithms can have similar capacity in estimating the DBH 
and stem curve, and stem curves can be used as a tree at-
tribute similar to DBH in future inventories. The RMSE 
percentages of the stem volume values in three complexity 
categories were 35.1, 60.4, and 81%, respectively, with sin-
gle-scan data and 28.3, 47.3, and 77.1%, respectively, with 
multiscan data. A strong correlation between the RMSEs 
of the stem curve and stem volume estimates exist, indi-
cating that the stem curve has a more determining role 
than the tree height.

At the plot level, the best current automated algorithms 
gave volume estimates similar to reference data from mul-
tiscan data, i.e., 107, 107, and 94% trunk volume ratios for 
easy, medium, and difficult plots, respectively. Despite the 
high level of omission errors in medium and difficult for-
ests, the estimated total stem volumes in plots were close to 
the reference values, indicating that the omitted trees were 
mainly small ones with a minor role in plot-level estima-
tion. The plot-level trunk volume ratios were 94, 87, and 
43%, respectively, for single-scan data. The biomass was 
predicted as a function of the DBH and tree height. The ac-
curacy of DBH estimates had a stronger correlation with the 
biomass accuracy than with the tree height but was not the 
determining factor. The average RMSE percentage values of 
a few representative algorithms were 23.9, 43.2, and 53.2% 
for easy, medium, and difficult plots, respectively, with 
single-scan data and 15.9, 27.2, and 39.3%, respectively, 
with multiscan data. At the plot level, when an algorithm 
was capable of providing accurate estimates of the DBH and 
tree height while maintaining the completeness and cor-
rectness of the stem detection, the biomass ratio reached 

86.1, 81.2, and 40.2% for easy, medium, and difficult plots, 
respectively, with single-scan data and 98.9, 95.8, and 80%, 
respectively, with multiscan data.

The authors of [111] benchmarked TLS and MMSs, e.g., 
MLS and PLS, and evaluated the applicability of MMSs 
in various forest conditions as the TLS benchmark. Point 
cloud data were processed through the same chain, and 
thus the results indicated the capacities of TLS and MMSs 
in forest digitization. The evaluation showed that an 
MMS can assess homogeneous forests as well as static ob-
servations but cannot handle heterogeneous forest condi-
tions. The major challenge is the data quality, i.e., data 
coverage and accuracy. MLS showed some limitations in 
mobility in challenging forest and terrain conditions. The 
results indicated that future research into robust registra-
tion techniques between strips is required, especially in 
complex forest conditions.

Terrestrial point clouds from imagery, TLS, and MMSs 
were benchmarked in [99] in a boreal forest. The study indi-
cated that photographic measurement is easy and relatively 
fast. The state-of-the-art dense matching algorithm is ro-
bust. Point clouds can be generated in dim light conditions, 
e.g., after sunset in winter. Meanwhile, the data collection 
has a direct and significant impact on the quality of the 
generated point cloud. The tree detection accuracies were 
between 60 and 84%, and the RMSEs of the estimated DBH 
were between 2.98 and 6.79 cm among five data collection 
methods. The accuracy of the tree attribute estimates was 
lower than that achieved with the LS techniques but close 
to an acceptable level for forest field inventories. On the 
other hand, TLS and PLS showed a close to 100% detec-
tion accuracy, and the DBH estimate RMSEs were 2.38 and 
2.92 cm. PLS had superior speed, i.e., 5 min, over terrestrial 
imaging, i.e., 13–43 min. Terrestrial point clouds from im-
agery and TLS were benchmarked in [32]. Altogether, 15 al-
gorithms were used to detect individual trees and estimate 
the DBH. TLS was confirmed to provide more reliable data, 
where the completeness and RMSE of DBH estimates were 
higher and more accurate across the research plots and al-
gorithms.

AERIAL SYSTEMS
Low-altitude airships have undergone fast development in 
the past two decades, accompanied by a recent boom in ap-
plications, driven by the rapid evolution of the platforms, 
onboard sensors, batteries, navigation, processing algo-
rithms, computing power, and affordability. The most pop-
ular aerial systems in close-range remote sensing are UAVs, 
also known as drones; unmanned aerial systems; and re-
motely piloted aircraft systems. Helicopter, hybrid airship, 
and similar systems are also employed when low-altitude 
observations are made.

Low-altitude airships are suitable for quick data acquisi-
tion at high spatial resolution in small areas where the appli-
cation of airborne systems is too expensive, in remote areas 
inaccessible by other solutions, and in dangerous scenarios 
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where close-to-target sensing should be avoided. They have 
LoDs comparable to terrestrial remote sensing [146], and 
they outperform terrestrial systems in efficiency in terms 
of data collection speed and area covered, e.g., hectares to 
square kilometers in several tens of minutes, as their move-
ment is free of ground obstacles [147]. They were quickly 
recognized as cost-effective platforms in many environ-
mental applications, such as agriculture [148]–[150], geo-
sciences [151], [152], and forests [153]–[156]. In addition, 
they provide a link between airborne and terrestrial ob-
servations and may profoundly change field observations. 
This section reviews current platforms and operations and 
then discusses passive and active onboard sensors. Perfor-
mance is evaluated in the “Performance” section.

PLATFORMS
UAVs are currently the dominant platform among low-alti-
tude airships. UAVs have variable sizes, ranges, and avion-
ics. The most popular ones in current research and forest 
applications are powered by electricity. Fixed-wing plat-
forms are similar to conventional airplanes and consist of 
rigid frames with airfoils and propulsion systems. Rotary-
wing platforms use one or multiple rotors for vertical lift 
and flight. Forward motion is not required to produce air-
flow to generate lift, which gives rotary-wing platforms the 
advantage of vertical takeoffs and landings and operation 
through small openings. Fixed-wing platforms are superior 
in endurance and flight speed, including coverage, cost, 
and efficiency. However, they must maintain a minimum 
flight speed to stay in the air, limiting the spatial resolution 
in a single flight when given the same sensor configuration. 
They also need space and time to turn to follow flight plans, 
especially during area mapping.

Rotary-wing platforms enable slow flight, which con-
tributes significantly to high spatial resolutions. Their agile 
maneuvering also opens a wide range of new possibilities 
that require sophisticated flight trajectories, e.g., vertical, 
circular, and 3D flight, and maintaining observations of a 
single target for a period of time. Vertical takeoff and land-
ing provide easy operation and support more flexible flight 
planning in comparison with fixed-wing systems. Accord-
ing to a recent study [157], rotary-wing UAVs are more fre-
quently used than fixed-wing platforms in forest studies, 
i.e., 71 versus 29%. Hybrid platforms have notable advan-
tages, such as vertical takeoff and long-endurance flight. 
Despite these, only a few studies based on hybrid platforms 
have been reported [158], which may be due to immature 
technology and high prices.

In electrically powered systems, batteries usually make 
for a large part of the takeoff weight; hence, efficient bat-
tery technology is appreciated. Lithium polymer batteries 
are the most common. Solid-state lithium batteries are ex-
pected to double the energy capacity of lithium polymer 
variants and are safer to use and easier to maintain. Their 
main drawback is a high price, making it an open ques-
tion whether their use will be financially justified. Clear 

advances in UAV flight control have been achieved in recent 
years [150]. Control algorithms are under development, 
e.g., in open source communities, such as Ardupilot, that 
support various frames. Swarm technology is being inten-
sively developed.

UAV platform sensors are similar to those commonly 
used on mobile mapping platforms. The navigation system 
is composed of a GNSS receiver and an IMU. A variety of 
sensors have roles in specified tasks, e.g., passive sensors, 
such as visual spectral [red–green–blue (RGB)], MS, HS, 
and thermal (TIR) cameras, and active sensors, including 
lidar and radar. Multiple sensors are commonly used si-
multaneously, and their various combinations provide the 
possibility to investigate targets from different perspectives. 
Lidar and RGB cameras provide geometric and color infor-
mation, respectively [147]; RGB and TIR cameras obtain 
high-quality TIR point clouds through filtering based on a 
fixed distance filter and RGB cloud [159]; and RGB and MS 
cameras acquire geometric and spectral data for aboveg-
round biomass estimation [160].

Until recently, the maximum payload of popular UAVs 
was low, e.g., a few kilograms. The combination of multiple 
sensors is mainly limited by the payload and, consequently, 
efficiency; hence, sensors are rarely redundant and almost 
exclusively complementary. The payload also limits the 
mounting of heavy and high-power-consumption systems 
on UAVs, e.g., radar. More sensor details are provided in the 
following sections. Helicopters are another popular plat-
form that has much larger payloads than small UAVs. High-
grade yet typically heavier sensors are convenient to install 
on helicopters. A hybrid airship combines aerodynamic lift 
from lighter-than-air and heavier-than-air components. 
Hybrid airships typically have long-endurance flights, 
which suit long-term observations with a bird’s eye view.

OPERATIONS
UAVs operate above and below canopies and in seamless 
modes. Similar platforms are used, though undercanopy 
UAVs typically have a smaller frame size to help maintain 
safe distances from surrounding objects. Up to now, fly-
ing above the canopy has been the most common protocol 
[161]. Early demonstrations of undercanopy flight can be 
found in [162]–[164], using laser sensors [165], [166] and 
imageries [167], [168]. An above/below-canopy pattern 
in a single flight was reported in [166]. It was shown to 
acquire highly complete imagery of upper canopies from 
above the treetops and of stems from a terrestrial perspec-
tive. It represented a step forward to achieve a fully auton-
omous in situ forest inventory by combining the advan-
tages of terrestrial static, mobile, and above-canopy UAV 
observations [166].

Registration and georeferencing are fundamental to pro-
viding high-quality UAV data. They can produce large geo-
metric errors [166], [169]–[171], especially in complex forest 
environments and undercanopy flights, and require more 
thorough investigation. Ground control points (GCPs) are 
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commonly used to georeference UAV data to a predefined 
coordinate system. However, setting up and measuring 
GCPs is time-consuming and challenging due to a lack of 
open areas. Depending on the UAV campaign, the time 
needed varies from tens of minutes to a couple of hours. 
The area of interest is typically large when a fixed-wing 
UAV is used, e.g., several hundred hectares, requires at least 
a couple of hours to collect GCP information. In addition, 
placing GCPs at positions visible in UAV-captured data is 
not always easy, e.g., in dense forests. Lately, dual-frequency 
GNSS receivers mounted on UAVs are becoming more af-
fordable. An RTK/postprocessing kinematic (PPK) solution 
typically has a 1–3 cm of positional accuracy and can add 
coordinates to images, thus providing a GCP-independent 
georeferencing solution.

GCPs’ influences on positional accuracy were stud-
ied in [171] by using a fixed-wing UAV and 40 validation 
points. A solution purely based on RTK/PPK was found to 
provide comparable results to the conventional solution 
that depends on GCPs, with potentially better accuracy. In 
addition, image processing, e.g., to generate point clouds, 
was found to be more reliable when using image positions 
from RTK/PPK. Image matching with known positions is 
supposed to be more robust than with images without co-
ordinates, especially in leaf-off seasons, when forests and 
images are more homogeneous.

Besides technical issues, UAV operations have to meet 
legal requirements according to local regulations. Flights 
in forests are almost exclusively beyond the visual line of 
sight (BVLOS), which legally differs from VLOS operations, 
depending on the national aviation authority rules. BVLOS 
operations are considered increased risk operations, even in 
unpopulated areas, such as forests. This issue is recognized 
and acknowledged by the European Union Aviation Safety 
Agency as a “standard scenario,” and officials plan to au-
thorize such operations through legislation.

LASER SCANNING
UAV-based LS (ULS) combines near-ground aerial perspec-
tives for observations from drones and the canopy penetra-
tion capacity of LS sensors. It avoids access constraints on 
the ground and the degradation of GNSS signals beneath 
canopies. It provides point cloud data at an LoD compa-
rable to terrestrial observations. Thus, ULS diminishes the 
boundary between airborne and terrestrial observations 
[147]. Early studies [172]–[174] explored the possibility of 
delineating individual trees and soon became a hot topic in 
environment studies.

SYSTEMS AND SENSORS
High-end and low-cost ULS systems are available on the 
market. High-end ones typically provide more accurate 
point clouds through a professional body, navigation unit, 
and sensors, with obviously significant expense. Low-cost 
platforms often use inexpensive sensors and are more af-
fordable to many users. They can achieve a point density 

similar to that of high-end systems, but the data quality, 
i.e., the geometric accuracy and spatial coverage, is typi-
cally lower.

A good example of a high-end system is the Riegl 
RiCOPTER with a VUX-1UAV laser sensor. The scanner has 
a beam divergence of 0.5 mrad, providing 2.5- and 5-cm 
footprints at 50 and 100 m, respectively. The navigation 
system has an Applanix AP20 GNSS inertial system, which 
gives a position measurement accuracy better than 0.1 and 
0.2  m in horizontal and vertical directions, respectively. 
The roll/pitch and heading measurement accuracy exceeds 
0.015 and 0.035º, respectively. Points at the nadir and far 
end of the FOV at 50 m above the ground are measured 
at an accuracy superior to 3.6 and 7.1  cm, respectively, 
without considering positioning and ranging errors. So far, 
high-end ULS system geometrical accuracy has not reached 
the level of TLS point clouds and what is required in practi-
cal applications [147].

High-end ULS system performance was investigated in 
three complex forest categories [147]. The average RMSE of 
the ULS-based stem position estimates was between 6 and 
15  cm, considering the stand complexity, i.e., about two 
times as much as TLS-based results. ULS overestimated the 
DBH in automated and manual estimations, and the over-
estimation was more significant than that of MLS. The tree 
attribute estimation, in general, can achieve results com-
parable to TLS only in easy forest conditions. These results 
indicate that hardware improvement is urgent to provide 
accurate enough point cloud data from UAV platforms.

Low-cost solutions often use sensors such as those 
from Velodyne. The beam divergence of the Puck VLP-16 
is 3 mrad, which provides 15- and 30-cm footprints at 50 
and 100 m from the scanner, respectively. The systems also 
typically include lower-grade GNSS receivers and IMUs, re-
sulting in less accurate position and orientation estimates. 
Their data quality has significant variance due to differenc-
es in sensor configurations. Instead of directly measuring 
tree attributes from a point cloud, e.g., [175], researchers 
also investigate the use of indirect methods, i.e., statistical 
models, to derive estimates.

In [161], the authors compared these approaches for 
the calculation of tree height and the DBH. The test plot 
was 64 64m#  and dominated by Scots pine and Norway 
spruce, with a mean height of 18.1 m and a mean DBH of 
21.6 cm. Altogether, 201 trees were measured using a low-
cost ULS with 800 points per square meter. The results 
showed that the difference between indirect and direct tree 
height measurements was small when using low-cost solu-
tions. On the other hand, the DBH estimate from the direct 
approach was less accurate than the indirect method based 
on point cloud metrics and regression. This indicates that 
low-cost ULS data have significant measurement errors.

It seems that low-cost systems are suitable for collecting 
tree heights and crown diameters in open forest conditions. 
Tree height estimates from a low-cost ULS were more reli-
able than conventional field observations in a deciduous 
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forest [25]. The performance of low-cost ULSs was identi-
fied as comparable to high-end systems for tree height and 
crown diameter measurement [177], with a high correla-
tion of .R 0 9982=  and . ,R 0 8062=  respectively. However, 
low and complex trees were delineated with poor quality by 
inexpensive UAV solutions, due to insufficient point densi-
ty. A clear difference between hardware exists. The authors 
of [175] compared two scanners from the same company to 
evaluate stem parameter estimation, i.e., the RIEGL VUX-
1UAV and RIEGL miniVUX-1DL. Both scanners belong to 
the high-end category, but the VUX-1UAV clearly has better 
accuracy than the miniVUX-1DL. The study confirmed that 
the accuracy of the equipment itself has significant influ-
ences on data accuracy. Namely, a high-quality scanner has 
better accuracy.

Studies also reported differences in the point density be-
tween high-end and low-cost systems, i.e., 12–1,500 points/m2 
in low-cost systems at an average altitude of 65 m above 
ground flight height and 200–18,000 points/m2 in high-
end systems at an average altitude above the ground of 
84  m (references). The authors of [177] compared low-
cost and high-end ULS systems (a Velodyne VLP-16 and 
Riegl VUX) in 12 plots of dawn redwood and poplar 
on a plantation and three plots of seedlings on nursery 
land. The point densities of low-cost and high-end sys-
tems were 12 and 224 points/m2, respectively. The point 
density of the high-end solution was much better than 
that of the low-cost version, even though the altitude was 
greater (140 versus 70 m). Also, huge differences exist in 
the range resolution and multiecho properties of low-cost 

and high-end sensors, which especially impacts forest  
applications.

DATA ACQUISITION
Data acquisition is a tradeoff among practical issues and 
needs a careful design. A lower flight height and a larger 
overlap between strips increase the possibility of complete-
ly capturing a tree but reduce the area covered during the 
same amount of data acquisition time. Elements consid-
ered typically include 1) the needs of a particular applica-
tion, e.g., point density, point and model accuracy, cover-
age area, and repeatability, and often neglected traceability 
in terms of standards, quality, and reliability of data and 
measurements; 2) practical implementation; and 3) costs 
and budgets. Typical flight speeds and durations in recent 
studies are approximately 5 m/s and 20 min, respectively. 
Current studies primarily focus on field sample plots, e.g., 
with a 10–20-m radius in a circle or m32 32#  in a square, 
and thus practically limit the flight speed. The flight height 
varies depending on the application and laser sensor. If less 
accurate or range sensors are selected, the altitude has to 
be kept low, which means more time spent, more battery 
consumed, and possibly higher cost. A practical issue that is 
worth keeping in mind is the downdraft from rotary-wing 
UAVs. It may move the top of the canopy when a UAV flies 
close to treetops, but the effects are mostly minor when the 
distance between the platform and treetops is a couple of 
tens of meters.

A typical ULS flight pattern appears in Figure 6. The 
IMU is typically responsible for the precise trajectory 
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calculation. Complicated flying patterns with curves and 
rotations may or may not have a negative impact on the fi-
nal data, depending on the IMU accuracy. The design of the 
flight pattern is mainly linked to particular applications. 
The authors of [175] evaluated acquisition characteristics 
for stem parameter estimation and found that as long as 
half of a stem is covered with points, neither the data den-
sity nor the completeness across the stem has significant in-
fluences. This finding indicated that sparse flight lines are 
enough for capturing stems.

One particularly important issue that must be consid-
ered in the implementation design is the completeness of 
a forest in collected ULS data. Complete coverage of an in-
dividual tree from the stump to the top can be achieved if 
the viewing geometry is ideal, but in most cases, it is chal-
lenging. UAV platforms suffer from occlusion effects that 
are similar to those of terrestrial systems. While mainly 
induced by bushes, small trees, and lower parts of trees 
in terrestrial point clouds, occlusion effects in ULS point 
clouds are primarily caused by the upper parts of canopies, 
as shown in Figure 7. Leaf-off season mitigates occlusion in 

deciduous forests but cannot solve the problem in conifer-
ous ones [147].

In addition, occlusion effects become significant when a 
large scan angle and small overlap rate between scan lines 
are selected, e.g., to cover the area of interest in a short time 
and when budgets are small. Thus, objects near the ground, 
e.g., the lower part of a tree stem, may be fully, partially, or 
barely recorded in ULS data, due to occlusion from cano-
pies and nearby trees, depending on the scanning geom-
etry, species, and forest stand conditions. ULS data showed 
a steady declining trend in the completeness of stem map-
ping when stand conditions became more complicated 
[147]. Forest digitization is still limited, especially in com-
plex conditions.

MULTISPECTRAL IMAGERY
UAV image-based techniques have attracted increasing in-
terest in recent years [154], [178]–[180] and have become a 
preferred option for high-quality aerial mapping in local 
areas. MS cameras have proliferated because of their lower 
prices and fewer barriers to the process.

382 385

380

375

370

365

380

378

376

374

372

370

368

366

364

362

(Z
)

(Z
)

385

380

375

370

365

(Z
)

Amplitude
High

Amplitude
High

Low Low

5.
81
51
4

5.
81
51
5

5.
81
51
6

5.
81
51
7

5.
81
51
8

5.
81
51
9

5.
81
52
0

5.
81
52
1

5.
81
52
2

5.
81
52
3

5.
81
52
4

5.
81
51
4

5.
81
51
6

5.
81
51
8

5.
81
52

5.
81
52
2

5.
81
52
4

5.
81
51
4

5.
81
51
6

5.
81
51
8

5.
81
52

5.
81
52
2

5.
81
52
4

× 105× 105 × 105(X ) (X ) (X )

(a) (b) (c)

FIGURE 7. The difference between TLS and ULS point clouds. (a) The TLS points colored with the amplitude. (b) The TLS (red) and ULS 
(blue) points. (c) The ULS points colored with the amplitude values. The TLS data were obtained using a Riegl VZ-2000, and the ULS data 
were acquired with a Riegl RiCopter and Riegl VUX-1LR scanner.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on June 21,2022 at 08:17:03 UTC from IEEE Xplore.  Restrictions apply. 



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MONTH 202222 

SENSORS
MS cameras acquire spectral responses of subjects within 
specific wavelength ranges (typically 3–10 nm) optimized 
to certain spectral regions, e.g., up to 15 bands, typically 
in the wavelength range from ultraviolet to near-infrared 
spectra, such as blue, green, red, red edge, and near infra-
red. Each distinct band is commonly sensed with a separate 
sensor and optical system, and MS information is captured 
through a few registered and synchronized cameras. Ex-
amples of popular MS sensors include the Sequoia, Mini-
MCA6, and RedEdge/Altum. Consumer-grade RGB sensors 
and modified color infrared sensors can also collect spec-
tral data and are the most common UAV onboard sensors. 
However, such systems often come with wider and less op-
timized spectral bands.

Modern digital cameras are mostly equipped with CMOS 
and charge-coupled device (CCD) sensors. Most consumer-
grade cameras use CMOS sensors, and CCD types are used 
in medium- and large-format aerial cameras. CMOS sen-
sors have a lower manufacturing cost, power consumption, 
and readout time, while their drawback is a rolling shutter 
effect when cameras and scenes are in motion. The rolling 
shutter effecting can be modeled [181], [182] and mitigated 
if a global shutter CMOS sensor is used. CCD sensors have a 
higher dynamic range and low noise, with the drawback of 
high power consumption and a slow readout time.

TIR cameras provide scene temperatures by detecting 
emitted, reflected, and transmitted TIR energy. They are 
significantly more expensive than MS cameras, due to con-
struction complexity, i.e., the need for special lens material. 
Cooled and uncooled TIR cameras are used. Uncooled cam-
eras are cheaper, lighter, and less power hungry than cooled 
ones. Cooled cameras provide superior data quality and res-
olution, but they are unsuitable for common UAV platforms 
due to their weight and size. Interest in TIR cameras on UAVs 
can be seen in recent studies [159], [183], [184]. Sensor opti-
cal systems simultaneously influence images’ geometric and 
radiometric properties. Therefore, they need to be modeled 
through bundle adjustment and laboratory calibration.

DATA ACQUISITION
The data acquisition parameters in UAV imagery applica-
tions are a tradeoff between quality, e.g., the detail and 
precision of reconstructions, and efficiency, e.g., flight and 
image processing time. A series of operational issues are 
optimized and compromised to achieve satisfying results, 
including sensor parameters, e.g., the pixel resolution, 
FOV, shutter speed, ISO, aperture, frame rate, and storage 
write speed, and flight parameters, e.g., the altitude, speed, 
and overlap in flight and side directions. These parameters 
affect the GSD and number of required images per area, 
which are key parameters to achieve the best reconstruction 
quality without decreasing efficiency [185].

Factors linked to high-quality UAV images have been 
discussed in the geoscience context [186]. Despite great in-
terest in applying UAV image-based techniques in forests, 

the best data acquisition protocol has been discussed in 
only a few studies [185], [187]–[189], e.g., the altitude, 
overlap, and GSD. Nevertheless, the studies all concluded 
that flight line direction overlaps and GSD and their rela-
tion play a central role in point cloud reconstruction over 
forests. As expected, more flight line direction overlap is 
favorable, while a very fine GSD can introduce noise due 
to small wind-induced movements and gaps when there is 
insufficient overlap. MS cameras are often georeferenced, 
utilizing structure-from-motion (SfM)-based solutions and 
multisensory calibration [190]. Additional discussion is 
provided in the “Image-Based Point Clouds” section.

Uncontrollable external influences, e.g., illumination 
and wind, may pose significant challenges for data acqui-
sition and processing. Reports on the impact of external 
factors have been mixed. Wind and illumination variation 
influences on canopy metric calculation were reported as 
negligible in [187]. More studies recommend avoiding im-
age acquisition during windy weather [188]. Repetitive pat-
terns from aerial images [191] and moving branches [185], 
[192] were reported to hinder feature and dense matching 
processes. Thorough radiometric equalization in the case 
of variable illumination is also recommended [193], [194]. 
For TIR cameras, environmental properties, such as humid-
ity, distance, and attitude relative to the scene, and other 
sources of reflected TIR radiation should be considered in 
the data acquisition design.

HYPERSPECTRAL IMAGERY
HS sensors aim at reconstructing the object reflectance spec-
trum by using multiple, e.g., more than 20, narrow spectral 
bands of less than 10 nm of the full width of the half maxi-
mum (FWHM). HS sensors are expected to improve the 
automation potential and sensitivity of object analysis. The 
concepts of UAV MS and HS imageries, i.e., the spectra over 
leaves when using UAV MS and HS sensors, are illustrated in 
Figure 8. Yet, HS sensors have been relatively less frequently 
used because they are quite expensive and challenging to 
operate, especially in forested environments.

SENSORS
HS sensors differ based on the arrangement, range, and 
number and widths of bands as well as the mechanism to 
achieve spatial and spectral discrimination [180]. Accord-
ing to the operating principle and the resulting data type, 
sensors can be grouped into point, line, and area technolo-
gies. Imaging spectrometers based online and area sensors 
provide spatially continuous spectral images, whereas point 
spectrometers provide spectral data at the distinct projected 
footprint of the sensor.

Line array-based push broom scanning is the most com-
mon technical implementation of HS cameras. This type of 
sensor captures an object line by line, resulting in carpet-
type images. State-of-the-art, commercially available push 
broom cameras include those operated in the visible and 
near-infrared range (400–1,000 nm, with an approximately 
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2–6-nm FWHM), e.g., the Mjolnir V, 
micro/nano-hyperspec, AFX10, and 
Resonon Pika, and those operated in 
the short-wave infrared range (SWIR), at 
900–2,500 nm, with a roughly 5–10-nm 
FWHM, e.g., OCIF SWIR, Mjolnir S, and 
AFX17. The first studies with miniatur-
ized UAV-based HS push broom scan-
ners can be found in [195]–[198], and 
more were recently presented, e.g., [199] 
and [200].

Examples of area-based sensors in-
clude the HSI, which operates on the 
time sequential spectral scanning prin-
ciple; filter-on-chip sensors, e.g., Focus 
cameras that have Imec snapshot mosa-
ics with a 4 4#  pixel pattern (470–620 
nm, with a 15-nm FWHM) and a 4 4#  
pixel pattern (600–975 nm, with a 15-
nm FWHM); and the light field with 
a variable bandpass filter ULTIRS 20. 
Area-based imagers can capture stereo-
scopic images, enabling HS 3D recon-
struction of objects [201], [202]. There 
has been interests in point spectrometers 
because of their ability to capture spec-
tral data at a very high spectral resolu-
tion, which enables, for example, studies 
of sun-induced fluorescence [203].

DATA ACQUISITION
UAV HS sensors have data acquisition concerns similar 
to MS camera systems. In particular, they require careful 
calibration and georeferencing to acquire object spectral 
responses. HS cameras are typically calibrated and char-
acterized in a laboratory to determine lens fall-off correc-
tions, temperature effects, absolute radiometric calibration 
coefficients, and the spectral response [180], [204]. The es-
sential steps in the calibration process include corrections 
based on sensor calibration, compensation of illumination-
related effects, atmospheric correction, object anisotropy 
correction, so-called bidirectional reflectance distribution 
(BRDF) correction, and topography correction [180]. 

Solutions for atmospheric correction are mostly empirical 
line-based calibration methods. In these, two or more panels 
with a known reflectance are installed in the area of interest. 
A linear transformation is estimated between the image gray 
values and object reflectance of the panels. Direct calibra-
tion technologies utilize onboard irradiance observations 
to transform image radiances to reflectance [205], [206]. 
The advantage is that reflectance targets are not needed on 
the ground, which is particularly useful in forested environ-
ments, where suitable places for installing panels might not 
exist. Furthermore, irradiance sensors provide valuable in-
formation about changes in illumination when data sets are 
captured under varying conditions [180], [201].

Alternative and supplementary solutions for radiomet-
ric calibration are software based for atmospheric correc-
tion. These can be based on estimating irradiance by using 
atmospheric radiative transfer models [180], [195]. When 
utilizing blocks of images, it is also possible to develop 
block adjustment-based approaches for radiometric cor-
rection. These techniques determine correction functions, 
for example, utilizing radiometric tie points in overlapping 
image areas, reflectance panels, and irradiance observa-
tions, depending on availability. BRDF modeling can be 
integrated into the process. These methods are thus capable 
of producing radiometrically homogeneous sets of images, 
optimally adjusting external irradiance data and image 
block data to compensate for varying illumination condi-
tions [207].

The georeferencing solution depends on the sensor type. 
2D spectral images can be georeferenced utilizing well-
established SfM techniques (see the “Image-Based Point 
Clouds” and “Platforms” sections). These methods work for 
sensors based on mosaic filters, e.g., Cubert cameras. In the 
case of time sequential HS scanning, such as the Senop HSI, 
precise georeferencing of the nonaligned spectral bands can 
be carried out by using 3D band matching procedures [208] 
or implementing a suitable dynamic sensor model in bun-
dle block adjustment [209], [210].
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The most common HS imagers are push broom scan-
ners that are highly sensitive to flight dynamics. Their geo-
referencing is based on either precise GNSS/IMU systems 
[180], [197] or utilizing an integrated approach founded 
on a lower-quality GNSS/IMU and 2D camera [196], [198]. 
Push broom scanners can also be integrated with lidar to 
enable accurate georeferencing [199]. Point spectrometers 
are the most challenging to georeference. The location and 
size/shape of the spectral footprint of each measured spec-
tra are different and determined by the position, orienta-
tion, FOV, integration time of the spectroradiometer, flying 
height and speed of the UAV, and surface topography [203].

RADAR
UAV radar is being developed based on low-cost, small, 
lightweight, and low-power sensors, and it is expected to 
be used for close-range Earth observations with high re-
visit frequencies and immediate responses. Research into 
UAV radar is focused on system development [211]. Fitting 
all the necessary equipment into lightweight, commercial 
UAVs with relatively small payloads is a challenge since ra-
dar systems are typically power and space demanding. Few 
works have been targeted at tree and forest applications.

SENSORS AND PLATFORMS
Radar operates in the microwave wavelength to measure 
ranges. It observes target areas during day and night, under 
a wide range of weather conditions, and with wide swaths 
and long ranges. It operates on different wavelengths. Short 
wavelengths, e.g., the C and X bands, measure solid targets, 
e.g., buildings, at high accuracy. Longer wavelengths, such 
as the P and L bands, are useful when vegetation is present. 
Low-frequency ultrawideband (UWB) millimeter radar has 
good penetration capacity and offers potential for imaging 
building interiors. Previous demonstrations of UAV SAR in-
clude the P, L, and C bands [212] for civil and deformation 
monitoring applications; X band [213] for calculating the 
scattering characteristics of complex targets; P and C bands 
for estimating the terrain height of a eucalyptus forest [214]; 
UWB [215] for snow coverage scanning; and W band [216] 
to minimize the size and weight of the hardware, among 
others, and different or full polarization combinations, 
e.g., horizontal and vertical backscatters.

The onboard sensors typically include transmitting and 
receiving antennas, a signal generation and recording unit, a 
navigation system, and a control unit. Frequency-modulat-
ed continuous-wave signals are common in current systems. 
The antennas may be large in comparison to the UAVs, es-
pecially for radar systems operating at longer wavelengths, 
e.g., the L and P bands, which may negatively impact the air-
crafts’ aerodynamic properties. Rotary-wing platforms suit 
large antennas better because of their low platform speed. 
The reported resolutions vary significantly. The resolution 
was approximately, 1.5 m using the X band [217], 30 cm us-
ing the C band [218], and 3 m using the P band [214] in the 
slant range, and it was 0.5 and 5 m in single and multilook 

images, respectively, using the P band [214] in the azimuth 
direction. A planer resolution of better than 2 m obtained 
using the C and P bands was reported [214].

Rotary-wing UAV platforms have great feasibility for agile 
maneuvering. However, they have a much less stable flight 
path in comparison with fixed-wing platforms. Their vibrations 
can be reduced by using a gimbal but cannot be eliminated. 
Meanwhile, navigation systems introduce position errors. It 
has been shown that a low-cost, small IMU was nonviable for 
UAV positioning [217]. Centimeter-level positioning requires 
an RTK GNSS and higher-grade IMU. Few studies reported 
quantitative results with accurate field references.

DATA ACQUISITION
SAR systems combine measurements from different posi-
tions along a platform’s flight path to form a focused image, 
given precise relative measurement positions, thus achiev-
ing high resolution at a long range without a sizeable physi-
cal aperture. UAV flight trajectories significantly impact 
SAR data quality. Accurate positioning, constant velocity, 
and stable trajectories are ideal for UAV radar operations. 
Repeat, single, parallel, and cross-pass flight paths are used 
in different applications. Instead of one onboard antenna, a 
pair of physically separated antennas provides low-cost and 
fast interferometry data acquisition in a single flight. In the 
multiantenna configurations, each antenna can transmit 
and receive its own signals, or one transmits a signal while 
all antennas receive. Flights can be in a vertical directions 
and circular shapes to derive tomographic information.

Platform instability and positioning errors degrade the 
quality of UAV SAR data during synthetic aperture time. 
These disturbances reduce the maximum aperture length 
and introduce defocusing, especially for large apertures. To 
compensate for defocusing, 3D motion errors in SAR data 
need to be modeled and corrected. Interferometric SAR (In-
SAR) uses a baseline between two antenna positions to de-
rive phase differences, e.g., for topographic mapping. Large 
baselines result in great sensitivity to variations in height. 
Interferometric maps were found to be extremely difficult 
to obtain since perfectly parallel and aligned passes are 
hard to achieve with UAV platforms [217]. Differential In-
SAR (DInSAR) uses two interferometric data streams from 
different passes separated by a short baseline for deforma-
tion measurements. Platform instability and positioning 
errors similarly hinder DInSAR accuracy. Tomographic SAR 
can obtain volume information about scatters, e.g., for veg-
etated areas and ground topography estimations. Due to 
air turbulence, it is typically challenging to derive vertical, 
evenly allocated baselines in fixed-wing UAVs. In multiro-
tor UAVs, vertical flight was found to be stable, and the tra-
jectory did not suffer from important deviations from the 
normal track [217].

Depending on the application, side and downward 
measurements are used. Side-looking measurements 
typically cover relatively large areas. Downward mea-
surements can be used to generate terrain and vegetation 
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profiles. The penetration rate of UAV radar is limited at 
this moment. It was found that street tree canopies and 
bare ground can be observed in the downward-looking 
UAV radar range profile [219].

PERFORMANCE
Point cloud data collected in ULS and MS imageries over 
the same plot and tree are provided in Figure 9. The ULS 
data were collected on 26 April 2019 during a leaf-on con-
dition. A low-cost laser sensor, i.e., a Nano M8, was used, 
with ±50° off-nadir scan angles, a 420-Hz pulse rate, and 
a 20-Hz frame rate. The flight was 70 m above the ground, 
the speed was 5 m/s, and the side overlap was 75%. The 
average point density was 285 points/m2. The UAV imagery 
data were collected on 26 April 2019 and 19 March 2020, 

representing the leaf-off and leaf-on seasons. The leaf-off 
data were gathered using a Sony Alpha 7RII camera with 
a 24-mm lens. The flight height was 120 m, and the GSD 
was 2.2 cm. The point cloud was generated with half-reso-
lution images, resulting in 913 points/m2. The leaf-on data 
were assembled using a Sony A6000 camera with an 18-
mm lens. The flight altitude was 120 m, and the GSDs were 
2.5 cm at ground level and 2 cm at the top canopy height of 
33 m. The point cloud was generated with half-resolution 
images, resulting in 1,095.86 points/m2. In general, ULS 
has a better chance to record the forest vertical structure. 
UAV imagery data nicely record the canopy surface struc-
ture in the leaf-on season and the ground in the leaf-off 
season if it is visible. If the camera is oriented in the nadir 
direction or the GSD is large, UAV imagery is probably not 
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FIGURE 9. The same plot and tree in ULS and UAV imagery point clouds. (a)–(c) The ULS data in the leaf-on season. (d)–(f) The UAV imag-
ery point clouds in the leaf-on season. (h)–(j) The UAV imagery point clouds in the leaf-off season.
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suitable for studying undercanopy individual trees, as there 
is too little information in the generated point cloud.

Benchmarking studies recently reported some surpris-
ing findings and updated our understanding of forest ob-
servations through close-range remote sensing. Tree height 
observations from a conventional field inventory, TLS, and 
ULS in a boreal forest were compared [24]. The test was 
based on 1,174 trees from 18 plots ( )m32 32#  with four 
crown classes and three plot complexity categories. The ter-
restrial and ULS data were from high-end professional sys-
tems. In general, the ULS tree height estimates were shown 
to be robust across all stand conditions. Due to the diffi-
culty of identifying treetops, the highest uncertainty in the 
ULS-based tree heights was from trees in the intermediate 
crown class. The conventional field measurement overesti-
mated the heights of tall trees, especially in the codominant 
crown class. High uncertainties also existed in the field-
measured heights for small trees in the intermediate and 
suppressed crown classes in dense stands. TLS is reliable for 
measuring trees shorter than 15–20 m.

In another work, the reliability of conventional tree 
height estimates in a managed, even-aged, deciduous, low-
land forest was studied [25]. Tree height observations from 
a conventional field inventory and three low-cost, close-
range remote sensing solutions, i.e., PLShh, UAV imagery, 
and ULS, were compared based on the observation of 130 
trees. Tree height estimates were analyzed with respect to 
the crown class, tree height, sensor, and tree species. Field 
measurements were more sensitive to the crown class than 
the tree height, whereas remote sensing data sets displayed 
robustness to crown classes. Field measurements were 
found to underestimate the tree height for trees taller than 
21 m. Tree species become an influential factor on the tree 
height only when they change tree geometry and tree and 
crown structure. On the other hand, a low-cost sensor may 
not have enough penetration ability, which causes missed 
treetops beneath the main vegetation layer.

The authors of [47] compared the accuracy of tree height 
estimation from a low-cost ULS, UAV/airborne/gyrocop-
ter imagery, and conventional Vertex measurement, using 
15 felled trees in six 50-year-old Douglas fir plots. The ULS 
data had a 1,690- and 2,118-points/m2 point density in 
2017 and 2018, respectively. ULS achieved the most accu-
rate tree height estimates (RMSE = 0.36 m; RMSE percent-
age = 1.05%) and lowest bias (the mean error was 0.13 m), 
especially compared to the vertex observations (RMSE  = 
1.02 m; mean error = –0.66 m).

In [147], the authors compared the performance of ULS 
with conventional field observations and two terrestrial 
methods: TLS and MLS/PLS. The test was carried out in 22 
plots with three forest complexity categories. Manual mea-
surement from the ULS point cloud was also performed 
to detect trees and measure the DBH and tree height as a 
reference. Forest and tree attributes, i.e., the tree positions, 
DBH, tree height, stem volume, stem curve, and total tree 
biomass, were benchmarked among ULS, TLS, and MLS/

PLS using the same automatic processing method. The 
RMSE percentage of the DBH, tree height, stem curve, bio-
mass, and total tree volume across three densities when 
the automatic method was used were 16–28, 9–27, 28–55, 
60–220, and 35–175%, respectively. The highest accuracy 
was achieved within the least stem-dense plots, and it was 
the lowest within the densest plots.

When manual measurement was used, the accuracy of 
DBH estimates from ULS was comparable to MLS (RMSE 
percentage of 15–30%) but twice as much as the RMSE 
percentage of TLS. At the same time, tree height estimates 
had higher accuracy than MLS and TLS, especially for me-
dium- and high-density plots. ULS was previously assumed 
to have higher accuracy in stem curve estimates in compari-
son with terrestrial-based technologies, especially for up-
per parts of trunks, due to the above-canopy perspective. 
On the contrary, the accuracy was modest due to the lack of 
points from the middle section of trunks, which led to less 
accurate stem curve estimations. The ULS-based PHC stem 
curve estimate was, in general, higher than that of MLS but 
lower than that of TLS.

DISCUSSION AND OUTLOOK
Field observation is an inevitable part of forest investiga-
tions. Conventional field inventories are labor-intensive, 
time-consuming, and expensive. They are limited to small 
areas and have a low temporal resolution. Small sample 
sizes may lack representatives. Thus, errors in field observa-
tions propagate to a large area through airborne and satel-
lite remote sensing. Foresters and researchers are constantly 
looking for efficient solutions for acquiring reliable forest 
attributes and conditions.

Significant attention has been paid to close-range re-
mote sensing solutions in recent decades. Research and 
progress demonstrated promising potential, brought new 
knowledge and possibilities, and raised questions that need 
to be answered before close-range remote sensing can be 
practically applied. Meanwhile, developments also chal-
lenge knowledge about the applicability, performance, and 
potential of existing methods for forest observations. This 
section discusses the challenges that close-range remote 
sensing faces, especially data quality, which directly im-
pacts the performance of forest attribute estimation. Trends 
and opportunities for applying close-range remote sensing 
in forest observations are further explored.

CHALLENGES
The quality of the input data, e.g., the completeness and 
accuracy, fundamentally determines the quantity and reli-
ability of the information that can be derived. Sophisticat-
ed processing methods can calibrate, compensate, and cor-
rect errors and inaccuracies inherent in raw data, but they 
introduce additional uncertainties and can barely increase 
the amount of information recorded in the raw data. On the 
other hand, the data collection protocol impacts hardware 
performance and data quality. A fundamental problem 
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is how to collect data that meet the needs of particular  
applications.

COMPLETENESS AND ACCURACY
The completeness of recorded data refers to the degree to 
which all the necessary information is recorded. It may be 
close to but mostly never reaches 100%. The completeness 
of forest remote sensing data is overwhelmingly low due to 
the high level of forest complexity, restricted performance 
of the applied sensors and protocols, and practical limita-
tions in data acquisition. In a recent benchmarking study 
between high-quality UAV and terrestrial point clouds, it 
was found that, on a plot-level (a fixed size of ),32 32m#  
96.7, 92.7, and 75.3% of individual trees could be recorded 
in easy (~700 stems/hectare), medium (~900 stems/hect-
are), and difficult boreal stands (~2,  200 stems/hectare), 
respectively, when using five-scan TLS. The individual trees 
recorded by ULS were 87.2, 69.1, and 55.3%, respectively, in 
the corresponding plots. Notably, 25–50% of trees in dif-
ficult stands were not sufficiently recorded in UAV and ter-
restrial laser data [16].

Geometric inconsistencies are ubiquitous due to wind, 
measurement inaccuracy, and registration errors [147]. 
Wind changes the topography of trees and forests. Such 
changes can hardly be eliminated, especially when time 
lags exist between consecutive observations, such as in the 
scanning-based mechanism. Winds introduce ghost ob-
jects, where identical items are recorded at different spatial 
locations in data from different viewpoints and at varying 
points of time [80], [220]. A common recommendation is 
to collect data in windless conditions, which, however, re-
duces the number of possible measurement days. The im-
pacts of wind on tree attribute estimations have not been 
sufficiently investigated.

Sensor specifications determine measurement accuracy. 
In laser-based systems, the magnitude of the beam diver-
gence and range measurement accuracy directly govern the 
reliability of point measurements. Contemporary commer-
cial laser sensors typically have less than 1 mrad of beam 
divergence and a few millimeters of range accuracy at 20 m. 
The angular resolution, PRF, and FOV regulate the sam-
pling space between points within and between scan lines, 
which determines the ability to identify small targets and 
penetrate forest canopies. In image-based systems, influ-
ence factors include the pixel size and dynamic range of the 
image sensor, distortion of the image sensor and lens, and 
width of the spectral band. The accuracy of the equipment 
itself has significant influences on data accuracy. Namely, a 
high-end sensor typically has greater accuracy [175].

It is worth noting that high-end and low-cost sensors can 
produce data sets with very different qualities. For example, 
low-cost laser sensors typically have large beam divergence 
and low ranging accuracy, e.g., 3–5 mrad and 1–3  cm in 
PLShh systems, which may limit their applications to a few 
cases that do not require high accuracy. Low-cost sensors 
usually cannot resolve multiple echoes from a transmitted 

signal, which is often an element in high-end scanners to 
delineate canopy properties, such as branch structure.

The data acquisition protocol influences the data quality 
when the same sensors and sensor parameters are applied. 
In static terrestrial systems, the acquisition parameters are 
mainly the observations’ number, positions, and viewing 
geometries. In mobile systems, they include the trajectory 
and platform speed. Higher platform speeds increase the 
point spacing in scanning systems and decrease the overlap 
rate in imaging systems. A high overlap rate between tra-
jectories and consequent observations increases the point 
density, leading to better canopy penetration, though not 
guaranteed. When the hardware and data acquisition pro-
tocols are comparable, geometric accuracies vary among 
systems. In general, static and laser-based systems have 
higher geometric accuracies in comparison with mobile, 
aerial, and image-based counterparts.

TLS has the highest geometry accuracy among all sys-
tems at the plot level. Its high-quality data well suit appli-
cations requiring accurate observations [222]–[224] that 
can be used to develop and calibrate algometric models 
[225]–[227]. Mobile and imagery systems are comparable 
with TLS in easy forest conditions [147]. All mobile systems 
in the air and on the ground face the same challenge of ac-
curate registration between trajectories [111], [147]. Even 
though aerial systems suffer less from positioning errors, 
dynamic errors are not at a neglectable level [147]. Image 
matching has become mature. The remaining challenge is 
the dense vegetation near the forest floor, which may intro-
duce significant changes between consequent images and 
fail the matching process.

It is also worth remarking that hardware performance 
continuously improves. Sensor evolution has triggered pro-
found changes and is expected to push the research and 
application frontier forward. The improvement process can 
be seen in data quality changes. Challenges associated with 
the low completeness and low accuracy of data, which seem 
hard to solve, may become much less severe and even dis-
appear in only a few years. For example, early generations 
of PLShh suffered from an insufficient measurement range, 
e.g., around 20 m, and caused bias in tree height estimates 
[116]. A recent PLShh instrument (the ZEB Horizon) inte-
grates an improved ranging sensor that has a measurement 
range up to 100 m. It has been shown to reliably measure 
the height of deciduous trees [25]. It can be anticipated 
that further mobile system development will be directed 
to hardware improvement and the integration of different 
sensors (e.g., IMUs, lidars, cameras, and the GNSS), leading 
to enhanced efficiency and applicability.

DATA ACQUISITION PROTOCOL
The data acquisition design directly impacts point cloud 
quality, which has often been neglected. The terrestrial im-
age-based point cloud has one of the most complicated data 
acquisition procedures among different data sources. Im-
age acquisition is the most crucial part of the whole process 
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chain. However, it can fail in many ways. A single mismatch 
between two images may partially or entirely undermine 
plot-wise data acquisition. Many factors influence the accu-
racy of the final point clouds. Yet, these influences have not 
been analyzed, and knowledge of their impacts is missing. 
Two fundamental challenges in this area are 1) to improve 
the stability of image matching through sensor integra-
tion, data acquisition methods, and matching algorithms, 
to name a few, and 2) establish a user-friendly protocol for 
data acquisition, which will be successful in most cases 
and easy to follow for foresters who have little professional 
knowledge of image processing and data acquisition. A few 
studies of the measuring protocol exist, e.g., [95] and [99], 
but far from enough.

In the future, researchers are encouraged to report data 
acquisition in more detail, especially cases where the gen-
eration of image-based point clouds failed, to help the 
community learn from mistakes. Examples can be seen in 
studies, e.g., [99], where image matching from combined 
inside/outside paths partly failed; [90], where six out of 25 
plots were successful; and [98], where three out of seven ap-
proaches to data acquisition failed and the tree detection 
rate varied significantly among the four methods that did 
work. The same idea applies equally to other static and 
mobile platforms. The data collection protocol’s practical 
influences have been discussed in only a few studies of TLS 
(see the “Laser Scanning” section), and they have rarely 
been investigated for mobile approaches.

REGISTRATION AND RADIOMETRIC CALIBRATION
Geometric inconsistency needs to be solved before thematic 
information extraction, which applies to all platforms and 
data sources. The forest environment is heavily disturbed 
by noise, wind, and occlusion, and it has a limited number 
of features suitable to be used as matching targets. Forest 
canopies also heavily disturb positioning signals, which 
leads to errors in the trajectories of the terrestrial mobile 
system and, consequently, in the data. Thus, automated reg-
istration in forested areas is a challenging task.

For mobile systems, SLAM types of algorithms can 
eliminate inconsistencies between trajectories [103], [109], 
[119], [228], [230], [232]. While trajectory correction results 
are sufficient for navigation purposes, it is unclear what 
their impacts are on mapping and thematic information 
extraction. It should be noted that the requirements for 
navigation and information extraction are at different lev-
els, where the latter typically requires much higher registra-
tion accuracy. Current mobile systems provide comparable 
thematic information extraction results only in easy forest 
conditions [111].

Compared with terrestrial mobile laser systems, drone-
based systems appear to have fewer geometric inconsis-
tencies by overlapping trajectories if measurements from 
all trajectories are merged since the GNSS IMU solution is 
more reliable when there are good satellite visibilities above 
the forest canopy. However, inherent inconsistencies within 

individual trajectories, i.e., distortion, introduce geometric 
inconsistencies that are hard to remove [147]. Multiscan 
TLS faces a similar registration challenge, and solutions are 
being developed [72]–[75], [233], [235], where the resulting 
merged point cloud has not reached a similar level of ac-
curacy as the point cloud built by using artificial reference 
targets and manual registration.

Geometric registration requires more careful studies, 
especially considering the extensive research on fine-scale 
objects, such as branches. Notably, registration solutions 
should be tested in varying forest conditions to evaluate 
their performance. Methods that work for one test plot are 
not guaranteed to work in other forest conditions, and thus 
algorithms suited for specific conditions are needed. The 
forest sector will see a boom in the application of close-
range remote sensing when hardware-independent regis-
tration solutions become practical and satisfy the require-
ments set in forest field inventories. Radiometric calibration 
is a crucial step in the spectrometer data processing chain 
to transfer image radiance to reflectance, thus enabling 
quantitative analyses. In passive imaging, the radiometry 
is subject to a number of factors resulting from the sensor, 
illumination, atmosphere, and object. The calibration of 
active sensors is challenging, and no practical solution is 
available, as discussed in the “Laser Scanning” section.

OPPORTUNITIES
The landscape of close-range remote sensing and its ap-
plications changes rapidly. Challenges exist in improving 
data quality to faithfully digitize objects and in estab-
lishing data acquisition best practices according to sen-
sor/system properties to support information extraction 
and applications. Meanwhile, hardware and software de-
velopments bring new solutions and possibilities. Some 
difficulties that cannot be solved due to measurement 
challenges may disappear shortly after new systems are 
introduced, and knowledge that has widely and long been 
accepted may be challenged.

MEASURABLE PARAMETERS
While the completeness of the derived information is still 
limited, especially in complicated forest conditions, the 
data extracted from close-range remote sensing is reliable 
[16], [24], [25], [31], [177]. Important tree attributes that 
were previously not measurable in conventional field in-
ventories have been proved to be practically measurable at 
high accuracy. This means that close-range remote sensing 
has the potential to improve operational efficiency and the 
amount of information derived from field observations.

At the plot level, these newly available attributes include 
the stem curve, crown shape, tree height, branch position/
orientation, and tree count and location, which are measur-
able in a very limited number of sample plots or not practi-
cally measurable in conventional field inventories due to 
the time-consuming procedure. For example, collecting 
tree counts and locations is particularly challenging in 
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young plots with high stem density, e.g., several thousands 
of stems per hectare. The characterization of young seed-
ling stands by using UAV image-based point clouds and HS 
imagery was reported in [236]. The authors found that the 
proposed random forest-based estimation had the potential 
to replace conventional laborious field inventory methods 
for reliably characterizing seedling stands, even though the 
tree density and tree height were underestimated by 7–21%.

Tree height estimations from close-range remote sens-
ing were evaluated using a comparison method without 
destructive references in boreal and broadleaved forests 
in [24] and [25], respectively. ULS, TLS, and conventional 
field measures were evaluated in coniferous forests, where-
as ULS, PLShh, UAV imagery, and conventional field mea-
sures were assessed in broadleaved forests. Both studies 
found that remote sensing methods were more consistent if 
conventional field measures were not included in the com-
parison. Errors varied depending on the data source, forest 
complexity, tree crown class, and forest type.

Individual trees can be modeled in high detail, e.g., at 
LoD 2 [237] and 3 [238]–[242]. Point clouds collected from 
terrestrial platforms may have limited spatial coverage of 
tree structures inside the canopy above the live canopy 
base, even high-resolution TLS point clouds [80]. Applying 
more observations, using time-of-flight sensors with mul-
tiecho returns, and reducing the distance between a target 
and the measurement locations are approaches to solve 
this problem. The associated higher cost, however, requires 
careful planning.

Tree models with great detail provides a series of use-
ful branch architecture parameters, such as the number of 
branches, branch diameter, and branch insertion angle, 
which can be used to establish and update allometric bio-
mass and wood quality equations [80], [237]. These branch 
architecture parameters have great potential for studies of 
biophysical processes and metabolic theories in ecology 
[243] because branch architecture is the dominant factor 
affecting the size and spatial distribution of tree elements, 
e.g., leaves; the exchange of matter and energy between a 
tree and the ambient environment; and the tree photosyn-
thesis process, and so on.

Canopy features and tree height may serve as effective 
explanatory variables in estimating forest attributes, such 
as biomass, age, and productivity [16]. ULS data are well 
suited for studying canopies at a higher LoD than what is 
presently achievable. The aerial point of view and potential 
to mitigate occlusion effects caused by tree canopies make 
ULS a powerful platform to study canopy features, even 
though its geometric accuracy has not reached a satisfactory 
level for more detailed stem/branch studies.

Many studies confirmed that a wide range of vegetation 
indices correlated well with leaf pigments and water status-
es, e.g., leaf chlorophyll, nitrogen, carotenoids, leaf water 
content, sun-induced chlorophyll fluorescence, and so on. 
Applying MS and RGB cameras to estimate forest structure 
[244] and biomass [160] has achieved limited success. Both 

of those studies indicated that MS data did not provide add-
ed value in comparison to RGB camera-based data. The au-
thors of [245] studied the biodiversity of boreal forests, and 
their results showed that HS and photogrammetric data 
could be used, especially for studying structural diversity. 
In [246], the authors used RGB, MS, and TIR sensors for the 
phenotyping of forest genetic trials. They concluded that 
the combination of spectral indices and canopy tempera-
ture accounted for about 60% of the population variability 
in the stem volume of Pinus halepensis. Since these findings 
are based only on a few specific studies, further research is 
required to obtain general conclusions.

In general, the door for deriving more tree and forest attri-
butes through close-range remote sensing has been opened. 
The reliability of the feature estimations largely determines 
their application potentials. At this moment, challenges ex-
ist in deriving critical tree and forest attributes as well as in 
the application of such techniques in different forest condi-
tions. One example is the applicability of the latest technol-
ogies in tropical areas. Since the top canopy of all the trees is 
merged, the fundamental processing of geometrically locat-
ing and reconstructing individual trees from ULS becomes 
more difficult than in boreal areas. Further research needs 
to answer questions about proper sensors and data acquisi-
tion protocols for challenging tropical conditions.

HARDWARE AND SOFTWARE
Hardware and software development supports the advance 
of close-range remote sensing for forests. Among the ad-
vances in hardware, the capacity for capturing MS informa-
tion from active sensors has been one of the most signifi-
cant developments in the past decade, which is expected 
to solve many challenges that cannot be addressed using 
spatial features only. Currently, the utilization of MS–LS is 
still at a very early stage in forest research. Before MS–LS 
can be practically used, a number of challenges have to be 
resolved. One is to decide the best wavelengths and their 
number and the required special resolution for particular 
applications. Technically, fewer wavelengths make instru-
ment design more straightforward, and it becomes more 
feasible to produce high-quality point clouds in terms of 
the spatial resolution, point collection frequency, and scan-
ning range. A higher number of wavelengths requires spe-
cific consideration in the optic design and compromises the 
point cloud quality. Therefore, sensor properties should be 
carefully designed depending on use cases.

The second challenge is the lack of applicable calibration 
solutions, especially for the incidence angle and range effect. 
Methods have been developed for correcting the incidence 
angle and range effect on lidar intensity. The lidar equation 
was found to be available for distance correction under the 
premise that the target–sensor distance was greater than 
10–15 m for the FARO LS880 and Leica HDS 6100 scan-
ners since both instruments were equipped with a bright-
ness reducer for near distances. The most effective method 
for near distance correction was applying a reference table. 
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For incidence angle correction, an empirical function was 
developed [137]. However, the relationship between range 
and intensity changes when the target is smaller than the 
laser footprint since some of the reflected laser intensity is 
lost due to multiple scattering [176]. A priori information 
about the illuminated footprint is required unless it could 
be assumed that the target width and density can be ap-
proximated from other properties, such as tree forms and 
environmental conditions. However, the stability of inten-
sity features with varied scanner–target distances and inci-
dent angles need to be examined.

Studies of the intensity responses of the stems and 
canopies of various tree species should be conducted to 
take advantage of the increasing availability of MS active 
sensors and to take a step toward automated methods 
for the collection of field data. Perfectly collimated laser 
beams with the same beam diameter at the output and 
beam divergence could solve the challenges of varying 
intensity–distance relationships with small targets. When 
the amount of multiple scattering is similar for each wave-
length, a normalized index of the wavelengths should 
remain stable, although the distance will vary. Rigorous 
calibration models should also be developed for all shapes 
and forms of trees.

Applications of HS systems in the field are very lim-
ited at this moment. Safety issues are the main concern 
that arises from the utilization of a supercontinuum laser 
source, due to the high power of the laser, which causes im-
mediate damage to the eye when exposed. The eye safety 
issue should be tackled before commercial manufacturers 
are interested in bringing HS and LS to the market. The 
weight, e.g., 15 kg, also limits field operability, especially 
in rugged terrain, whereas single-wavelength commercial 
TLSs weigh 5 kg or less. In addition, the generally larger 
beam divergences in HS TLS systems compared to single-
wavelength systems result in wider laser footprints that 
may cause errors at longer distances, due to edge effects 
from targets. In addition to hardware development in con-
trolled environments, more research should be done in the 
field to provide practical instructions for using MS and HS 
LS. The advantages of the additional spectral information 
provided by an HS system need to be jointly considered 
with economic feasibility.

The development of data science has significantly 
pushed forward the development of close-range remote 
sensing. The most impressive progress is probably the dense 
matching that achieved a breakthrough in the early 2000s 
and today is been routinely used in various terrestrial and 
aerial imagery observations through commercial software. 
Yet, there are still many unsolved challenges that require 
new algorithms and software. Geometrical inconsistency 
in the data is currently the most significant limiting factor 
for mobile applications. As long as geometrical inconsisten-
cy exists, mobile mapping is suitable for a few applications 
that require less accurate data. The robustness of the algo-
rithms in deriving forest and tree attributes in complicated 

forest conditions is always at center stage and is the critical 
factor in practical applications.

CROWDSOURCING
The popularity and success of crowdsourcing data acqui-
sition have their roots in low-cost sensors, massive data 
storage, convenient communications, and active volunteer 
participation. Commonly, crowdsourcing refers to data 
acquisition by volunteers who are not trained in particu-
lar disciplines, under a condition without a clear goal. It 
reverses the traditional top-down flow of information, 
in which data are acquired after setting a clear goal [221]. 
With the popularity and simple operation of personal 
data collection devices, such as smartphones and camer-
as, ordinary citizens can collect large data sets anywhere 
and anytime. Currently, such consumer-level devices 
have achieved measurement accuracy comparable to pro-
fessional instruments, which ensures the availability of 
crowdsourcing data [99]. Thus, forest data can be collected 
via crowdsourcing by any people who visit forests regularly 
or irregularly and centralized processing. Crowdsourced 
forest data have been used to calculate plot-level and indi-
vidual tree-level attributes.

Many applications that use smartphone images to 
measure plot- and individual tree-level attributes are be-
ing tested. NASA released a smartphone tool in 2019 as 
part of its Global Learning and Observations to Benefit the 
Environment Observer program. The app enables a smart-
phone user to record tree heights by using only a smart-
phone camera. The idea is to compare crowdsourced tree 
height estimates with satellite-based estimates and help 
understand how carbon moves through ecosystems. The 
app does not require the exact distance measured with a 
laser ranging device. Instead, it requests users to roughly 
measure the distance from the photo-taking location to a 
tree by counting steps from one to the other to obtain scale 
information.

Trestima is an app that measures a species-specific basal 
area as well as the diameter and height of a median tree from 
sample plots. It follows the principles of stand-wise field in-
ventories, where a relascope is used to measure the basal 
area from multiple locations within each stand [229]. For 
determining species-specific basal areas, users take several 
images at different locations with a clear view around a for-
est stand. The basal area is estimated from individual photos 
and as an average across several images through three steps: 
1) tree detection, 2) species identification, and 3) tree inclu-
sion in the basal area count, following angle count sampling 
principles. For determining tree diameters and heights, us-
ers take images of a few sample trees per species. The mea-
surements are based on the smartphone’s camera properties 
and machine vision, which users can manually edit if nec-
essary. All images are uploaded and stored by the app, in-
cluding the location and time, and automatically processed. 
Species-specific results are available in real time in either the 
smartphone app or a web browser [231].
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The feasibility and reliability of those apps are under 
investigation. The authors of [234] evaluated Trestima by 
using 2,169 measured trees from sample plots ( ).32 32m#  
The study found that all imaging setups with the app in-
cluded bias in basal area measurements. The biases varied 
from 11.4 to 18.4% depending on the number and locations 
of the images taken per sample plot. The RMSEs in the basal 
area ranged from 19.7 to 29.3%, respectively. Increasing the 
number of captured images to four per plot only margin-
ally improved the results. The RMSEs of the diameter and 
height estimates varied from 5.2 to 11.6% and 10 to 13.6%, 
respectively, depending on the tree species. So far, the reli-
ability of such an app has not been widely evaluated. The 
acquisition of forest data through crowdsourcing is at a very 
early stage but deserves more attention. Challenges from 
data storage, analysis, accumulation, quality checks, and 
privacy should be further analyzed.

CONCLUSION
This article reviewed the status and progress of close-range 
remote sensing in forest observations from the system and 
data acquisition points of view. In general, the system and 
data acquisition stay at the beginning of the interpretation 
pipeline, jointly determining the quality of the collected 
data. Consequently, they have profound influences on the 
following processing and applications, e.g., the amount, 
reliability, and applicability of the thematic information 
extracted.

Among all sensors and platforms, TLS leads the recent 
fast progress and has the potential to become the next gen-
eration’s main operational tool in applications requiring 
high accuracy. Terrestrial image-based point clouds provide 
a low-cost alternative to TLS, using a wide variety of imag-
ing sensors and covering professional and nonprofessional 
users. The technology requires the lowest investment and 
empowers a vast number of potential users, which is appre-
ciated in applications where professional and costly sensors 
are lacking and when many participants, including citizens, 
are involved. Terrestrial mobile platforms significantly in-
crease data acquisition efficiency. The GNSS can be used as 
an informative indicator to measure some physical proper-
ties of forests. Personal sensors, handheld or wearable, have 
the highest mobility among all terrestrial systems. UAVs 
are free from ground obstacles. Thus, they outperform ter-
restrial systems in the sense of data collection speed and 
provide spatial and temporal high-resolution observations.

Although having shown promising results, the preced-
ing solutions still face their challenges. To be practically 
employed in forest applications, robust registration and 
calibration solutions are required to solve spatial inconsis-
tency and spectral uncertainties. Data acquisition proto-
cols, preferably user friendly, are currently absent for most 
systems and are urgently needed to support data collection 
with high completeness and accuracy. The recent develop-
ments bring many new possibilities for forest observations. 
The number of measurable parameters is increasing and 

has the potential to solve the problem of lacking reliable 
forest and tree estimations and open doors to new applica-
tions, e.g., allometric model development and calibration. 
Hardware is under constant improvement and challenges 
the current knowledge of the applicability, performance, 
and potentials of existing methods for forest mensuration 
all the time. A new trend in the data acquisition, i.e., crowd-
sourcing, together with improved sensor performance and 
computational power, may have a profound influence on 
forest observations since crowdsourcing has the potential 
to vastly increase the number of field observations in spa-
tial and temporal domains and because the bottleneck in 
calibrating airborne and satellite-borne observation is a 
lack of field references. This new possibility deserves at-
tention for future research, especially to establish quality 
control protocols.

Tremendous diversity exists in the reported results, e.g., 
accuracies and reliabilities, in the literature, due to the vary-
ing forest conditions, sensors, and methods involved in in-
dividual studies. State of the art and potential close-range 
remote sensing solutions have only recently been clarified 
through benchmarking studies. In the future, studies are 
recommended to be carried out with sufficient test data to 
provide statistically reliable conclusions, e.g., regarding the 
amount, variation, and difficulty-level of test data. Similar 
work carried out in different geographical locations is wel-
comed to reveal or demonstrate the applicability of results 
outside of areas in a particular study. The applicability of 
the proposed methods and reached conclusions in other 
forest conditions can be far different.
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