978 research outputs found

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page

    SATzilla: Portfolio-based Algorithm Selection for SAT

    Full text link
    It has been widely observed that there is no single "dominant" SAT solver; instead, different solvers perform best on different instances. Rather than following the traditional approach of choosing the best solver for a given class of instances, we advocate making this decision online on a per-instance basis. Building on previous work, we describe SATzilla, an automated approach for constructing per-instance algorithm portfolios for SAT that use so-called empirical hardness models to choose among their constituent solvers. This approach takes as input a distribution of problem instances and a set of component solvers, and constructs a portfolio optimizing a given objective function (such as mean runtime, percent of instances solved, or score in a competition). The excellent performance of SATzilla was independently verified in the 2007 SAT Competition, where our SATzilla07 solvers won three gold, one silver and one bronze medal. In this article, we go well beyond SATzilla07 by making the portfolio construction scalable and completely automated, and improving it by integrating local search solvers as candidate solvers, by predicting performance score instead of runtime, and by using hierarchical hardness models that take into account different types of SAT instances. We demonstrate the effectiveness of these new techniques in extensive experimental results on data sets including instances from the most recent SAT competition

    Managing Complex Scheduling Problems with Dynamic and Hybrid Constraints.

    Full text link
    The task of scheduling can often be a difficult one because of the inherent complexity of real-world problems. In the field of Artificial Intelligence, many representations and algorithms have been developed to automate the scheduling process. Many state of the art scheduling systems deal with this complexity by making assumptions that simplify the algorithms, but in doing so, miss some opportunities to improve performance. Scheduling problems are temporal in nature, and so they often contain constraints that change over time. Many scheduling systems assume that the problems they are solving are all independent, and so they ignore the similarities between subsequent sets of scheduling constraints. Additionally, scheduling problems often contain a mixture of finite-domain and temporal constraints. Many of the systems that can solve problems of this type do so by creating finite-domain variables to represent the constraints, but then ignore the distinction between the different types of variables when searching for a solution. In this dissertation, I identify opportunities to improve performance by exploiting structure where it has previously been overlooked. Following this approach, I develop a set of techniques that apply to a wide variety of situations that can arise in real-world scheduling problems. First, I consider dynamic scheduling problems with constraints that change over time. To address such problems, I introduce a new representation called the Dynamic Disjunctive Temporal Problem, along with several techniques to improve both efficiency and stability when solving one. Second, I consider scheduling problems in which a mixture of finite-domain and temporal variables can interact through hybrid constraints. I introduce the Hybrid Scheduling Problem to represent such problems, and I present a set of techniques that capitalize on the distinction between variable types to improve efficiency across the problem space. Finally, I conclude by proposing several ways that the dynamic and hybrid representations and techniques can be combined. To compare many of the techniques presented throughout this dissertation in the context of structured, real-world problems, I use them to solve scheduling problems based on actual air traffic control constraints recorded from the Dallas/Fort Worth International Airport.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57625/2/pschwart_1.pd

    Random Sampling for Group-By Queries

    Get PDF
    Random sampling has been widely used in approximate query processing on large databases, due to its potential to significantly reduce resource usage and response times, at the cost of a small approximation error. We consider random sampling for answering the ubiquitous class of group-by queries, which first group data according to one or more attributes, and then aggregate within each group after filtering through a predicate. The challenge with group-by queries is that a sampling method cannot focus on optimizing the quality of a single answer (e.g. the mean of selected data), but must simultaneously optimize the quality of a set of answers (one per group).We present CVOPT, a query- and data-driven sampling framework for a set of group-by queries. To evaluate the quality of a sample, CVOPT defines a metric based on the norm (e.g. ℓ2 or ℓ∞) of the coefficients of variation (CVs) of different answers, and constructs a stratified sample that provably optimizes the metric. CVOPT can handle group-by queries on data where groups have vastly different statistical characteristics, such as frequencies, means, or variances. CVOPT jointly optimizes for multiple aggregations and multiple group-by clauses, and provides a way to prioritize specific groups or aggregates. It can be tuned to cases when partial information about a query workload is known, such as a data warehouse where queries are scheduled to run periodically.Our experimental results show that CVOPT outperforms current state-of-the-art on sample quality and estimation accuracy for group-by queries. On a set of queries on two real-world data sets, CVOPT yields relative errors that are 5x smaller than competing approaches, under the same space budget

    A STUDY ON GENERAL ASSEMBLY LINE BALANCING MODELING METHODS AND TECHNIQUES

    Get PDF
    The borders of the assembly line balancing problem, as classically drawn, are as clear as any other operations research topic in production planning, with well-defined sets of assumptions, parameters, and objective functions. In application, however, these borders are frequently transgressed. Many of these deviations are internal to the assembly line balancing problem itself, arising from any of a wide array of physical or technological features in modern assembly lines. Other issues are founded in the tight coupling of assembly line balancing with external production planning and management problems, as assembly lines are at the intersection of multiple related problems in job sequencing, part flow logistics, worker safety, and quality. The field of General Assembly Line Balancing is devoted to studying the class of adapted and extended solution techniques necessary in order to model these applied line balancing problems. In this dissertation a complex line balancing problem is presented based on the real production environment of our industrial partner, featuring several extensions for task-to-task relationships, station characteristics limiting assignment, and parallel worker zoning interactions. A constructive heuristic is developed along with two improvement heuristics, as well as an integer programming model for the same problem. An experiment is conducted testing each of these new solution methods upon a battery of testbed problems, measuring solution quality, runtime, and achievement of feasibility. Additionally, a new method for measuring a secondary horizontal line balancing objective is established, based on the options-mix paradigm rather than the customary model-mix paradigm

    Generation and Analysis of Content for Physics-Based Video Games

    Get PDF
    The development of artificial intelligence (AI) techniques that can assist with the creation and analysis of digital content is a broad and challenging task for researchers. This topic has been most prevalent in the field of game AI research, where games are used as a testbed for solving more complex real-world problems. One of the major issues with prior AI-assisted content creation methods for games has been a lack of direct comparability to real-world environments, particularly those with realistic physical properties to consider. Creating content for such environments typically requires physics-based reasoning, which imposes many additional complications and restrictions that must be considered. Addressing and developing methods that can deal with these physical constraints, even if they are only within simulated game environments, is an important and challenging task for AI techniques that intend to be used in real-world situations. The research presented in this thesis describes several approaches to creating and analysing levels for the physics-based puzzle game Angry Birds, which features a realistic 2D environment. This research was multidisciplinary in nature and covers a wide variety of different AI fields, leading to this thesis being presented as a compilation of published work. The central part of this thesis consists of procedurally generating levels for physics-based games similar to those in Angry Birds. This predominantly involves creating and placing stable structures made up of many smaller blocks, as well as other level elements. Multiple approaches are presented, including both fully autonomous and human-AI collaborative methodologies. In addition, several analyses of Angry Birds levels were carried out using current state-of-the-art agents. A hyper-agent was developed that uses machine learning to estimate the performance of each agent in a portfolio for an unknown level, allowing it to select the one most likely to succeed. Agent performance on levels that contain deceptive or creative properties was also investigated, allowing determination of the current strengths and weaknesses of different AI techniques. The observed variability in performance across levels for different AI techniques led to the development of an adaptive level generation system, allowing for the dynamic creation of increasingly challenging levels over time based on agent performance analysis. An additional study also investigated the theoretical complexity of Angry Birds levels from a computational perspective. While this research is predominately applied to video games with physics-based simulated environments, the challenges and problems solved by the proposed methods also have significant real-world potential and applications

    Real-time algorithm configuration

    Get PDF
    This dissertation presents a number of contributions to the field of algorithm configur- ation. In particular, we present an extension to the algorithm configuration problem, real-time algorithm configuration, where configuration occurs online on a stream of instances, without the need for prior training, and problem solutions are returned in the shortest time possible. We propose a framework for solving the real-time algorithm configuration problem, ReACT. With ReACT we demonstrate that by using the parallel computing architectures, commonplace in many systems today, and a robust aggregate ranking system, configuration can occur without any impact on performance from the perspective of the user. This is achieved by means of a racing procedure. We show two concrete instantiations of the framework, and show them to be on a par with or even exceed the state-of-the-art in offline algorithm configuration using empirical evaluations on a range of combinatorial problems from the literature. We discuss, assess, and provide justification for each of the components used in our framework instantiations. Specifically, we show that the TrueSkill ranking system commonly used to rank players’ skill in multiplayer games can be used to accurately es- timate the quality of an algorithm’s configuration using only censored results from races between algorithm configurations. We confirm that the order that problem instances arrive in influences the configuration performance and that the optimal selection of configurations to participate in races is dependent on the distribution of the incoming in- stance stream. We outline how to maintain a pool of quality configurations by removing underperforming configurations, and techniques to generate replacement configurations with minimal computational overhead. Finally, we show that the configuration space can be reduced using feature selection techniques from the machine learning literature, and that doing so can provide a boost in configuration performance
    • …
    corecore