
Clemson University
TigerPrints

All Dissertations Dissertations

12-2015

A STUDY ON GENERAL ASSEMBLY LINE
BALANCING MODELING METHODS AND
TECHNIQUES
Bryan Pearce
Clemson University, bpearce@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Automotive Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Pearce, Bryan, "A STUDY ON GENERAL ASSEMBLY LINE BALANCING MODELING METHODS AND TECHNIQUES"
(2015). All Dissertations. 1549.
https://tigerprints.clemson.edu/all_dissertations/1549

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1549?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A STUDY ON GENERAL ASSEMBLY LINE
BALANCING MODELING METHODS AND TECHNIQUES

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Industrial Engineering

by

Bryan Wayne Pearce

December 2015

Accepted by:

Dr. Mary E. Kurz, Committee Chair

Dr. Laine Mears

Dr. David Neyens

Dr. Maria Mayorga

ii

ABSTRACT

The borders of the assembly line balancing problem, as classically drawn, are as

clear as any other operations research topic in production planning, with well-defined sets

of assumptions, parameters, and objective functions. In application, however, these

borders are frequently transgressed. Many of these deviations are internal to the

assembly line balancing problem itself, arising from any of a wide array of physical or

technological features in modern assembly lines. Other issues are founded in the tight

coupling of assembly line balancing with external production planning and management

problems, as assembly lines are at the intersection of multiple related problems in job

sequencing, part flow logistics, worker safety, and quality. The field of General

Assembly Line Balancing is devoted to studying the class of adapted and extended

solution techniques necessary in order to model these applied line balancing problems.

In this dissertation a complex line balancing problem is presented based on the

real production environment of our industrial partner, featuring several extensions for

task-to-task relationships, station characteristics limiting assignment, and parallel worker

zoning interactions. A constructive heuristic is developed along with two improvement

heuristics, as well as an integer programming model for the same problem. An

experiment is conducted testing each of these new solution methods upon a battery of

testbed problems, measuring solution quality, runtime, and achievement of feasibility.

Additionally, a new method for measuring a secondary horizontal line balancing

objective is established, based on the options-mix paradigm rather than the customary

model-mix paradigm.

iii

DEDICATION

I dedicate this dissertation to my advisor, Dr. Mary Beth Kurz, without whose

enduring patience, encouragement, and brilliance it would not have been possible. Thank

you for seeing the better person that I could be even when I could not. I am forever

grateful.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee, especially committee chair Dr. Mary Beth

Kurz, for the innumerable guiding moments that pushed along this research. In addition,

I’d also like to recognize Dr. Cole Smith, for assistance in tightening the IP formulation.

Martin Clark and Dr. Edward Duffy have been my personal computing wizards,

helping navigate the challenges of construction and experimentation with prototype

software tools. Thanks also to the kind internet citizens of stackoverflow.com, for

troubleshooting support.

Thank you to the project team at BMW, for inspiring the content of this work and

grounding it in the complexities inherent to industry practice. Special thanks go to

research liaisons Dr. Kilian Funk and Dr. Joerg Schulte, for developing and managing the

project; Julian Brockman, for crucial input on the operational constraints of the assembly

line; Wolfgang Dieminger, whose mastery of product configuration was essential in

developing the horizontal balancing approach; and Dr. Kavit Antani, for championing the

work and pushing for implementation.

My friends and family have made all of the best parts of me. Brian Williams,

Birma Gainor, Latice Fuentes, Angela Grujicic, and Russell Pearce: you teach me what

loyalty is, and show me true north.

Finally, I would thank Ginger Stephens, for accepting me, feeding me, and giving

thousands of hours of support. Your love and laughter make it all worthwhile.

v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES .. xi

LIST OF TABLES ... xv

1 BACKGROUND AND MOTIVATION ... 1

1.1 Terms and Concepts ... 1

1.1.1 Assembly .. 1

1.1.2 Tasks and Precedence ... 1

1.1.3 Assembly Lines, Stations, and Workers ... 3

1.1.4 The Assembly Line Balancing Problem ... 5

1.2 History of Assembly Lines .. 5

1.3 Motivation .. 7

1.3.1 Lack of Suitable Methods ... 9

1.3.2 Lack of Input Data .. 9

1.3.3 ALB Context... 10

1.4 ALB Research Patterns .. 12

1.5 ALB: Generalizations .. 14

1.5.1 Mixed-Model .. 16

vi

1.5.2 Stochastic Task Times .. 20

1.5.3 Supplementary Constraints ... 21

1.5.4 Parallel Workers ... 22

1.6 ALB: Optimization and Objective Functions .. 24

1.6.1 Horizontal Line Balancing .. 24

1.7 Heuristic Methods .. 26

1.7.1 Single Pass Heuristics ... 26

1.7.2 Multi-Pass Heuristics .. 28

2 GAPS AND RESEARCH PLAN .. 30

2.1 Contributions .. 32

2.1.1 gALB Problem Characteristics ... 32

2.1.2 Contribution 1: Constructive and Improvement Heuristics 34

2.1.3 Contribution 2: Integer Programming Formulation.................................... 36

2.1.4 Contribution 3: Measuring worst-case cycle time 38

2.2 Limitations ... 40

2.3 Implications .. 40

3 CONSTRUCTIVE AND IMPROVEMENT HEURISTICS 42

3.1 Introduction .. 42

3.2 Problem Environment and Additional Constraints .. 44

3.2.1 Parallel Workers and Zoning Constraints ... 45

3.2.2 Accessibility Constraints .. 47

3.2.3 Mixed Model .. 48

Table of Contents (Continued) Page

vii

3.2.4 Task Grouping Constraints ... 49

3.2.5 Adjacency Constraints .. 49

3.2.6 Same-Takt Constraints ... 50

3.2.7 Same-Station Constraints ... 50

3.2.8 Multiple Grouping Constraints ... 51

3.2.9 Resource Constraints .. 52

3.3 Ranked Positional Weight .. 54

3.4 Modified Ranked Positional Weight Heuristic .. 56

3.4.1 Extension: Grouping Constraints.. 56

3.4.2 Extension: Resource Constraints .. 58

3.4.3 MRPW Algorithm .. 59

3.4.4 MRPW Remarks ... 60

3.5 Last-Fit-Increasing Improvement Heuristic ... 62

3.6 Work Zone Blocking Improvement Heuristic ... 65

3.6.1 Motivation .. 65

3.6.2 Work Zone Metrics ... 66

3.6.3 WZBlock Heuristic Algorithm ... 69

3.7 Conclusion ... 72

4 INTEGER PROGRAMMING MODEL ... 75

4.1 Sets and Input Parameters .. 75

4.2 Preprocessing ... 76

4.3 IP MODEL ... 80

Table of Contents (Continued) Page

viii

4.3.1 Decision variables ... 80

4.3.2 Objective ... 80

4.3.3 Constraints .. 81

4.4 Postprocessing: Iterative Precedence Verification ... 84

5 APPLICATION OF SOLUTION METHODOLOGIES ... 87

5.1 Experimental Configuration ... 87

5.1.1 Test Data Sets ... 87

5.1.2 Method Parameters ... 90

5.2 Results 91

5.2.1 Feasibility ... 91

5.2.2 IP Runtime .. 93

5.2.3 H1 Runtime... 97

5.2.4 H2 Runtime... 101

5.2.5 Heuristic Optimality Gap.. 105

5.3 Discussion .. 109

5.3.1 Band Differentiation ... 109

5.3.2 Performance .. 111

5.3.3 Extension and Adoption ... 111

6 HORIZONTAL BALANCE METRIC FOR THE OPTIONS-MIX PARADIGM..120

6.1 Assembly Line Balancing .. 122

6.2 Horizontal Line Balancing ... 123

6.3 Data Environment .. 125

Table of Contents (Continued) Page

ix

6.3.1 Derivatives .. 125

6.3.2 Object Interaction Types .. 126

6.3.3 Demand ... 127

6.4 Maximum Bound on Cycle Time... 128

6.5 Logical Statement Construction ... 130

6.6 SAT with Task Subsets .. 132

6.7 Conclusion ... 133

7 CONCLUSIONS AND FUTURE WORK .. 135

7.1 Summary and Conclusions... 135

7.2 Future Research.. 136

7.2.1 Penalization of Constraint Violation .. 136

7.2.2 IP Extension: Task Sequencing .. 137

7.2.3 Robustness of Solutions to Uncertain Demand .. 138

7.3 Tools Developed as Part of Research Project .. 139

APPENDICES .. 140

Prototype Software Documentation: MRPW heuristic ... 141

7.3.1 Function Main... 141

7.3.2 Object Modeling and Data Composition .. 149

IP Model Technical Documentation ... 171

Prototype Software Documentation: Object Relationships ... 174

7.3.3 Context: Configuration Change Management .. 174

7.3.4 Background: Boolean Logic ... 175

Table of Contents (Continued) Page

x

7.3.5 Constraint Construction .. 176

7.3.6 Local Object Interactions .. 197

Prototype Software Documentation: Conflict Detection .. 201

7.3.7 Context: Option Change Management ... 201

7.3.8 Background: Satisfiability .. 202

7.3.9 Methods .. 205

7.3.10 Implementation ... 212

7.3.11 Open Issues ... 230

REFERENCES ... 231

Table of Contents (Continued) Page

xi

LIST OF FIGURES

Figure Page

Figure 1: Precedence Graph ... 2

Figure 2: Precedence Matrix .. 3

Figure 3: A Typical Assembly Line... 4

Figure 4: Hierarchy of gALB topics. Bolded features are represented in this

research. .. 31

Figure 5: Work Zones (WZ) and Product Zones (PZ) ... 46

Figure 6: Product Zones Eligible in each Work Zone ... 47

Figure 7: Zone Conflicts .. 47

Figure 8: Precedence Graph with Groups .. 51

Figure 9: Overlapping Task Groups ... 52

Figure 10: Tool Coverage Zones (TZ) .. 53

Figure 11: RPW Algorithm ... 56

Figure 12: Group Definition of Responsibility Sets ... 58

Figure 13: MRPW Algorithm ... 60

Figure 14. Last Fit Increasing Improvement Heuristic .. 64

Figure 15. Work Zone Scoring Metric Computation ... 69

Figure 16. Work Zone Blocking Improvement Heuristic 70

Figure 17: Heuristic Architecture ... 74

Figure 18: Orientation Example, R Leading ... 79

Figure 19. Sub-problem Partitioning Pattern ... 89

xii

Figure 20. Relative Task, Station, and Tool Counts .. 90

Figure 21. IP Runtime vs. Number of Tasks ... 94

Figure 22. IP Runtime vs. Number of Tools .. 94

Figure 23. IP Runtime vs. Number of Stations .. 95

Figure 24. IP Runtime by Band and Task Count ... 96

Figure 25. IP Runtime by Band and Tool Count ... 96

Figure 26. IP Runtime by Band and Station Count ... 97

Figure 27. H1 Runtime vs. Number of Tasks .. 98

Figure 28. H1 Runtime vs. Number of Tools .. 98

Figure 29. H1 Runtime vs. Number of Stations... 99

Figure 30. H1 Runtime by Band and Task Count .. 100

Figure 31. H1 Runtime by Band and Tool Count .. 100

Figure 32. H1 Runtime by Band and Station Count .. 101

Figure 33. H2 Runtime vs. Number of Tasks .. 102

Figure 34. H2 Runtime vs. Number of Tools .. 103

Figure 35. H2 Runtime vs Number of Stations.. 103

Figure 36. H2 Runtime by Band and Task Count .. 104

Figure 37. H2 Runtime by Band and Tool Count .. 104

Figure 38. H2 Runtime by Band and Station Count .. 105

Figure 39. H1 Optimality Gap by Task Count ... 106

Figure 40. H1 Optimality Gap by Tool Count ... 107

Figure 41. H1 Optimality Gap by Station Count ... 107

List of Figures (Continued) Page

xiii

Figure 42. H2 Optimality Gap by Task Count ... 108

Figure 43. H2 Optimality Gap by Tool Count ... 108

Figure 44. H2 Optimality Gap by Station Count ... 109

Figure 45: Horizontal Smoothing ... 124

Figure 46: Binary Parse Tree Example (not CNF) ... 132

Figure 47: Maximum Time Subset Algorithm.. 133

Figure 48: Heuristic Prototype, Main Function .. 141

Figure 49: Properties of and Relations Between Top-level Objects 150

Figure 50. Station Model Objects .. 157

Figure 51. Tracking Immediate Predecessors .. 164

Figure 52. Trace Implicit Predecessors and Detect Precedence Cycles 165

Figure 53. Computing Classic RPW ... 167

Figure 54. Computing Extended RPW .. 167

Figure 55. Computing Tool Urgency ... 168

Figure 56. Computing Eligibility Urgency .. 169

Figure 57. Computing Tool and Eligibility RPW .. 169

Figure 80. AMPL Model File of BIP Formulation .. 171

Figure 81. AMPL Data File Example .. 173

Figure 58. ER diagram for integrated VRM/AG/TAIS database 178

Figure 59. Construction of Class Membership and Exclusion Boolean

Expressions ... 181

Figure 60. Construction of OKA Rule Boolean Expressions 184

List of Figures (Continued) Page

xiv

Figure 61. Construction of TAIS release Boolean expressions 187

Figure 62. Construction of TAIS part Boolean expressions 188

Figure 63. Example constraint strings and corresponding rule trees 190

Figure 64. Recursive Descent Parse Algorithm .. 196

Figure 65. Interaction Search Algorithm ... 200

Figure 66. Example trees before and after transformation of exclusion node ... 214

Figure 67. CNF Step 1: Transform Exclusion ... 216

Figure 68. CNF Step 2: Substitute Standard with FClass 217

Figure 69. Example trees before and after biconditional reduction 218

Figure 70. CNF Step 3: Reduce Biconditionals .. 218

Figure 71. Example trees before and after conditional reduction 219

Figure 72. CNF Step 4: Reduce Conditionals ... 220

Figure 73. CNF Step 5: Propagate Negation .. 222

Figure 74. Example tree before and after AND distribution 222

Figure 75. Example tree before and after AND distribution 223

Figure 76. CNF Step 6: Distribute AND over OR .. 225

Figure 77. Example DIMACS format .. 227

Figure 78. Write DIMACS file .. 229

Figure 79. Collect disjunctive clauses from a binary tree 230

List of Figures (Continued) Page

xv

LIST OF TABLES

Table 1: gALB Problem Features Considered ... 44

Table 2. Criteria for Retention of Best-yet Solution .. 72

Table 3: IP Problem Sets... 75

Table 4: Problem Input Parameters... 76

Table 5. Problem Parameters Derived During Preprocessing 76

Table 6. Vehicle Orientation Options .. 77

Table 7. WZ to Orientation Code Letters .. 77

Table 8. Code α: WZ / PZ Map and Tool Coverage Zone 78

Table 9. Code β: WZ / PZ Map and Tool Coverage Zone 78

Table 10: Code γ: WZ / PZ Map and Tool Coverage Zone 78

Table 11: Code δ: WZ / PZ Map and Tool Coverage Zone 78

Table 12. Code ε: WZ / PZ Map and Tool Coverage Zone 78

Table 13. IP Constraints ... 82

Table 14. Test Data Set Properties ... 87

Table 15. Solution Feasibility .. 92

Table 17. Worst-Case IP Runtime, under Increasing Orders of Magnitude 113

Table 18. Experimental Results, Problems 1-35 .. 116

Table 19. Experimental Results, Problems 36-70 .. 117

Table 20. Experimental Results, Problems 71-105 .. 118

Table 21. Experimental Results, Problems 106-130 .. 119

Table Page

xvi

Table 22. Option / derivative relations: (M)andatory, (F)orbidden, and (O)ptional

... 126

Table 23: Rule relations: T = rule applies for derivative 127

Table 24: Task relations: A = task applies to derivative if condition met 127

Table 25: Nodes in binary parse tree .. 132

Table 26. Comments on Predecessor Trace and Cycle Detection 166

Table 27. Comments on Classic RPW Computation .. 167

Table 28. Comments on Extended RPW Computation 168

Table 29. Comments on Tool Urgency Computation .. 168

Table 30. Comments on Eligibility Urgency Computation 169

Table 31. Comments on Tool and Eligibility RPW Computation 169

Table 32. Components of Boolean expressions .. 176

Table 33. Tables in integrated database .. 179

Table 34. Example OKA rules .. 182

Table 35. Example TAIS excerpt .. 185

Table 36. Class CBinNode .. 191

Table 37. Operator types of class CBinNode.. 191

Table 38. Parse support functions ... 195

Table 39. New rule example ... 206

Table 40. Testing antecedent satisfiability.. 208

Table 41. Testing implicit inclusion ... 209

Table 42. Testing implicit exclusion ... 209

List of Tables (Continued) Page

xvii

Table 43. Example part family (Windscreen) ... 210

Table 44. Testing part family activation ... 210

Table 45. Testing multiple PNO inclusion from one part family 211

Table 46. Part families with geometry relationships .. 212

Table 47. Testing part family matching .. 212

Table 48. Negation propagation across operators ... 220

Table 49. Propagate Negation criteria and behavior ... 222

List of Tables (Continued) Page

1

CHAPTER ONE

1 BACKGROUND AND MOTIVATION

1.1 Terms and Concepts

This section presents the foundational concepts of assembly line balancing.

Definitions are provided for italicized terms; these will be used throughout this

document. The emphasis in this section will be to familiarize the reader with the simplest

version of the assembly line balancing problem, forgoing problem relaxations,

generalizations, and other complexity adding concepts for later.

1.1.1 Assembly

Assembly, as described by (Scholl), is a manufacturing process that develops a

work-in-progress workpiece into finished product by sequential attachment of parts.

Parts are the atomic physical inputs to the assembly process, each of which is typically

standardized and interchangeable with other parts of the same type. A subassembly is a

collection of parts that are attached to one another, prior to fastening to the workpiece.

1.1.2 Tasks and Precedence

The work performed during assembly is portioned into the smallest possible

indivisible operations, or tasks, each of which requires an associated task time to

complete. The sequence in which tasks are performed may be constrained such that some

tasks must be done before another task begins, due to the physical architecture of the

workpiece, safety reasons, or other causes. Precedence relationships between two

individual tasks are used to codify these constraints, with the task that must come first

labeled the predecessor and the later task called the successor.

2

The set of all binary precedence relationships between task pairs may be

represented as a precedence graph, by first drawing each task as a node and then drawing

directed arcs pointing away from each predecessor task towards its successor. An

example precedence graph is shown in Figure 1. The precedence graph must be acyclic,

as no task may be considered a predecessor to itself. It is not required for all nodes in the

graph to communicate, as disconnected subgraphs indicate that the corresponding tasks

are precedence independent from one another. Nor it is required to draw indirect

precedence relationships on the graph. For example, in Figure 1, task 2 is a predecessor

to task 7, but this relationship is implicit by considering the predecessor relationships of

task 4.

Figure 1: Precedence Graph

Alternatively, precedence relationships may be collected in the form of a

precedence matrix. Each task may be arbitrarily assigned an indexing number, 1 to n,

where n is the total number of tasks. The rows of the n-x-n matrix index to predecessor

tasks and successors are indexed to columns, allowing one matrix element for each

possible precedence relationship. The matrix is constructed by placing a 1 in each matrix

element for which a precedence relationship exists, and a 0 if not. An example of a

3

precedence matrix is shown in Figure 2, containing the same precedence information as

in Figure 1.

1 2 3 4 5 6 7 8 9

1 - 0 1 0 0 0 0 0 0

2 0 - 0 1 1 0 0 0 0

3 0 0 - 0 0 1 0 0 0

4 0 0 0 - 0 0 1 0 0

5 0 0 0 0 - 0 0 1 0

6 0 0 0 0 0 - 0 1 0

7 0 0 0 0 0 0 - 0 1

8 0 0 0 0 0 0 0 - 1

9 0 0 0 0 0 0 0 0 -

Figure 2: Precedence Matrix

Note that there are many indirect precedence relationships that are not tracked in

the above example precedence graph and precedence matrix. Instead only immediate

precedence relationships are shown, i.e. the minimal set of arcs necessary to constrain the

acyclic graph. For example, task 1 is a predecessor for tasks 3, 6, 8, and 9, but only the

relationship to task 3 is immediate. All indirect precedence relationships may be derived

from the set of direct precedence relations, if desired.

1.1.3 Assembly Lines, Stations, and Workers

An assembly line is a type of assembly process, in which a conveyor or similar

material handling equipment moves evenly spaced workpieces from the beginning of the

assembly process to the end. The conveyance path is segmented according to this

spacing into a series of consecutive stations, such that there is one workpiece in each

station. Each station is given a subset of tasks to complete, and the requisite parts,

tooling, and other needs in order to complete those tasks, in addition to a worker to

provide necessary manpower. Fixed pace assembly lines convey workpieces at a steady

4

rate from one station to the next, resulting in a constant cycle time for each station to

complete work on the current workpiece before the conveyor moves it to the next station.

An example of an assembly line is shown in Figure 3. In this pictogram, each block

represents a part. At each station a worker picks the parts, optionally sub-assembles

some of them, and fastens them into the workpiece upon the conveyor.

Figure 3: A Typical Assembly Line

 Assembly lines were originally constructed for mass production of standardized

assembly products, to increase average worker productivity and overall throughput by

leveraging labor specialization along the line (Shtub and Dar-El). Modern assembly lines

designed for make-to-order and mass customization production permit fast and flexible

responses to customer demand (Mather) (Pine), but are associated with significant

5

automation and facility capital costs. Successful assembly line planning is critical to

engineering a cost-effective production process.

1.1.4 The Assembly Line Balancing Problem

The assembly line balancing problem (ALB) is a production planning problem

concerned with allocating tasks to the stations on the assembly line, first proposed and

formulated as a mathematical programming problem in 1955 by (Salveson). A solution

to the ALB is a set of decisions that determine which tasks are assigned to each station.

(Scholl) provides a thorough modern review of assembly lines and the ALB.

1.2 History of Assembly Lines

Manufacturing is arguably as old as humanity itself, as records and artifacts of

ancient peoples record the construction of objects from multiple components (Rekiek and

Delchambre). Craftsmen such as masons and carpenters, trained specially to work

various materials, have existed for at least 10,000 years. The cottage industry production

system emerged some 1000 years ago, as the predominant method for fabrication of the

most intricate or demanding products, and featuring skilled artisans and smiths exercising

the pinnacle of their respective talents. A typical craftsman’s process began with raw

materials, from which components were cut, sized, or otherwise initially prepared,

followed by an iterative component assembly and re-fitting procedure until the product

became finished.

The Industrial Revolution brought technology to prominence in production

systems, giving rise to the modern factory system. Starting in the 18th century,

continuing through the entirety of the 19th and into the 20th century, the Industrial

6

Revolution encapsulates a series of discoveries and inventions related to energy,

transport, and material processing technologies. The impact of these changes were felt

not only within production systems, but also in society as a whole.

Assembly lines are only one of many modern production systems that sprung

from the earliest factories. The assembly line depends upon key industrial innovations in

material handling, the line production system, and interchangeable parts. The first

industrial application of bulk material handling components is recorded in a flour mill

constructed in 1785 (Roe). Multiple conveyor systems and elevators were used in the

mill, allowing for completely automated movement of raw materials through the factory.

A series of developments in machine tooling technology during the early 1800s allowed

for hand-crafted components to be replaced by industrially fabricated interchangeable

parts. This change drastically reduced the time and cost of product components, allowing

for reliable access to standardized parts. The exact origin of the line production system is

uncertain. By the late 1800s, at least, conveyance systems were in use in

slaughterhouses, with specific butchery tasks allocated to each worker on the line,

comprising a system that might be called a disassembly line. The first usage of the line

production system for assembly was realized in 1901 by the Olds Motor Vehicle

Company, and the concept patented as an “assembly line” by the company owner

Ransom Olds (Domm). The Olds assembly line did not use a conveyor, however, as the

vehicles were simply rolled on wheels from one workstation to the next. In 1913, Henry

Ford’s Model T assembly line first integrated conveyance with the assembly line concept,

an innovation which achieved vast industrial success as well as historical acclaim.

7

The assembly line balancing problem (ALB), a production planning problem

concerned with allocating tasks to the stations on the assembly line, was managed on an

ad-hoc basis until Salveson’s 1955 mathematical programming formulation of the

problem (Salveson). Several additional authors followed with founding contributions

between 1956-1961 (Jackson) (Bowman) (White) (Supnick and Solinger) (Hu), giving

birth to assembly line balancing as a field of research. Over the last 60 years a wide

variety of extensions, adaptations, and innovations have emerged, both in the

technological support and complexity of physical assembly lines, as well as in the

methodologies used to solve the ALB.

1.3 Motivation

At an undergraduate level of understanding of the ALB, one might be tempted to

feel confident that any real-world ALB problem would surrender to existing methods, i.e.

that the problem is trivial or solved. A glance at the continuing quantity of academic

output, as neatly summarized and organized in a recent survey (Boysen, Fliedner and

Scholl, A Classification of Assembly Line Balancing Problems), might suffice to scatter

this confidence. This evidence would seem to indicate that practitioners do not yet

possess the necessary ALB tools, insofar as industrial needs can be inferred from research

activity. The need is made plain by consideration of the methods commonly used in

industrial practice.

Prior to the instantiation of ALB as a research field in the 1950s, of course, all

ALB problems were solved manually, as only intuitive, trial-and-error methods were

available. By the early 1970s algorithmic ALB methods had proliferated, but yet a

8

survey at that time found that only approximately 5% of companies were using published

methods to solve their internal ALB problems (Chase). Many articles attest to the

continuing prominence of intuitive methods over algorithmic ones developed by the

research community, covering all decades of the intervening time period (Schöniger and

Spingler) (Milas) (Erel and Sarin) (Boysen, Fliedner and Scholl, Production Planning of

Mixed-Model Assembly Lines: Overview and Extensions). A field book published as

recently as 2012 (Townsend) makes no mention of algorithmic methods at all, instead

recommending a manual approach, in consultation with a process expert to ensure the

balance is feasible. Our industrial partner for this research uses a similar method,

constructing balances during multi-day workshop collaborations between experts. By all

accounts, there remains a significant and continuing gap between theory and practice.

What is the cause of this gap, and what can be done to bridge it?

The simplest explanation is the mere fact that finding a feasible solution to an

ALB can usually be accomplished by hand. The manual solution will perhaps not be

optimal, but might at least be good enough to seem acceptable to management.

Additionally, there are certain normal translational difficulties for any new theoretical

work. Industry adoption requires potential adopters to learn that the theoretical methods

exist, overcome organizational inertia resisting change, and, of course, financial

investment to implement the change. Still, the gap has been persistent for the last 60

years. One would hope that to be sufficient time to overcome these issues. There are

several more substantial practical reasons for the existence of the gap beyond

translational difficulties, however.

9

1.3.1 Lack of Suitable Methods

The real-world ALB problem may possess features that either by themselves, or

in conjunction with one another, are not modeled by any published solution procedure.

Section 1.5 discusses many different generalizations of the ALB problem that may

present on a real assembly line. A hypothetical facility with parallel workers, a U-shaped

assembly line, and stochastic task times might find, after searching the literature, that

there are no methods suitable for application.

This was the case for our industrial partner at the onset of this research, as no

published contribution offered ALB modeling methods with the constraint detail

necessary to capture operational dynamics at the facility. The use of ALB solution

methods with insufficient constraint modeling renders any generated solution vulnerable

to infeasibility, as these solutions may violate one or more of the ignored constraints.

A practitioner might develop new methods as needed, with appropriate

background and skill. Given the deliverable-oriented nature of many process engineering

job duties, however, it is perhaps uncommon that such a research task be undertaken.

1.3.2 Lack of Input Data

Algorithmic approaches to ALB are demanding in regards to input data. The

simplest ALB problems require specification of task time and precedence information,

i.e. a codification of which tasks must be executed before others may begin. Task times

are usually established by motion time measurement (MTM) projects, in which the

workplace is simulated and measurements recorded on each action undertaken by the

worker. The sequencing of tasks in an MTM experiment is typically specified for the

10

subject, perhaps with replication under differing sequences to test for time variation.

These experiments do not usually capture task-to-task precedence information, or capture

it only in limited form during task sequencing variation.

In the automotive sector, a vehicle requires several hundred to several thousand

assembly tasks. Lacking documented task precedence information, a typical industry

practice is to partition the total line balance problem into several smaller line balancing

problems, using functional domain threshold points on the physical assembly line as

partition boundaries. For example, if the vehicle underbody is assembled on one

continuous subsection of the assembly line, then this subset of stations and tasks can be

isolated as a smaller ALB. A process expert for this subsection might then manually

construct a new ALB solution, or tune an existing one, relying on their detailed

knowledge of task and station characteristics in lieu of having this information

documented. The overall balance for the entire assembly line may then be constructed by

integrating the manually created solution from each subsection.

This approach is very time intensive and error-prone, unfortunately. The task and

station details are necessary input data to any line balancing approach. If this data only

exists in the minds of experts, not documented elsewhere, then no automated methods

may be applied.

1.3.3 ALB Context

Assembly line balancing problems typically present as one of a myriad of linked

production planning and operations management problems. These problems are usually

tackled hierarchically, with the longest-range planning problems solved first. Facility

11

location, layout, capacity planning, and vendor contract problems exhibit the longest-

range, the solutions of which are revisited on the order of 1 to 10 years. The ALB is a

medium range planning problem, along with the linked workforce management (hiring,

firing, training) problem. Medium range problems are usually revisited every few weeks

or months. Short range problems include procurement, shipping, and routing, and may

be revisited daily, if necessary.

Many of these assorted problems are related to one another. The decisions made

by solving longer range problems may have implications for the shorter range problems

solved subsequently. For example, ALB solutions are strongly influenced by the

previously-determined layout of the assembly line, and the location of capital-intensive

robotic support resources. Once found, the ALB solution strongly influences logistics

problems related to supplying parts to the line, and may also affect quality and safety

engineering efforts. These relationships between the various problems pose difficult

questions for theoretical modeling approaches. How might a given problem’s scope be

adjusted to account for implications towards the adjacent problem? Hybrid modeling

approaches combining related problem pairs are fertile ground for research activity.

More conservative methods simply approximate downstream effects, incorporating them

into the constraints or objective of the current problem. Although integration across

production problems is a new and relatively untapped area for academic research, the

importance of these efforts have long been understood in industry.

Our industrial partner for this research specifies several constraints and objectives

for their manual line balancing process that impinge on problems external to line

12

balancing efficiency. Ergonomic considerations require that the ALB solution not pair

too many tasks that require the worker to push with the elbow, lest the repetitive stress of

these tasks lead to injury. Horizontal balancing concerns are important both for quality

considerations and job sequencing. If an ALB solution has poor horizontal balance, then

the worker might commonly run over the allotted cycle time, causing them to rush and

increasing the odds of a defect. Job sequences that feature strings of consecutive vehicles

that require more than cycle time will only exacerbate this problem.

In sum, the needs of industry are frequently much more sophisticated than the

relatively stringent assumption set accompanying most theoretical ALB modeling

approaches. For successful adoption in industry, research models will need to account

for an array of interests not traditionally within the scope of the ALB problem. Many of

these extensions appear to be achievable by evolving the constraint and objective

functions, by addition of detailed plug-ins to the ALB problem to measure downstream

effects. For example, an ergonomic modeling function might measure the cumulative

repetitive stress risk of some task set upon the worker. The option-mix modeling

approach in chapter 6 is another such effort, oriented toward encapsulating quality and

process flow disruption risks.

1.4 ALB Research Patterns

After the seminal contribution of (Salveson), vast attention has been given to the

ALB problem by subsequent researchers. Much of the literature can be characterized as

attacking either the problem’s structural characteristics or its solution methodology.

Structural research may be considered to fall into two camps:

13

1) Relaxation of simplifying assumptions to provide application to more general

environments, otherwise known as the General Assembly Line Balancing

Problem (gALB). Examples include permitting task times to be stochastic,

examination of U-shaped lines, and multiple workers per station.

2) Development of alternative objectives or multi-objective approaches to find

solutions that satisfy other criteria. Notable alternative objectives include cost,

quality, horizontal and vertical balancing metrics. These objectives are

sometimes treated alone, but are frequently included as secondary objectives

subsequent to the primary efficiency objective.

Methodology approaches fall into one of two categories:

1) Development of more powerful exact modeling techniques. These approaches

include branch and bound, branch and cut, and integer programming methods,

among others. Interests in this domain overlap with content from math

programming related to true optimization.

2) Development of heuristics and/or metaheuristics to more quickly identify high

quality solutions. These procedures do not guarantee optimal solutions, seeking

instead to reduce the computing time required relative to exact approaches by

shrinking the search space evaluated by the algorithm. Heuristic methods

typically use problem insight to develop very fast algorithms that are greedy

toward some problem metric. Metaheuristic methods typically employ

intensification strategies that search “near” the solution space of good solutions,

14

along with occasional diversification strategies to break into unsearched solution

space.

Many researchers publish work with both structural and methodological

components. For example, (Simaria and Vilarinho) consider multi-zone assembly lines

(under the gALB umbrella) while using an ant-colony metaheuristic.

As the language used by authors to address these concepts can vary greatly within

the literature, the classification and terminology suggestions from the surveys of

(Baybars, A Survey of Exact Algorithms for the Simple Assembly Line Balancing

Problem), (Becker and Scholl), (Becker and Scholl) have been herein adopted, with any

conflict favoring the more recent publication.

1.5 ALB: Generalizations

For any valid ALB solution, the following minimal set of constraints must be

satisfied:

1. All tasks must be assigned to some station, such that the workpiece is finished upon

exiting the final station.

2. All precedence relationships must be satisfied. Classically this constraint is enforced

by ensuring that no task is assigned to an earlier station than one of its predecessor

tasks.

3. The sum of task times at each station cannot exceed the cycle time.

Using the terminology of (Baybars, A Survey of Exact Algorithms for the Simple

Assembly Line Balancing Problem) survey, Salveson’s initial formulation is known as

15

the Simple Assembly Line Balancing Problem (sALB), as it features a number of

simplifying assumptions:

1. Mass-production of one homogenous product.

2. All tasks are processed in a predetermined mode (no processing alternatives

exist).

3. Paced line with a fixed common cycle time according to a desired output quantity.

4. The line is considered to be serial with no feeder lines or parallel elements

5. The processing sequence of tasks is subject to precedence restrictions.

6. Deterministic (and integral) task times.

7. No assignment restrictions of tasks besides precedence constraints.

8. A task cannot be split among two or more stations.

9. All stations are equally equipped with respect to machines and workers.

Many industrial environments do not conform to these assumptions, motivating a

vast body of research addressing specific manufacturing conditions that require relaxation

of one or more assumptions. Though extensive research has been--and continues to be--

published relating to ALB, the field is marked by increasingly divergent extensions to the

core problem. Some authors have sought to nest ALB within a larger framework of

engineering decision problems such as facility design, equipment selection, production

scheduling, and logistics. Others have developed focused ALB techniques that conform

to specific characteristics of real-world ALB problems. Taken together, these

generalizations cover a very wide, but sparse domain, as there are a huge number of

16

problem characteristic combinations possible, and relatively few problem extension

approaches amenable to simultaneous application.

1.5.1 Mixed-Model

Mixed-model lines produce several different products upon the same line in an

intermixed sequence (Bukchin, Dar-El and Rubinovitz). Task sets, task times,

precedence, and other production requirements may vary between models, such that each

station may have differing work content depending on the model. (Deutsch) assume that

the cycle time restriction is enforced for each model on each station, but later authors

quickly realized that cycle time restrictions can be relaxed for the mixed-model case,

requiring only the average work content at each station satisfies the cycle time. High-

and low-work content workpieces can be staggered in sequence to take advantage of their

compensation effect, though this function motivates a production scheduling problem to

determine an optimal sequence.

The model decomposition scheme takes the original problem, and replaces it with

parallel independent ALB instances for each model. (Roberts and Villa) and (Rao) take

each task that applies to multiple models, and in its place substitute a suite of tasks, such

that each new task applies to a single model from the original multi-model task. By

decoupling the original multi-model tasks, superior ALB solutions may become available

that were not feasible with the tasks coupled—it is now permitted that multi-model tasks

be performed upon a different station for each model. The solution space for the prior

problem with coupled multi-model tasks is a subset of the solution space of the new

problem, with decoupled single-model tasks, allowing perhaps superior solutions to be

17

found. Additionally, the model decomposition scheme requires no adaptation in solution

methodology. The multi-model aspects of the problem have been encapsulated within

the parallelization, and single-model solution methods can be applied to each parallel

ALB instance.

Model decomposition’s benefits to solution quality and methodological simplicity

raise questions regarding task definition. Are there any associated costs to decomposing

multi-model tasks into single-model ones? Several practical considerations bear

mentioning:

1. Assembly tasks typically involve part installation. The necessary parts are

typically stored adjacent to the assembly line, within easy reach of the worker. If

a multi-model task that involves fastening a single part is decomposed into a suite

of single-model tasks, and the single-model tasks are assigned to different

stations, then each of these stations must allocate storage area to the part. Where

there was only a single line-side part repository to support the multi-model task,

there may be several repositories for the suite of single-model tasks. Logistical

problems relating to delivering and storing parts for assembly line use are usually

solved separately and subsequent to the ALB. The costs implicit in the logistics

problem objective function may be higher with decomposed tasks. At worst,

model decomposition ALB approaches may render these logistical problems

infeasible, e.g. if there is not enough storage area for duplicated repositories.

18

2. Assembly tasks may require tooling. From simple hand tools to robotic machines,

there is a wide range of costs associated with providing tools to the assembly line.

Model decomposition may result in additional costs due to duplication of tooling.

3. Leveraging workforce specialization is one of the primary drivers for using

assembly lines, versus other production flow alternatives. Allocating multi-model

tasks to several stations requires multiple workers to perform each task, rather

than a single worker for each. This diversification may result in loss of personnel

efficiency to execute tasks.

4. Tasks may require setup activities before the primary installation activity can

commence, such as arranging fixtures and jigs. Splitting tasks to multiple stations

may result in lost efficiency in task-sequencing setup time problems, which are

usually solved subsequent to the ALB problem.

(Thomopoulos) and (Macaskill) transformed the mixed-model problem into a

single model version by taking the demand-averaged time for each task. This method

ignores the piece-to-piece variability in work content, and may result in disruptions in

line operation. (Thomopoulos) attempted to compensate for this effect by minimizing a

secondary objective of the sum of absolute deviations of actual station times of each

model to the average station time across models, an early form of horizontal balancing.

Horizontal balancing seeks to equalize the work content at a station across all model

alternatives, such that the resulting balance is more robust to changes in model demand

and production sequencing. (Domschke, Klein and Scholl) proposed a refined horizontal

balancing objective that seeks to minimize the sum of work overload time, i.e. the work

19

content in excess of the cycle time, across all models and stations. (Vilarinho and

Simaria) developed a simulated annealing solution approach that incorporated both

horizontal and vertical balancing objectives, within a model with parallel stations and

additional assignment constraints.

The production sequencing problem that emerges from mixed-model

environments can be solved in a staged fashion, subsequent to the ALB problem (Yano

and Bolat); (Sumichrast and Russell, Evaluating Mixed-model Assembly Line

Sequencing Heuristics for Just-in-time Production Systems); (Sumichrast, Russell and

Taylor, A Comparative Analysis of Sequencing Procedures for Mixed-model Assembly

Lines in a Just-in-time Production System); (Bard, Dar-El and Shtub) or the two

problems can be solved simultaneously (Merengo, Nava and Pozetti).

(Kim, Kim and Kim, A Coevolutionary Algorithm for Balancing and Sequencing

in Mixed Model Assembly Lines) proposed genetic algorithms to solve a simultaneous

mixed-model ALB and production sequencing problem. Demand is commonly realized

at a shorter time horizon than is applicable to the ALB problem, however, suggesting that

ALB methods that produce solutions that are robust to demand may be more applicable

than those that simultaneously sequence the workpieces.

Multi-model lines are a niche derivative of mixed-model concepts. In addition to

the mixed-model features described above, multi-model lines require setup times when

transitioning between products of differing type. Batches of similar product are

encouraged within the job sequencing problem, as consecutive production of like

products requires no setup, reducing the overall sum of setup time required in the

20

production schedule. Multi-model lines require additional lot sizing and job sequencing

problem extensions, as discussed by (Burns and Daganzo) and (Dobson and Yano).

1.5.2 Stochastic Task Times

Task times may exhibit variability, especially in high-complexity, low-automation

environments. Methods that ignore this variability may suffer from tightly packed

solutions that fail to account for the probability that station times may exceed the cycle

time. (Moodie and Young) first investigated the stochastic line balancing problem, under

assumption that task times were distributed normally. The total variability of the station

load was then assessed, and a heuristic procedure moved tasks to different stations in

search of minimizing the most probable exceedance of cycle time. (Kao), (Sniedovich),

and (Carraway) examined dynamic programming (DP) approaches with more general

distributions for task times. (Nkasu and Leung) employ the COMSOAL stochastic

optimization algorithm to generate suites of solution alternatives.

(Sphicas and Silverman) offer heuristics to estimate upper bounds that tasks will

not exceed with a given probability, transforming the stochastic problem into a

deterministic one by application of this safety factor. This deterministic transformation

method disregards scenarios in which the cycle time is exceeded, though later researchers

attempt to account for station overload by implementing an intervention policy. (Kottas

and Lau, A Cost-oriented Approach to Stochastic Line Balancing) assume that additional

workers are employed at stations that are likely to result in incomplete work.

(Kottas and Lau, A Total Operating Cost Model for Paced Lines with Stochastic

Task Times) assume that incomplete work is moved to an off-line buffer, to be repaired

21

by a dynamically sized off-line workforce and then returned to the line. The ALB is

solved via deterministic transformation, estimating repair costs afterward. A suite of

balance and cost alternatives is generated by varying the transformation parameters.

(Sarin and Erel, Development of Cost Model for the Single-model Stochastic Assembly

Line Balancing Problem) used a hybrid heuristic with dynamic programming (DP)

elements, to solve a similar problem with off-line support to resolve incomplete work,

and (Sarin, Erel and Dar-El, A Methodology for Solving Single-model, Stochastic

Assembly Line Balancing Problems) extend this method into a complex staged heuristic-

partial DP-branch and bound optimization. (Gökcen and Baykoc) provide a simulation

approach of off-line work policies to provide better estimation of incompletion

probabilities and buffer costs.

(Silverman and Carter) and (Lau and Shtub) assumed that the production line

would stop if all tasks were not complete at the end of the cycle time, and simply

developed a suite of ALB solutions from which to select a minimal composite cost.

1.5.3 Supplementary Constraints

In addition to precedence constraints, many real-world problems exhibit tooling,

zoning, worker skill, and other characteristics that restrict the assignment of tasks to

stations and/or the relative assignment of tasks to one another. (Johnson) presents a

branch and bound model that includes tooling and worker skill components, such that

tasks with these “irregularities” are required to be assigned to stations with necessary

tools. High complexity tasks are grouped together such that high skill operators can be

assigned to those stations, and so forth, satisfying the skill requirement.

22

(Bautista, Suarex and Mateo) examine tasks sets that are incompatible, i.e.

ineligible for assignment within the same station, and deliver a hybrid adaptive search

and genetic algorithm solution. (Carnahan, Norman and Redfern) study the effects of

physical fatigue on workers from tasks that vary in difficulty, minimizing a composite

fatigue score for a given number of stations and cycle time with a hybrid heuristic and

genetic algorithm approach.

1.5.4 Parallel Workers

Assembly lines with parallel workers relax the sALB assumption that one worker

is allocated to each station, instead allowing multiple workers per station. Parallel

worker assembly lines are appropriate for workpieces large enough to permit several

workers with simultaneous access, e.g. cars or airplanes. Relative to single-worker

stations, parallel worker lines offer several potential benefits. Perhaps most obvious of

these is a reduction in the total line length (number of stations) required, and

corresponding improvements to factory floor space utilization and facility capital

construction costs. Consolidation of workers into the same station as one another may

also allow sharing of fixed tooling resources between them, reducing capital costs.

Material handling costs may also be reduced, as there are fewer destinations to support

with part delivery, spread across a smaller footprint. Lastly, parallel worker lines may

realize superior line balancing solutions due to reduced worker movement around the

workpiece, as each worker can be assigned tasks that only appear in a specific zone.

(Bartholdi), (Lee, Kim and Kim)

23

The first parallel ALB considered lines in which there are two distinct sides to the

assembly line, and proposes a priority heuristic to generate a solution (Bartholdi). Tasks

are classified into the sets {left, right, either} corresponding to the side of the line to

which they may be assigned. A genetic algorithm methodology was later introduced for

this gALB problem, to identify higher quality solutions (Kim, Kim and Kim, Two-sided

Assembly Line Balancing: A Genetic Algorithm Approach). An important consideration

for simultaneous work is that precedence related tasks might be assigned to separate sides

of the line, resulting in one side waiting for the other to finish a task in order to begin

work on the next one. (Lee, Kim and Kim) offer two supplementary objective functions

designed to address this issue: 1) work relatedness, which promotes tasks that have an

immediate precedence relationship to be assigned to the same station, and 2) work

slackness, which promotes those tasks to have a large time gap between them if they

cannot be assigned to the same station. A stochastic single-pass prioritization heuristic

was created for a two-sided assembly line that manufactures appliances (Lapierre and

Ruiz). (Baykasoglu and Dereli) develop one of the first applications of ant-colony

metaheuristics to ALB problems, solving a two-sided assembly line that produces

domestic products. This ant-colony approach was quickly extended to include secondary

vertical and horizontal balancing objectives (Simaria and Vilarinho). (Chutima and

Chimklai) extend previous two-sided ALB models with a multi-objective particle swarm

optimization approach that incorporates work relatedness, utilization, and vertical

smoothing. (Pastor and Corominas) consider a line with four work zones and additional

constraints to require certain sets of tasks be assigned to the same station, using a hybrid

24

DP and tabu search algorithm to vertically smooth workloads over a given number of

stations.

1.6 ALB: Optimization and Objective Functions

Classic optimization of the ALB seeks to minimize the total idle time in the line,

ideally packing each station with tasks so that the cycle time constraint is tight for every

station. There are three possible objective functions, depending on whether the cycle

time and station count parameters are free or constrained:

1) Minimize the number of stations (workers) given a fixed cycle time. (Type 1

objective)

2) Minimize the cycle time given a fixed number of stations. (Type 2 objective)

3) Maximize utilization (or, equivalently, minimize total idle time) while varying

both the number of stations and cycle time. (Type 3 objective)

All of the ALB objectives are motivated toward increasing line efficiency. For

the Type 1 problem, with a fixed cycle time, costs may be minimized by reducing the

total labor hour (i.e., the number of workers). For the Type 2 problem, with a fixed

number of stations, throughput is an output variable that is maximized by minimizing the

cycle time. The Type 3 problem draws on the economic motivations of both the Type 1

and Type 2 problems in tandem. (Wee and Magazine) prove that all three versions of the

optimization problem are NP-hard, by showing that ALB is a generalization of the bin-

packing problem.

1.6.1 Horizontal Line Balancing

25

Optimization of the traditional ALB problem seeks to minimize total idle time by

minimizing of the number of stations (or workers) used, given a fixed cycle time. The

problem is NP-hard, as shown by (Wee and Magazine). (Thomopoulos) and (Macaskill)

transformed the mixed-model problem into a single model version by taking the demand-

averaged time for each task. Such methods ignore the piece-to-piece variability in work

content, and may result in disruptions in line operation.

Horizontal balancing seeks to equalize the work content at a station across all

model alternatives, such that the resulting balance is more robust to changes in model

demand and production sequencing. See Figure 45 for a visualization of two alternative

solutions with the same average utilization, but drastically varying horizontal balance. In

an early form of horizontal balancing, (Thomopoulos) attempted to compensate for this

effect by minimizing a secondary objective of the sum of absolute deviations of actual

station times of each model to the average station time across models. (Domschke, Klein

and Scholl) proposed a refined horizontal balancing objective that seeks to minimize the

sum of work overload time, i.e. the work content in excess of the cycle time, across all

models and stations. (Vilarinho and Simaria) developed a simulated annealing solution

approach that incorporated both horizontal and vertical balancing objectives, within a

model with parallel stations and additional assignment constraints.

The production sequencing problem that emerges from mixed-model

environments can be solved in a staged fashion, subsequent to the ALB problem (Yano

and Bolat); (Sumichrast and Russell, Evaluating Mixed-model Assembly Line

Sequencing Heuristics for Just-in-time Production Systems); (Sumichrast, Russell and

26

Taylor, A Comparative Analysis of Sequencing Procedures for Mixed-model Assembly

Lines in a Just-in-time Production System); (Bard, Dar-El and Shtub), or the two

problems can be solved simultaneously (Merengo, Nava and Pozetti).

Demand is commonly realized at a shorter time horizon than is applicable to the

ALB problem, however, suggesting that ALB methods that produce solutions that are

robust to demand may be more applicable than those that simultaneously sequence the

production units. To test the effectiveness of different horizontal line balancing metrics

to this end, (Emde, Boysen and Scholl) conducted extensive computational experiments

to detect differences in line disruption due to product variety on assembly lines balanced

with an array of different horizontal metrics. (Emde, Boysen and Scholl) also mentions

in closure the reliance of all tested methods on the mixed-model paradigm, and calls for

methods that are robust to product variety size.

1.7 Heuristic Methods

1.7.1 Single Pass Heuristics

Perhaps the best known of the heuristic methods is the Ranked Positional Weight

(RPW) heuristic (Helgeson and Birnie). RPW is designed for fixed cycle time version of

SALB, and attempts to pack stations with tasks by assigning them one at a time starting

at the beginning of the assembly line. Each task is given a weight that is equal to its task

time plus the task times of all of its successor tasks. The tasks are then sorted upon this

weight, thereby ensuring that no task will be above one of its predecessors in the sorted

list. Assignment then proceeds one task a time, placing the task at the earliest station that

27

meets both constraint criteria: 1) sufficient time capacity exists at the station to place the

task, and 2) no predecessor of the task is at a later station.

In the same paper (Helgeson and Birnie) propose the Inverse Positional Weight

heuristic, which is identical to RPW except that tasks are weighted as the sum of their

task time and all predecessor task times. The assignment sequence then begins at the

final station instead of the first.

(Tonge, Summary of a Heuristic Line Balancing Procedure) developed a heuristic

that begins by grouping sets of tasks that are directly connected in the precedence graph,

and then treating these groups as single tasks. Tasks are grouped such that each task set

is approximately equal in aggregate time, and then a valid assignment is sought using the

much-reduced task set size. If an assignment is found, the algorithm then seeks to

improve the solution by smoothing tasks from one station into an adjacent one, while

preserving precedence and cycle time constraint satisfaction. If no solution can be found

with a given task grouping, then the groups are broken into smaller subsets and the

process repeats. An updated version of this method was published a year later (Tonge, A

Heuristic Program for Assembly Line Balancing).

(Agrawal) proposed the Related Activity heuristic, which scores tasks in the same

way as the Inverse Positional Weight heuristic. The assignment method differs however,

instead selecting the task with the largest score that is smaller than the cycle time. The

selected task is then assigned to a new worker, along with all predecessor tasks. The

algorithm then recalculates scores for all unassigned tasks, and repeats the assignment

28

process. Upon completion the set of workers are then sequenced according to precedence

validity.

(Baybars, An Efficient Heuristic Method for the Simple Assembly Line Balancing

Problem) develops a set of preprocessing steps oriented to reducing problem complexity.

The input data is analyzed for complexity saving opportunities, such as decomposing the

original problem into smaller sub-problems, or detection of implicit assignment

constraints. After preprocessing a heuristic procedure assigns tasks one at a time

beginning at the end of the assembly line. The task prioritization metric considers the

subset of tasks with no currently unassigned successors, and then chooses the one with

the highest number of predecessors. The chosen task is then assigned to the latest

possible station.

1.7.2 Multi-Pass Heuristics

(Tonge, Assembly Line Balancing Using Probabilistic Combinations of

Heuristics) utilizes a suite of prioritization metrics coupled with a one-at-a-time task

assignment approach. After each task assignment, a randomly selected heuristic is used

to select the next task. The author reports a competitive result from executing multiple

runs of this heuristic, though it is likely this performance was due to the wider solution

space search afforded by the element of randomness in each run. It bears noting that

most heuristic procedures run incredibly fast, placing little cost on this additional search.

The COMSOAL algorithm (Arcus) expands upon the work of (Tonge, Assembly

Line Balancing Using Probabilistic Combinations of Heuristics), again using probabilistic

next-task selection during an iterated single-pass solution construction heuristic. On the

29

first pass the selection probabilities are uniform between all tasks that have no unassigned

predecessors, though these probabilities may change as the algorithm iterates.

COMSOAL can be characterized as a form of learning algorithm, as objective function

performance is used as an input between iterations to bias the probabilistic selection steps

in future iterations. A set of nine methods are given for inducing bias into the

probabilistic search.

(Pinto, Dannenbring and Khumawala) show a network inspired procedure, in

which tasks are grouped together via adjacencies on the precedence graph. These super-

nodes are then sequenced and fitted into stations to evaluate the resulting balance. The

procedure is iterated with differing heuristic rules for constructing the super-nodes.

30

CHAPTER TWO

2 GAPS AND RESEARCH PLAN

The research area of Generalized Assembly Line Balancing (gALB) has emerged

in response to the limitations of the Simple Assembly Line Balancing (sALB) to

solve realistic problems in complex production environments. There are multiple facets

of the sALB problem which can be relaxed or modified. In the interest of illustrating

gaps in the body of literature, it may be instrumental to first show the full scope of

research diversity. The survey paper (Boysen, Fliedner and Scholl, A Classification of

Assembly Line Balancing Problems) presents a classification scheme for organizing the

variety of efforts within the field, and tabulates the contributions of hundreds of

published papers according to which generalization facets are examined. Figure 4

presents this scheme in hierarchical list form. Bolded items appear in some fashion in the

gALB problem that is the focus of this research, as discussed in section 2.1.1.

No methodology yet exists that simultaneously manages all, or even most, of

the problem generalizations listed in Figure 4. Research contributions in gALB

typically select a combination of facets that remains unexamined, outputting a new

methodology for the particular environment defined by this selection. The high

water mark for methodological flexibility is perhaps provided by (Boysen and

Flidener, A versatile algorithm for assembly line balancing), in which several

common generalization topics are aggregated into a single approach. Still, the totality of

literature only sparsely covers the domain of the field.

31

Figure 4: Hierarchy of gALB topics. Bolded features are represented in this

research.

1) Precedence graphs and task attributes
a) Product variety

i) Mixed-model. Workpieces differ in content due to customer configuration. Setup times between workpieces

are negligible.

ii) Multi-model. Workpieces differ in content due to customer configuration, but setup times are significant. Batches
of like product are launched together in attempt to minimize setup time. The associated batch sequencing and lot
sizing problems may be embedded or solved separately.

b) Special precedence structure, e.g. linear, diverging, or converging graphs.
c) Processing time variation

i) Stochastic task time
ii) Dynamic task time, e.g. learning effects
iii) Sequence-dependent task time, e.g. setup time between two consecutive tasks

d) Assignment restrictions. Constrain assignment of tasks to stations.
i) Linked. Tasks that must be assigned to the same station

ii) Incompatible. Tasks that cannot be assigned to the same station

iii) Cumulative. A cumulative task attribute (e.g. storage space) is constrained
iv) Fixed. Tasks that can only be assigned to certain stations, due to e.g. tooling

v) Exclusion. Tasks that cannot be assigned to certain stations

vi) Type. Tasks that must be assigned to stations of a certain type, e.g. lifted

vii) Minimum distance. Tasks that must be separated by some minimum time or space
viii) Maximum distance. Tasks that must be within some time or space proximity

e) Processing alternatives. The problem scope expands to select an alternative.
i) Alternatives differ with respect to task times and cost
ii) Alternatives affects the precedence graph

2) Stations
a) Cycle time

i) Obeyed for average workpiece

ii) Obeyed for every workpiece
iii) Obeyed for a given probability of workpieces
iv) Cycle time varies between stations, e.g. via production buffers
v) Unpaced line, movement between stations when work is finished

b) Layout
i) U-shaped line with one or more cross-over stations

c) Parallelization
i) Multiple lines work independently in parallel
ii) Flow splits before a subset of duplicated stations, and merges after.
iii) Tasks may be performed by different stations per workpiece
iv) Multiple operators work in tandem at a single station

d) Resource assignment. The assembly line design problem embeds selection from a set of alternative equipment with the
ALB

e) Non value-added time. E.g. walking or transportation times are incurred at the station
f) Other

i) Buffers. In- and/or out-buffer capacity must be determined
ii) Feeder lines must be synchronized with the primary line
iii) Layout of parts storage to support tasks at the station
iv) Positioning of workpiece within the station, e.g. tilted, lifted

3) Objective function
a) Primary

i) Min idle time. Either or both of #operators and cycle time are minimized

ii) Min cost. Several factors may have cost implications, e.g. equipment, differing operator wage due to proficiency
constraints

iii) Max profit. Difference of revenue from production output with costs.
b) Secondary

i) Horizontal smoothing. Minimize product variety induced time variation at each station
ii) Vertical smoothing. Minimize station-to-station variation in time

32

2.1 Contributions

This research considers a gALB with several generalized characteristics, briefly

summarized in section 2.1.1. Bolding has been applied to items in the complete gALB

topic list of Figure 4 to represent characteristics in the gALB at hand. Detailed

descriptions for each problem feature are given in section 3.2.

2.1.1 gALB Problem Characteristics

The assembly line studied produces automobiles. The workpieces are large

enough to permit up to five parallel workers within each station. To prevent interference

between workers, each must be assigned to a work zone (WZ). Tasks are labeled with a

product zone (PZ), which indicates the location on the workpiece that the task operates

upon. Workers may only be assigned a task if the worker’s WZ overlaps with the PZ of

the task. Figure 5 displays the WZ and PZ zoning divisions.

Some tasks require fixed tooling resources that only appear on some stations.

These tooling constraints require the assignment mechanism to match task needs with

tooling support. Tools only support a subset of zones within any station, depending on

the location of the tool itself. A tool can only support tasks that fall within this subset of

zones, called the tool coverage zone (TZ). Figure 10 displays the relationship between

TZ and PZ.

Further, vehicles may assume one of eight orientations relative to the conveyor,

and the orientation may change between stations. For example, the vehicle may be

oriented nose-first in one station, then rotate 90 degrees such that the vehicle is sideways

33

for the next station. Vehicle orientation strongly affects zoning relationships, dictating

which WZ, PZ, and TZ are associated with one another at each station.

Each task maintains a list of stations to which it can or cannot be assigned.

There are several assignment restrictions between tasks that either force

assignment linkage or exclusion. Task-to-task assignment restrictions may occur by any

of these mechanisms:

1. “Same-Station.” The linked tasks must be assigned to the same station, but may

be performed by different workers within the station.

2. “Same-Takt.” The tasks must be assigned to the same station and worker.

3. “Adjacent.” The tasks must be assigned to the same station and worker, and must

be executed sequentially.

4. “Not-same-takt.” Tasks related by this constraint are incompatible, and may not

be assigned to the same worker.

The problem considered is mixed-model, in which each workpiece is built-to-

order according to customer’s specifications. A configurator encodes customer

configuration choices into a set of Boolean options, or discretionary equipment to be

installed on the vehicle. Optional equipment requires additional or specialized assembly

tasks to install, and tasks are labeled according to which options require the task. The set

of options available is very large, providing the customer with fine-grained control over

their personal configuration. Not all configurations of options are permissible, however,

as governed by a set of first-order Boolean expression configuration rules.

34

Two objective functions are of interest. Objective 1 is to maximize the overall

efficiency of the line. Cycle time is fixed, so this objective is equivalent to minimizing

the total number of workers, or, alternatively, to minimizing total idle time. Objective 2

is to horizontally smooth the balance, i.e. to reduce the aggregate product diversity

induced variation in the time a worker needs to complete all tasks. Both objectives

enforce cycle time constraints only in the average case, allowing total load to exceed

cycle time for worst-case but not average-case workpieces.

2.1.2 Contribution 1: Constructive and Improvement Heuristics

A constructive heuristic is designed called the Modified Ranked Positional

Weight (MRPW) heuristic, so called as it is inspired by the Ranked Positional Weight

(Helgeson and Birnie) heuristic. MRPW introduces novel prioritization extensions to

embed linked task relationships and fixed resource constraints. First, the concept of the

responsibility set is defined for each task, by merging precedence and task linkage

information into a composite successor set. A task is responsible for all of its successors,

all tasks that are linked to itself, and all tasks that are either linked or successors to any

task in the responsibility set (defined recursively). Next, an urgency score is defined for

each fixed resource as the number of stations after the last instance of the resource on the

assembly line. The highest urgency scores correspond to resources that last appear early

in the line, giving importance to the tasks that use those resources. Tasks are then

weighted; firstly by the highest urgency score within the tasks responsibility set, and

secondly by the total time within the responsibility set.

35

The responsibility set and the urgency score are new contributions, used to

generate a prioritized listing of tasks suitable for a one-task-at-a-time first fit decreasing

(FFD) assignment heuristic. A FFD approach assigns tasks to the earliest station at

which constraints are satisfied, then moves to the next task. It is necessary to prioritize

tasks such that the most constrained tasks are assigned first. From the problem

constraints shown in section 2.1, precedence, linkage, and fixed resources have been

managed by the prioritization scheme. The primary goal of MRPW is to generate

feasible solutions by navigating the myriad constraints, with a secondary goal of

maximizing efficiency.

Another use for this new prioritization scheme is given by a follow-up last fit

increasing (LFI) improvement heuristic, applied after the constructive heuristic is

complete. Here tasks are considered in increasing order of priority, i.e. the most flexible

(least constrained) tasks first. Each task is moved to the latest already-active worker on

the line. If all tasks are removed from any worker then that worker can be removed from

the solution. The goal of the LFI improvement heuristic is to improve the efficiency of a

feasible solution.

A second improvement heuristic is developed that addresses zoning issues, called

the Work Zone Blocking (WZBlock) heuristic. WZBlock considers the bifurcated ALB

problem of first selecting which workers are active, and the subsequent assignment of

tasks to those workers, and focuses on the first WZ selection sub-problem. Two novel

metrics are introduced to measure the relative value of activating WZs, called the

flexibility and uniqueness scores. The metrics are developed in consideration of each

36

WZ’s offerings in terms of satisfying task needs with respect to zoning, tooling, and

accessibility constraints. Flexible WZs are those that can satisfy a large proportion of the

task set. Unique WZs are those to which difficult-to-satisfy tasks may be assigned. A

composite of these scores is used to block low-value WZs. WZBlock is applied

iteratively, using the MRPW heuristic to construct solutions with the blocked WZs. At

each iteration an additional low-value WZ is blocked, and the best found solution is

retained.

2.1.3 Contribution 2: Integer Programming Formulation

A new binary integer programming (BIP) formulation for the gALB problem is

designed, with the goal of maximizing efficiency (minimizing the number of workers) for

an assembly line with given stations. Several unique approaches are introduced to

manage the zoning aspects of the problem. The problem uses a large quantity of parallel

workers per station, in context of the literature. However, the distinguishing features of

the problem lie in the flexibility and complexity of the interactions between the three

zone types: PZ, WZ, and tool coverage zone. Vehicles may be oriented upon the

conveyor in one of eight ways, each of which results in a different mapping between

zones. Additionally, WZ overlap in physical space, allowing either of two workers to

perform tasks at a given location, with the caveat that the two workers cannot both be

assigned to the same space due to interference concerns. All of these zoning features are

novel IP extensions in the gALB field.

Traditional decision variables are implemented for the assignment problem, with

x and y binary variables controlling task assignment and worker activation, respectively.

37

The objective function is also traditional, minimizing the total number of workers (the

sum over y).

Extensive preprocessing is applied to all problem input data related to zoning, in

order to achieve representations that are streamlined for BIP formulation and conducive

to constructing binary constraints. The key issue to resolve in preprocessing is the

problem of vehicle orientation, which demands non-static mapping associations between

the three zone types. The vehicle orientation input parameter determines the positioning

of the vehicle relative to the conveyor, selected from eight possible settings (four 90

degree rotations, and the same four inverted top-to-bottom). As all zoning concepts are

symmetrical with respect to 90 degree rotations, it is assumed, without loss of generality,

that changes in vehicle orientation affect only the locations of the PZ associated with the

vehicle, and that the WZ and tooling locations are unaffected. Two parameters are output

from the preprocessing stage to track orientation-dependent zone mapping. The first of

these is B, a binary parameter that manages which PZ are permissible for assignment at

each WZ. The second is ��, a binary parameter that manages the subset of PZ that are

covered by each tool. The definitions of these two parameters are carefully constructed

to encapsulate all orientation-induced complexity in the mapping of zones, and to permit

direct implementation of respective constraints.

The BIP formulation employs a large constraint set to enforce the gALB problem

features. Many of these are standard fare for ALB formulation, though some are not.

The parallel worker zoning scheme permits many PZ to be associated with either of two

WZ. However, to prevent interference between workers, tasks of the same PZ are

38

required to be assigned to the same WZ within any given station. A non-overlap

constraint is introduced to enforce this concept, such that the BIP formulation

dynamically determines which WZ is chosen for each PZ at each station. Not-same-takt

constraints require that task subsets are not assigned to the same worker. To implement

this constraint, a clique approach is adopted. Finally, precedence constraints are

implemented only at the station level of granularity, such that no predecessor task may be

assigned to a later station than one of its successor tasks. This constraint does not fully

constrain solutions to feasible space, as it is possible for a precedence violation to occur

between tasks assigned to parallel workers at the same station. Overcoming this potential

violation within the BIP formulation would require introducing timing-specific variables

for sequencing tasks for each worker. Instead, a post-processing feasibility check is

applied, and until feasibility is achieved the BIP is iteratively solved, with a new

constraint forbidding the previous infeasible solution(s).

2.1.4 Contribution 3: Measuring worst-case cycle time

The heuristics and IP formulation enforce the cycle time constraint only in the

average case, i.e. product variety is ignored in favor of minimizing the number of

operators. Horizontal smoothing is a secondary objective function which seeks to

minimize some composite score related to time variation between workpieces for each

operator. Several alternative metrics exist for this time disparity, but all rely upon

specification of the set of uniquely configured models, and their associated time

demands. Consideration of each uniquely configured product alternative is the classic

mixed-model ALB paradigm.

39

The problem environment considered in this research features a large amount of

optional content, with each option relating to customizable components. If each option

has Boolean (yes/no) values representing whether or not it is chosen, then the total

number of unique configurations is 2n, where n is the number of options available.

Specifying the full suite of models (i.e. unique configurations) is an intractable

proposition for any problem environment with sufficiently large number of options, as 2n

grows prohibitively large. Note that the combinatorial explosion of configurations

presents problems in ALB preprocessing, when simply enumerating the suite of models.

This issue will persist through any ALB algorithm that takes the model-mix paradigm in

a sufficiently high-option environment.

An alternative approach is offered in chapter 6, called the options-mix paradigm.

Instead of listing all unique configurations, instead two information inputs are retained to

represent product diversity: 1) the set of option/task associations, that determine which

options require each task, and 2) a database of rules that governs which options

configurations are valid.

As yet the literature does not yield any methods for horizontal smoothing metrics

in an options-mix paradigm. An algorithm is presented in chapter 6 which calculates the

worst-case time for a set of tasks assigned to a worker, in consideration of the option

associations of all assigned tasks. The worst-case time is the maximum cumulative time

of any subset of the tasks, with the caveat that tasks in the subset must be valid for the

same workpiece. To identify this worst-case time, differing task subsets are tested for

40

validity by consulting the rule database, and solving instances of the Boolean

satisfiability (SAT) problem.

2.2 Limitations

The methods developed in contributions 1 and 2 are designed to manage the

gALB problem features in section 2.1. Generalized problem environments with

additional gALB features are not supported. Contributions 1 and 2 treat the cycle time

constraint only in the average case, i.e. product variety is ignored.

The method developed in contribution 3 is functional only where configuration

rules can be expressed with logical first-order Boolean propositions (If, And, Or, Not),

though most higher-order ontologies can be reduced to this form. The options-mix metric

from contribution 3 is used as a plug-in during contribution 3, but classically derived

horizontal smoothing metrics may be substituted for suitable problem environments.

2.3 Implications

A manufacturer with operations encapsulated by the gALB characteristics for this

problem can implement these methods. The algorithmic approach is suitable for

embedding within a commercial line balancing visualization software tool for operations

management. Direct use cases include support for initial (product launch) line balancing,

and periodic rebalancing to respond to forecasted demand changes. Secondary use cases

include exploration of input parameter variation, e.g. cycle time changes, or relocation of

fixed equipment.

The SAT decomposition approach discussed in chapter 6 is strikingly similar to

research in the virtual machine (VM) packing field. The VM problem emerges from

41

cloud computing, where a set of users (tasks) must be satisfied with a minimum of energy

consumption (time). Each user (task) has a set of needs (options) from the VM (station)

environment, and can share a VM with other users with similar needs. Efficiencies are

gained by planning to consolidate like users and their shared needs into single VM

instances. Performance is lost when duplicate instances are spawned in multiple

locations on the cloud for users on separate VMs, which could perhaps have been packed

together in a single instance.

42

CHAPTER THREE

3 CONSTRUCTIVE AND IMPROVEMENT HEURISTICS

3.1 Introduction

The traditional form of an assembly line, as described by (Scholl), is a production

system consisting of a configuration of consecutive workstations, typically using a

conveyor or similar material handling equipment to transport workpieces down the line at

a constant rate. The total work to be performed along the assembly line is subdivided

into the smallest indivisible elements of work, typically called tasks, and each task i

possesses an associated task time (ti). Tasks are related to one another by precedence

attributes, i.e. some tasks must be finished before others can begin, usually due to the

physical architecture of the workpiece. These individual precedence relationships

between tasks are collected and summarized by a precedence graph, an acyclic graph

with each task as a node and arcs representing precedence.

Stations are spaced along the line such that there is one workpiece present at each

station, and all stations will be allotted a fixed cycle time (c) to execute tasks before the

conveyor moves the workpiece to the next station. These characteristics define the

simple assembly line balancing problem (sALB), a production planning problem

concerned with assignment of the set of tasks to stations, such that all work is performed

upon the workpiece as it traverses the line. Optimization of the sALB seeks to minimize

the total idle time in the line through one of three methods: 1) minimization of the

number of stations given a fixed cycle time, 2) minimization of cycle time given a fixed

number of stations, or 3) maximization of utilization while varying both the number of

43

stations and cycle time. All three versions of the optimization problem are NP-hard (Wee

and Magazine).

Assembly lines were originally constructed for mass production of standardized

assembly products, to increase average worker productivity and overall throughput by

leveraging labor specialization along the line (Shtub and Dar-El). Modern assembly lines

designed for make-to-order and mass customization production permit fast and flexible

responses to customer demand (Mather) (Pine), but are associated with significant

automation and facility capital costs. Successful assembly line planning is critical to

engineering a cost-effective production process.

Though extensive research has been—and continues to be—published relating to

sALB, increasingly divergent extensions have been proposed to relax the set of

assumptions for more general environments. Many authors have developed specialized

techniques that conform to specific characteristics of real-world problem instances, and

these extensions collectively outline the general assembly line balancing problem

(gALB). The gALB covers a wide but sparse domain, as there are very many

combinations of problem characteristics that justify research yet few problem extension

approaches amenable to application across multiple domains.

In this chapter a heuristic technique is developed based on the Ranked Positional

Weight algorithm of (Helgeson and Birnie). The new heuristic is called the Modified

Ranked Positional Weight (MRPW), and is designed to solve assembly line balancing

problems encountered with our industrial partner. In section 3.2 the problem

environment is discussed, with emphasis on the types of constraints present. Next, in

44

section 3.3 the classic RPW heuristic is shown in detail. This review is presented to

assist in motivating the algorithmic extensions applied to the RPW heuristic, which is

shown in section 3.4. These extensions permit the MRPW heuristic to respect the

described constraints, allowing production of solutions that are feasible in this domain.

3.2 Problem Environment and Additional Constraints

This section introduces and illustrates the production environment details relevant

to line balancing. Several features of this environment require relaxation of the standard

assumptions of the sALB. In addition to precedence constraints, which are general to all

ALB problems, the environment to be modeled contains a number of other constraint

types. Table 1 provides an overview summary of the features of the problem. The

classification system of (Boysen, Fliedner and Scholl, A Classification of Assembly Line

Balancing Problems) is noted for each feature in the right-most column, to provide

context.

Feature Description Class

Parallel
workers

Up to five workers may be assigned at each station, each with a non-overlapping work area
dynamically determined by the set of tasks assigned �� = ���	
�

Mixed model Intermixed sequences of different models are produced on the assembly line �
 = ���
Grouped tasks Task groups define tasks that must be performed by the same worker, or in the same station �� = ���

Stationary
resources

Tasks that require fixed resources can only be assigned to stations that possess the resource �� = ���
Task
exclusion

Some tasks cannot be assigned to certain stations �� = ����
Table 1: gALB Problem Features Considered

45

The problem is to be solved for an already existing assembly line. There are

several physical characteristics concerning the line, as well as adjoining spaces, that must

be considered. This physical data is collected into the station model, an input to the

gALB that encompasses all constraints resulting from the physical architecture.

The Type 1 objective function is used here, as cycle time is fixed by consumer

demand and not subject to the line balancing process. While holding cycle time constant

the number of stations in the solution is a function of the optimization performance. The

solution should not feature more stations than already exist, as the existing line cannot be

expanded. Given that the line is already functioning, however, we may use the currently

implemented line balance solution as a baseline for potential improvement.

3.2.1 Parallel Workers and Zoning Constraints

In the sALB tasks are assigned to stations, as it is assumed that only one worker

may be present at each station. Here, however, the physical space within each station is

sufficient to allow multiple workers to simultaneously process on a single workpiece in

parallel. Zoning constraints are introduced to prevent interference between parallel

workers in the same station. The physical space that the vehicle occupies on the

conveyor is partitioned into a set Υ of five work zones (WZ): {V (front), R (right), L

(left), H (rear), and I (center)}. Every station will have between zero and five assigned

workers, each of which is responsible for a single WZ. With parallel work tasks must be

assigned to both a station and a WZ in order to ascribe them to a unique worker.

Whereas with the sALB it is permissible to conflate the worker with the station, as each

46

worker is uniquely assigned to a single station, here the permitted conflation is between

workers and their station / WZ pair.

Each task i is encoded with one of nine Product Zones (PZ)

Φ= ���, ��, ��, ��, ��, ��, ��, ��, �� corresponding to location on the vehicle

with which the task interacts, divided into a 9-zone grid. Maps of the WZ and PZ are

shown in Figure 5.

Product Zones

RV RM RH

LV LM LH

MV MM MHV H

L

R

I

Work Zones

Figure 5: Work Zones (WZ) and Product Zones (PZ)

Each of the WZ is initially eligible to cover three or more PZ, as shown in Figure

6. For example, a worker in the V WZ is positioned at the front of the vehicle, putting

the RV, MV, and LV product zones within reach.

V I H

R

L

47

Figure 6: Product Zones Eligible in each Work Zone

While Figure 6 shows all potential matches between PZ and compatible WZ,

some of these pairings cannot be activated simultaneously. To avoid interference

problems between workers, each PZ may only be assigned to one WZ within each station.

For example, while the LV PZ may be assigned to either the L or the V WZ, it may not

be assigned to both within any given station. All tasks that are located in the LV PZ must

be assigned to the same worker, either the L or the V worker. Figure 7 illustrates this

zoning conflict. The lightning bolt flags 1 and 3 show workers attempting to perform

tasks upon the same area of the vehicle.

Figure 7: Zone Conflicts

3.2.2 Accessibility Constraints

Each PZ and WZ at a station may be deemed inaccessible, due to the structural

layout of the station. An inaccessible WZ may not have a worker assigned to the zone.

48

Similarly, an inaccessible PZ at a station indicates that tasks of that PZ may not be

assigned at that station. Physical obstructions such as pillars, robotic machinery, or the

workpiece carrier itself are common causes for inaccessible zone constraints.

3.2.3 Mixed Model

The production environment modeled is notable for providing a large number of

customer configurable options for each vehicle. Each vehicle produced is custom

ordered, and none are made with stock configuration. Further, multiple platforms, also

known as variants, are frequently produced upon the same assembly line. In this

environment it is exceedingly likely that each individual vehicle is uniquely configured.

As a result of this diversity of configuration, some tasks are applicable to only a subset of

vehicles. For example, installing roof rails requires a few tasks to accomplish, yet not all

vehicles have roof rails. For those vehicles without roof rails, these tasks may be skipped

entirely.

In this chapter issues involving vehicle configuration diversity are ignored. The

methods in this chapter enforce the cycle time constraint only in the average sense. That

is, the average time per vehicle, !#̅, is accumulated across all tasks assigned to a worker,

and this must not exceed the cycle time. Configuration diversity may result in individual

vehicles exceeding the cycle time at certain stations. On average, however, that station’s

cycle time will not be exceeded. Chapter 6 presents an approach for calculating worst-

case loading with respect to product diversity, to support implementation of a horizontal

balancing objective.

49

In addition to task time !#, each task also is delivered with an associated volume,

$#, equal to the expected number of vehicles per day that will require execution of the

task. The calculation for !#̅ , then, is given by Eq 1, where $%&' is the total daily

production volume, or daily throughput..

($�	()� !��� ��	 ��	
����� �� !(*
 �. !#̅ = !# ,-,./0 , ∀� ∈ Ι, Eq 1

3.2.4 Task Grouping Constraints

Task grouping constraints refer to sets of tasks that must be completed by the

same worker, or in the same station. Scenarios that might induce these constraints

include, but are not limited to:

1. Upon finishing a task, the worker has a part or tool is in hand, intended for usage

on another task.

2. Some tasks require a followup self-inspection of work performed, which is a

separate task.

3. Part scanning tasks exist to assure that a later installation task uses the correct

part.

Four classes of task grouping constraints are outlined: adjacency, same-takt,

same-station, and not-same-takt.

3.2.5 Adjacency Constraints

Adjacency requires the involved tasks to be performed consecutively by the same

worker. Consider two tasks: task A requires collecting a part from the line-side storage

area, and task B installs that part on the vehicle. Clearly there should be a precedence

50

relationship between these two tasks, to enforce that task A is performed before task B.

An additional concern, however, is that after task A finishes, the worker has the part in

their hands, and therefore is not free to pursue other work. Instead, the worker must

immediately perform task B. For notation, let 	#4&54 = 1 if tasks i and j are together part of

an adjacency group, and 0 otherwise. Adjacency constraints are not necessarily binary

relationships between task pairs. Any number of tasks may be included in a single

adjacency group.

3.2.6 Same-Takt Constraints

A same-takt (worker) constraint requires the involved tasks to be performed by

the same worker, but not necessarily consecutively. Consider the example of self-

inspection. The installation and inspection tasks will have a precedence relationship, of

course. Additionally we require the two tasks to be assigned to the same worker. For

notation, let 	#467 = 1 if tasks i and j are together part of a same-takt group, and 0

otherwise. As with adjacency constraints, same-takt constraints are not necessarily

binary. Any number of tasks may be included in a single same-takt group.

3.2.7 Same-Station Constraints

A same-station constraint requires the involved tasks to be performed on the same

station, but not necessarily by the same worker. Consider the example of headliner

installation. Due to the size of the part, installation requires several workers to hold the

part during the install. Each of these workers is assigned a different task, but all tasks

must be done in tandem. Collectively these tasks must be assigned to the same station.

For notation, let 	#466 = 1 if tasks i and j are together part of a same-station group, and 0

51

otherwise. Same-station constraints are not necessarily binary. Any number of tasks

may be included in a single same-station group.

3.2.8 Multiple Grouping Constraints

Task grouping constraints are transitive, so no task will be part of more than one

group of a given type. For example, if tasks A and B have an adjacency relationship, and

also tasks B and C have an adjacency relationship, then all three tasks are involved with

the same adjacency group. Tasks that are within a group frequently exhibit precedence

relations, as evidenced by the examples above. A general approach does not assume that

precedence exists amongst grouped tasks, however, as shown in Figure 8. Tasks 2 and 3

may be part of a same-takt group (green oval) but are not related by precedence.

Figure 8: Precedence Graph with Groups

Note that all tasks in a same-takt group must also be assigned to the same station,

as workers may only work at a single station. All tasks within a same-takt group with

one another may also be considered to be within a same-station group. Adjacency groups

generalize to same-takt groups using the same logic. Adjacency related tasks, then, may

also be considered to be in a same-takt group together as well as being in a same-station

group together. This motivates the introduction of the term 8# as detailed in Eq 2,

52

representing the group of tasks that are related to task i, after fully extending the domain

of each task relationship.

9 ∈ 8# ��� 	#4&54 = 1, 	#467 = 1, �	 	#466 = 1 Eq 2

See the example in Figure 9. Tasks 4, 5, and 6 are in a same-takt group (green

oval), and tasks 6 and 8 are in an adjacency group together (red oval). Implicitly, then,

task 8 is also included in the same-takt group. The adjacency group, however, does not

expand to include tasks 4 or 5. All four tasks are mutually involved in the same G group.

Figure 9: Overlapping Task Groups

3.2.9 Resource Constraints

Resource constraints involve stations that possess resources (a.k.a. “tooling”) that

are necessary to complete certain tasks, e.g. robotic lift support, pneumatic tooling, or

other stationary resources. There may be one or more of each of these resources

distributed along the line, and any task that interacts with a certain resource is forced to

be assigned to a station that possesses the resource. Portable tools such as electric

screwdrivers, wrenches, and similar are exempted, as these tools may be moved to any

station along the line to support a given line balance solution.

53

Fixed resources generally are located on one side the line or the other, and can

only be used upon the side of the vehicle that is facing it. Many resources have limited

reach that only extends to the proximal side of the vehicle. Some resources might

theoretically be extended for use on the other side of the vehicle, e.g. an AFCS torque

driver, but would require cords or hoses to be drawn across the span of the vehicle in

order to do so. Such behavior is generally forbidden due to mutilation risk. In any case,

resources are typically duplicated on both sides of the line if they are needed on both

sides of the vehicle, at least for all cases witnessed.

With this motivation tool coverage zones (TZ) are defined. As shown in Figure

10, a tool is deemed to cover the six PZ that are on the same side of the vehicle. The tool

may satisfy the resource needs of any task in those PZ that is assigned at the station.

Figure 10: Tool Coverage Zones (TZ)

There is one exception to the TZ pattern. The MM (center) PZ is accessed by

tools by passing through the side doors of the vehicle, or through the back hatch. The

54

MM PZ may not be accessed by passing over the front (V) of the vehicle, however, as

such would require passing over the front hood of the vehicle, inducing mutilation risk.

This is no issue if the vehicle is traversing the line in standard end-to-nose orientation, as

only the vehicle sides are exposed to the line-side tooling. If the vehicle is oriented

sideways on the line, however, then any tool on the line-side in front (V) of the vehicle

may not be used in the MM (center) PZ.

3.3 Ranked Positional Weight

In this section the classic RPW (Helgeson and Birnie) heuristic is summarized, as

a reference to the reader and to motivate certain characteristics of the MRPW heuristic

presented in section 3.4.

Heuristic line balancing methods traditionally make task-to-station assignments

one at a time within an iterative solution process. The iteration traverses both the set of

unassigned tasks and the set of stations searching for a viable match, begetting two

different general approaches to the structure of the iteration depending on which iterative

process is nested inside the other. The station-oriented approach considers one station at

a time, traversing the unassigned task set to identify tasks that may be assigned to the

current station. When the no further tasks are eligible for assignment to the current

station the next station is considered. The task-oriented approach selects tasks one at a

time, and then searches the set of stations for a viable match. This methodology is

referred to as “first fit decreasing” (FFD), as the first fit available is taken, and a

decreasing priority score is used to guide the sequence of tasks chosen for assignment.

55

RWP (Helgeson and Birnie) is a classic sALB solution heuristic using the task-

oriented approach. It solves the Type 1 ALB, with fixed cycle time, minimizing the

number of stations. Let ;# be the set of all tasks that are predecessors to task i, and �# be

the set of all tasks that are successors to task i. The ranked positional weight score (#)
for each task is then calculated by Eq 3.

	# = !# + = !4 Eq 3

4∈>-
i.e. the RPW of a task is its own time plus the sum of all successor task times.

One immediately apparent consequence of this prioritization scheme is that task k will

always be scored higher than task l if k is a predecessor of l, as l ∈ Qk and Qk ⊃ Ql. In

addition, tasks that are unrelated by precedence are scored such that tasks with larger

dependent work times are prioritized.

RPW begins by sorting tasks by # score. Taking tasks one at a time, beginning

with the highest # score, the algorithm checks precedence relationships. If the chosen

task has any predecessors, then they have been assigned already, as predecessors are

guaranteed to have a higher # . The highest station number from all predecessors is

chosen as the starting point for the search (if the task has no predecessors, then station 1

is the starting point). With precedence constraints thus handled, only cycle time

constraints remain to be considered. If the current station can take the task without

exceeding cycle time then the task is assigned there. Else, the next station is considered,

and so on. If no station can take the task then a new station is instantiated at the end of

the line, and the task is assigned there. Figure 11 shows the RPW algorithm.

56

1 Algorithm: Ranked Positional Weight
2 Inputs: Set of tasks, I
3 Precedence
4 Cycle time
5 Output: Line balance solution
6
7 Let @�	�� contain unassigned tasks. Set @�	�� = @
8 Let W contain stations. Set A = �1
9 Let B
 contain the tasks assigned to station k. Set B1 = ∅
10 Calculate 	� ∀� ∈ @ via Equation (1)
11 While @�	�� ≠ ∅
12 Select � = ()�(�9 E	9 F9 ∈ @�	�� G, (the unassigned task with largest 	�)
13 Remove task i from @�	��
14 If ;� = ∅,
 = 1
15 Else
 = �(���|∀9 ∈ ;� : 9 ∈ B�
16 While i unassigned
17 If !JB
 K + !� ≤ �, (sufficient time remaining)
18 B
 = B
 ∪ �, (assign task i to station k)
19 Else,
 =
 + 1 (next station)
20 If
 > |A|
21 A = A ∪
, (induce new station k)
22 Set B
 = ∅

Figure 11: RPW Algorithm

3.4 Modified Ranked Positional Weight Heuristic

In this section a constructive heuristic is presented, called the Modified Ranked

Positional Weight (MRPW) heuristic, that seeks to identify a solution to the gALB

problem with the additional constraints described above. The heuristic presented is an

adaptation of the ranked positional weight (RPW) (Helgeson and Birnie) heuristic. A

review of the traditional RPW is presented in section 3.3.

An important characteristic of RPW is that it ensures that task k will always be

scored higher than task l if k is a predecessor of l, as l ∈ Qk and Qk ⊃ Ql. In addition,

tasks that are unrelated by precedence are scored such that tasks with larger dependent

work times are prioritized. These two characteristics are preserved, with some necessary

extensions, in the MRPW algorithm.

3.4.1 Extension: Grouping Constraints

57

Grouping constraints can link together precedence chains indirectly, suggesting

that the classic RPW score is insufficient to ensure higher prioritization for early tasks in

an indirectly linked precedence chain. The following Eq 4 and Eq 5 define a

responsibility set of tasks that require task i, either directly or indirectly.

First define �O# as the set that contains all tasks that succeed task i or any task

grouped with task i, but not any of the tasks within the group 8# itself.

�O# = P Q �RR∈S-
T \8#

Eq 4

The responsibility set �V# then recursively defines the set of all tasks that are

dependent on task i, either directly by precedence relationships or indirectly by grouping

with tasks that have precedence relationships, and so on.

�V# = P Q �VWW∈>O-
T ∪ 8#

Eq 5

The set 8# is removed from set �O# in Eq 4 to prevent self-referencing recursion in

the definition of Eq 5, as would occur in the case of precedence relationships between

tasks of the same group. Note that �V# contains task i and all tasks in the group 8# ,

enabling calculation of a ranked positional weight score 	#Rthat includes all tasks within

the responsibility set of i, as shown in Eq 6.

	#R = = !44∈>V-
Eq 6

This metric is analogous to combining grouped tasks into single super-tasks, and

as a result all tasks) ∈ 8# will be scored equivalently by #R. Relative scoring to break

58

these ties between in-group tasks can be measured with 	#. Figure 12 shows the growth

of responsibility sets from task groupings.

Figure 12: Group Definition of Responsibility Sets

3.4.2 Extension: Resource Constraints

Let �XY denote the set of resources available at station k in PZ b, �# denote the set

of resources required by task i, and �%&' denote the maximum number of stations

available on the line. Eq 7 is an urgency score that measures the relative importance of

resource res by the last station to possess res on the existing assembly line. For example,

if there are 17 stations and a resource last appears on station 15, then that resource has

Z[\6 = 2.

Z[\6 = �%&' − �(�E
F∀AXY: 	�* ∈ �XYG Eq 7

Given two fixed resources res1 and res2, if the station number of the final

appearance of res1 is less than the final appearance of res2 then res1 will have a higher

urgency score. This scoring reflects the fact that tasks that require res1 have fewer

opportunities to assign their predecessors during a first fit decreasing heuristic. To

59

>

impose prioritization of these predecessors each task i inherits the maximum Z[\6 from

their responsibility set �V#, as shown in Eq 8.

 #[= �(�EZ[\6F∀ �*: �* ∈ ⋃4∈ V-
�4G Eq 8

3.4.3 MRPW Algorithm

The following constructive heuristic algorithm is proposed to modify the ranked

positional weight algorithm from section 3.3 to incorporate the environmental constraints

shown in the earlier sections. The scoring metric # is augmented with two additional

metrics; #R from Equation (4) and #[from Equation (6). These three metrics are

combined in a hierarchy such that #[dominates, followed by #R, and using # only to

break ties. The dominance of #[will be enforced in the algorithm by application of a

BigM multiplier. In the worst case a task i with no successors nor grouping must

compete against task j, for which all tasks other than i and j are successors. Task i

requires a resource that only exists on station k, and the earliest resource needed in the

responsibility set of j is at station k + 1. One unit of urgency scoring must dominate the

cumulative time of all tasks (except i), resulting in Eq 9:

� = = !4
`

4a

Eq 9

The BigM method shown here is developed to permit combining the metrics into

a single composite score.

60

1 Algorithm ModifiedRankedPositionalWeight
2 Inputs:
3 Set of tasks, I
4 Precedence
5 Grouping constraints
6 Resource constraints
7 Cycle time
8 Output: Line balance solution
9
10 Let @b[\\ contain unassigned tasks.
11 Set @b[\\ = @
12 Let W contain stations. Set A = �1
13 Let BX contain the tasks assigned to station k.
14 Set B
 = ∅
15 Calculate 	#∀� ∈ @ via Eq 3
16 Calculate 	#R∀� ∈ @ via Eq 6
17 Calculate 	#[∀� ∈ @ via Eq 8
18
19 Start
20 While @b[\\ ≠ ∅
21 Select � = ()�(�#E�	#[+	#RF� ∈ @b[\\G, (primary criterion)
22 In case of tie, � = ()�(�#�	#|� ∈ B�! �� !��c !(*
* , (secondary criterion)
23 Collect group 8#
24 Remove task in 8# from @b[\\
25 If ;# = ∅, ∀� ∈ 8# ,
 = 1
26 Else
 = �(���|∀9 ∈ ;#: 9 ∈ B%: � ∈ 8#
27 While 8# unassigned
28 If ∃9: e4 = e# , 9 ∈ BXY AND !JBXYK + !fg ≤ � AND �# ∈ �XY
29 BXY = BXY ∪ 8#, (assign group to station k, WZ b)
30 GoTo Start
31 ∀h: BXY ≠ ∅
32 For each b that is compatible with e# (PZ map eligible)
33 If !JBXYK + !# ≤ � AND �# ∈ �XY
34 BXY = BXY ∪ 8# (assign group to BXY)
35 GoTo Start
36 If F∀h: BXY ≠ ∅F ≤ iX%&', ∀h:
37 For each b that is compatible with e# (PZ map eligible)
38 If !JBXYK + !# ≤ � AND �# ∈ �XY
39 BXY = BXY ∪ � (assign group to BXY)
40 GoTo Start
41
 =
 + 1
42 If
 > �%&'
43 �%&' = �%&' + 1
44 BXY = ∅∀h ∈ i (empty station)
45 �XY = ⋃ �44∈j (give all known tooling)

Figure 13: MRPW Algorithm

3.4.4 MRPW Remarks

The algorithm begins by calculating 	#, 	#R, and 	#[for each task i, by application

of Eq 3-Eq 8. In lines 20 and 21, the set of unassigned tasks is sorted, first filtering tasks

by maximum #[. If more than one task is tied in #[, then a maximum #R filter is used to

break the tie. If a tie still remains then a maximum # filter is used to break the tie. In the

61

&

event that there is still a tie, the next task i for assignment is chosen arbitrarily from the

candidates. Next, all tasks that are linked to task i via adjacency, same-takt, or same-

station constraints (#454 = 1, #647 = 1, or #646) are

In lines 23 and 24 find the station at which to begin the search, by considering

precedence. If the task has no predecessors then the station search will begin at station 1.

Else the station search begins at the last station at which a predecessor task is assigned.

On line 26, three conditions are considered for assigning task i. First, if there is a

task j at this station with the same PZ as task i, then the only WZ at this station to which

task i can be assigned is the same WZ to which j is assigned. The second condition

checks whether the WZ that contains j has sufficient capacity to add task i (in the

average-time sense). The third condition checks whether the resource needs of task i are

met at this location. If all of these conditions hold then task i is assigned to this station

and WZ.

Lines 29-31 considers all WZ at this station that are not empty (possess at least

one task). The motivation here is to attempt to add task i to an existing WZ if possible,

rather than open a new WZ. If there exists an already open WZ that can hold task i’s PZ,

and that WZ has sufficient time capacity, and the resource needs of task i are met at this

location, then assign task i to that WZ.

The logic on line 34 considers relaxing the restriction that the WZ be non-empty.

If the count of WZ with tasks assigned has not yet hit the iX%&' limit at this station, then

perhaps a new WZ can be opened to hold task i. The time capacity and resource

satisfaction assignment conditions must again be met here.

62

Line 39 increments to the next station, as a feasible assignment at the current

station was not found. Line 40 checks whether the new station index exceeds the number

of stations given as input. If so, then the new station under consideration will not have

any information regarding resource availability. This is considered a failure mode, as the

task will be assigned to a station beyond the bounds of the given input data. All known

resources are given to the new (dummy) station to ensure that task i can be assigned.

3.5 Last-Fit-Increasing Improvement Heuristic

The MRPW FFD heuristic seeks to pack tasks tightly as far to the beginning of

the assembly line as possible, so that later task assignments may enjoy more freedom of

assignment. The motivation for this strategy is founded in the theory of constraints, as it

is more likely that a late-assigned task finds a feasible assignment location if the

previously-assigned tasks have left more available locations. Efficiency is only a

secondary concern for the MRPW algorithm, as it tends to produce solutions with several

high-utilization workers toward the beginning of the assembly line.

In particular, the MRPW algorithm makes no attempt to consolidate takts after

running to completion. If by some happenstance a worker on station 1 has been assigned

no tasks at all after the first n – 1 assignment steps, and MRPW finds that the final task

may feasibly be assigned to that worker, then the worker will be activated and assigned

the task without consideration of where else the task might go. A superior alternative, in

terms of efficiency, would be to assign this task to any already-activated worker. Since it

is the last task to be assigned, there are no feasibility implications for consolidating, and

clear efficiency implications for not doing so.

63

The Last-Fit-Increasing (LFI) improvement heuristic—so called because it

operates on reverse logic from the First-Fit-Decreasing protocol—is designed to

compensate for MRPW’s disregard for consolidation. The intuition for the LFI approach

is directly derived from the MRPW process. LFI begins by taking an existing feasible

ALB solution, and borrows the RPW task metrics 	# , 	#R , and 	#[and the compositing

function �	#[+	#R developed in section 3.4.3. In contrast to FFD, however, LFI

considers all tasks in increasing order of priority, first selecting task i according to � =
()���#E�	#[+	#RG, with ties broken by � = ()���#�	#|� ∈ B�! �� !��c !(*
* , i.e. the

lowest-priority, last-assigned task during MRPW. The small priority score for this task

indicates that it is maximally free for assignment anywhere on the assembly line, relative

to the other tasks, as e.g. resource and precedence constraints have not inflated its MRPW

metric. This task is a good candidate for pushing as far to the end of the line as possible,

so that it might be far out of the way of other tasks with more demanding constraints.

However, it is entirely plausible that the worker at the end of the assembly line is

currently inactive, in the ALB solution that we are trying to improve. Efficiency would

not benefit from activating a new worker. Instead, the task is moved to the last already-

active worker that can feasibly accept it. Iteration then continues with the next-lowest-

priority task, in terms of MRPW metric. The hope is that some lightly-loaded takts, relics

of the feasibility-oriented MRPW heuristic, might have all of their tasks removed to other

destinations further down the line, thereby improving efficiency by consolidating two

lightly-loaded takts into one. Figure 14 presents an algorithmic view of this logic.

64

Figure 14. Last Fit Increasing Improvement Heuristic

Note that in line 24 the initial station to begin the search, k, is chosen to be the

earliest station at which is found a successor task to one of the tasks in 8#. This is the

farthest that group 8# might go toward the end of the line, lest a precedence constraint is

violated. Recall that whichever successor task is found during this search has already

moved previously in the course of the LFI, as it would have a lower MRPW score.

1 Algorithm LFI_Improve 2 Inputs: 3 Set of tasks, I 4 Precedence 5 Grouping constraints 6 Resource constraints 7 Cycle time 8 Line balance solution 9 Output: Line balance solution 10 11 Let W contain stations. 12 Let B
 contain the tasks assigned to station k. 13 Calculate 	� ∀� ∈ @ 14 Calculate 	�) ∀� ∈ @15 Calculate 	�	 ∀� ∈ @ 16 17 Set @�	�� = @ 18 While @�	�� ≠ ∅ 19 Start 20 Select � = ()���� E�	�	 +	�) F� ∈ @�	�� G21 In case of tie, � = ()�����	�|� ∈ B�! �� !��c !(*
* 22 Collect group 8� 23 Remove tasks in 8� from current assignment and @�	�� 24
 = ���E�F∀� ∈ ;9 : 9 ∈ B� : � ∈ 8�G 25 While 8� unassigned 26 If ∃9: e9 = e� , 9 ∈ B
h AND !�B
h � + !�g ≤ � AND �� ∈ �
h AND 27 B
h = B
h ∪ 8� , Jassign group to station k, WZ bK 28 GoTo Start 29 ∀h: B
h ≠ ∅ 30 For each b that is compatible with e� JPZ map eligibleK 31 If !�B
h � + !� ≤ � AND �� ∈ �
h 32 B
h = B
h ∪ 8� Jassign group to B
hK 33 GoTo Start 34 k = k - 1

65

Station k is examined to determine if active takts can feasibly absorb group 8#. If so, the

tasks are assigned and the loop proceeds to the next task group. If not, then the previous

station will be considered. If no later station is found to which group 8# can move, then

the group will simply be reassigned at their originally assigned station.

3.6 Work Zone Blocking Improvement Heuristic

3.6.1 Motivation

The MRPW algorithm prioritizes task assignment based on precedence and task

groupings through the responsibility set, and also resource and station eligibility through

urgency scoring. One facet of the problem that it does not prioritize, however, is

aggregate zone matching patterns between the set of all PZs on tasks and the compatible

WZs on stations. Instead, MRPW considers one task group at a time, assigning the group

to an already-active WZ if possible, or, failing that, merely arbitrarily opens any new WZ

at the station that is compatible with the task group. Consider the highest priority task

group, which will be the first to be assigned during the MRPW balancing algorithm. At

the time of its assignment, no WZ are active. If all tasks within the group belong to a PZ

which is compatible with more than WZ, then the algorithm picks one of the compatible

WZ according to the arbitrary sequence {V (front), R (right), L (left), H (rear), and I

(center)}. This choice may have repercussions in later task assignments, particularly so if

there are few other tasks that can fit the selected WZ.

Consider the following degenerate example. Suppose the highest priority task

group is comprised of tasks with the LV PZ. The MRPW assigns these tasks to the V

WZ at station 1, and the Rubicon has been crossed. Unfortunately, all other tasks are of

66

the LM PZ, which is not compatible with the V WZ. As consequence, no other tasks can

join the V WZ at station 1, and the associated worker will be greatly underutilized.

Worse, it is possible that this poor choice of WZ results in no feasible solution being

identified. One possible example of such an infeasibility is provided by supposing that

station 1 may have at max one worker, and also has a tool in the L WZ that is unique. All

tasks that need the tool will fail to find it. There are certainly many other ways in which

infeasibilities might arise due to poor WZ choice. The MRPW heuristic attempts to pack

tasks into the beginning of the line for good reason, as doing so retains latent capacity for

subsequent assignment of highly constrained tasks.

The gALB problem specified in section 3.2 typically activates only a fraction of

the WZs available for any solution, at least with respect to the testbed datasets acquired in

conjunction with our industrial partner. Indeed, the WZs are constructed with heavy PZ

overlap specifically to permit flexibility in task assignment, such that product or process

system changes might induce relatively small ensuing changes to the balance. The

intuition for the Work Zone Blocking (WZBlock) heuristic flows from this central

concept, that active WZs only sparsely cover the set of all WZs in a solution. The ALB

problem at hand may be thought of as taking two sequential stages: first, to choose which

WZ are permissible for activation, and afterward to assign the tasks to them.

3.6.2 Work Zone Metrics

In the spirit of leveraging aggregate task PZ to WZ compatibility patterns, two

metrics are introduced that provide insight into the relative quality of activating each WZ.

First, let ����#,%be an indicator variable on whether task i is compatible with WZ m, as

67

shown in Eq 10. The indicator variable is true if and only if task i passes a battery of

constraints. These constraints include:

1. Tooling. If task i requires any tools, then the associated tool coverage zone TZ at

WZ’s station must provide them.

2. Accessibility. This checks both WZ and PZ accessibility. The PZ of task i must

not be blocked at this station, nor may WZ m itself be blocked.

3. Zone overlap. The PZ of task i must be associated with WZ m for possible

assignment, as per the mapping provided in Figure 5.

Moreover, these conditions must be met for all tasks that are grouped with task i

via adjacency, same-takt, or same-station linkages, not just for task i itself. Only if all of

these conditions are met does ����#,% = 1 , suggesting that task i might indeed be

eligible for assignment to WZ m.

����#,% = �1 �� ������), ����**�h���! , AZ !� ;Z �$�	�(�0 ��*� Eq 10

The first WZ metric is a “uniqueness” score, given in Eq 11. The internal term

∑%¢∈£,%¢¤% � ��#,%¢ counts how many other WZ are compatible with a given task i.

This quantity is divided by the total number of other WZ on all stations combined, |�| −

1, and subtracted from 1, yielding the fraction of non-compatible WZs for task i. This

value is then maximized over the set of all i, subject to i being compatible with WZ m.

The final value delivered, ¥��¦§���**%, is a measure of the maximum degree to which

WZ m is needed by any task, normalized on the [0,1] scale. A measure of 0 uniqueness

indicates that WZ m is not particularly important to any task, as any task that is

compatible with m is also compatible with every other WZ. On the other hand, a measure

68

of 1 uniqueness indicates that there exists some task for which WZ m is the only possible

assignment.

¥��¦§���**%∈£ = �(�#∈¨ ©1 − ∑ ����#,%¢%¢∈£,%¢¤%|�| − 1 ª����#,% = 1« Eq 11

The second WZ metric is the “flexibility” score, give in Eq 12. ¬����h���! % is

simply the proportion of tasks that may be assigned at WZ m. A measure of 1 flexibility

indicates that the WZ is compatible with every task. Zero flexibility indicates that the

WZ is compatible with no tasks.

¬����h���! %∈£ = ∑ ����#,%#∈¨ |@| Eq 12

Both the flexibility and uniqueness metrics provide insight into the relative

usefulness and importance of each WZ. Additionally, both metrics are normalized to the

scale [0,1]. To support the forthcoming WZBlock heuristic, the two metrics are simply

added together to create a single composite score for each WZ, as shown in the algorithm

summary of

Figure 15.

69

Figure 15. Work Zone Scoring Metric Computation

3.6.3 WZBlock Heuristic Algorithm

The WZBlock algorithm proceeds by iteratively blocking work zones from usage,

by simulating accessibility constraints additional to any that may be in the original

problem data. Recall, accessibility constraints prevent assignment of any task to the WZ.

The approach aspires to identify and forbid the WZs that, if chosen for activation, are

most likely to cause infeasibilities or sub-optimality in the objective function. The sum

of the flexibility and uniqueness metrics presented in section 3.6.2 is used to discriminate

between WZs. The algorithm shown in Figure 16 details the procedure.

1 Algorithm WorkZoneScoring
2 Inputs:
3 TVGxMABR, 2-D array containing Comp_im compatibility indicators
4 numTVGs, the number of tasks
5 numMaBrTotal, the number of work zones on all stations
6 Output: scores, 1-D array scoring each WZ
7
8 For each task i
9 iCount = Sum(TVGxMABR(i,*)) - 1
10 For each WZ m
11 If TVGxMABR(i, m) = True Then
12 scores(m) = Max(scores(m), 1 – iCount/(numMaBrTotal - 1))
13
14 For each WZ m
15 kCount = Sum(TVGxMABR(*,m))
16 scores(m) = scores(m) + kCount / numTVGs)
17
18 Return scores

70

Figure 16. Work Zone Blocking Improvement Heuristic

1 Algorithm WZBlock
2 Inputs:
3 LBinit, the solution to be improved
4 TVGModel, the batch of all task information
5 StationModel, the batch of all station information
6 maxIter, the heuristic iteration cap
7 Output: Line balance solution
8
9 Variables:
10 NumRows, the number of tasks
11 NumCols, the number of work zones on all stations
12 TVGxMABR, a 2-D array of size NumRows x NumCols
13 mabrBlocks, a 1-D array of size NumCols
14
15 Save LBinit in LBbest
16 TVGxMABR(*, *) = False
17 For each Task i
18 Group all tasks assignment-linked with Task i
19 For each Station j
20 If Group passes Tooling, Accessibility at Station j
21 For each WZ k at Station j
22 If Group passes Zone Compatibility at WZ k
23 TVGxMABR(i, k) = True
24
25 mabrBlocks(*) = False
26 iter = 0
27 While iter < maxIter
28 Call WorkZoneScoring(TVGxMABR)
29 If no score is positive, end algorithm
30 Select WZ k with the smallest positive score
31 mabrBlocks(k) = True
32 TVGxMABR(*, k) = False
33 Call ModifiedRankedPositionalWeight, WZ k blocked
34 Save solution in LBtest
35 If LBtest is feasible
36 Call LFI_Improve
37 If LBbest is feasible
38 If LBtest.Util > LBbest.Util
39 Save LBtest in LBbest
40 Else
41 Save LBtest in LBbest
42 ElseIf LBtest.NumDummy < LBbest.NumDummy
43 Save LBtest in LBbest
44 ElseIf LBtest.NumDummy = LBbest.NumDummy
45 If LBtest.Util > LBbest.Util
46 Save LBtest in LBbest
47 iter = iter + 1
48 Loop
49
50 Return LBbest

71

The variable LBbest retains the best solution found through the course of the

algorithm. An initialization phase prepares the TVGxMABR matrix, which retains the

compatibility indicator variables � ��#,% in Eq 10. Next, an iteration loop begins.

During each iteration, the WZ with the smallest positive ¬����h���! + ¥��¦§���**

score is chosen, and that WZ is blocked so that it may not be activated. Recall, the WZ

metrics are constructed such that higher values indicate relatively higher value to a

potential ALB solution, so the lowest values are targeted for exclusion. For redundancy

purposes, composite scores of zero are not targeted, as a zero flexibility implies that no

task can be assigned to the WZ regardless. The MRPW heuristic is then applied with the

targeted WZ blocked from activation, followed by the LFI_Improve heuristic. The

forthcoming solution retained if it is an improvement upon the best-yet-found solution,

whereupon the WZBlock algorithm considers the WZ to block for the next iteration.

Looping continues until the iteration count exceeds a user-defined maxIter

hyperparameter, or no WZs are identified for potential blockage.

Note that the best-yet-found solution retained in LBbest might not be feasible.

Infeasible solutions contain “dummy” stations, simulated stations with every tool from

the entire line, appended to the end of the assembly line for harboring the tasks that could

not otherwise be assigned to any station. Lines 35-46 perform a series of checks on the

new ALB solution to determine whether it is superior to the incumbent solution. These

checks prefer feasible solutions over infeasible ones, using utilization (efficiency) as a

tie-breaker. Table 2 presents the four possible scenarios, and corresponding action.

72

LBtest LBbest ACTION

FEASIBLE FEASIBLE Retain higher utilization
FEASIBLE INFEASIBLE Retain LBtest
INFEASIBLE FEASIBLE Retain LBbest
INFEASIBLE INFEASIBLE Retain fewest dummy stations. If tied, retain higher utilization

Table 2. Criteria for Retention of Best-yet Solution

3.7 Conclusion

In this chapter the MRPW constructive heuristic is presented for the gALB

problem described. Concepts from classic RPW have been extended to manage the

features of the production environment in question. These features include zoning

constraints, task groupings, and resource constraints. A task-oriented approach was

selected to permit the heuristic to establish work areas for each station dynamically as

needed to support a prioritized list of tasks. Due to the large number of constraints

present that might prohibit assignment of tasks, several scoring metrics are introduced

that prioritize tasks that have difficult satisfaction requirements. The prioritization

scheme selects first tasks that require—or support successor tasks that require—

stationary resources on the assembly line.

Two improvement heuristics are developed in conjunction with the MRPW

constructive heuristic. The first, LFI, leverages the task prioritization metrics from

MRPW to consolidate tasks and remove lightly loaded takts, thereby improving the

efficiency of the ALB solution. The second improvement heuristic, considers the

bifurcated problem of first selecting work zones, then assigning tasks. Two new work

zone scoring metrics are developed, oriented towards superior selection of the work

zones available for activation.

73

All heuristic methods have been coded, and a prototype delivered to our industrial

partner as of December 2013. An algorithmic flow overview of this prototype is shown

in Figure 17, detailed in Appendix 0. Between Spring 2014 and Summer 2015 three line

balancing pilots have been launched to investigate using the prototype. Several other

potential constraint classes have emerged during these discussions. An “eligible station”

constraint is defined as a subset of stations to which a task may be assigned. It is similar

to tooling constraints in spirit and in algorithmic interpretation, but without any physical

resources or tooling coverage zones.

Another new constraint type is concerns assembly lines with more than one

derivative. An additional capacity constraint is added to ensure that the average time for

each derivative does not exceed the cycle time.

74

Figure 17: Heuristic Architecture

75

CHAPTER FOUR

4 INTEGER PROGRAMMING MODEL

In this chapter an binary integer progamming (BIP) formulation is presented that

models the gALB problem introduc ed in sec tion 2.1.1, and solved with heuristic s in

chapter 3. In section 4.1 notation is introduced for the sets and input parameters for the

problem. As discussed in section 4.2, many of these input parameters are preprocessed

before execution of the IP, to save run time for the solver. Section 4.3 presents the IP

formulation in three parts: dec ision variables, objec tive func tion, and constraints.

Finally, section 4.4 discusses postprocessing feasibility verification, and poses a strategy

for managing a type of precendence violation not handled by the IP constraints.

4.1 Sets and Input Parameters

Table 3 presents five sets over whic h the parameters and variables in the

formulation are indexed, and the indexing variable typically used when quantifying over

each set. Table 4 presents all input parameters for each problem instance. Preprocessing

ac tivities take some of the input parameters and c ompute transformed representations

used in the formulation. Outputs from the preprocessing routine are shown in Table 5.

SYMBOL DESCRIPTION INDEX

­ *�! �� (�� !(*
* �1, … , � �, 9¯ *�! �� (�� *!(!���*�1, … , �
° *�! �� (�� ��	
 e���* ��, �, �, �, @, ; �± *�! �� (�� �	�c§�! e���* ���, ��, ��, ��, ��, ��, ��, ��, �� �² *�! �� (�� !���* �1, … , !
Table 3: IP Problem Sets

76

SYMBOL DESCRIPTION ³ � ��� time (sec) ´µ ���� �� !(*
 � (sec) ¶µ ;Z �� !(*
 � ·µ ���§�� �� !(*
 �, �����!�c ��§�! �� ¸¹[Xº#\�\65&» that require task i ·¼½¾ ¿(�� �	�c§�!��� $��§��, !�!(� ÀµÁ �	���c���� 	��(!��� �� !(*
* � and j = �1 �� !(*
 9 �§*! �	���c� !(*
 �0 ��*�ÂµÁ½ÃÁ (c9(���� 	��(!��� �� !(*
* � and j = �1 �� !(*
 � (�c !(*
 9 (� (c9(���� 	��(!�c0 ��*�ÂµÁÄÅ *(��-!(
! 	��(!��� �� !(*
* � and j = �1 �� !(*
 � (�c !(*
 9 (� *(��-!(
! 	��(!�c0 ��*�ÂµÁÄÄ *(��-*!(!��� 	��(!��� �� !(*
* � and j = �1 �� !(*
 � (�c !(*
 9 (� *(��-*!(!��� 	��(!�c0 ��*�ÂµÁÆÅ ��!-*(��-!(
! 	��(!��� �� !(*
* � and j = �1 �� !(*
 � (�c !(*
 9 (� ��!-*(��-!(
! 	��(!�c0 ��*�ÂµÅÅÇÇÈ !��� 	�¦§�	����! = �1 �� !(*
 � 	�¦§�	�* !��� !0 ��*�ÄÉ¼Ê AZ (���**�h���! = �1 �� AZ � �* (���**�h�� �� *!(!���
0 ��*�ÄÉÀË ;Z (���**�h���! = �1 �� ;Z � �* (���**�h�� �� *!(!���
0 ��*�ÄÉ¼½¾ �(���§� �§�h�	 �� ��	
�	* !ℎ(! �(h� (**�)��c !� *!(!���

Table 4: Problem Input Parameters

SYMBOL DESCRIPTION Å̅µ �$�	()� !��� ��	 ��	
����� �� !(*
 �. !#̅ = �# �#�%&' , ∀� ∈ Ι ÍÉÀÅÎ ���� ��$�	()� e��� �Xº7� = �1 �� *!(!���
 ℎ(* !��� ! ��$�	��) ;Z �0 ��*�ÏÉ¼À AZ !� ;Z e����) ����(!�h���! iX%º = �1 �� AZ � �(� ���!(�� ;Z � (! *!(!���
0 ��*�ÐµÁ ������ e��� !(*
. �#4 = ©1 �� Ñ# = Ñ4 0 ��� , ∀�, 9 ∈ Ι
Table 5. Problem Parameters Derived During Preprocessing

4.2 Preprocessing

Each WZ at each station lists the set of tooling resources that are provided at that

location. The vehicle orientation determines which way the vehicle has been rotated

upon the conveyor belt. Orientation information for each station is also given by input

data. The WZ are fixed relative to the conveyor belt, and therefore do not change

location if the vehicle orientation is rotated. The PZ covered by each WZ, however, are

changed, as well as the tool coverage zones. There are 8 vehicle orientations possible,

shown in Table 6.

77

ORIENTATION DESCRIPTION

V-N Front-leading
V-I Front-leading, inverted. Left & right are flipped, as if upside-down
H-N Rear-leading
H-I Rear-leading, inverted
L-N Left-leading
L-I Left-leading, inverted. Front & rear flipped, as if upside-down
R-N Right-leading
R-I Right-leading, inverted.

Table 6. Vehicle Orientation Options

We can now derive parameters for tool coverage and zoning compatibility.

�Xº7� = Tool Coverage = �1 �� *!(!���
 ℎ(* !��� ! ��$�	��) ;Z �0 ��*�
iX%º = Zoning compatibility = �1 �� AZ � ���!(��* ;Z � (! *!(!���
0 ��*�
These preprocessing parameters are found with the following method.

Considering each station / WZ pair, select the greek code letter in Table 7, by indexing

with the orientation at this station and the WZ. The greek code letter indicates the

direction that the WZ is facing given the current orientation. Find the table matching the

greek letter code in the set Table 8 through Table 12. There are three matrices shown for

each code. The first matrix shows the PZ names, some of which are shaded. The dark

gray PZ are eligible for mapping to the WZ; this information is duplicated in the second

matrix. Both the light and dark gray PZ together define the tooling coverage zone for any

tool that exists in the WZ; this information is duplicated in the third matrix.

ORIENTATION L R V H I

V-N Α β Γ δ ε
V-I Β α γ δ ε
H-N Β α δ γ ε
H-I Α β δ γ ε
L-N Δ γ α β ε
L-I Γ δ α β ε
R-N Γ δ β α ε
R-I Δ γ β α ε

Table 7. WZ to Orientation Code Letters

78

LH LM LV 1 1 1 1 1 1

MH MM MV 1 1 1 0 0 0

RH RM RV 0 0 0 0 0 0

Table 8. Code α: WZ / PZ Map and Tool Coverage Zone

LH LM LV 0 0 0 0 0 0

MH MM MV 1 1 1 0 0 0

RH RM RV 1 1 1 1 1 1

Table 9. Code β: WZ / PZ Map and Tool Coverage Zone

LH LM LV 0 1 1 0 0 1

MH MM MV 0 0 1 0 0 1

RH RM RV 0 1 1 0 0 1

Table 10: Code γ: WZ / PZ Map and Tool Coverage Zone

LH LM LV 1 1 0 1 0 0

MH MM MV 1 1 0 1 0 0

RH RM RV 1 1 0 1 0 0

Table 11: Code δ: WZ / PZ Map and Tool Coverage Zone

LH LM LV 0 1 0 0 1 0

MH MM MV 1 1 0 1 1 0

RH RM RV 0 1 0 0 1 0

Table 12. Code ε: WZ / PZ Map and Tool Coverage Zone

The following is an example to illustrate the orientation logic. Tasks require

interaction with fixed points on the vehicle, regardless of orientation. Each task has a PZ,

79

as well as resource needs. Assume that at some station the orientation is R-N, i.e. the

right side of vehicle leads. There is a tool located in the L WZ, i.e. on the left side of the

line relative to production flow. Which PZ can be assigned to the L WZ on the vehicle?

Which PZ can be serviced by the tool in the L WZ? See Figure 18 for a visual of this

example. The red-shaded area is the tool coverage zone of the L WZ tool.

Figure 18: Orientation Example, R Leading

Looking in Table 7 above, we find the greek code letter γ. Looking in Table 10

for code γ, we see that the LV, MV, and RV PZ map to this (L) WZ. The tool covers PZ

LV, MV, RV, LM, and RM. MM is not included in the tool coverage zone due to the

mutilation risk of crossing over the hood of the vehicle to access the vehicle cabin.

80

4.3 IP MODEL

4.3.1 Decision variables

�#X% = �1 �� !(*
�* (**�)��c !� *!(!���
 (�c AZ �0 ��*�
 X% = �1 �� AZ � (! *!(!���
 �* (�!�$�0 ��*�

4.3.2 Objective

Two options are available for objective function. The first one, e
 , simply

minimizes the number of open WZ, i.e. the number of workers. This is the classic

objective for fixed cycle time ALB problems, modified only to conflate WZ (instead of

stations) with workers.

������e� e
 = = = X%%∈ÒX∈Ó
The second objective function, eÔ, seeks to maximize the sum of squares of each

worker’s task load, where the task load for a worker is simply the summed average time

for all tasks assigned to the worker. Optimal solutions with this objective will favor

dividing the workers into 2 camps: heavily loaded and lightly loaded. As tasks are

moved off of lightly loaded workers and into heavier loaded ones, this objective

improves. Consider a solution with worker A and worker B both loaded to 80% of

capacity. Suppose further that a task can be moved from A to B such that the loadings

are now 60% and 100%, respectively. This objective function favors the imbalanced

alternative, as 80Ô + 80Ô < 60Ô + 100Ô.

�(����e� eÔ = = = Ö= �#X%#∈× !#̅ØÔ
%∈ÒX∈Ó

81

The motivation for the eÔ, objective is to bias a search toward solutions with some

lightly loaded workers, as these solutions may be ‘close’ to solutions where those same

workers are empty, having all of their tasks moved elsewhere. In this parlance, ‘close’

solutions are similar across many decision variables, differing in only a few. Intuitively,

if a search has found a solution with, say, 17 workers, and is working to find a superior

solution with 16 workers, then it might be beneficial to search through solutions that are

‘close’ to 16, as these would more quickly lead to 16.

Such is the argument for using eÔ, but unfortunately the objective is nonlinear, as

it squares a decision variable. This IP is linear in all other respects, however. Perhaps for

some heuristics or metaheuristics this objective would yield superior performance.

Limited testing has shown a drastic performance penalty for using eÔ instead of e
 ,

presumably due to the necessity of using nonlinear solver packages instead of only linear

ones.

4.3.3 Constraints

Table 13 presents formulas for all constraints in the IP. The left-most ID column

is referenced in subsequent text to provide description for the mechanics of each

constraint.

82

ID Constraint Formula Quantification

C1 = = �#X%%∈ÒX∈Ó
= 1 ∀� ∈ Ι

C2 = �#X%!#̅#∈×
≤ X%� ∀
 ∈ Κ, � ∈ Μ

C3 = X%%∈Ò
≤ *X%&' ∀
 ∈ Κ

C4 = = �4X%%∈Ò
|X|

Xa,Û

≤ 1 − = = �#X%%∈Ò

,
Xa

∀$ = 1 … |
| − 1, if �#4 = 1
C5 �#X% = �4X% ∀�, 9 ∈ Ι,
 ∈ Κ, � ∈ Μ, �� 	#4&54 = 1 �	 	#467 = 1

C7 = �#X%%∈Ò
= = �4X%%∈Ò

∀�, 9 ∈ Ι,
 ∈ Κ, �� 	#466 = 1
C8 = �ÜX%Ü∈ÝÞßàáâ

≤ 1 ∀
 ∈ Κ, � ∈ Μ, ���¦§� *. !. (�� � ℎ($� 	#4̀7 = 1
C9 �#7ã Ö = �#X%%∈Ò

Ø ≤ �X,Y-,7� ∀� ∈ Ι,
 ∈ Κ, ! ∈ Τ

C10 �#X% = 0 ∀� ∈ Ι,
 ∈ Κ, � ∈ Μ, �� �X%% = 0
C11 = �#X%%∈Ò

= 0 ∀� ∈ Ι,
 ∈ Κ, �� �X,Y-º = 0
C12 �#X% = 0 ∀� ∈ Ι,
 ∈ Κ, � ∈ Μ, *. !. iX%,Y- = 0
C13 �#X% + = �4X%¢

%¢∈Ò\%
≤ 1

∀�, 9 ∈ Ι,
 ∈ Κ, � ∈ Μ, �� �#,4 = 1�#X%å�0,1 ∀� ∈ Ι,
 ∈ Κ, � ∈ Μ X%å�0,1
 ∈ Κ, � ∈ Μ

Table 13. IP Constraints

(C1) Every task must be assigned to exactly one station and worker.

(C2) The average workload assigned to each worker cannot exceed the cycle time.

No tasks may be assigned to a worker at a particular WZ and station unless the

corresponding y variable is set to 1.

(C3) The maximum number of workers at station k is bounded by *X%&'.

 (C4) Enforces precedence constraints. This constraint only applies if task j must

precede task i. Consider any station v, except for the last station on the assembly line. If

83

task i is assigned to any station between 1 and v, then task j cannot be assigned to any

station after v. Note that this constraint only considers precedence constraints at the

station level, and does not consider task sequencing within each station. See section 4.4

for resolution of sequencing related precedence issues.

(C5) Enforces adjacency and same-takt constraints. If either of these relationship

exists between tasks i and j then �#X% must be equal to �4X%. If �#X%and �4X%differ then

�#X% − �4X%will be 1 for some choice of k and m.

(C7) Enforces same-station constraints. The argument presented in C5 is used

here, except WZs are aggregated over rather than quantified, as individual WZs need not

be examined for same-station constraints.

(C8) Enforces not-same-takt constraints. This is a clique inequality, enforced

only for cliques defined by each not-same-takt group. If there is a not-same-takt

relationship between any tasks i and j, then they form a clique, and �#X% and �4X% cannot

be assigned to any matching station and WZ.

(C9) Enforces tooling constraints. If task i is assigned to station k and requires

tool t, then tool t must exist at station k and cover the PZ of task i. See preprocessing

arguments in section 4.2 for derivation of the Q parameters.

(C10) Enforces WZ accessibility constraints. If a WZ is not accessible at some

station, then no tasks may assigned there.

(C11) Enforces PZ accessibility constraints. If a PZ is not accessible at some

station, then no task with that PZ may be assigned at the station.

84

(C12) Enforces zoning compatibility. Tasks may only be assigned a WZ at some

station if the PZ of the task is compatible with that WZ. See preprocessing arguments in

section 4.2 for derivation of the B parameter.

(C13) Enforces zone overlap constraints. This constraint considers all task pairs i

and j that share the same PZ, by consulting the preprocessing parameter �#4 = 1 ,

established using the equation �#4 = ©1 �� Ñ# = Ñ4 0 ��*� , ∀�, 9 ∈ Ι . If i and j are further

assigned to the same station, and task i is assigned to WZ m, then task j must also be

assigned to WZ m. This is accomplished by restricting j from assignment to any other

WZ that is not m. This constraint prevents workers from interfering with one another.

Without this constraint it would be possible for two workers to simultaneously attempt

tasks within the same PZ.

4.4 Postprocessing: Iterative Precedence Verification

The precedence constraint in the IP is ∑ ∑ �4X%%∈Ò|X|Xa,Û
 ≤ 1 −
∑ ∑ �#X%%∈Ò,Xa
 , ∀$ = 1 … |
| − 1, s. t. �#4 = 1 . This constraint prevents predecessor

tasks from being assigned to later stations than their successors. It does not, however,

prevent potential precedence violations within a single station. Consider an example

where there are two workers at one station, and there is a precedence relationship

between a task pair i, j that is split between the workers. If task j is the predecessor, then

it must be completed by one worker before the other worker can begin their task i.

Depending on the task sequences used by the two workers, it may not be possible for task

j to be completed early enough in the cycle time. The IP does not consider task

85

sequencing, so an infeasibility of this kind may be present in the solution produced by the

IP.

It is possible to extend the IP to manage task sequencing, and thereby prevent

such infeasibilities, but at the cost of introducing a new set of decision variables related to

sequencing. Instead, the IP solution is checked in post-processing to determine whether

any cross-WZ precedence violations exist. If found, then the IP is re-run, introducing a

new diversification constraint that prohibits the exact solution found in the prior run. The

constraint is formulated as ∑ �#X%æ < �, where the �#X%æ are chosen as the assignment

solutions from the previous, infeasible run. In the prior run all of these x decision

variables were equal to one, and their sum was n. This constraint restricts at least one of

this set of decision variables to zero, and thereby the new solution will be different from

the old one. The IP is iteratively run until a solution is produced that does not evidence

cross-WZ precedence violations. In the case of multiple iterations, all diversification

constraints from prior runs are retained, to prohibit any of the earlier solutions.

The test datasets available did not evidence any cross-WZ precedence violations.

Likely this is due to the propensity of precedence relationships to exist between tasks of

the same PZ within these datasets. These precedence features preempt the potential

violation, since tasks with the same PZ cannot be assigned to different WZ within the

same station. It is likely, however, that other datasets with different precedence features

will run afoul of the violation. For a hypothetical dataset with many precedence

relationships crossing over zoning boundaries, it may be less costly overall to adopt the

necessary IP extensions to manage task sequencing within a single larger IP execution,

86

rather than a series of smaller IP executions. It would be very interesting to research the

relative cost/benefit of such an extension. There is perhaps some means of measuring

precedence zoning complexity for a dataset, in purpose of determining whether or not to

explicitly model task sequencing within the IP.

87

CHAPTER FIVE

5 APPLICATION OF SOLUTION METHODOLOGIES

This chapter describes a computational experiment aimed at developing

performance benchmarks for both the heuristic methods established in chapter 3 and the

IP formulation established in chapter 4. For the latter, solver time requirements are the

criteria of interest, and the scaling of this time as a function of problem size. The primary

criteria of interest for the heuristics methods is the quality of generated solutions, as

measured by optimality gap.

5.1 Experimental Configuration

To execute the experiment, the IP and two heuristic methods are each individually

applied to a suite of testbed problem instances. Section 5.1.1 discusses the construction

of the test data sets. In section 5.1.2, the run-time configuration and hyperparameters are

shown for each solution method.

5.1.1 Test Data Sets

The ALB literature provides no testbed data sets that exhibit all constraints

modeled by the methods in chapters 3 and 4. There are, however, three sets of test data

collected during the development of these methods, in conjunction with our industrial

partner. The three data sets are labeled “Band 1”, “Band 26”, and ”Band 30.” Table 14

summarizes some properties of each of these initial data sets.

DATA SET #STATIONS #TASKS #UNIQUE TOOLS BAND 1 13 396 12
BAND 26 9 317 12
BAND 30 10 300 3

Table 14. Test Data Set Properties

88

These three initial data sets form the testbed basis of the experiment. In addition,

an array of ALB sub-problems are appended, each of which is formed as a subset of one

of the initial sets. Consider an ALB instance called ��iç with �ç stations, and a

corresponding solution *��ç assigning all �ç tasks. A new ALB sub-problem ��i
 may

be formed by isolating any subset of �
 = �ç − h stations from ��iç, where 0 < h <
�ç and integer b, and all �
tasks assigned to those stations by *��ç. ��i
 may then be

re-solved as a separate instance. It cannot be assumed that the isolated portion of solution

*��ç is optimal for the partition ��i
.

To map tasks to stations within the sub-problems, *��ç is taken from the manually

created line balance solution in use by our industrial partner during data collection. Any

feasible ALB solution could be used for sub-problem creation. The manually created

solution is chosen as it exhibits some tendencies towards vertical smoothing objectives.

The manual solution is not optimally vertically balanced, of course, but effort is made to

establish relatively equal average task load for each worker. In contrast, the solutions

generated by the heuristics and IP in chapters 3 and 4 are generated according to

efficiency objectives only, and may show poor vertical smoothing. In the worst-case, a

solution generated with the algorithmic methods may assign tasks such that all workers

are maximally utilized with zero idle time, except for one worker who is only lightly

loaded. There are implications to using a *��ç with poor vertical properties during the

sub-problem partitioning process. Idle time within ALB problems corresponds to degrees

of freedom for task assignment, i.e. the size of the solution space. If all workers within a

89

%

particular partition are maximally loaded with tasks, then a sub-problem generated from

that partition will have few degrees of freedom.

All sub-problems created from the initial three data sets have three or more

stations. This minimum problem size is chosen to prohibit inclusion of relatively trivial

1- or 2-station problem instances in the experiment. Additionally, sub-problem partitions

are formed only from adjacent stations. Using only these two limiting constraints, an

ALB sub-problem is created for every possible partition of the initial data sets. Figure 19

presents the concept graphically. Let a J��, �K pair represent each partition, where �� is

the number of stations in the partition, and � is the sequence ID number of the partition.

The first three stations and all assigned tasks are designated as sub-problem J3,1K .

Stations 2, 3, and 4 are partitioned into sub-problem J3,2K , and so on. A total of

∑#a� �J� − � + 1K sub-problems are created for each initial dataset, where � is the

number of stations in the dataset. Note that the full-sized (non-partitioned) initial

problem is included in this accounting, totaling 130 datasets.

Figure 19. Sub-problem Partitioning Pattern

4 … 1 2 3 m - 1 m

(3, 1)

(3, 2)

(4, 1)

90

Three potentially significant factors influencing performance outcomes are

tracked among the generated population of datasets: counts of stations, tasks, and unique

tools (i.e. number of discrete types of tools on the line, regardless of multiples.) Figure

20 displays the values for these three parameters across all datasets. Note that station and

task counts track very closely together, with a 0.965 correlation coefficient. The average

number of tasks per station is 31.1. The count of unique tools is relatively loosely

associated with the other factors. Between task and tool counts the correlation coefficient

0.647, and 0.663 between station and tool counts.

Figure 20. Relative Task, Station, and Tool Counts

5.1.2 Method Parameters

5.1.2.1 Integer Program

The IP solutions for each sub-problem ALB instance were executed on the Linux-

based Palmetto Cluster at Clemson University. The IP formulation is modeled in AMPL,

and run using the Gurobi 5.0 Linux 64 solver. For each problem instance 8 processors

and 120gb of RAM are allocated.

0

50

100

150

200

250

300

350

400

450

0

2

4

6

8

10

12

14

T
a

sk
 C

o
u

n
t

S
ta

ti
o

n
 /

 T
o

o
l

C
o

u
n

t

Feature Counts

#Stations #Tools #Tasks

91

5.1.2.2 Heuristics

Two heuristics are applied to each ALB sub-problem. The first is the MRPW

constructive heuristic discussed in section 3.4, with the LFI improvement heuristic from

section 3.5 subsequently applied if a feasible solution is found. This combination of

heuristics is called H1 in the experiment. The second, called H2 in the experiment, is the

work zone blocking improvement heuristic, as discussed in section 3.6. The output of

the H1 heuristics is used as an input to the substation blocking improvement heuristic, so

the objective function found by H2 should always be at least as good as that found by H1.

The maximum iteration hyperparameter for substation blocking is set to 10.

All heuristics were implemented in VBA, and executed on a 64-bit Windows PC

with 2.40GHz processor and 2GB RAM.

5.2 Results

The totality of experimental data is shown in Table 17, Table 18, Table 19, and

Table 20. All ALB problem instances were either successfully solved or found infeasible

by each of the solution methods.

5.2.1 Feasibility

Note that not all of the problem instances are feasible for all methods, as

summarized in Table 15. IP feasibility is a particular concern, as this indicates that there

is truly no solution to the problem instance. The instances were generated by

consultation with actual line balance solutions, as discussed in section 5.1.1. As there

existed an implemented balance upon the real assembly line for these instances, it is

surprising to find that there is no solution to the IP formulation.

92

Closer inspection of the original, manually-created solutions used by the

infeasible instances reveals the cause of this phenomenon. In each case, the original line

balance evidenced violations of the zoning constraints embedded in the algorithmic

methods. In several cases, the PZ of tasks associated with a single worker would span

across zoning boundaries associated with any single WZ. The algorithmic methods

would necessarily consider such a solution to be infeasible. In practical application upon

the line, however, these violations were tolerated. This phenomenon suggests potential

future work for generalizing the constraint set, perhaps by implementation of a penalty

function to discourage, but not disallow, these constraint violations.

IP feasibility Heuristic 1 feasibility Heuristic 2 feasibility

Station
Count

Instances Count Percent Count Percent Count Percent

3 26 24 92.3% 22 84.6%
22 84.6%

4 23 21 91.3% 17 73.9%
17 73.9%

5 20 19 95.0% 14 70.0%
14 70.0%

6 17 17 100.0% 13 76.5%
13 76.5%

7 14 14 100.0% 11 78.6%
11 78.6%

8 11 11 100.0% 9 81.8%
9 81.8%

9 8 8 100.0% 7 87.5%
7 87.5%

10 5 5 100.0% 5 100.0%
5 100.0%

11 3 3 100.0% 3 100.0%
3 100.0%

12 2 2 100.0% 2 100.0%
2 100.0%

13 1 1 100.0% 1 100.0%
1 100.0%

Table 15. Solution Feasibility

Overall only 5 of the 130 instances resulted in IP infeasibility, or 3.8%. All 5 of

these instances were found in smaller problem instances with 3-5 stations, and all on data

from Band 26. Interestingly, all of these infeasibilities disappear in the larger Band 26

problem instances, of which the small infeasible instances are a subset. As a general rule,

larger problem instances offer more degrees of freedom for the movement of tasks. It

93

appears that problems encountered in the infeasible instances were able to be assuaged by

addition of an extra station or two, providing more space over which tasks can mingle,

despite also bringing in a fresh set of new tasks.

The heuristic methods failed to find a feasible solution for 26 out of 130, or 20%

of problem instances. Further, both H1 and H2 are infeasible for the same problem

instances. The zone blocking heuristic was unable to resolve the infeasibilities of any H1

solution, unfortunately. Considering only the 125 instances for which a feasible solution

is possible, as evidenced by a feasible IP solution, the heuristic methods were successful

in finding a feasible solution for 83.2% of them. Of the 26 heuristic-infeasible instances,

24 of them are sourced in Band 26 data, and 2 are from Band 1.

5.2.2 IP Runtime

The average time to execute the IP model was 3.095 seconds, aggregated across

all 130 datasets. Figure 21-Figure 23 display IP runtime presented against one factor

each, using task, tool, and station count, respectively. Regression lines are plotted on

each graph, using a degree-2 polynomial fit and an intercept of zero. Both task and

station count display relatively good fit, with R2 values of 0.815 and 0.871, respectively.

Tooling count did not trend as strongly with IP solution time, delivering a R2 value of

0.205.

Fits with exponential regression functions yielded slightly lesser fit metrics

relative to the polynomials. This result should be taken with a grain of salt, as it will

almost assuredly fail to extrapolate as the problem size scales upwards. I would expect

the NP nature of the problem to assert itself with larger problems. Still, it is remarkable

94

to have solved a 400-task problem, easily a middle-sized problem by ALB standards, in

only 20 seconds.

Figure 21. IP Runtime vs. Number of Tasks

Figure 22. IP Runtime vs. Number of Tools

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s)

Task Count

IP tottime

0

5

10

15

20

25

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

IP tottime

95

Figure 23. IP Runtime vs. Number of Stations

Figure 21 displays strong visual evidence of clustering within the data. Each

finger in the scatterplot is representing a separate input data source: the three bands of

original data. Figure 24-Figure 26 present IP runtime versus task, tool, and station

counts, with each band’s datasets collected separately. Figure 24 shows particularly

strong differentiation between bands, and consistency within bands. It appears that there

are some characteristics particular to each band which carry strong implications towards

the IP runtime.

0

5

10

15

20

25

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

IP tottime

96

Figure 24. IP Runtime by Band and Task Count

Figure 25. IP Runtime by Band and Tool Count

0

5

10

15

20

25

0 100 200 300 400 500

T
im

e
 (

s)

Task Count

IP tottime

Band 30

Band 26

Band 1

0

5

10

15

20

25

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

IP tottime

Band 30

Band 26

Band 1

97

Figure 26. IP Runtime by Band and Station Count

5.2.3 H1 Runtime

The average time to execute the H1 heuristic was 0.341 seconds, aggregated

across all 130 datasets. Figure 27-Figure 29 display H1 runtime presented against one

factor each, using task, tool, and station count, respectively. Regression lines are plotted

on each graph, using a degree-2 polynomial fit and an intercept of zero. Both task and

station count display relatively good fit, with R2 values of 0.779 and 0.724, respectively.

Tooling count did not trend with H1 solution time, delivering a R2 value of only 0.053.

The heuristic has polynomial computational complexity, suggesting that runtime scales in

a polynomial fashion with respect to problem size, as measured by task or station count.

The regression fit lines might extrapolate well toward larger problems.

0

5

10

15

20

25

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

IP tottime

Band 30

Band 26

Band 1

98

Figure 27. H1 Runtime vs. Number of Tasks

Figure 28. H1 Runtime vs. Number of Tools

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s)

Task Count

H1 time

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

H1 time

99

Figure 29. H1 Runtime vs. Number of Stations

Figure 27 displays visual evidence of two clusters within the data. The smaller

finger of results, underneath the larger primary cluster of data, is showing the runtime of

infeasible problem instances. The heuristic runs more quickly once it has become

infeasible, as tasks begin to be assigned to dummy stations with all tools available, no

accessibility constraints, etc, limiting the degree to which the algorithm must search for

viable WZs. The low-runtime infeasible instances are also viewable in station and tool

count plots. Figure 30-Figure 32 show these same plots with each band’s data specified.

Note that almost all of the infeasible instances belong to Band 26.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

H1 time

100

Figure 30. H1 Runtime by Band and Task Count

Figure 31. H1 Runtime by Band and Tool Count

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

T
im

e
 (

s)

Task Count

H1 time

Band 30

Band 26

Band 1

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

H1 time

Band 30

Band 26

Band 1

101

Figure 32. H1 Runtime by Band and Station Count

5.2.4 H2 Runtime

The average time to execute the H2 heuristic was 30.3 seconds, aggregated across

all 130 datasets. This is two orders of magnitude higher than the H1 heuristic. One order

of magnitude is explained by the nature of the H2 approach. 10 iterations were chosen

for each H2 run, which requires the embedded H1 heuristic to be applied 10 times. The

other order of magnitude difference in runtime can only be ascribed to the overhead of

the H2 heuristic itself.

Figure 33-Figure 35 display H2 runtime presented against one factor each, using

task, tool, and station count, respectively. Regression lines are plotted on each graph,

using a degree-2 polynomial fit and an intercept of zero. None of these plots display

particularly strong correlation between problem instances and runtime, with a maximum

R2 value of only 0.46. The fixed outer H2 iteration loop might explain the lesser

correlation witnessed here. If the H2 overhead activities are relatively unresponsive to

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

H1 time

Band 30

Band 26

Band 1

102

problem size, then primarily only the size-dependent runtime within the embedded H1

runs are affecting the results seen here. The heuristic has polynomial computational

complexity, suggesting that runtime scales in a polynomial fashion with respect to

problem size, as measured by task or station count. The regression fit lines might

extrapolate well toward larger problems, despite the relatively weaker fit. The runtime of

infeasible instances is lower than feasible runs, as noted in section 5.2.3. These instances

collect near the x-axis on each plot.

Figure 33. H2 Runtime vs. Number of Tasks

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s)

Task Count

H2 time

103

Figure 34. H2 Runtime vs. Number of Tools

Figure 35. H2 Runtime vs Number of Stations

Figure 36Figure 38 display the same runtime plots, with each band’s specific

runtime results separated.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

H2 time

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

H2 time

104

Figure 36. H2 Runtime by Band and Task Count

Figure 37. H2 Runtime by Band and Tool Count

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

T
im

e
 (

s)

Task Count

H2 time

Band 30

Band 26

Band 1

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Tool Count

H2 time

Band 30

Band 26

Band 1

105

Figure 38. H2 Runtime by Band and Station Count

5.2.5 Heuristic Optimality Gap

The optimality gap for instance i and heuristic h is measured by 8(�W,# =
èé,-êèëìí,-èëìí,- , where e¹º7,# is the optimal value of the objective function, as determined by the

IP, and eW,# is the value of the objective function found by the heuristic. If the heuristic

finds an optimal solution, then the gap is zero. Otherwise, the gap grows in inverse

proportion to the quality of the objective found by the heuristic. Infeasible solutions are

not included in this metric. The heuristics do find infeasible solutions for which an

objective function is computed, but these solutions are discarded in this analysis. Figure

39-Figure 44 plot the gaps for each instance against the tool, station, and task counts of

the instance, for both H1 and H2. All instances with a gap of zero, i.e. the heuristic found

an optimal solution, are plotted on the x-axis. Many of these overlap on the plots.

Overall, both heuristics found 31 optimal solutions from the 130 problem instances. Five

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Station Count

H2 time

Band 30

Band 26

Band 1

106

instances are known to be infeasible from the IP. The heuristics achieve optimality for

approximately 25% of the instances for which feasible solutions exist.

The average gap for H1 is 0.22, or 22% higher objective function relative to

optimal, and in the worst instance the H1 gap is 0.69. The average gap for H2 is 0.204,

or 20.4% higher objective function relative to optimal, and in the worst instance is 0.62.

Figure 39. H1 Optimality Gap by Task Count

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400 450

G
a

p
 (

%
)

Task Count

H1 gap

107

Figure 40. H1 Optimality Gap by Tool Count

Figure 41. H1 Optimality Gap by Station Count

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14

G
a

p
 (

%
)

Tool Count

H1 gap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

G
a

p
 (

%
)

Station Count

H1 gap

108

Figure 42. H2 Optimality Gap by Task Count

Figure 43. H2 Optimality Gap by Tool Count

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400 450

G
a

p
 (

%
)

Task Count

H2 gap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14

G
a

p
 (

%
)

Tool Count

H2 gap

109

Figure 44. H2 Optimality Gap by Station Count

H2 improves the solution found by H1 in 17 instances. The average gap between

between H1 and H2 solution pairs is 1.3%. Conditioning upon the 17 improved

instances, the average gap grows to 8.2%, with a maximum gap of 18.2% for one

instance on Band 1.

5.3 Discussion

5.3.1 Band Differentiation

The input source data draws from three complete datasets, called bands, and sub-

divided into a multitude of smaller data sets to support this experiment. Each band

represents an independent production process, with several key differences that might

help illuminate band-specific differentiation in IP runtime.

Band 1 is a feeder line, with production buffers on either side of its product flow.

The conveyor is disjoint, and representative of a pull process, allowing workers to pause

the line in front of them if necessary, without disrupting the entire assembly line. All

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

G
a

p
 (

%
)

Station Count

H2 gap

110

tasks in Band 1 belong to one of the four corner PZs: {LV, RV, LH, RH}, and in most

stations workers may only be assigned to the L or R work zones. There are only a few

questions regarding mapping zones between tasks and workers, entirely encapsulated

within the two stations that support three parallel workers and overlapping work zones.

There are many fixed tools in Band 1, but for most tasks that require tools there is only

one WZ which can satisfy both tooling and zoning needs, simplifying the decision

problem by forcing task assignment.

Band 26 is relatively complex, with the full complement of up to 5 parallel

workers permitted at many stations. Tasks are located in every PZ. Tools are common,

though many are duplicated across two or more stations, permitting tool-needing tasks to

be assigned in one of several WZs.

Band 30 is a single-sided assembly line, with only one worker permitted per

station. Every task is located in the same PZ, and tooling is sparse on the line. Task

grouping is relatively common in Band 30, but otherwise this band is easily the simplest

of the three with respect to constraint complexity.

Lastly, the source data for each band was collected by a different individual. In

light of the very different character of each band, and their associated ALB problem, it is

perhaps not surprising that Figure 24 shows Band 26 instances requiring the most IP time

to solve, Band 30 the least, and Band 1 in the middle. The additional complexity of Band

26 resulted in approximately 4x as much runtime relative to Band 30 for runs of

equivalent task count, and approximately 2x the runtime relative to Band 1 instances.

Switching from task count to station count produces roughly the same 4:2:1 breakdown

111

IP runtime between instances from each band, though this result might be expected due to

the heavy correlation between task and station counts.

5.3.2 Performance

The heuristics failed to find feasible solutions for 16.8% of instances for which

feasible solutions exist. The average heuristic optimality gaps are 0.22 and 0.204, and the

maximum optimality gaps are 0.69 and 0.62, for H1 and H2 respectively. Runtime

growth for H1 appears to be well-fit by a quadratic regression over problem size, as

measured by either task or station count.

The IP successfully ran to completion for all problem instances, with the longest

run taking just over 20 seconds to complete. There were concerns that the IP would

exhibit slow runtime performance when initially preparing the IP model runs for

submission to the Palmetto Cluster, due to prior runs of the IP’s ancestors. The current

version of the IP grew from these ancestor models by tightening the formulation across

several aspects. When the final IP instances were submitted, each was budgeted for one

hour of runtime. The actual runtime performance of the IP was spectacular, blowing

away expectations.

The runtime plots of the IP suggest accelerating growth in runtime with respect to

the size of the problem. Indeed, ALBs are NP-hard, and extremely large problems will

certainly be intractable. Still, the instances solved here span up to 400 tasks and 13

stations, what might be considered mid-sized problems in ALB, with runtimes under one

minute.

5.3.3 Extension and Adoption

112

Industry application of ALB methods commonly encounter difficulties in

extending existing methods to account for gALB features specific to the problem

environment. For the gALB environment considered by the methods here, no existing

ALB methods were suitable for immediate application, largely due to the unique zoning

features. During the course of this research, the heuristic methods were created first, and

the IP formulation later. More than a year was spent working with our industry partner,

both to collect data and to understand the various constraints that appear in the problem.

Some constraint types, e.g. not-same-takt constraints, are especially rare on the assembly

lines under study, and were not discovered until late in the process.

The ALB methods detailed in this work are certainly extensible for application to

problem domains outside our industrial partner’s, for which the methods were

specifically designed. Issues related to industrial application of the IP and heuristic

methods are discussed separately in sections 5.3.3.1 and 5.3.3.2, respectively.

5.3.3.1 IP

The IP performed exceptionally well for all problem instances in the experiment.

Assuming availability of a solver such as Gurobi, it is the recommended solution to any

industry customer with an applicable ALB problem, assuming that their problem is

comparably sized. It is difficult to speculate on IP runtime performance for problems

larger than in the experiment, as runtime will certainly experience combinatorial growth

rates at some size. Perhaps problems up to an order of magnitude of the largest instances

in this experiment (similar in size to the largest ALB problems considered in any

literature) would still find acceptable runtimes. Table 16 shows the worst-case IP

113

runtime from this experiment, scaled upward over several orders of magnitude. If, say, a

one-order-of-magnitude increase in problem size resulted in a four-orders-of-magnitude

increase in runtime, then this hypothetical problem might require something like 2.4 days

to run. ALB problems are not typically run in time-sensitive environments, and two days

might be a reasonable amount of time to wait.

ORDERS LARGER RUNTIME

0 20.62 seconds
1 3.44 minutes
2 34.4 minutes
3 5.7 hours
4 2.4 days

Table 16. Worst-Case IP Runtime, under Increasing Orders of Magnitude

The IP is particularly well-suited for constraint extensions that involve task-to-

task or task-to-station assignment compulsion or forbiddance. Several constraints of this

variety already exist within the current gALB problem, implemented with relatively

clear, direct, and tight IP constraints. Presumably, extending the IP for another gALB

environment by adding more constraints of this type would be relatively simple. Indeed,

during development of this IP the not-same-takt constraints were added late in the

timeline, but were easily modeled in the IP structure.

The IP features three distinct zone types: work zones, product zones, and tool

coverage zones. The implementation details of these zones, such as their mapping

relationships, are easily customizable (mapping is entirely dependent upon tunable

parameters shown in section 4.2). It is possible to add, remove, or re-map any of the

zoning features with reasonable effort. Such changes would require no alteration of the

IP formulation itself, only redefinition of the preprocessing parameters, in which zone

relationships are encapsulated.

114

An extension to manage a U-shaped assembly line appears to be near at hand.

Such an extension would require zoning redefinition for the crossover takts, where

workers access more than one station at a time, to ensure that zoning concepts are

properly applied. Otherwise such an extension is fairly direct, as U-shaped lines may be

considered as linear lines in which some takts share the same worker. Under this

paradigm precedence constraints are unchanged, and only the cycle time constraint

requires remodeling, so that crossover takt loading captures all tasks assigned to each

worker, regardless of zone.

Implementing task sequencing constraints would require adding new decision

variables to the IP to ensure that task start/stop times are properly managed. Adding

these variables and associated sequencing constraints to the IP is relatively direct in terms

of formulation, but might present significant consequences in terms of runtime. Adding

decision variables might always be expected to add runtime, but in particular start/stop

time variables are quantified over the real numbers. All other variables currently in the

IP are binary, significantly restricting the size of the solution space. Timing variables

changes the IP from a BIP to a MILP, and runtime penalties should be expected.

Problem extensions that permit the IP to touch on related production planning

problems would necessitate large-scale adaptations to the IP. Examples include

extensions to accommodate job sequencing, part logistics, or facility design. These

issues are entirely out of the scope of the methods developed here.

5.3.3.2 Heuristics

115

Relative to the IP, the heuristic methods are ill-suited for extensions that add

constraints or other gALB features. The first ancestral version of the MRPW heuristic

was developed early in the research project, before discovering many of the constraints

now represented. Since that time, each constraint added has induced excessive difficulty

when adapting the MRWP method. I would not recommend extension of the heuristic

methods to any gALB problem with new features.

Further, the experiment has shown significant performance problems for the

heuristics, both in terms of finding feasible solutions and in the quality of those solutions.

There are only two scenarios in which I could recommend application of the heuristics

instead of the IP. The first is the case of extraordinarily large problem size. The runtime

of heuristic methods scales in a polynomial fashion with respect to problem size, and will

experience a slower growth rate than the IP. At some threshold of problem size the IP

will cease to be a reasonable option, due to inordinate runtime. The second scenario for

application of the heuristic methods is if the resources for solving IPs are unavailable.

The IP instances in this experiment were solved using the Gurobi solver, which is free for

academic use but requires relatively expensive licensing costs for business use. Other

solvers may of course be used instead, though to my knowledge there are no solvers that

permit free business licensing at this time.

116

ID Band #Stations Batch# IP obj
IP

systime
IP

tottime IP status H1 obj H1 time H1 status H1 gap H2 obj H2 time H2 status H2 gap
H2 vs H1

#Tools #Tasks
Sum task

time

1 30 3 1 3 0.054991 0.395002 feas 3 0.109375 Feas 0 3 9.425781 feas 0 0 1 94 913.62
2 30 3 2 3 0.008998 0.196195 feas 3 0.078125 Feas 0 3 0.375 feas 0 0 1 73 921.36
3 30 3 3 3 0.021997 0.266892 feas 3 0.09375 feas 0 3 0.4375 feas 0 0 1 81 896.64
4 30 3 4 3 0.038994 0.479717 feas 3 0.109375 feas 0 3 0.5625 feas 0 0 1 104 948.9
5 30 3 5 3 0.042994 0.420471 feas 3 0.109375 feas 0 3 0.578125 feas 0 0 1 97 953.58
6 30 3 6 3 0.032995 0.345457 feas 3 0.09375 feas 0 3 0.550781

3
feas 0 0 2 90 973.26

7 30 3 7 3 0.016997 0.209042 feas 3 0.078125 feas 0 3 0.453125 feas 0 0 2 74 995.58
8 30 3 8 3 0.021997 0.277579 feas 3 0.089843

8
feas 0 3 0.4375 feas 0 0 3 83 961.8

9 30 4 1 4 0.095985 0.941233 feas 4 0.15625 feas 0 4 12.14062
5

feas 0 0 1 118 1228.68
10 30 4 2 4 0.037994 0.724373 feas 4 0.140625 feas 0 4 12.15234

4
feas 0 0 1 110 1225.44

11 30 4 3 4 0.06799 0.98815 feas 4 0.171875 feas 0 4 12.17578
1

feas 0 0 1 124 1226.4
12 30 4 4 4 0.072989 0.924006 feas 4 0.3125 feas 0 4 12.04296

9
feas 0 0 1 121 1268.64

13 30 4 5 4 0.071989 1.04746 feas 4 0.203125 feas 0 4 12.16406
3

feas 0 0 2 127 1277.34
14 30 4 6 4 0.076989 0.86255 feas 4 0.15625 feas 0 4 12.17187

5
feas 0 0 3 117 1325.34

15 30 4 7 4 0.030996 0.601422 feas 4 0.140625 feas 0 4 9.894531
3

feas 0 0 3 100 1281.54
16 30 5 1 5 0.222966 2.09243 feas 5 0.328125 feas 0 5 24.02343

8
feas 0 0 1 155 1532.76

17 30 5 2 5 0.115983 1.96536 feas 5 0.300781
3

feas 0 5 18.35546
9

feas 0 0 2 153 1555.2
18 30 5 3 5 0.101985 1.63536 feas 5 0.28125 feas 0 5 17.4375 feas 0 0 1 141 1546.14
19 30 5 4 5 0.121982 1.88319 feas 5 0.324218

8
feas 0 5 18.26171

9
feas 0 0 2 151 1592.4

20 30 5 5 5 0.127981 2.01374 feas 5 0.328125 feas 0 5 18.46484
4

feas 0 0 3 154 1629.42
21 30 5 6 5 0.114982 1.71713 feas 5 0.28125 feas 0 5 17.70312

5
feas 0 0 4 143 1611.3

22 30 6 1 6 0.423935 4.12128 feas 6 0.4375 feas 0 6 36.08593
8

feas 0 0 2 198 1862.52
23 30 6 2 6 0.141979 2.95635 feas 6 0.34375 feas 0 6 24.54296

9
feas 0 0 2 170 1874.94

24 30 6 3 6 0.184972 3.09639 feas 6 0.398437
5

feas 0 6 24.46093
8

feas 0 0 2 171 1869.9
25 30 6 4 6 0.185971 3.23077 feas 6 0.359375 feas 0 6 36.12109

4
feas 0 0 3 178 1944.48

26 30 6 5 6 0.20097 3.32649 feas 6 0.40625 feas 0 6 36.14453
1

feas 0 0 4 180 1915.38
27 30 7 1 6 0.508922 5.4991 feas 7 0.472656

3
feas 0.166667 7 42.53515

6
feas 0.166667 0 2 215 2182.26

28 30 7 2 7 0.210967 4.77862 feas 7 0.460937
5

feas 0 7 41.87109
4

feas 0 0 3 200 2198.7
29 30 7 3 7 0.227966 4.67101 feas 7 0.4375 feas 0 7 42.37890

6
feas 0 0 3 198 2221.98

30 30 7 4 7 0.26396 5.13073 feas 7 0.433593
8

feas 0 7 41.80468
8

feas 0 0 4 204 2230.44
31 30 8 1 7 0.809876 10.12 feas 8 0.585937

5
feas 0.142857 8 48.49218

8
feas 0.142857 0 3 245 2506.02

32 30 8 2 7 0.369944 8.99572 feas 8 0.53125 feas 0.142857 8 48.29296
9

feas 0.142857 0 4 227 2550.78
33 30 8 3 7 0.448932 8.60774 feas 8 0.511718

8
feas 0.142857 8 48.41796

9
feas 0.142857 0 4 224 2507.94

34 30 9 1 8 1.14482 13.7687 feas 9 0.667968
8

feas 0.125 9 54.70703
1

feas 0.125 0 4 272 2858.1
35 30 9 2 8 0.536918 11.1672 feas 9 0.578125 feas 0.125 9 54.72656

3
feas 0.125 0 5 253 2836.74

Table 17. Experimental Results, Problems 1-35

117

ID Band #Stations Batch# IP obj
IP

systime IP tottime IP status H1 obj H1 time H1 status H1 gap H2 obj H2 time H2 status H2 gap
H2 vs H1

#Tools #Tasks
Sum task

time

36 30 10 1 8 1.52377 20.6214 feas 10 0.679687 feas 0.25 9 60.39062 feas 0.125 0.111 5 298 3144.06
37 26 3 1 5 0.031995 0.21909 feas 7 0.15625 feas 0.4 7 27.53906

3
feas 0.4 0 5 99 838.32

38 26 3 2 5 0.005 0.075646 feas 7 0.140625 feas 0.4 7 20.79296
9

feas 0.4 0 5 64 606.24
39 26 3 3 5 0.030996 0.285508 feas 0 0.023437

5
infeas 0 30.38281

3
infeas 6 97 790.56

40 26 3 4 1 0.019997 0.171945 feas 0 0.03125 infeas 0 28.55078
1

infeas 5 94 817.98
41 26 3 5 0 0.002 0.119151 infeas 0 0.011718

8
infeas 0 30.39843

8
infeas 4 97 816.78

42 26 3 6 0 0.001 0.119685 infeas 8 0.125 infeas 8 22.38671
9

infeas 4 92 930.36
43 26 3 7 5 0.026996 0.350069 feas 7 0.234375 feas 0.4 6 30.48046

9
feas 0.2 0.167 5 123 1219.62

44 26 4 1 7 0.052991 0.487465 feas 9 0.238281
3

feas 0.285714 9 30.48046
9

feas 0.285714 0 6 121 1117.8
45 26 4 2 6 0.024996 0.392356 feas 0 0.03125 infeas 0 30.41796

9
infeas 7 111 904.74

46 26 4 3 2 0.027995 0.362166 feas 0 0.03125 infeas 0 30.45703
1

infeas 7 122 1030.56
47 26 4 4 0 0.006999 0.253532 infeas 0 0.03125 infeas 0 30.43359

4
infeas 5 119 1096.26

48 26 4 5 0 0.012998 0.387524 infeas 0 0.015625 infeas 0 30.43359
4

infeas 6 139 1228.86
49 26 4 6 6 0.041994 0.590973 feas 10 0.234375 infeas 10 30.69140

6
infeas 5 148 1459.62

50 26 5 1 8 0.121981 1.2393 feas 0 0.035156
3

infeas 0 1.902343
8

infeas 8 168 1416.3
51 26 5 2 2 0.010998 0.503037 feas 0 0.035156

3
infeas 0 1.511718

8
infeas 8 136 1144.74

52 26 5 3 1 0.008998 0.577184 feas 0 0.171875 infeas 0 1.5625 infeas 7 147 1308.84
53 26 5 4 0 0.020997 0.804048 infeas 0 0.03125 infeas 0 1.765625 infeas 7 161 1508.34
54 26 5 5 7 0.073989 1.52785 feas 11 0.296875 infeas 11 10.44140

6
infeas 7 195 1758.12

55 26 6 1 4 0.132979 1.24726 feas 0 0.046875 infeas 0 7.460937
5

infeas 9 193 1656.3
56 26 6 2 1 0 0.582737 feas 0 0.03125 infeas 0 1.734375 infeas 8 161 1423.02
57 26 6 3 1 0.047993 1.13256 feas 0 0.03125 infeas 0 2.105468

8
infeas 9 189 1720.92

58 26 6 4 8 0.094986 1.93804 feas 13 0.34375 infeas 13 25.55078
1

infeas 8 217 2037.6
59 26 7 1 3 0.181972 1.66951 feas 0 0.046875 infeas 0 59.72265

6
infeas 9 218 1934.58

60 26 7 2 1 0.035994 1.31454 feas 0 0.03125 infeas 0 59.72656
3

infeas 10 203 1835.1
61 26 7 3 10 0.181973 2.98906 feas 15 0.390625 infeas 15 61.66406

3
infeas 10 245 2250.18

62 26 8 1 3 0.287956 2.91045 feas 0 0.039062
5

infeas 0 3.234375 infeas 11 260 2346.66
63 26 8 2 11 0.177973 3.44107 feas 19 0.335937

5
infeas 19 17.48437

5
infeas 11 259 2364.36

64 26 9 1 13 0.576912 6.2955 feas 21 0.414062
5

infeas 21 52.63281
3

infeas 12 316 2875.92
65 1 3 1 5 0.016997 0.071281 feas 6 0.148437

5
feas 0.2 6 18.78906

3
feas 0.2 0 5 72 523.02

66 1 3 2 6 0.013997 0.058251 feas 6 0.121093
8

feas 0 6 18.90625 feas 0 0 5 68 572.28
67 1 3 3 6 0.006999 0.044115 feas 6 0.101562

5
feas 0 6 17.1875 feas 0 0 5 58 585.84

68 1 3 4 5 0.013998 0.075138 feas 6 0.148437
5

feas 0.2 6 19.38281
3

feas 0.2 0 3 72 550.38
69 1 3 5 5 0.030996 0.17356 feas 7 0.195312

5
feas 0.4 7 26.27734

4
feas 0.4 0 3 94 923.22

70 1 3 6 5 0.044994 0.22166 feas 7 0.292968
8

feas 0.4 7 26.71875 feas 0.4 0 5 112 1027.92

Table 18. Experimental Results, Problems 36-70

118

ID Band #Stations Batch# IP obj
IP

systime IP tottime IP status H1 obj H1 time H1 status H1 gap H2 obj H2 time H2 status H2 gap
H2 vs H1

#Tools #Tasks
Sum task

time

71 1 3 7 5 0.031996 0.252868 feas 7 0.28125 feas 0.4 7 28.48828 feas 0.4 0 5 120 1023.48
72 1 3 8 4 0.042994 0.283847 feas 6 0.414062

5
feas 0.5 6 29.60156

3
feas 0.5 0 3 128 780.42

73 1 3 9 4 0.033995 0.278307 feas 6 0.351562
5

feas 0.5 6 28.86328
1

feas 0.5 0 2 116 725.1
74 1 3 10 5 0.020997 0.150993 feas 6 0.246093

8
feas 0.2 6 26.70312

5
feas 0.2 0 2 94 601.5

75 1 3 11 4 0.011998 0.099844 feas 6 0.21875 feas 0.5 6 23.12890
6

feas 0.5 0 2 77 661.68
76 1 4 1 7 0.020996 0.118484 feas 8 0.136718

8
feas 0.142857 8 27.86718

8
feas 0.142857 0 7 96 743.82

77 1 4 2 7 0.007999 0.090559 feas 9 0.089843
8

infeas 9 24.42968
8

infeas 5 84 743.76
78 1 4 3 7 0.009998 0.104315 feas 8 0.121093

8
feas 0.142857 8 25.85156

3
feas 0.142857 0 5 90 894.36

79 1 4 4 7 0.028996 0.261355 feas 9 0.183593
8

feas 0.285714 9 27.96093
8

feas 0.285714 0 5 118 1144.02
80 1 4 5 7 0.037994 0.280067 feas 9 0.199218

8
feas 0.285714 9 29.05859

4
feas 0.285714 0 5 128 1199.4

81 1 4 6 6 0.043993 0.479886 feas 9 0.257812
5

feas 0.5 9 30.31640
6

feas 0.5 0 5 152 1332
82 1 4 7 6 0.052992 0.584964 feas 8 0.34375 feas 0.333333 8 47.30859

4
feas 0.333333 0 5 174 1223.64

83 1 4 8 5 0.037994 0.42274 feas 6 0.308593
8

feas 0.2 6 30.17578
1

feas 0.2 0 3 150 1001.28
84 1 4 9 6 0.037994 0.328472 feas 8 0.328125 feas 0.333333 8 30.23437

5
feas 0.333333 0 3 134 905.58

85 1 4 10 6 0.020997 0.292463 feas 8 0.277343
8

feas 0.333333 8 29.3125 feas 0.333333 0 2 131 861.84
86 1 5 1 8 0.046992 0.213192 feas 11 0.125 infeas 11 28.37109

4
infeas 7 112 915.3

87 1 5 2 8 0.025996 0.214422 feas 10 0.1875 feas 0.25 10 28.375 feas 0.25 0 5 116 1052.28
88 1 5 3 9 0.044993 0.376338 feas 11 0.214843

8
feas 0.222222 11 29.46484

4
feas 0.222222 0 7 136 1337.58

89 1 5 4 8 0.058991 0.472942 feas 11 0.25 feas 0.375 11 24.58984
4

feas 0.375 0 7 152 1420.2
90 1 5 5 8 0.050992 0.65138 feas 11 0.308593

8
feas 0.375 10 5.054687

5
feas 0.25 0.1 5 168 1503.48

91 1 5 6 8 0.102984 1.10546 feas 9 0.421875 feas 0.125 9 6.199218
8

feas 0.125 0 5 206 1503.48
92 1 5 7 8 0.105984 1.01665 feas 9 0.386718

8
feas 0.125 9 4.648437

5
feas 0.125 0 5 196 1444.5

93 1 5 8 7 0.044993 0.615671 feas 10 0.390625 feas 0.428571 9 5.597656
3

feas 0.285714 0.111111
111

4 168 1181.76
94 1 5 9 7 0.037994 0.722967 feas 8 0.375 feas 0.142857 8 6.019531

3
feas 0.142857 0 3 171 1181.76

95 1 6 1 9 0.080987 0.462828 feas 12 0.269531
3

feas 0.333333 12 18.03515
6

feas 0.333333 0 7 144 1223.82
96 1 6 2 10 0.053991 0.633766 feas 13 0.265625 feas 0.3 13 3.636718

8
feas 0.3 0 7 162 1495.5

97 1 6 3 10 0.071989 0.673208 feas 13 0.265625 feas 0.3 13 4.257812
5

feas 0.3 0 9 170 1613.76
98 1 6 4 10 0.088986 1.03627 feas 13 0.359375 feas 0.3 12 5.882812

5
feas 0.2 0.083333

333
7 192 1724.28

99 1 6 5 9 0.143978 1.45522 feas 11 0.5 feas 0.222222 11 7.253906
3

feas 0.222222 0 5 222 1703.64
100 1 6 6 9 0.157976 1.66996 feas 11 0.5 feas 0.222222 11 6.632812

5
feas 0.222222 0 5 228 1753.02

101 1 6 7 9 0.12698 1.38232 feas 13 0.453125 feas 0.444444 11 7.460937
5

feas 0.222222 0.181818
182

6 214 1624.98
102 1 6 8 8 0.068989 1.21965 feas 10 0.5625 feas 0.25 10 8.457031

3
feas 0.25 0 4 205 1442.1

103 1 7 1 11 0.253961 2.36609 feas 15 0.339843
8

feas 0.363636 15 53.72265
6

feas 0.363636 0 9 190 1667.04
104 1 7 2 11 0.152976 2.30948 feas 15 0.355468

8
feas 0.363636 14 55.69531

3
feas 0.272727 0.071428

571
9 196 1771.68

105 1 7 3 11 0.245963 2.93077 feas 15 0.375 feas 0.363636 14 55.78515
6

feas 0.272727 0.071428
571

9 210 1917.84

Table 19. Experimental Results, Problems 71-105

119

ID Band #Stations Batch# IP obj
IP

systime IP tottime IP status H1 obj H1 time H1 status H1 gap H2 obj H2 time H2 status H2 gap
H2 vs H1

#Tools #Tasks
Sum task

time

106 1 7 4 11 0.364944 4.41626 feas 13 0.546875 feas 0.181818 13 59.82031 feas 0.181818 0 7 246 1924.44
107 1 7 5 10 0.424936 4.56467 feas 13 0.542968

8
feas 0.3 13 57.84375 feas 0.3 0 5 244 1924.5

108 1 7 6 10 0.299955 4.48261 feas 13 0.589843
8

feas 0.3 13 59.77734
4

feas 0.3 0 6 246 1933.5
109 1 7 7 10 0.306953 4.68246 feas 13 0.625 feas 0.3 13 58.67578

1
feas 0.3 0 6 251 1885.32

110 1 8 1 12 0.360945 3.54474 feas 17 0.417968
8

feas 0.416667 17 57.57812
5

feas 0.416667 0 11 224 1943.22
111 1 8 2 12 0.305954 4.11991 feas 17 0.453125 feas 0.416667 16 57.64062

5
feas 0.333333 0.0625 9 236 2075.76

112 1 8 3 13 0.430935 5.27347 feas 15 0.59375 feas 0.153846 15 60.67968
8

feas 0.153846 0 9 264 2118
113 1 8 4 12 0.510923 6.02894 feas 15 0.625 feas 0.25 15 59.66796

9
feas 0.25 0 7 268 2145.3

114 1 8 5 12 0.346947 5.8574 feas 15 0.65625 feas 0.25 15 60.83203
1

feas 0.25 0 6 262 2104.98
115 1 8 6 12 0.503923 7.36936 feas 15 0.761718

8
feas 0.25 15 60.87890

6
feas 0.25 0 6 283 2193.84

116 1 9 1 14 0.620905 6.03563 feas 19 0.546875 feas 0.357143 18 60.76171
9

feas 0.285714 0.055555
556

11 264 2247.3
117 1 9 2 14 0.513922 7.41904 feas 17 0.640625 feas 0.214286 17 60.75781

3
feas 0.214286 0 9 290 2275.92

118 1 9 3 14 0.563914 7.54926 feas 17 0.640625 feas 0.214286 17 60.73046
9

feas 0.214286 0 9 286 2338.86
119 1 9 4 14 0.608907 7.85905 feas 17 0.714843

8
feas 0.214286 17 60.80468

8
feas 0.214286 0 8 286 2325.78

120 1 9 5 13 0.762884 8.81781 feas 17 0.828125 feas 0.307692 16 60.97265
6

feas 0.230769 0.0625 6 299 2365.32
121 1 10 1 14 0.91486 9.55898 feas 19 0.734375 feas 0.357143 18 60.77734

4
feas 0.285714 0.055555

556
11 318 2447.46

122 1 10 2 13 0.639903 9.41312 feas 18 0.6875 feas 0.384615 18 60.71484
4

feas 0.384615 0 9 312 2496.78
123 1 10 3 13 0.580912 8.99326 feas 19 0.71875 feas 0.461538 19 60.6875 feas 0.461538 0 10 304 2519.34
124 1 10 4 13 0.800878 10.7113 feas 19 0.875 feas 0.461538 18 60.80078

1
feas 0.384615 0.055555

556
8 323 2586.12

125 1 11 1 14 1.22981 12.9452 feas 20 0.796875 feas 0.428571 19 60.42578
1

feas 0.357143 0.052631
579

11 340 2668.32
126 1 11 2 13 0.701894 11.3021 feas 21 0.828125 feas 0.615385 20 60.25781

3
feas 0.538462 0.05 10 330 2677.26

127 1 11 3 14 0.653901 10.9986 feas 21 0.921875 feas 0.5 20 59.89453
1

feas 0.428571 0.05 10 341 2779.68
128 1 12 1 13 1.45578 15.682 feas 22 0.96875 feas 0.692308 21 60.79296

9
feas 0.615385 0.047619

048
12 358 2848.8

129 1 12 2 14 1.12983 16.0204 feas 21 1.027343
8

feas 0.5 21 36.1875 feas 0.5 0 10 367 2937.6
130 1 13 1 15 1.90571 20.4352 feas 23 1.121093

8
feas 0.533333 23 60.15625 feas 0.533333 0 12 395 3109.14

Table 20. Experimental Results, Problems 106-130

120

CHAPTER SIX

6 HORIZONTAL BALANCE METRIC FOR THE OPTIONS-MIX PARADIGM

Mass customization systems manufacture variations of a common base product

that differ according to a set of customizable options (Pine), and have been subject to a

massive amount of production planning in recent decades. The model-mix paradigm is

nearly universal within this literature, in which a model consists of all output products

with identical customization attributes. Each unique model may be considered as a batch

of identical product with individual and independent production volume, resource usage,

and other problem variables. Models are largely independent from one another, as there

is little interaction between models in many production environments. Inter-model setup

times are the notable exception, and the lot-sizing and scheduling modeling methods in

such environments are typically very focused on this interaction.

As the number of configurable options increases, the size of the model set grows

at a combinatorial rate in response resulting to several difficulties when applying the

model-mix paradigm in environments with a large number of options. For example,

(Meyr) discusses a modern automobile assembly line that features on the order of 1032

unique models. At this scale computational methods that iterate over the model set will

be faced with exceptional memory and processing time requirements. Further, it may

prove impossible to collect the necessary input data for each model. For example,

demand for each model is very difficult to estimate when the model mix is many orders

of magnitude larger than production volume.

121

The option-mix paradigm, as discussed by (Roder and Tibken) offers an

alternative information model in which individual variables are assigned for each option

rather than for each model. Reliable estimates of option-mix frequencies remain feasible

even with high product variety, e.g. the fraction of cars with optional heads-up display

systems. The primary difficulty with the options-mix paradigm is that options are not

direct abstractions of production units, as models are. Each production unit may possess

zero, one, or many options, according to its configuration. Moreover, options may

exhibit strong interaction with each other, in contrast with the relatively weak interaction

between models noted above. Consider the case of stereo speakers in a vehicle: while

basic, premium, and perhaps several other types of speaker options may be available,

only one of these options may be installed in any given vehicle. Such interaction

information is necessary to options-mix methods, and herein we will assume that a rules

database exists that documents these interactions. Such databases usually are maintained

by product design or marketing departments within the organization, and facilitate the

translation of options into feasible product configurations.

Note that while the options-mix paradigm can be applied to any problem in the

model-mix domain, each problem presents unique challenges. Herein attention is

devoted to an assembly line balancing (ALB) problem in which assembly tasks may be

associated with a large number of optional parts. In section 6.1 the ALB problem is

introduced, along with the horizontal balancing problem that motivates the options-mix

problem. In section 6.3 the data environment that comprises the options-mix information

model for this problem is presented. Section 6.4 describes the application of instances of

122

the Boolean satisfiability problem to evaluate a metric for the horizontal line balancing

problem in this environment.

6.1 Assembly Line Balancing

The traditional form of an assembly line, as described by (Scholl), is a production

system consisting of a configuration of consecutive workstations, typically using a

conveyor or similar to transport production units down the line. The total work to be

performed along the assembly line is subdivided into the smallest indivisible elements of

work, called tasks, each of which possesses an associated task time (ti). Tasks are related

to one another by precedence attributes, i.e. some tasks must be finished before others

can begin, usually due to the physical architecture of the product. These individual

precedence relationships between tasks are collected and summarized by a precedence

graph, an acyclic graph with each task as a node and arcs representing precedence.

Stations are spaced along the line such that there is one production unit present at

each station, and all stations are allotted a fixed cycle time (c) to execute all assigned

tasks before the conveyor moves the product to the next station. The ALB problem is to

assign the set of tasks to stations, such that all work is performed upon the product as it

traverses the line.

Assembly lines were originally constructed for mass production of standardized

assembly products, to increase average worker productivity and overall throughput by

leveraging labor specialization along the line (Shtub and Dar-El). Modern assembly lines

designed for make-to-order and mass customization production permit fast and flexible

responses to customer demand (Mather), but are associated with significant automation

123

and facility capital costs. See (Boysen, Fliedner and Scholl, Production Planning of

Mixed-Model Assembly Lines: Overview and Extensions) for a recent survey of modern

mixed-model methods.

Tool setup times and the subsequent lot sizing problem are typically avoided by

assembly lines via application of universal machinery or the like, in order to maintain

consistent flow of production cycles (Dolgui, Guschinsky and Levin). Lines that do

require setup time to transition from one model to another are referred to as multi-model

lines, and encourage batches of each model to be produced consecutively. Such lines

require an additional lot sizing problem extension, as discussed by (Burns and Daganzo)

and (Dobson and Yano).

6.2 Horizontal Line Balancing

Optimization of the traditional ALB problem seeks to minimize total idle time by

minimizing of the number of stations (or workers) used, given a fixed cycle time. The

problem is NP-hard, as shown by (Wee and Magazine). (Thomopoulos) and (Macaskill)

transformed the mixed-model problem into a single model version by taking the demand-

averaged time for each task. Such methods ignore the piece-to-piece variability in work

content, and may result in disruptions in line operation.

Horizontal balancing seeks to equalize the work content at a station across all

model alternatives, such that the resulting balance is more robust to changes in model

demand and production sequencing. See Figure 45 for a visualization of two alternative

solutions with the same average utilization, but drastically varying horizontal balance. In

an early form of horizontal balancing, (Thomopoulos) attempted to compensate for this

124

effect by minimizing a secondary objective of the sum of absolute deviations of actual

station times of each model to the average station time across models. (Domschke, Klein

and Scholl) proposed a refined horizontal balancing objective that seeks to minimize the

sum of work overload time, i.e. the work content in excess of the cycle time, across all

models and stations. (Vilarinho and Simaria) developed a simulated annealing solution

approach that incorporated both horizontal and vertical balancing objectives, within a

model with parallel stations and additional assignment constraints.

Figure 45: Horizontal Smoothing

The production sequencing problem that emerges from mixed-model

environments can be solved in a staged fashion, subsequent to the ALB problem (Yano

and Bolat); (Sumichrast and Russell, Evaluating Mixed-model Assembly Line

Sequencing Heuristics for Just-in-time Production Systems); (Sumichrast, Russell and

Taylor, A Comparative Analysis of Sequencing Procedures for Mixed-model Assembly

125

Lines in a Just-in-time Production System); (Bard, Dar-El and Shtub), or the two

problems can be solved simultaneously (Merengo, Nava and Pozetti).

Demand is commonly realized at a shorter time horizon than is applicable to the

ALB problem, however, suggesting that ALB methods that produce solutions that are

robust to demand may be more applicable than those that simultaneously sequence the

production units. To test the effectiveness of different horizontal line balancing metrics

to this end, (Emde, Boysen and Scholl) conducted extensive computational experiments

to detect differences in line disruption due to product variety on assembly lines balanced

with an array of different horizontal metrics. (Emde, Boysen and Scholl) also mentions

in closure the reliance of all tested methods on the mixed-model paradigm, and calls for

methods that are robust to product variety size.

6.3 Data Environment

The necessary data inputs to the options-mix horizontal line balancing problem

are two-fold: 1) the set of tasks Jdenoted @K and associated task attributes, 2) the set of

options Jdenoted ΩK and associated attributes, and 3) the database of object relations that

defines option interactions. Before developing the attributes of these data inputs further it

will be necessary to introduce the concept of a derivative.

6.3.1 Derivatives

It is assumed that each production unit is assembled to the specification of a

single derivative, selected from the set of derivatives Jdenoted ΨK . Each derivative

represents a partially configured product, unique in name, to assist both customers and

internal operations in differentiating the vast array of product configurations into a more

126

manageable subset of categories. For customers, specification of product configuration

begins with selection of derivative, which serves to assign a default subset of high-profile

option content to the product while leaving low-profile options undetermined. As an

example, customer choice of the motorsports derivative preselects engine, transmission,

drivetrain, and brakes, while reducing the subset of available options for wheels, paint,

and external trim. Full product configuration is then completed by the customer via

specifying the remaining subset of options.

This approach affords the organization a tighter control of branding via the

offering of several distinctive derivatives, rather than a single amorphous product. An

addition organizational benefit is reduced effort in creation and maintenance of the

database of object relations.

6.3.2 Object Interaction Types

Options are linked directly to each derivative category with flags to indicate that

derivative selection either 1) requires the option, 2) forbids the option, or 3) leaves the

option undetermined. See Table 21 for an example of how object relations between

options and derivatives is recorded in the database.

Derivative 1 Derivative 2 Derivative 3

Option 1 M M F

Option 2 F M F

Option 3 O O O

Table 21. Option / derivative relations: (M)andatory, (F)orbidden, and (O)ptional

Further control of relations between undetermined options is achieved via

Boolean statements of the rule to be enforced within the database. Each rule is flagged

127

for the derivatives toward which it applies, and must be obeyed for products within the

flagged derivatives. For example, to enforce the rule “IF option 1 THEN NOT option 2”

for derivatives 1 and 2, but not derivative 3, then the database would encode the rule as

seen in Table 22.

Derivative 1 Derivative 2 Derivative 3

IF option 1 THEN NOT option 2 T T

Table 22: Rule relations: T = rule applies for derivative

Each task is also flagged for the derivatives towards which it is necessary. Task

applicability to derivatives are encoded into one of three classifications: 1) the task is

applied universally across all derivatives, 2) the task will only apply to a subset of the

derivatives, but will be necessary for all production units within the subset, and 3) the

task applies to a subset of derivatives, but only if some option is present. Table 23

presents an example of this encoding scheme in which task 1 is universal, task 2 is

dependent on derivative only, and task 3 is dependent on both derivative and option. The

code word SERIES is used to indicate that a task applies to all production units in the

flagged derivatives.

Condition Derivative 1 Derivative 2 Derivative 3

Task 1 SERIES A A A

Task 2 SERIES A

Task 3 Option 1 A A

Table 23: Task relations: A = task applies to derivative if condition met

6.3.3 Demand

128

Demand is specified on the derivative level as the relative frequency of each

derivative cð, ñ ∈ Ψ . Derivatives are mutually exclusive to one another, and each

product must be of a single derivative, hence the total probability across all derivatives is

equal to one, ∑ cðò = 1. This characterization of demand alone is insufficient, however,

as it does not capture the demand of options that at not determined by selection of

derivative. To completely specify demand it is necessary to also introduce the probability

of each option conditioned upon each derivative: có,ð = ;Jô|ñK, ∀ ô ∈ Ω, ñ ∈ Ψ. Of

course, forbidden option / derivative combinations result in có,ð = 0, and mandatory

combinations have có,ð = 1. It is only optional combinations that must be specified by

the input data.

The proportional demand for each task, c#, can be derived as a function of the

có,ð and cð data, by application of Eq 13.

c# = = 81#,ðcð + = 82#,ó,ðcó,ð ∀� ∈ @ E

ð∈ò ó∈õ,ð∈ò q 13

In Eq 13, 81#,ð is an indicator variable equal to 1 if task i is SERIES for

derivative ñ and 0 otherwise, and 82#,ó,ðis an indicator variable equal to 1 if task i is

requires option ô for derivative ñ and 0 otherwise.

6.4 Maximum Bound on Cycle Time

Using the data inputs described in Section 6.3, we now have sufficient

information to derive a horizontal line balancing metric for the options-mix ALB. Given

a line balancing solution with all tasks assigned to M stations, the average utilization of

129

station m is calculated by considering the subset of tasks assigned to station m, Im, and

then taking the weighted average of task times proportional to the cycle time, as seen in

Eq 14.

¥!���e(!���% = = c#!#�#ö¨.
Eq 14

Utilization is a valuable metric for the classic ALB problem, and must be

restricted to be ≤ 1for every station for the solution to be feasible to the cycle time.

However, product variety may result in variability in the realized time usage from one

product to the next.

In the following a method is developed to calculate the maximum amount of time

that might be required of station m to complete its assigned tasks. This upper bound is

not necessarily simply the sum of all task times. If some tasks are linked to options

content then it is possible that rules within the object relation database forbid execution of

all tasks on any single product. Evaluation of whether a subset of tasks may co-exist

upon any single product is achieved by first parsing all rules in the database into a

Boolean encoding scheme, and then solving the resultant Boolean satisfiability problem

(SAT).

The SAT problem considers a given set of primitives that are related by a given

set of Boolean statements and determines whether there is any possible combination of

true/false values that may be assigned to the primitives such that all statements are true.

In Section 6.5 we show how to derive Boolean statements from the configuration data of

the line balancing problem, and then parse those statements into binary parse trees.

130

Section 6.6 discusses outputting the binary trees to a SAT solver to determine which

tasks assigned to a station may occur simultaneously on some unknown product to be

assembled.

6.5 Logical Statement Construction

Before the SAT problem it is first necessary to translate all of the configuration

information from database fields and rule strings show in Section 2 into a set of Boolean

statements. Considering the example data provided in Table 23 above, equivalent

Boolean statements are:

(IF derivative1 THEN option1) AND (IF derivative2 THEN option1) AND (IF

derivative3 THEN NOT option1)

(IF derivative1 THEN NOT option2) AND (IF derivative2 THEN option2) AND

(IF derivative3 THEN NOT option2)

Notice each derivative is treated with a separate IF clause, and the all of the

derivative clauses are joined with AND conjunctions. No information within Table 23

relates option3 with any of the derivatives, and thus no Boolean statement is made

regarding option3 as a result.

Considering the example data provided in Table 22, the equivalent Boolean

statement is:

(IF derivative1 THEN (IF option1 THEN NOT option2)) AND (IF derivative2

THEN (IF option1 THEN NOT option2))

Considering the example data provided in Table 23 above, equivalent Boolean

statements are:

131

IF derivative1 THEN (task1 AND NOT task2 AND (IF option1 THEN task3))

IF derivative2 THEN (task1 AND task2 AND (IF option1 THEN task3))

IF derivative3 THEN (task1 AND NOT task2 AND NOT task3)

Next it is necessary to add rules dictating that a product can be of one and only

one derivative. Commonly referred to as “pick one” or “one hot lead” conditions, such

rules are difficult to express using Boolean algebra expressions. It is sufficient to

enumerate these rules pairwise, e.g. “IF derivative1 THEN NOT derivative2,” and so on.

Although the number of rules required to enforce this constraint grows combinatorially

with respect to the number of derivatives, at the scale of this example problem (~20

derivatives) the size of this rule set is still feasible.

A binary parse tree is then used to translate each derived Boolean statement string

into a more manageable data structure via depth-first recursive parsing of the strings.

Within the tree structure each node is a logical operator or a primitive, with the following

node types being sufficient to encapsulate the information: AND, OR, NOT, IF, and

PRIMITIVE. Each node may possess up to two children nodes, as needed to complete

the logical operator. PRIMITIVES are the codes that represent options, derivatives, or

tasks, and are Boolean values that can be assigned true or false. PRIMITIVES exist only

in leaf nodes and comprise all leaf nodes. Table 24 summarizes each of the node types

within the parse tree.

Node type # Children Description

AND 2 Both children evaluate to TRUE

OR 2 Either child must evaluate to TRUE

NOT 1 Child must be FALSE

132

IF 2 If left child is TRUE, then right child must be TRUE

PRIMITIVE 0 Object (option, derivative, or task)

Table 24: Nodes in binary parse tree

Figure 46 shows an illustration of the binary tree representation of a Boolean

statement.

Figure 46: Binary Parse Tree Example (not CNF)

Most SAT solvers operate on Boolean statements that are in conjunctive normal

form (CNF). Application of double negative and distributive laws to the parse trees are

applied to achieve CNF.

6.6 SAT with Task Subsets

The information encoded in the object relation database defines all configurable

products. Thus far we have derived a set of Boolean statements, each of which may

evaluate to true or false depending on the true/false value of the related primitives. Let us

call this total rule set Φ. It remains only to specify which tasks we wish to evaluate for

133

satisfiability. If the entire set of tasks @% assigned to the station can occur on a single

product, then it follows that the primitives associated with those tasks can be set to true

and the SAT can still be solved. In other words, in this case there would be some

combination of true/false values of the option and derivative variables that would result

in all of these tasks being necessary for a single product. Using this concept, we present

the following algorithm to determine the maximum time subset of tasks that may occur

on a single product.

1 Algorithm MaximumSubsetTime
2 Set J =Im
3 Set Φø = Φ
4 Append rule j = true to Φø for each j ∈ J
5 Solve SAT for Φø . If SAT is true, stop. Else, continue
6 Save J to remember that it has been tested
7 Set J = the next smallest set of tasks from I m
8 GoTo Step 3.

Figure 47: Maximum Time Subset Algorithm

In this algorithm task sets are considered and tested in a sequence determined by

the sum all task times included in the set. Initially all tasks at the station are considered,

Im. If that set is not feasible then the task with the smallest time is removed from the set,

and the test is repeated. Step 5 remembers past tests to facilitate the search mechanism

that must be performed in Step 6.

6.7 Conclusion

As the number of configuration options grows, production modeling methods that

rely on the mixed-model paradigm increasingly struggle to enumerate the total number of

unique models that might be produced. Further, specification of necessary input

parameters such as demand may become infeasible for these large model sets. The

134

options-mix paradigm offers hope for alternative modeling methods, as options sets can

easily be enumerated and assigned e.g. demand. One of the primary challenges to using

options-mix information is that the information model no longer contains direct

analogues of the production units. A horizontal line balancing problem is introduced in

which examination of various production units is mandatory for evaluation of the needed

objective function. A procedure for modeling options information is then presented that

permits application of a SAT to the options-mix configuration data in order to deliver the

necessary maximum time bound for the horizontal line balancing metric.

135

CHAPTER SEVEN

7 CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

The Modified Ranked Positional Weight constructive heuristic is developed,

introducing a unique prioritization scheme driven by measuring constraint satisfaction

scarcity. Responsibility sets are introduced to encapsulate task-to-task precedence and

assignment linkage constraints. Urgency score are introduced to measure assignment

limitations due to resource constraints. Tasks are weighted by a composite prioritization

score based on these new metrics, and assigned according to a first-fit-decreasing single-

pass heuristic. The MRPW heuristic is oriented toward creation of feasible solutions,

with efficiency being a secondary consideration.

The Last Fit Increasing improvement heuristic leverages the task prioritization

rankings of MRPW, and consolidates flexible tasks into otherwise lightly-packed

workers. The goal of the LFI improvement heuristic is to improve the efficiency of

a feasible solution.

The Work Zone Blocking heuristic focuses on the first work zone selection sub-

problem of the bifurcated ALB problem. The purpose of this approach is to address

zoning difficulties encountered in the MRPW heuristic. Two new metrics are introduced

to support the heuristic, measuring work zone flexibility and uniqueness. The metrics are

developed in consideration of each WZ’s offerings in terms of satisfying task needs with

respect to zoning, tooling, and accessibility constraints.

A binary integer programming formulation of the problem is developed with several

unique approaches to manage the zoning and worker parallelization aspects of the

136

problem. Preprocessing transformations render several complex facets of the problem

into representations amenable for a tight BIP formulation.

Each solution methodology is applied to a testbed of 130 instances derived from

real ALB data collected in conjunction with our industrial partner. The IP is

benchmarked primarily according to the runtime required relative to the size of the

instance, to which it performs surprisingly well, needing only 22 seconds at most to solve

an instance. The IP solution is used to benchmark heuristic performance. The heuristics

were able to find feasible solutions for 83.2% of problem instances, conditioned on a

feasible solution existing. Among that subset of feasible solutions, the heuristics

averaged an optimality gap of approximately 20-22%, depending on which heuristic was

applied, and found the optimal solution for 25% of the instances. Due to superior

performance and adaptability, the IP is heartily recommended for industrial application.

The heuristics appear to be a much poorer choice for implementation, excepting

extenuating scenarios in which the IP is unsolvable.

The final contribution gives momentum to the movement towards the options-mix

paradigm for modeling option-heavy mixed-model environment. A particular options-

mix ontology is presented with an accompanying SAT-iterative algorithm for measuring

worst-case takt time. The methods described deliver the ability to compute a horizontal

line balancing metric for this ontology, which is otherwise unavailable using the model-

mix paradigm.

7.2 Future Research

7.2.1 Penalization of Constraint Violation

137

As noted in section 5.1.1, our industrial partner occasionally deploys ALB

solutions that are not feasible with respect to the zoning constraints specified. In

particular, WZs were occasionally allowed to absorb tasks with PZs that would not

ordinarily be allowed. Such an assignment violates management guidelines, but does not

result in an ALB solution that is infeasible for technical reasons. It is speculated that

such solutions are permitted by our industrial partner due to efficiency advantages

gained.

There is an opportunity for future work to separate all constraints into

management-derived guidelines and technical requirements. Violations to management

guidelines might then be permitted via a constraint penalization function, wherein each

violation accumulates a penalty in the objective function. If a violation offers sufficient

benefit to the objective in return for the cost of violation, then it may be allowed. This

future work will require careful consideration of methods to measure the degree of

constraint violation, as well as the appropriate weighting function for aggregating and

applying the penalty.

7.2.2 IP Extension: Task Sequencing

Implementing task sequencing constraints would require adding new decision

variables to the IP to ensure that task start/stop times are properly managed. Adding

these variables and associated sequencing constraints to the IP is relatively direct in terms

of formulation, but might present significant consequences in terms of runtime. Adding

decision variables might always be expected to add runtime, but in particular start/stop

time variables are quantified over the real numbers. All other variables currently in the

138

IP are binary, significantly restricting the size of the solution space. Timing variables

changes the IP from a BIP to a MILP, and runtime penalties should be expected.

7.2.3 Robustness of Solutions to Uncertain Demand

Each workpiece is custom ordered with limited lead time. At the time of line

balancing the demand for each option is forecasted, but uncertain. Variation in demand

can lead to infeasibility of the solution generated, via overloading average task loading

for a worker. At the current time there are very few robust optimization approaches for

ALB in the literature, and none that use the options-mix paradigm. A 2-stage scenario-

based robust optimization model might be constructed to attack this problem. In stage 1

the primary problem is solved, with an efficiency based objective function. In stage 2 the

secondary horizontal smoothing objective is used, using the metric discussed in section

2.1.36.4, seeking to minimize the maximum load time.

Construction of the scenarios will be an important lead-in step to prepare a

robustness model. Each option has a given (forecasted) demand, which can be perturbed

to create the uncertainty set. Options may be correlated, however, either through rule or

customer preference. Historical production data may possibly be mined to examine

option demand correlation.

The robust optimization ALB problem must reconcile both workforce costs (i.e.

the cost associated with lower efficiency) and disruption costs (i.e. the cost incurred when

a station is overloaded). In addition there is a rebalancing cost associated with changing

the work content of a station, as the worker must learn the new assembly process.

139

7.3 Tools Developed as Part of Research Project

Several prototype software tools were developed during the course of this

research. The heuristics were implemented in VBA, and are partially documented in

Appendix A. The IP formulation was implemented in AMPL, with the model file and an

example data file shown in Appendix B. Appendices C and D document configuration

management methods developed upon the ontological scheme described in chapter 6, and

implement SAT-iterative methods that are very similar in spirit to the worst-case takt

time application.

140

APPENDICES

141

APPENDIX A

Prototype Software Documentation: MRPW heuristic

Figure 48: Heuristic Prototype, Main Function

7.3.1 Function Main

1. Input of parameters on form. Store parameters as global variables.

142

2. Read input data from source spreadsheets, corresponding to the band selected by

user.

a. Function ReadStationModelLocal constructs the station model object in

memory. The data for each station is parsed and stored in an array of

station objects.

b. Function ReadTVGModelLocal constructs the task model object in

memory. The data for each task is parsed and stored in a group of task

objects.

i. Cross reference the product references witnessed within the set of

tasks to the derivative information on sheet Deriv_Map. Store

unique ProdRef codes from into global variable PubProdRefList

and corresponding product volume into global variable

PubProdRefMaxVol.

3. Function PreProcessInputData performs a number of preprocessing steps to

prepare the data environment.

a. Set task volume by derivative. For series tasks this will be the same as the

max volume for each derivative. Else, the task’s total volume is divided

among its applicable derivatives according to the relative size of each

derivative’s max volume.

b. Tooling (station and task model). Verify that all tools needed by tasks

exist on some station. Link each tool object to every task that needs it and

to all stations that provide it.

143

c. Construct the full precedence graph. The algorithm to accomplish this is

embedded in function PrecedenceBuilder, detailed in the appendix of this

document.

d. Create task sets by calling TVGModel.BuildSets. After input data parse

the task objects have only the strings corresponding to their set

membership.

i. Create an object of type CTVGSet for each uniquely named set.

ii. Link the object to task members.

iii. Derive implied sets (adjacency implies same takt) to check input

data consistency.

iv. Construct an extended precedence graph for each set .

1. The extended, or indirect precedence graph for a task (say,

taski) is all tasks that are predecessors or in a set

relationship with taski, or with any other task in the

extended precedence graph of taski.

2. The extended, or indirect successor set is constructed in the

same way.

e. For tasks with eligible station constraints, link the corresponding stations

to the task’s .EligibleStation property.

f. Calculate 3 RPW values for each task. These formulas and algorithms are

shown in function CalcRPW in the Appendix.

144

i. Classic RPW is calculated for each task by summing the shifttime

of itself and all direct successor tasks.

ii. Set related RPW is calculated for each task by summing the

shifttime of itself and all tasks that are extended successors. Note

that tasks that share a set will have the same value for this score.

iii. The tooling/eligible station RPW score is constructed in two

stages.

1. Calculate the urgency score of each task as a function of

tooling and eligible station properties of the task.

2. The ToolRPW of a task is the maximum urgency score

amongst the task itself and all tasks that are extended

successors. Note that tasks that share a set will have the

same value for this score.

g. Sort the tasks in 3 stages by RPW scores. Ties at a given stage are broken

by considering the next-stage RPW score.

i. ToolRPW

ii. AdjRPW

iii. RPW

4. FFD algorithm. Search for a feasible balance by assigning tasks as early as

possible on the band. tasks are assigned one-at-a-time according to RPW scores

such that the tasks that are most important to assign early on the band are assigned

first.

145

a. Take the task from the top of the RPW list. If this task must be assigned

concurrently with other tasks due to set relations then collect the set of

tasks.

b. Examine each station in turn, from the start of the band. Consider station-

level constraints:

i. Precedence. All tasks that are predecessors to the task (s) currently

under assignment have already been assigned, due to having higher

RPW scores. Fail if any of these predecessors are assigned to

stations after this station.

ii. Eligible station. Fail if the task (s) is/are not eligible at this station.

iii. Tooling. Fail if this station does not provide required tool

coverage at to the task (s) product zone.

iv. PZ accessibility. Fail if this station is blocked for the product zone

(for any) of the task (s).

v. If any of these constraints fail then consider the next station in

sequence. If all are satisfied, then consider takt-level constraints.

Construct the list of all takts at this station that are zone compatible

with the task(s).

1. Shift time. Fail if this takt does not have sufficient shift

time remaining to add the task(s).

146

2. Derivative-utilization. Fail if any derivative-utilization at

this takt would exceed the optional user-derived utilization

value if the task(s) were added.

3. If multiple takts pass these constraints, then prefer to assign

the task(s) to a takt that is already active. If no active takt

is available then a currently inactive takt may be opened.

a. If multiple takts still persist, then choose arbitrarily

via sequence L, R, V, H, I.

b. If a valid station and takt have been identified, then

assign the task(s).

c. If no station satisfies all constraints, then create a dummy station at the

end of the band. Give the dummy station all tools and maximum

accessibility. The final balance will not be feasible, but it will have all

tasks assigned.

5. LFI algorithm. If the FFD algorithm successfully created a feasible balance, then

attempt to increase average utilization by removing takts. LFI operates on a

similar principal as FFD, but in reverse RPW sequence and moving tasks as far

toward the end of the band as possible. A notable difference between the two

heuristics is that LFI is not permitted to open new takts. The points at which the

LFI algorithm differs from FFD are italicized in the following summary:

147

a. Take the task from the bottom of the RPW list. If this task must be

assigned concurrently with other tasks due to set relations then collect the

set of tasks.

b. Remove the task(s) from current station and takt assignment. This

algorithm’s goal is to empty a takt here, finding another takt that may

receive the task(s).

c. Examine each station in turn, from the end of the band. Consider station-

level constraints:

i. Precedence. Fail if predecessors are assigned to stations after this

station.

ii. Eligible station. Fail if the task(s) is/are not eligible at this station.

iii. Tooling. Fail if this station does not provide required tool

coverage at to the task(s) product zones.

iv. PZ accessibility. Fail if this station is blocked for the product zone

(for any) of the task(s).

v. If any of these constraints fail then consider the previous station in

sequence. If all are satisfied, then consider takt-level constraints.

Construct the list of all takts at this station that are zone compatible

with the task(s).

1. Shift time. Fail if this takt does not have sufficient shift

time remaining to add the task(s).

148

2. Derivative-utilization. Fail if any derivative-utilization at

this takt would exceed the optional user-derived utilization

value if the task(s) were added.

3. Activity. Fail if this takt is not currently active.

a. If multiple takts pass these constraints, then choose

arbitrarily via sequence L, R, V, H, I.

b. If a valid station and takt have been identified, then

assign the task(s).

6. Smoothing algorithm.

a. Competing balance solutions may be compared by development of a

scoring process to measure smoothness. One such metric is to sum the

squares of derivative-utilization across all takts. The minimum theoretical

value for this score is achieved if the derivative-utilization figures are

equal across and within all takts.

i. Perform a neighborhood search upon the existing line balance

solution. One likely neighborhood is to focus upon the highest

derivative-utilization takts, and attempt to move the task(s) out of

these takts.

ii. If any neighboring solution improves the score, then move to that

solution and repeat until some termination criteria is met.

b. Alternatively, line balance solutions with derivative-utilization limits may

be created with the existing FFD and LFI heuristics with the optional

149

derivative-utilization constraint active. Iterative reduction of the

derivative-utilization cap parameter suffices to reduce the worst-case

derivative-utilization takt. As the parameter is increasingly reduced the

FFD algorithm will at some point cease to find a feasible balance.

7. Output and Visualization

a. Create Sulzer-compatible .csv file of balance.

b. Create spreadsheet view of balance similar to LEMO.

7.3.2 Object Modeling and Data Composition

The line balancing tool maintains an assortment of data necessary to the line

balancing algorithm. This data is classified into three categories: production system

data, line balancing output, and run-time parameters for the tool. Object model

hierarchies are used extensively to structure the production system and line balancing

data, and a collection of global variables are used to store run-time parameters.

Descriptions of these object models and variables are shown in the following subsections.

7.3.2.1 Production System Data

The category production system data contains all data from the real system that

are necessary inputs to the line balancing process. Under this umbrella three

subcategories are defined: task, station, and environment. Task data consists of the list of

tasks to be balanced and all relevant task properties, e.g. time, precedence, etc. Station

data describes the physical characteristics of each station within the band and associated

intra-station attributes. Environmental data includes a variety of inputs, external to the

more distinctly defined task and station data, such as cycle time. Specification of all

150

production system data for a band is necessary and sufficient to perform line balancing on

that band.

Figure 49: Properties of and Relations Between Top-level Objects

7.3.2.1.1 Task Model

Task data is sourced locally within the VBA tool, with task data for each band

stored on separate spreadsheets named e.g. “Band 30 tasks.” These input worksheets are

formatted in flat form, such that each task is given a single row in which its information

is encoded. The data is read from source, parsed, preprocessed, and stored hierarchically

within the top-level class CTVGModel. The structure of the CTVGModel object model

hierarchy is shown in the following list, with brief summaries of each data element.

151

• Class CTVGModel. There is only a single instance of the task model class, created

by the Main function.

a) CTVGModel.TVGs. A group of objects of class CTVG; these are the task objects

to be balanced. Each task is instanced once as a CTVG object. Each task within

this set is referenced by its ID property. The following are the properties of the

CTVG class.

i) Properties that contain the data directly read from the input data sheet

(1) ID. An integer for each task that is equal to the sequence of the task on

the input data sheet (row number – 1). Any ZW tasks created by the tool

will have a unique negative ID number.

(2) Name. String containing the task name, e.g. S 5121 001 602 A 01.

(3) Signature. String containing the task name concatenated with the task’s

ProdRef. Used for derivative specific balancing purposes, in case any task

within the input data must be split amongst applicable ProdRef to create

multiple tasks, so that each output task may have a unique identifier.

(4) OPR. String containing OPR class, e.g. ZH, ZW, M, PF.

(5) Description. String containing short text description of task.

(6) ImmedPredNames. StrList containing the names of the tasks that are

immediate predecessors to this task. This property is used in

preprocessing to develop the full precedence graph, once all task data has

been read off of the input data sheet.

152

(7) Time_min. Double containing the time, in minutes, that the task requires

to perform.

(8) Vol. Double containing the shift volume of the task.

(9) ProdBauraum. Product zone of the task, encoded as Enum Bauraumen.

(10) Ergo. Double containing EBI score of task.

(11) ProdRef. StrList containing the ProdRef codes that determine the

derivatives that the task applies towards.

(12) StatSet. String containing the same station set membership of the

task. This property is used in preprocessing to establish linkage to all

matching same station set tasks.

(13) TaktSet. String containing the same takt set membership of the

task. This property is used in preprocessing to establish linkage to all

matching same takt set tasks.

(14) AdjSet. String containing the adjacency set membership of the

task. This property is used in preprocessing to establish linkage to all

matching adjacency set tasks.

(15) Tools. Dictionary containing the tool objects that this task

requires. Note that only a single tool object exists for each uniquely

named tool.

(16) EligStationNames. StrList of the names of each station that this

task may be assigned to. If empty, then the task may be assigned to any

station.

153

(17) OptionsList. StrList containing the object reference codes for the

task.

ii) Properties derived during preprocessing of data

(1) Vol_ProdRef. Array of doubles containing the volume of this task for

each ProdRef. The sequencing of this array matches the public array

PubProdRefList.

(2) PredsImmed. Group of task objects that are immediate predecessors.

During preprocessing the strings in the ImmedPredNames property are

read and these links to the task objects are established.

(3) Preds. Group of task objects that comprise all direct predecessors.

During preprocessing the precedence graph for this task is completed by

reading the contents of the PredsImmed property, and links established to

predecessors of predecessors.

(4) Succs. Group of task objects that comprise all direct successors. During

preprocessing the complete successance for this task is found by reading

the contents of the Preds property, and establishing backward links

established to successors.

(5) AdjacentTVGs. CTVGset object that contains the adjacency set of this

task.

(6) STaktTVGs. CTVGset object that contains the same takt set of this task.

(7) SStatTVGs. CTVGset object that contains the same station set of this task.

154

(8) Preds_Extended. Group of task objects that comprise all direct and

indirect predecessors. After finding all direct predecessors, indirect

predecessors are tasks that are related by adjacency, same takt, and/or

same station to any predecessor. This group also contains all tasks that are

set-related with the local task, some of which may be successors to the

local task.

(9) Succs_Extended. Group of task objects that comprise all direct and

indirect successors. After finding all direct successors, indirect successors

are tasks that are related by adjacency, same takt, and/or same station to

any successors. This group also contains all tasks that are set-related with

the local task, some of which may be predecessors to the local task.

(10) EligStations. Dictionary of Station objects that are eligible for the

task to be assigned. During preprocessing the strings in the

EligStationNames property are read and these links to the Station objects

are established.

iii) Properties to support line balancing methods. These properties are set by the

RPW module or during the subsequent line balancing algorithm.

(1) Assigned. Boolean containing whether the task has been successfully

assigned to a takt.

(2) RPW. The ranked positional weight score of this task, based off of direct

successance only, as determined by summing the cumulative shift time of

the tasks in property Succs.

155

(3) AdjRPW. The ranked positional weight score of this task, based off of

extended successance, as determined by summing the cumulative shift

time of the tasks in property Succs_Extended.

(4) ToolWt. The “urgency score” of this task’s tool requirements. An

individual tool urgency score is the total number of stations in the band

minus the index number of the last station that possesses the tool. A

higher score indicates that the tool last appears closer to the beginning of

the band. The ToolWt property is then calculated as the maximum

urgency score amongst the task’s tool requirements.

(5) EligStWt. The “urgency score” of this task’s eligible station requirements.

Scoring is performed identically as for tooling.

(6) ToolRPW. The ranked positional weight score of this task, based off of

extended successance, as determined by taking the maximum ToolWt or

EligStWt property of all extended successors.

(7) Taktmauraum. Link to the class TaktMauraum object that the task is

assigned to.

b) CTVGModel.AdjSets. A group of objects of class CTVGset; these are the

adjacency sets. Each adjacency set is instanced once as a CTVGset. The

following are the properties of the CTVGset class:

i) Name. The name of the set, e.g. Träger TV KOM F30. This is the unique

string that has been used on the input data form for all tasks in the set,

indicating set membership. In the case of implicit sets (adjacency implies

156

same takt, and same takt implies same station) unique strings are created

internally by the algorithm.

ii) TVGs. A group of objects of class CTVG; these are the member tasks of the

set. For more information on CTVG objects, see CTVGModel.TVGs section.

iii) Preds. A group of objects of class CTVG; these are the predecessor tasks of

the set. This predecessor group is constructed during preprocessing. The

contents are all predecessors from all task members of the set, except for tasks

that are themselves members of the set. For example, task A is a predecessor

of task B, and both are in an adjacency set. In this case, task A will not appear

as a predecessor of the adjacency set.

iv) Succs. A group of objects of class CTVG; these are the successor tasks of the

set. The same guidelines described in the above Preds section applies here.

v) Assigned. Boolean to mark whether the set has been assigned to a takt.

vi) Tools. Dictionary containing the tool objects that this set requires, cumulative

across all tasks in the set. Note that only a single tool object exists for each

uniquely named tool.

vii) Totaltime_sec. Double containing the total time requirement of tasks in the

set. Currently unused.

c) CTVGModel.TaktSets. A group of objects of class CTVGset; these are the same

takt sets. Each same takt set is instanced once as a CTVGset. See

CTVGModel.AdjSets section above for more information on CTVGset contents.

157

d) CTVGModel.StatSets. A group of objects of class CTVGset; these are the same

station sets. Each same station set is instanced once as a CTVGset. See

CTVGModel.AdjSets section above for more information on CTVGset contents.

e) CTVGModel.Tools. A group of objects of class CTool; these are all the tools that

are needed by the tasks. Each unique tool is instanced once as a CTool,

regardless of how many times that tool might appear in the station model, or how

many tasks require the tool. CTVGModel.Tools requires cross-referencing the

station model for construction.

7.3.2.1.2 Station Model

Figure 50. Station Model Objects

Station data is sourced locally within the prototype heuristic tool, with station data

for each band stored on separate spreadsheets named e.g. “Band 30 Stations.” These

input worksheets are formatted in flat form, such that each station on the band is given 16

rows in which its information is encoded. The data is read from source, parsed,

preprocessed, and stored hierarchically within the top-level class CStationModel. The

158

structure of the CStationModel object model hierarchy is shown in the following list,

with brief summaries of each data element.

• Class CStationModel. There is only a single instance of the station model class,

created by the Main function.

a) CStationModel.Stations. An array of objects of class CStation; these represent

the physical stations, sequenced as they appear on the input data sheet. The

following are the properties of the CStation class.

i) ID. Integer corresponding to the sequence of the station in the input data

sheet.

ii) Name. String containing the name of the station in the input data sheet, e.g.

01001.

iii) Orientation. Custom type VehicleOrientationList; contains an indicator

variable that maps to the orientation of the vehicle within the station. There

are eight vehicle orientations currently supported. E.g. “R-Leading” indicates

that the right side of the vehicle is oriented to the front relative to the flow of

the line. Orientation is used to determine the mapping between product zones

and work zones, as well as the mapping of tool coverage to product zones.

See the Substation class documentation below for more information on

taktmauraums and tooling coverage mapping.

iv) Tools. Dictionary containing the tool objects that this station provides,

cumulative across all member substations. Note that only a single tool object

exists for each uniquely named tool.

159

v) WZMax. Integer of the maximum number of workers permitted to work at

this station simultaneously.

vi) SubStations. An array of objects of class CSubStation; these are sections of

the physical station. Each substation is analogous to a work zone, and are

named as such (L, R, V, H, I). This distinction between substations and work

zones is enforced to clarify that the substations are simply physical zones,

with attendant physical properties. The following are the properties of the

CSubStation class.

(1) Name. String containing the name of the substation, e.g. “01001V.”

(2) Station. Object of class CStation; the station that contains this substation.

(3) Zone. Custom type SubstationZoneList; contains an indicator variable that

maps to which substation this is, e.g. V, H, L, R, or I.

(4) Accessibility. Custom type ZoneAccessibilityList; contains an indicator

variable that maps to the accessibility status of the substation. Currently

only “available” and “blocked” are supported. If “available” then an

associate may be placed in the corresponding taktmauraum at this station,

but not if “blocked.”

(5) Tools. Dictionary containing the tool objects that this substation provides.

Note that only a single tool object exists for each uniquely named tool.

vii) ProductZones. An array of objects of class CProductZone; these are virtual

zones in the same pattern at product zone, except oriented to the station

160

regardless of the orientation of the vehicle (i.e. these are always V-leading).

The following are the properties of the CProductZone class.

(1) Station. Object of class CStation; the station that contains this product

zone.

(2) PZ. Custom type Bauraumen (e.g. LV, MH) containing the real product

zone of the vehicle that will be present in this product zone. This property

will change in response to changes in the vehicle orientation.

(3) PZNatural. Custom type Bauraumen containing the product zone of the

vehicle that would be present in this product zone if the orientation was

the default V-leading. This property will not change in response to

changes in the vehicle orientation.

(4) Accessibility. Custom type ZoneAccessibilityList; contains an indicator

variable that maps to the accessibility status of the product zone.

Currently only “available” and “blocked” are supported. If “available”

then tasks of matching product zone may be placed at this station, but not

if “blocked.”

(5) Tools. Dictionary containing the tool objects that provide coverage to this

product zone. Tool coverage is determined during preprocessing in

consultation with orientation and default tool coverage maps.

(6) TaktMauraumAssigned. Object of class CTaktmauraum containing the

takt that has been assigned to tasks at this product zone at this station, if

any.

161

b) CStationModel.Tools. A group of objects of class CTool; these are all the tools

that are provided by the stations. Each unique tool is instanced once as a CTool,

regardless of how many times that tool might appear in the station model.

CTVGModel.Tools requires cross-referencing the task model for construction.

7.3.2.1.3 Environment data

The environmental data inputs are stored in global variables.

1. Pubtakt_time_sec. Double containing the cycle time of the assembly line, in

seconds. User may edit this input on the launch form.

2. PubProdRefList. StrList containing all product reference (derivative) strings

appearing within the tasks. This list is constructed as tasks are read from the input

sheet. If a task is read that possesses product reference that has not yet been

encountered, then that new product reference is stored here.

3. PubProdMaxVol. AList containing the maximum volume for each derivative.

The elements within this list are sequenced to match the sequence of derivative

strings in PubProdRefList. This list is constructed during preprocessing, after

PubProdRefList is complete. The values contained are read from the table on the

spreadsheet “Deriv_Map.”

7.3.2.2 Line Balancing Output

• Class CLineBalance. This class contains all information related to a line balance

solution. This class may have more than one instance, in case of multiple alternative

line balances. The following is a hierarchy of the class contents.

162

a) SeqRPW. Array of integers. Each integer in the array maps to the ID number of a

task. This array contains all task ID numbers, sorted by RPW score. The highest

scoring tasks by RPW (i.e. the most important to place early on the line) are listed

first.

b) Lanes. Array of objects of class CLane. Lanes are determined by the cross of the

derivatives present and the taktmauraums, e.g. F32-R. The following are the

properties of the CLane class.

i) Name. String containing the name of the lane, e.g. F32-R.

ii) WZ. Custom type MABauraum, containing an indicator variable that maps to

the work zone of this lane, e.g. “R”.

iii) ProdRef. String containing the ProdRef (derivative) of this lane.

iv) LaneSegments. Array of objects of class CLaneSegment. Each lane segment

is determined by the cross of the lane and the station, e.g. F32-R, 01001. The

following are the properties of the class CLaneSegment.

163

7.3.2.3 Function PrecedenceBuilder

Constructs the complete precedence graph for tasks. The input data document

delivers, at minimum, all of the immediate predecessors of each task. For any given task,

the predecessors that are not immediate may be found by examining the implicit chains of

precedence formed by linking the immediate predecessors of immediate predecessors,

and so on. The algorithm below performs a depth-first stack trace to accomplish this

function. Note that any valid precedence graph must contain root nodes, i.e. tasks that

have no predecessors. The precedence chain of a task can be constructed by adding

immediate predecessors to the stack until root nodes are found. As an additional benefit,

the algorithm also detects precedence cycles that would otherwise lead to degenerate

cycling.

It is permissible for non-immediate (implicit) predecessors to be delivered in the

input data document. Such additional data will not harm the algorithm below, but may

tend to clutter the input data form unnecessarily.

The algorithm uses three structures to trace each of the N tasks back to precedence

roots:

1) mpreds, a NxN matrix, to store precedence relationships. If mpreds(i,j) = 1 then

task j is a predecessor of task i. Upon initialization, all elements of mpreds are 0.

Elements are changed to 1 as precedence relationships are discovered.

164

2) stack, a generic stack data structure, to hold the tasks involved in each trace.

Upon initialization the stack is empty.

3) flags , a Nx1 array, , to track the status of each task. There are 3 states tracked by

flags: {0= untraced, 1= on the stack, 2= fully traced}. Upon initialization all

elements of flags are 0.

Mark immediate precedence relationships in mpreds, as shown in Figure 51.

1 For i = 1: N
2 For j = 1: N
3 If task j is an immediate predecessor of task i
4 mpreds(i,j) = 1

Figure 51. Tracking Immediate Predecessors

Now we wish to examine each task, in arbitrary order, and construct the stack

trace of predecessors towards root nodes. For speed savings, it is only necessary to stack

predecessor tasks that have not undergone stack trace previously. Tasks that have

previously undergone stack track will already have their complete precedence graph

constructed, so it is not necessary to duplicate this work. This point is relevant to a

situation in which a predecessor task is shared between multiple successors (only one

successor must trace through this predecessor), or, alternatively, a situation in which a

predecessor is examined earlier than one of its successors (due to arbitrary ordering of

tasks).

165

1 For i = 1: N
2 If flags (i) = 0
3 stack.push(i)
4 flags(i) = 1
5 While stack .size > 0
6 index = stack.top
7 done = true
8 For j = 1: N
9 If mpreds (index , j) = 1
10 If flag s(j) = 0
11 stack.push(j)
12 flags(j) = 1
13 done = false
14 Elseif flags (j) = 1
15 Log error
16 Exit program
17 Else
18 flags (j) = 2
19 If done = true
20 For j = 1: N
21 If mpreds (index , j) = 1
22 For k = 1:N
23 If mpreds (j , k) = 1
24 mpreds (index , k) = 1
25 stack.pop
26 flags(index) = 2

Figure 52. Trace Implicit Predecessors and Detect Precedence Cycles

Table 25 describes the logic undertaken at each line of this algorithm.

L

INE
COMMENT

1 i is the task undergoing trace

2 Is task i untraced?

3 Push i onto stack

4 flag i as on stack

5 stack not empty

6 index is task on top of stack

7 changes to false if index has untraced preds

8 j is potential predecessor of index

9 Is j immediate predecessor to index?

1

0
Task j has not yet been traced

1

1
Push j onto stack

166

1

2
flag j as on stack

1

4
Task j is currently on the stack

1

5
A cycle has been detected

1

7
Task j already traced – no action necessary

1

8

Task index had no untraced predecessors. The trace is complete for
index, the top of the stack. Either index is a root or all predecessors of index
have already been traced. For the second case, we wish to inherit precedence to
index from all of its previously-traced predecessors.

2

0
j is potential predecessor of index

2

1
Is j an immediate predecessor of index?

2

2
k is potential predecessor task to j

2

3
Is k a predecessor to j?

2

4
index inherits precedence from j

2

5
remove index from top of stack

2

6
flag index as traced

Table 25. Comments on Predecessor Trace and Cycle Detection

mpreds now contains the full precedence graph. All that remains is to copy this

information into the object model. If mpreds(i,j) = 1 then task j is a predecessor of task i;

add the object for task j to task i’s predecessor set.

7.3.2.4 Function CalcRPW

RPW scores are designed to facilitate one-at-a-time assignment strategies. As

such, predecessors will always have a higher score than their successors. Note that each

of the RPW scoring methods below exhibit inheritance of scores from successor tasks.

167

This pool of successor tasks from which to inherit is expanded to include indirect

precedence relationships via set relations, i.e. task groupings. The tooling and eligible

station constraints of the expanded successor pool are prioritized first, followed by shift

time requirements.

First calculate the classic RPW score TVG.RPW by summing the shifttime of

itself and all direct successor tasks.

1 For i = 1: N
2 i .RPW = i .Time_min * i .Vol
3 For j = 1: N
4 If j is a successor of i
5 i .RPW += j .Time_min * j .Vol

Figure 53. Computing Classic RPW

L

INE
COMMENTS

1 Task i to find RPW for

2 Shifttime of i

4 Shifttime of j

Table 26. Comments on Classic RPW Computation

To calculate the set related RPW score TVG.AdjRPW, sum the shifttime of itself

and all tasks that are extended successors.

1 For i = 1: N
2 For j = 1: N
3 If j is an extended successor of i
4 i .AdjRPW += j .Time_min * j .Vol

Figure 54. Computing Extended RPW

L

INE
COMMENTS

168

1 Task i to find AdjRPW for

4 Shifttime of j

Table 27. Comments on Extended RPW Computation

To calculte the tooling RPW score, TVG.ToolRPW, first calculate the urgency

score for each task individually, TVG.ToolWt and TVG.EligStWt. To calculate

TVG.ToolWt:

1 For i = 1: N
2 latest = StationModel.Numstations
3 For each tool t required by i
4 location = t .laststation
5 If location < latest
6 i .ToolWt = StationModel.Numstations – location
7 latest = location

Figure 55. Computing Tool Urgency

L

INE
COMMENTS

1 Task i to find ToolWt for

2 tracks the latest station that satisfies tooling

4 last station tool t appears on

5

tool t is more urgent than any previously seen. Urgency score defined to
be the number of stations at the end of the band that cannot satisfy this tool.
Higher scores correspond to tools that last appear early in the band

7 update latest

Table 28. Comments on Tool Urgency Computation

To calculate TVG.EligStWt a similar process is applied:

169

1 For i = 1: N
2 latest = 0
3 For each eligible station s
4 location = s.ID
5 If location > latest
6 i .EligstWt = StationModel.Numstations – location
7 latest = location

Figure 56. Computing Eligibility Urgency

L

INE
COMMENTS

1 Task i to find EligStWt for

2 tracks the latest station that is eligible

4 sequence number of station s

5

station s is later than any previously seen. Urgency score defined to be
the number of stations at the end of the band that cannot satisfy station
eligibility. Higher scores correspond to the latest eligible station appearing
early in the band.

7 update latest

Table 29. Comments on Eligibility Urgency Computation

Now the TVG.ToolRPW score may be calculated by taking the maximum

urgency score amongst the task itself and all tasks that are extended successors.

1 For i = 1: N
2 i .ToolRPW = max(i .ToolWt, i .EligStWt)
3 For j = 1: N
4 If j is an extended successor of i
5 i .ToolRPW = max(i .ToolRPW, j .ToolWt, j .EligStWt)

Figure 57. Computing Tool and Eligibility RPW

L

INE
COMMENTS

1 Task i to find ToolRPW for

2 Maximum of i’s urgency scores

4 Take the most urgent score in extended successors.

Table 30. Comments on Tool and Eligibility RPW Computation

170

The tasks are then sequenced with a 3-stage hierarchical sort. TVG.ToolRPW is

the highest priority of the sort, followed by TVG.AdjRPW, and finally TVG.RPW.

171

APPENDIX B:

IP Model Technical Documentation

Figure 58. AMPL Model File of BIP Formulation

1 option gurobi_options 'presolve 2';
2 # SETS
3 set TVG;
4 set STATION ordered;
5 set MABR;
6 set PRBR;
7 set TOOL;
8 #PARAMETERS
9 param c > 0; #cycle time
10 param t {TVG} >= 0; #tvg time (direct)
11 param v {TVG} >= 0; #tvg volume
12 param v_max > 0; #max volume
13 param tbar {i in TVG} = t[i] * v[i] / v_max; #tvg time, average piece
14 param b {TVG} > 0; #tvg prbr?
15 param Lmax {STATION} >= 0 integer; #max headcount / station
16 param P {TVG,TVG} binary; #precedence
17 param Ra {TVG,TVG} binary; #adjacency
18 param Rst {TVG,TVG} binary; #sametakt
19 param Rss {TVG,TVG} binary; #samestation
20 param Rnt {TVG,TVG} binary; #not sametakt
21 param Qu {TVG,TOOL} binary; #tool need
22 param Qc {STATION,PRBR,TOOL} binary; #tool support
23 param Am {MABR,STATION} binary; #mabr access
24 param Ap {PRBR,STATION} binary; #prbr access
25 param B {STATION,MABR,PRBR} binary; #zoning compatibility
26 param w {TVG,TVG} binary;
27 #DECISION VARIABLES
28 var x {TVG,STATION,MABR} binary; #tvg assignment
29 var y {STATION,MABR} binary; #mabr active
30 #IMPLICIT DECISION VARIABLES
31 #var y {k in STATION,m in MABR} = if sum {i in TVG} x[i,k,m] > 0 then 1 else 0;
32 #OBJECTIVE
33 minimize HeadCount: sum {k in STATION, m in MABR} y[k,m];
34 #CONSTRAINTS
35 Assign_all {i in TVG}:
36 sum {k in STATION,m in MABR} x[i,k,m] = 1;
37 Cycle_time {k in STATION,m in MABR}:
38 sum {i in TVG} x[i,k,m] * tbar[i] <= y[k,m] * c;
39 Assoc_per_station {k in STATION}:
40 sum {m in MABR} y[k,m] <= Lmax[k];
41 Precedence {vv in STATION, i in TVG,j in TVG: P[i,j] = 1 and vv < last(STATION)}:
42 sum {k in STATION, m in MABR: k > vv} x[j,k,m] <= 1 - sum {k in STATION, m in MABR: k <= vv} x[i,k,m];
43 Adj_or_Sametakt {i in TVG,j in TVG,k in STATION,m in MABR: Ra[i,j] = 1 or Rst[i,j] = 1}:
44 x[i,k,m] = x[j,k,m];
45 SameStation {i in TVG,j in TVG,k in STATION: Rss[i,j] = 1}:
46 sum {m in MABR} x[i,k,m] = sum {m in MABR} x[j,k,m];
47 NotSameTakt {i in TVG,j in TVG,k in STATION,m in MABR: Rnt[i,j] = 1}:
48 x[i,k,m] + x[j,k,m] <= 1;
49 Tooling {i in TVG,k in STATION,o in TOOL}:
50 Qu[i,o] * sum {m in MABR} x[i,k,m] <= Qc[k,b[i],o];
51 Access_MABR {i in TVG,k in STATION,m in MABR: Am[m,k] = 0}:
52 x[i,k,m] = 0;
53 Access_PRBR {i in TVG,k in STATION: Ap[b[i],k] = 0}:
54 sum {m in MABR} x[i,k,m] = 0;
55 Zoning_compatible {i in TVG,k in STATION,m in MABR: B[k,m,b[i]] = 0}:
56 x[i,k,m] = 0;
57 Zone_assignment {i in TVG,j in TVG,k in STATION,m in MABR: w[i,j] = 1}:
58 x[i,k,m] + sum {m2 in MABR: m2 <> m} x[j,k,m2] <= 1;

172

1 set TVG := 1 2 3;
2 set STATION := 1 2 3;
3 set MABR := 1 2 3 4 5;
4 set PRBR := 1 2 3 4 5 6 7 8 9;
5 set TOOL :=
6 PNEUMATICRIVETGUN
7 VEHICLEACCESS
8 SUPERMARKETDELIVERY
9 RVDOORSEALROBOT
10 LVDOORSEALROBOT
11 ;
12 param c := 104;
13 param Lmax :=
14 1 2
15 2 2
16 3 2
17 ;
18 param v_max := 342;
19 param: TVG: t v b :=
20 1 0.06 320 3
21 2 1.5 320 9
22 3 1.8 320 3
23 ;
24 param P: 1 2 3 :=
25 1 0 0 0
26 2 1 0 0
27 3 0 0 0
28 ;
29 param Ra: 1 2 3 :=
30 1 0 0 0
31 2 0 1 0
32 3 0 0 1
33 ;
34 param Rst: 1 2 3 :=
35 1 0 0 0
36 2 0 0 0
37 3 0 0 0
38 ;
39 param Rss: 1 2 3 :=
40 1 0 0 0
41 2 0 0 0
42 3 0 0 0
43 ;
44 param Rnt: 1 2 3 :=
45 1 0 0 0
46 2 0 0 0
47 3 0 0 0
48 ;
49 param Qu: PNEUMATICRIVETGUN VEHICLEACCESS SUPERMARKETDELIVERY RVDOORSEALROBOT

LVDOORSEALROBOT :=
50 1 0 1 0 0 0
51 2 0 1 0 0 0
52 3 0 1 0 0 0
53 ;
54 param Qc :=
55 [*,*,PNEUMATICRIVETGUN]: 1 2 3 4 5 6 7 8 9 10 :=
56 1 1 1 1 1 1 1 1 1 1 1
57 2 0 0 0 0 0 0 0 0 0 0
58 3 0 0 0 0 0 0 0 0 0 0
59 [*,*,VEHICLEACCESS]: 1 2 3 4 5 6 7 8 9 10 :=
60 1 1 1 1 1 1 1 1 1 1 1
61 2 1 1 1 1 1 1 1 1 1 1
62 3 0 0 0 0 0 0 0 0 0 0
63 [*,*,SUPERMARKETDELIVERY]: 1 2 3 4 5 6 7 8 9 10 :=
64 1 1 1 1 1 1 1 1 1 1 1
65 2 0 0 0 0 0 0 0 0 0 0
66 3 0 0 0 0 0 0 0 0 0 0

173

67 [*,*,RVDOORSEALROBOT]: 1 2 3 4 5 6 7 8 9 10 :=
68 1 0 0 0 0 0 0 0 0 0 0
69 2 0 0 0 0 0 0 0 0 0 0
70 3 0 1 1 0 1 1 0 1 1 1
71 [*,*,LVDOORSEALROBOT]: 1 2 3 4 5 6 7 8 9 10 :=
72 1 0 0 0 0 0 0 0 0 0 0
73 2 0 0 0 0 0 0 0 0 0 0
74 3 1 1 0 1 1 0 1 1 0 1
75 ;
76 param Am (tr):
77 1 2 3 4 5 6 :=
78 1 1 1 1 1 1 0
79 2 1 1 1 1 1 0
80 3 1 1 1 1 0 0
81 ;
82 param Ap (tr):
83 1 2 3 4 5 6 7 8 9 10 :=
84 1 1 1 1 1 1 1 1 1 1
85 2 1 1 1 1 1 1 1 1 1
86 3 1 1 1 1 1 1 1 1 1
87 ;
88 param B :=
89 [1,*,*]: 1 2 3 4 5 6 7 8 9 :=
90 1 0 0 1 0 0 1 0 0 1 1
91 2 1 1 1 0 0 0 0 0 0 1
92 3 1 0 0 1 0 0 1 0 0 1
93 4 0 0 0 0 0 0 1 1 1 1
94 5 0 0 0 1 1 1 0 1 0 1
95 6 0 0 0 0 0 0 0 0 0 0
96 [2,*,*]: 1 2 3 4 5 6 7 8 9 :=
97 1 0 0 1 0 0 1 0 0 1 1
98 2 1 1 1 0 0 0 0 0 0 1
99 3 1 0 0 1 0 0 1 0 0 1
100 4 0 0 0 0 0 0 1 1 1 1
101 5 0 0 0 1 1 1 0 1 0 1
102 6 0 0 0 0 0 0 0 0 0 0
103 [3,*,*]: 1 2 3 4 5 6 7 8 9 :=
104 1 0 0 1 0 0 1 0 0 1 1
105 2 1 1 1 0 0 0 0 0 0 1
106 3 1 0 0 1 0 0 1 0 0 1
107 4 0 0 0 0 0 0 1 1 1 1
108 5 0 0 0 0 0 0 0 0 0 0
109 6 0 0 0 0 0 0 0 0 0 0
110 ;
111 param w: 1 2 3 :=
112 1 1 0 1
113 2 0 1 0
114 3 1 0 1
115 ;

Figure 59. AMPL Data File Example

174

APPENDIX C

Prototype Software Documentation: Object Relationships

The purpose of this research is to develop methods to extract logical content from

VRM and TAIS reports, and store the logical content in structure amenable for

subsequent algorithmic manipulation. Subsequent methods are developed to filter the

total information base into smaller subsets of interacting objects and constraints.

7.3.3 Context: Configuration Change Management

Technology and market conditions change through time, inducing changes to

product offerings. Such changes are pushed by a Project Nachtrag (PN) change request,

which prompts the configuration management (CM) team to investigate adaptations to

operational policies to reflect the desired change. In practical terms, this entails making

changes to the OKA and TAIS databases, which house the system constraints that control

the customization choices available to the customer in the configurator interface, and the

part allocation processes that create the bill of materials (BOM), respectively.

Configuration change management requires finding a set of alterations to the OKA and

TAIS databases that correctly maps to the intended change, and validating that the

changes induced don’t create unintended side effects, e.g. incorrect BOM for any

particular vehicle configuration.

The first step in creating software support tools for the CM process is to render

the information content of OKA and TAIS in suitable programmatic data structures, as a

foundation for subsequent algorithmic approaches. A Boolean logic paradigm is taken

for understanding and interpreting the total information content. Each OKA rule or TAIS

175

release line may be understood as a constraint that conditionally enforces relationships

between objects. Section 7.3.4 briefly summarizes the Boolean logics applied and

corresponding grammar. Section 7.3.5 describes the structure of the system information

within database reports, parse methods for extracting this information, and the

programmatic data structures used to hold the information.

Section 7.3.6 develops an algorithm for filtering the data set. This filtering

method is referred to as the Model Refinement module in the high-level report

(“Configuration Management Project Wrapper Report,” Technical Report 2015-CEDAR-

BMW-Configuration-000). The purpose of the method is to isolate interacting, tightly

coupled subsets of rules and objects. It takes as input the full set of configuration

information, representing all configuration literals and their relationship constraints, from

the active data model or any of the sandbox models within the shell. From this complete

set of information, a “small world” subset of objects and constraints is isolated. The user

must initially specify a set of options or packages for investigation. The isolated subset is

centered upon these options or packages, extending outward to related objects via

relationship constraints. The degree to which relationships propagate outward is

controlled by interaction depth, a user-chosen parameter.

7.3.4 Background: Boolean Logic

First-order Boolean logic is a mathematical model and formal grammar, used for

reasoning about the truth of logical expressions. The grammar is composed of operators

and literals. The operators used herein are the logical AND, OR, NOT, IMPLICATION,

and BICONDITIONAL. Literals are Boolean objects that take either true or false values.

176

In this application, the option codes, model codes, parts, etc. are literals, as they must be

either present for a configuration (true) or absent (false). Expressions, e.g. OKA rules,

are formed from combining literals and operators. Each expression represents a

constraint, the logical content of which must be satisfied by any valid configuration.

Table 31 lists all components in Boolean expressions.

Expression component Syntax Example

AND & (A & B) means “both A and B”
OR / (A / B) means “A or B”
NOT ¬ or - (-A) means “not A”
IMPLICATION → (A → B) means “if A, then B”
BICONDITIONAL ↔ (A ↔ B) means “A if and only if B”
Literal <name> S323A is itself

Table 31. Components of Boolean expressions

If all literals within a Boolean expression are assigned a truth value, then the

expression itself can be evaluated as either true or false. For example, if A and B are

TRUE, then the expression (A / B) evaluates TRUE.

7.3.5 Constraint Construction

The scope of the configuration management problems under consideration

includes conceptual objects (options, packages, etc.) and physical objects (parts). The

constraints that relate these objects are encoded in two databases at BMW: 1) VRM,

which contains information on the relationships between options, packages, and models,

and 2) TAIS, which contains information on the relationships between parts and the

conceptual objects. These databases are not directly accessible as data inputs. Instead,

three standardized reports generated from the databases are used as input. Section 7.3.5.1

discusses the reintegration of data from these reports into a single, local database.

After extraction from reports, two top-level methods are applied to transform

configuration constraint data into a programmatic data structures suitable for analysis and

177

experimentation, performed serially. First, the component fields from the reports are

queried from the local database, and a Boolean expression string is written to represent

each constraint. The process for constructing Boolean expressions varies for each type of

constraint. Section 7.3.5.2 presents the details for this process across all constraint types.

Next, as discussed in Section 7.3.5.3, the Boolean expressions are transformed from

strings to binary tree data structures, to support subsequent analysis.

7.3.5.1 Integration of BMW Data Sources

Data inputs are taken from three BMW system reports: the VRM report, the AG

Usage report, and the TAIS report. Taken together, these reports contain all system-level

constraints relevant to configuration. Each of these reports is cleansed, parsed and

integrated into a single, local Access database. The purpose of the local database is to

stabilize any inconsistencies arising during data acquisition. For example, many of the

reports acquired by the team reflect slight differences in the model codes included, or

inconsistencies due to differing dates of report generation. Hence, the local database

should be considered an artifact of the decoupled development phase, which may be

replaced by direct coupling to live data in a more mature future iteration. An ER diagram

of the local database is provided in Figure 60. The relationships reflected in the ER

diagram are correct insofar as they match the object patterns witnessed in available BMW

reports.

178

Figure 60. ER diagram for integrated VRM/AG/TAIS database

The VRM report is comprised of two sections: object declarations in the upper

portion and OKA rules in the lower. The declarations section lists all options and

packages, the models with which they are associated, and, if associated, the nature of the

association (standard or optional). The AG usage report duplicates this content, as well

being the sole source for FClass information for each option. The lower section of the

VRM report delivers all OKA rules, and the models to which the each rule applies. The

TAIS report is structured as a series of release lines. Each release allocates a single part,

179

with five conditions that control whether the release is activated for a vehicle. A

summary of the source report for each database table is provided in Table 32.

Database Table Source Description

Models AG, VRM, TAIS Model code. Models must appear in all reports for inclusion.
ReleaselineModels TAIS Linkage of releases to models.
Releaselines TAIS Release details.
Parts TAIS Part details.
OptionsModels AG, VRM Linkage of options to models.
Options AG, VRM Option details.
FClasses AG FClass membership of option.
RulesModels VRM Linkage of OKA rules to models.
Rules VRM OKA rule details.

Table 32. Tables in integrated database

There is a small subset of configuration-relevant constraints that are known to

exist, but are not explicitly expressed in BMW databases. These are paint, interior, and

land relationships. Simply stated, there may only be one paint, interior, or land code on

any vehicle. Further, every vehicle requires one paint and interior code. These

constraints are implemented as special cases within the methods to process the BMW

system reports.

7.3.5.2 Boolean Expression Strings

7.3.5.2.1 FClasses

FClasses (Feature Classes) are collections of related, mutually exclusive options.

FClass membership is derived from the “Option group usage” field in the AG usage

report. For example, the DAREL FClass contains 3 options related to roof rails: S3MCA,

S3ATA, and S3AAA. Only one, if any, of these options may be active for a valid

configuration.

The local database is initially queried to obtain the name and membership

collection for each FClass. For each FClass, a Boolean expression is generated to

180

represent membership, via ¬��(** ↔ ���h�	1/���h�	2/ . . ./���h�	�. Next, a set of

Boolean expressions is generated to enforce exclusion constraints between members,

taking the form ���h�	# → ¬���h�	4, ∀� ≠ 9. Note that the exclusion expressions alone

are insufficient, due to FClass names occasionally appearing in OKA rules. Without the

membership expressions, any FClass name literals are undefined. The expressions

generated for the DAREL example are DAREL ↔ S3MCA / S3ATA / S3AAA for

membership, and S3MCA → ¬S3ATA & ¬S3AAA , S3ATA → ¬S3MCA & ¬S3AAA , and

S3AAA → ¬S3MCA & ¬S3ATA for exclusion.

In addition to these explicit FClasses, the paint (L), interior (P), and land (LA)

option types are treated as implicit FClasses, as only one option from each of these

categories may be active on a valid configuration. Additional Boolean expressions are

generated to enforce these exclusions, in the same fashion as for explicit FClasses above.

Membership expressions are generated for the L and P option type codes as well.

Though not strictly necessary, as nowhere else are the codes L or P referenced within any

rule, these membership rules support a convenient mechanism to enforce the idea that

that every vehicle has one paint and one interior. When appending two activation rules,

¬L → L and ¬P → P, this logic is achieved.

For type P interior options, additional membership expressions are generated for

all 2-character (material only, no color) option codes, e.g. KC ↔ KCB4 / KCSW. These

additional expressions support no-color upper level part allocation, used in section

7.3.5.2.3.

181

1 Function ParseClassRules(className As String, members As
Collection, bMemberRules As Boolean, bExclusionRules As Boolean)

2 If bMemberRules Then
3 If members.count = 0 Then
4 strRuletext = "-" & className
5 Else
6 For Each aMember In members
7 If Len(RHS) = 0 Then
8 RHS = aMember
9 Else
10 RHS = RHS & "/" & aMember
11 End If
12 Next
13 strRuletext = className & "=(" & RHS & ")"
14 End If
15 aNode = New CBinNode
16 Call aNode.ParseExpression(strRuletext)
17 Call RuleForest.Add(aNode)
18 End If
19 If (bExclusionRules = True) And (members.count >= 2) Then
20 strRuletext = ""
21 For i = LBound(members.Array) To UBound(members.Array) -

1
22 For j = i + 1 To UBound(members.Array)
23 RHS = "-(" & members.Array(i) & "&" &

members.Array(j) & ")"
24 If Len(strRuletext) = 0 Then
25 strRuletext = RHS
26 Else
27 strRuletext = strRuletext & "&" & RHS
28 End If
29 Next
30 Next
31 aNode = New CBinNode
32 Call aNode.ParseExpression(strRuletext)
33 Call RuleForest.Add(aNode)
34 End If
35 Return RuleForest
36 End Function

Figure 61. Construction of Class Membership and Exclusion Boolean

Expressions

7.3.5.2.2 OKA rules

The VRM report delivers OKA rules in a format that is nearly a Boolean

expression already, needing only minor manipulation to achieve the desired form. Each

rule is delivered as a logical implication, with the “IF” column containing the antecedent,

182

and the “THEN” column containing the consequent. Table 33 shows some example

OKA rules for reference.

Type IF THEN STANDARD

Z & + S205A & - P337A / + S255A / + S2XAA / + S7XAA + S240A

A & + S212A / + L801A

PK P7S2A (!S255A) & (!S4CKA / S4ADA / S4B8A)

Table 33. Example OKA rules

As an initial step, each field of the OKA rule is cleansed to remove undesired

characters. Using the example shown in Table 33, the leading operator strings “/” and

“&” are removed from each component. The Boolean grammar adopted does not permit

binary operators such as OR or AND to appear as leading characters. The “+” characters

are simply removed, as our grammar assumes any literal is positive unless a negation

operator is present. Lastly, all white space is removed from the string.

The Boolean expression for type Z rules is constructed by concatenation of the IF

and THEN components with an IF operator, e.g. (�!���c��! → ���*�¦§��!. Ignoring

the STANDARD column for a moment, the example Z rule in Table 33 becomes

S205A & ¬P337A → S255A / S2XAA / S7XAA. Type A rules negate the consequent, and

the concatenated Boolean string is of the form (�!���c��! → ¬ ���*�¦§��! . The

example A rule in Table 33 is interpreted S212A → ¬L801A.

The STANDARD field in an OKA rule indicates options that are included by

default during the customer configuration process. The customer may have opportunity

to upgrade the standard option to an alternative, but at a price premium. This research is

unconcerned with pricing or default configurations, only valid configurations. If upgrade

alternatives exist for a standard option, then the alternatives are found in either the FClass

183

of the standard option or in the OKA rule that declares the standard. The process to

transform OKA rules with standard options into Boolean expressions is as follows.

• Query whether the option belongs to any FClass. If so, replace the standard option
with the name of its FClass. The Boolean expressions developed for FClass
membership link to all alternative options.

• Append this resultant to the consequent of the OKA rule with an OR operator.
• Complete construction of the Boolean expression using the methods for Z/A rules.

For example, the Z rule in Table 33 contains S240A as standard equipment.

S240A is not a member of any FClass. S240A is appended to the rule consequent,

yielding S255A / S2XAA / S7XAA / S240A . The new consequent is finally merged with

the antecedent to yield S205A & ¬ P337A → S255A / S2XAA / S7XAA / S240A.

PK rules differ from Z/A rules in root cause, being inspired by marketing instead

of engineering purposes. However, the two types of rules are interpreted identically by

this tool, with one caveat. PK rule consequents possess the “!”operator, which declares a

definite Horn clause (multi-input XOR), such that exactly one of the literals within the

parentheses must be true. The tool internally reduces each horn clause, transforming it

into a logically equivalent set of AND and OR clauses. The Boolean expression for PK

rules is of the form (�!���c��! → ���*�¦§��!, and the example PK rule in Table 33

becomes

P7S2A→ JS255AK & JS4CKA / S4ADA / S4B8AK & ¬JS4CKA & S4ADAK & ¬JS4CKA & S4B8AK & ¬JS4ADA & S4B8AK

184

1 Function BuildBinTree_OKArule(rTYPE As String, rIF As String,
rTHEN As String, rSTAND As String)

2 rIF = CleanseArtifactStrings(rIF)
3 rTHEN = CleanseArtifactStrings(rTHEN)
4 rSTAND = CleanseArtifactStrings(rSTAND)
5 If Len(rTHEN) > 0 And Len(rSTAND) > 0 Then
6 RHS = "(" & rTHEN & ")/($" & rSTAND & ")"
7 ElseIf Len(rSTAND) > 0 Then
8 RHS = "$" & rSTAND
9 Else
10 RHS = rTHEN
11 End If
12 If rTYPE = "A" Then
13 RHS = "-(" & RHS & ")"
14 End If
15 strRuletext = "(" & rIF & ")>(" & RHS & ")"
16 rootNode = New CBinNode
17 Call rootNode .ParseExpression(strRuletext)
18 Return rootNode
19 End Method

Figure 62. Construction of OKA Rule Boolean Expressions

7.3.5.2.3 TAIS Part Allocation Rules

There are several criteria to meet for a part to be allocated for a given

configuration, all of which are sourced from the TAIS report. This report is organized as

a series of release lines, with potentially several release lines allocating any part. The

necessary condition to determine whether a part is allocated to a vehicle, then, is that at

least one of the part’s release lines is activated. The expression J	���(*�
/
	���(*�Ô/ … / 	���(*�`K ↔ �(! encapsulates this logic in Boolean terms, where

releases 1-n are all of the releases that allocate the part. It is undesirable to include each

release as a literal, as this would flood the model with variables of little interest. Instead,

each release is broken into the components that determine whether the release is

activated. There are five conditions that collectively determine whether a release is

185

active, allocating the associated part. The conditions are found in the ULPART,

BOOLE, AFL, Model code, and INDATE/OUTDATE columns of TAIS.

1) The vehicle model must be associated to the release. The Model Code column for the
release must have a non-zero, non-blank quantity. The value of the numbers in this
column are not considered. The method considers only whether a part is allocated,
and does not consider the quantity allocated.

2) If the release has a Boolean condition, it must be satisfied. These conditions are
located in the TAIS column labeled ‘Boole’ or ‘Effective_SA’. With the exception of
spring constraints, these are already in propositional Boolean algebra form.

3) If the release has an AFL (interior) condition, it must be satisfied. These conditions
are located in the TAIS column labeled ‘AFL’. Note that upper no-color parts have
only 2-character AFL codes, corresponding to the material of the interior only. The
derivation of 2-character AFL codes is described in section 0.

4) If the release has an upper-level part, then that part must also be allocated for the
vehicle. These conditions are located in the TAIS column labeled ‘ULPART’

5) The current date must be inside the release’s activity window, as determined from the
TAIS columns INDATE and OUTDATE.

A release must meet all five conditions to be active. Putting these pieces together

builds a Boolean expression to determine release activation:

	���(*� ↔ J�� > 0K & �¬� & i���� & ¥�;��� & J@�¿��� < ��� < �¥�¿���K

Substituting this expression in the part allocation expression resolves the issue of

release literals in the SAT. Table 34 shows some example TAIS data to illustrate this

process.

ID PNO ULPART Boole AFL KR01

r1 1180625 (S300A) 1

r2 2907905 2907904 LCSW 1

r3 2907905 2907904 AVAT KCSW LCSW

r4 2907904 NOT(S6NSA/S775A/S776A) KC LC NA 1

Table 34. Example TAIS excerpt

186

 Using the example data in Table 34, the following release activation expressions

are constructed, assuming the model KR01 is active and the INDATE/OUTDATE time

window is active for all releases:

r1 ↔ J!	§�K & S300A

r2 ↔ J!	§�K & LCSW & 2907904

r3 ↔ J�(�*�K & JAVAT / KCSW / LCSWK & 2907904

r4 ↔ J!	§�K & JKC / LC / NAK & ¬JS6NSA / S775A / S776AK

Assuming that there are no other releases except those shown, substituting these

release activation expressions yields the following part allocation expressions.

1180625 ↔ J!	§�K & S300A

2907905 ↔ JJ!	§�K&LCSW&2907904K / JJ�(�*�K&JAVAT/KCSW/LCSWK&2907904K

2907904 ↔ J!	§�K & JKC / LC / NAK & ¬JS6NSA / S775A / S776AK

 The Boolean expression strings for parts are created through serial application of

two methods, each representing one conditional half of the biconditional expression. The

first method, shown in Figure 63, constructs an expression to require that the part is

allocated if the release conditions are met. The first condition checks INDATE and

OUTDATE of the release. If the release is out of date, then no expression is created.

Else, each subsequent condition is appended into a single Boolean expression held in the

variable LHS, joined with the “&” character to ensure that all conditions must be met.

The AFL condition must be specially formatted before it is appended, as AFL conditions

list a set of interior codes, any of which suffice. After concatenating all conditions, the

Boolean expression is completed by setting “LHS > PNO,” such that if all conditions are

187

met, then the PNO is allocated. If there are no conditions at all, then the part is series,

and must be allocated for every vehicle. The expression in this case is simply “PNO”.

1 Function BuildBinTree_TAISrelease(rPNO As String, rULPART As
String, rAFL As String, rBOOLE As String, rSTART as String, rEND
as String)

2 If (rSTART > Now) Or (rEND < Now) Then Exit Function
3 LHS = rULPART
4 rAFL = FormatAFLString(rAFL)
5 If Len(rAFL) > 0 Then
6 If Len(LHS) = 0 Then
7 LHS = rAFL
8 Else
9 LHS = "(" & LHS & ")&(" & rAFL & ")"
10 End If
11 End If
12 rBOOLE = FormatBooleString(rBOOLE)
13 If Len(rBOOLE) > 0 Then
14 If Len(LHS) = 0 Then
15 LHS = rBOOLE
16 Else
17 LHS = "(" & LHS & ")&(" & rBOOLE & ")"
18 End If
19 End If
20 If Len(LHS) = 0 Then
21 strRuletext = rPNO
22 Else
23 strRuletext = "(" & LHS & ")>" & rPNO
24 End If
25 rootNode = New CBinNode
26 Call rootNode .ParseExpression(strRuletext)
27 Return rootNode
28 End Function

Figure 63. Construction of TAIS release Boolean expressions

The next step is to create Boolean conditions to enforce the other half of the

biconditional, so that parts cannot be allocated unless one of the releases is active. The

method for enforcing this logic is shown in Figure 64. The passed parameter

PartReleaseRules contains the root nodes for all of the constraints constructed in

the prior method. First, if there are no releases for a part, then that part must not be

allocated on any vehicle, and the expression is simply “-PNO”. Similarly, if any release

188

for the PNO is series, then the part must be allocated, and the expression is “PNO”.

Otherwise, release conditions are collected from the left child of each release’s root node,

concatenated with an OR between each release, and stored in the method-level variable

RHS. The Boolean expression string is then “PNO > RHS,” which enforces that if the

PNO is allocated, then at least one of the releases must have fulfilled conditions.

1 Function BuildBinTree_TAISpart(rPNO As String, PartReleaseRules
As Collection)

2 If PartReleaseRules.count = 0 Then
3 strRuletext = "-" & rPNO
4 Else
5 For Each root In PartReleaseRules
6 If root .Oper = "VAR" Then
7 strRuletext = rPNO
8 Exit For
9 ElseIf root .Operator = ">" Then
10 bNode = root .LeftChild
11 If Len(RHS) = 0 Then
12 RHS = "(" & bNode.PrintExp & ")"
13 Else
14 RHS = RHS & “ /(" & bNode.PrintExp & ")"
15 End If
16 strRuletext = rPNO & ">" & RHS
17 End If
18 Next
19 End If
20 End If
21 rootNode = New CBinNode
22 Call rootNode .ParseExpression(strRuletext)
23 Return rootNode
24 End Function

Figure 64. Construction of TAIS part Boolean expressions

7.3.5.3 Parsing: Boolean Expression Strings to Binary Parse Trees

Configuration constraint information from BMW reports is delivered in string

form. Parsing is a computational process that extracts the semantic content of these

strings, and stores the content in an internal (memory-resident) data structure. The

purpose of the parsing approach is twofold. First, parsing validates the grammar used in

189

each constraint string. If a constraint is e.g. missing a parenthesis, then the parsing

method will log the error. Second, semantic content is notoriously difficult to analyze,

transform, or otherwise manipulate when stored in a string representation. The data

structures used are designed to support these tasks.

To review, Boolean expressions are composed of a series of literals and

operators, arranged in a grammatical structure. Literals are objects that may take either

true or false values. In this project, each individual part, option, package, and FClass is

rendered as its own literal. For any single configuration, each of these objects is either

true (included in the configuration) or false (absent). Operators are logical functions like

AND, OR, or NOT. Each operator has either one or two operands, sometimes called

inputs or arguments. Binary operators require two operands, e.g. the AND operator in the

expression A & i has operands A and B. Binary operators appear between their operands

in text expressions. Unary operators have only one operand, e.g. the NOT operator in the

expression ¬C has operand C. Unary operators appear before their operand in text

expressions.

Section 7.3.5.3.1 describes the parse tree data structure used to hold Boolean

constraint information. Section 7.3.5.3.2 describes the parsing algorithm for creating a

parse tree from each Boolean expression string. The Boolean expression strings used as

parse input are created from BMW sources by the methods described in section 7.3.5.2.

7.3.5.3.1 Binary Parse Tree

Boolean expressions are held in a binary parse tree data structure, which emulates

the semantics of Boolean grammar. Trees are hierarchically arranged node networks,

with one (mandatory) root node. Links between node pairs indicate a relationship

between the nodes. The tree is binary, meaning that each node may have up to two child

nodes. When two nodes are linked, the higher-level (i.e. closer to the root) node is the

parent, and the lower-level node is the child. The nodes that populate the tree each

represent either a literal or an operator from the Boolean expression modeled.

The child node(s) of an operator node are its operand(s). As all operators used are

either unary or binary, no operator may be a leaf node, i.e. a node with zero children. All

leaf nodes must be literals, and all literals must be leaf nodes. The tree form of A & i

would have an AND root node, with one child node A and another child node B. The tree

form of ¬C would have a NOT root node, with one child node C. See Figure 63 for

examples of simple expressions rendered as binary trees.

190

Trees have any arbitrary depth, determined by the complexity of the expression

modeled. For example, the expression JA & BK / JC & ¿K → J�/¬/8K & J�/@ & J
/�KK

has depth of 5 on its deepest branch.

 A & B AND

B A

 C / -D OR

NOT C

D

 L802A →
 (S2TBA / S2TEA)

IF

OR L802A

S2TBA S2TEA

Figure 65. Example constraint strings and corresponding rule trees

191

An object-oriented programming approach is used to model the binary tree data

structures. Instances of class CBinNode represent each node, with properties, methods,

and functions as shown in Table 35.

Characteristic Type Description

.LChild Property Link to left child CBinNode instance (if exists)

.RChild Property Link to right child CBinNode instance (if exists)

.Oper Property Operator type

.Varname Property If node is a literal, name of the literal

.RuleNo Property Constraint source name (e.g. “ReleaseLine 21545”)

.RultCat Property Constraint source type (e.g. “OKA_PK”)

.ParseExpression (etext) Method Constructs tree from passed expression etext

.TransformToCNF Method Transforms tree to CNF

.AllLiterals Function Returns an dictionary containing all literals in tree

.CopyNode Function Returns an object copy of node

.PrintNode Function Returns text form of expression

Table 35. Class CBinNode

The .Oper property is the logical operator modeled by the node. There are 8

operator types, shown in Table 36. Operator type determines the number of children for

the node, as logical operators have a fixed number of operands. Note that the EXC and

STAN operator types refer to BMW-specific constraint properties.

Operator Symbol #Children Logical Description

VAR <name> 0 Literal
NOT - 1 NOT (LChild)
AND & 2 (LChild) AND RChild)
OR / 2 (LChild) OR (RChild)
IF > 2 IF (LChild) THEN (RChild)
IFF = 2 (LChild) IFF (RChild)
EXC ! 1 LChild is embedded in PK exclusion clause
STAN $ 1 LChild is embedded in OKA Z/A standard clause

Table 36. Operator types of class CBinNode

The EXC node type denotes that the child and all following lower-level nodes are

within a package PK definite horn clause, e.g. J!A / B / CK. These clauses define that one

and only one of the parenthesized literals may be chosen. The EXC node represents the

“!” in these expressions. All lower-level nodes must be of type OR or VAR.

Then STAN node may only appear for a Z or A OKA rule. It denotes that the

child and any lower-level nodes are within the Standard column of the rule in VRM.

192

Only root nodes are instanced and retained at the outer programming level.

Lower-level nodes instances are retained as links (.LChild and .RChild properties),

chained from the root. After instancing the root for a constraint, the

rootnode.ParseExpression method is called to construct the tree, passing as argument the

Boolean expression text for the constraint.

7.3.5.3.2 Parsing Algorithm

A recursive descent parse is applied in method .ParseExpression. It requires a

passed etext argument, which is the string expression of the Boolean constraint modeled.

The method will define all local properties of the node, and then recursively define

children nodes.

Figure 66 summarizes the parsing algorithm. Several string manipulation

functions are used within, briefly described in Table 37. Note that there are three non-

overlapping categories of characters that may appear in a valid Boolean expression:

operator strings, parenthesis open and close, and alphanumeric characters used by literals.

Using these categories, the algorithm seeks to break etext into 3 separate pieces: the

operator of the current node (stored in Me.Oper), the text for the left child to inherit

(stored in ltext), and the text for the right child to inherit (stored in rtext). After storing

the operator in the local node, any needed child nodes are instanced and recursed upon,

by calling ParseExpression for their instances and passing ltext or rtext.

The algorithm initially strips all fully-spanning parentheses from the etext

expression string, removes all empty characters, then analyzes the leftmost character

193

(char1). In any valid Boolean expression, char1 must be either a unary operator, a

parenthesis open, or the beginning of a literal name (alphanumeric).

7.3.5.3.2.1 Unary operator
Unary operators include the negation operator (“-“), the mutual exclusion operator

(“!”), and the standard operator (“$”). If char1 is a unary operator, the parse method

searches for the end of the unary operand clause. If the clause comprises the entirety of

etext, then the local node becomes an operator node of the unary type. The remainder of

etext, other than the leading operator character, is stored in ltext, and rtext is empty. For

example, if �!��! = " − JA & BK", then �ℎ(1 = "− ". The negated clause begins with

the open parenthesis. The clause ends with the end parenthesis, which is the final

character in etext. The local node becomes a NOT node, �!��! = "JA & BK", and rtext is

the empty string. The left child node is instanced, and recursion begins, passing ltext.

If the unary operand clause does not fully span etext, then the character following

the clause’s end must be a binary operator. The local node becomes an operator of the

same type, with ltext containing all text left of the binary operator, and rtext all text to the

right. For example, if �!��! = "− JA & BK / JC & ¿K" , then �ℎ(1 = "− " . The

negated clause begins with the first open parenthesis. The clause ends with the first end

parenthesis, at position 6 in etext. Since etext is 12 characters long, the unary operand

does not fully span. The character at position 7, an OR symbol, determines the operator

of the local node. The left and right children are both instanced, and recursion begins

with �!��! = " − JA & BK" and 	!��! = "JC & DK".
7.3.5.3.2.2 Parenthesis open

194

If char1 is a parenthesis open, then there must be a binary operator after the

corresponding parenthesis close. All fully-spanning parentheses are stripped initially, so

examples like JA & BK cannot occur. The next character after the corresponding

parenthesis close becomes the operator for the local node. All text to the left of this

operator is stored in ltext, and text to the right of the operator is stored in rtext. For

example, if etext="JA & iK / J� & ¿K”, then the central OR becomes the operator for the

local node. Recursion begins with �!��! = "JA & iK", and 	!��! = "JC & ¿K".
7.3.5.3.2.3 Literal name

If char1 is the beginning of a literal name, the parse method searches for the end

of the literal name by finding the next character that is not alphanumeric. If the literal

name comprises the entirety of etext, then the local node becomes type VAR, and the

literal name is stored in the local property varname. Recursion terminates in such leaf

nodes, and both children are null.

If the literal name does span the entirety of etext, then the character following the

literal name must be a binary operator. The local node becomes an operator node of this

type. All text to the left of this operator is stored in ltext, and text to the right of the

operator is stored in rtext. For example, if etext="A & B", then the local node becomes

the central AND operator. The left and right children are both instanced, and recursion

begins with �!��! = "A" and 	!��! = "B".

Function Input Output Description

Len(text) text: “A&(B/C)” 7 Returns number of characters in text.
Left(text,length) text: “A&(B/C)”

length: 1

“A” Returns left-most characters from text of length length.

Right(text,length) text: “A&(B/C)”
length: 1

“)” Returns right-most characters from text of length length.

Mid(text,start,length) text: “A&(B/C)” “B/C” Returns middle characters from text beginning at index

195

start: 4

length: 3

start, of length length.

IsCharAnOperator(char) char: “-“ TRUE Returns whether char is an operator string
ParenStrip(text) text: “((A/B))” “A/B” Removes all outer, fully-spanning parentheses from

string.
ParenEnd(text,start) text: “A&(B/C)”

start: 3
5 Returns index number of “)”, matching to the “(“

indicated by argument start.
CodeEnd(text,start) text: “S323A”

start: 1
5 Returns index number of terminus of literal name

beginning at index start.
ClauseEnd(text,start) text: “(A/B/C)&D”

start: 1
7 Returns index number of terminus of clause beginning at

index start. A clause is either a parenthetical statement or
a literal name.

Table 37. Parse support functions

196

1 Method ParseExpression
2 etext = ParenStrip(etext)
3 char1 = Left(etext , 1)
4 Select char1
5 Case "!"
6 Me.Oper = "!"
7 ltext = Right(etext , Len(etext) – 1)
8 rtext = ""
9 Case "$"
10 subtext = Right(etext , Len(etext) - 1)
11 cNext = ClauseEnd(subtext , 1)
12 If cNext = Len(subtext) Then
13 Me.Oper = "$"
14 ltext = subtext
15 rtext = ""
16 Else
17 Me.Oper = Mid(etext , cNext + 2, 1)
18 ltext = Left(etext , cNext + 1)
19 rtext = Right(etext , Len(etext) - Len(ltext) - 1)
20 End If
21 Case "-"
22 subtext = Right(etext , Len(etext) - 1)
23 cNext = ClauseEnd(subtext , 1)
24 If cNext = Len(subtext) Then
25 Me.Oper = "-"
26 ltext = subtext
27 rtext = ""
28 Else
29 Me.Oper = Mid(etext , cNext + 2, 1)
30 ltext = Left(etext , cNext + 1)
31 rtext = Right(etext , Len(etext) - Len(ltext) - 1)
32 End If
33 Case "("
34 cNext = ParenEnd(etext , 1)
35 Me.Oper = Mid(etext , cNext + 1, 1)
36 ltext = Mid(etext , 2, cNext - 2)
37 rtext = Right(etext , Len(etext) - cNext - 1)
38 Case Else
39 cNext = CodeEnd(etext , 1)
40 If cNext = Len(etext) Then
41 Me.Oper = VAR
42 Me.Varname = etext
43 Else
44 Me.Oper = Mid(etext , cNext + 1, 1)
45 ltext = Left(etext , cNext)
46 rtext = Right(etext , Len(etext) - cNext - 1)
47 End If
48 End Select
49 If Len(ltext) > 0 Then
50 Lchild = New CBinNode
51 Call Lchild.ParseExpression(ltext)
52 End If
53 If Len(rtext) > 0 Then
54 Rchild = New CBinNode
55 Call Rchild.ParseExpression(rtext)
56 End If
57 End Method

Figure 66. Recursive Descent Parse Algorithm

197

7.3.6 Local Object Interactions

Change initiatives are motivated by a change intention, which states in words the

desired end state of the configuration space after application of the change. The intention

is a vision of some future state of affairs, where the consumer is offered new

technological or aesthetic choices for vehicle customization. Implementation of a change

requires altering system constraints. New options or packages may be offered for

existing models, or may be removed. The set of models available may be updated to add

or remove items. Relations between options, packages, and models may be altered.

Further, for any change, the correct parts must be allocated to valid configurations.

Validation of a set of changes requires checking that altered system constraints correctly

map to the intended outcome.

Importantly, change intentions are typically observed to be oriented toward

modifying particular vehicle subsystem(s). Disparate, unrelated changes are not managed

under a single change initiative. Instead, when such cases arise, each unrelated change

would be managed under a separate change initiative. The conceptual reliance on un-

relatedness, or independence between subsystems and change initiatives, motivates the

following definition of an interaction between objects.

Definition: Objects are interacting (with degree-1) if they are mutually present in

an OKA rule.

OKA rules encode constraints that forbid certain combinations of object Boolean

values. For example, the rule S205A & ¬P337A → S255A / S2XAA / S7XAA forbids any of

the options in the consequent if the configuration in the antecedent is true. These objects

198

are related by this dependence, and are defined to interact. The degree of interaction

between these objects is 1, as they are directly related by this OKA rule.

Of course, objects may be present in more than one OKA rule. Complexly

entwined subsystems typically encode constraints across an array of rules, such that each

individual rule encapsulates only one facet of the larger interaction. This distinction is

arbitrary from a purely constraint-logical point of view. That is, to say that every valid

configuration must obey all OKA rules is identical to saying that all object values must

satisfy the conjunction of OKA rule Boolean expressions. To a human reader, however,

the complete set of conjoined OKA rules would be an opaque, incomprehensible mess.

Hence, several separate rules are used to encode a complex concept. Under this

approach, rules cannot be assumed to be truly independent from all other rules, as

sometimes rule batches are used to divide up complex interactions into chunks

manageable to a human reader.

A degree-N interaction exists between two objects if there exists a path of length

N between the objects, where each link in the path is a degree-1 interaction. For

example, consider a batch of OKA rules such as A & B → C and C / D → B & E. A and C

interact with degree-1. C and D interact with degree-1. The interaction between A and D

is degree-2, as there is a set of two degree-1 linkages between A and D. Further, there

may be several different interaction levels between objects. In the example above, A and

B interact at degree-1 (directly from the first rule), and also at degree-2 (from the path A

to C in the first rule, and then C to B in the second rule). In these cases, which are many,

only the smallest interaction level is retained between two objects. As OKA rule

199

construction exhibits logically arbitrary divisions to support human comprehension, this

preference enforces that only the tightest coupling between objects is considered.

To support the investigation task required by validation, an algorithmic method is

designed to drill down into the complex whole of system constraints, to isolate subsets of

constraints that are tightly coupled to some objects of interest. The user supplies two

inputs. The first is a set of objects to be investigated, which represent the objects

involved in the subsystem in the change initiative. The second input is a depth

parameter, which controls determining the depth of interaction to include around those

objects. The algorithm finds all objects that have interaction depth less than or equal to

the depth parameter, relative to the source objects. This subset of interacting objects,

along with the OKA rules that define the interactions, are returned from the algorithm.

This output defines the small world of objects and constraints that are likely to require

modification or investigation during the validation process.

Figure 67 presents the algorithm. The options parameter is the set of starting

options to be investigated, and the depth parameter is the desired interaction depth. The

first step is to acquire the set of all OKA rules that contain any object in options ,

which are parsed into binary trees and stored locally in the RuleForest structure. This

initial set of OKA rules is the smallest possible small world surrounding the initial

objects. Any degree-N interaction to the initial objects must have a path that begins in

this initial set of OKA rules. Next, a loop begins iterating from 1 to depth . During

each iteration, both the options and RuleForest data structures will grow to include

new objects/rules found at the depth level. During a single iteration, first all objects are

200

extracted from the subset of rules currently in RuleForest , by invoking the

rule.AllObjects procedure. All objects found are appended to the batch of interacting

options . Then, RuleForest is updated to append any rules which contain the new

objects just-added to options . The loop then continues to the next iteration. Upon

completion, the function returns the RuleForest data structure. The set of objects

participating in these rules may later be extracted by invocation of the rule.AllObjects

procedure, if desired.

1 Function InteractingConstraints(options, depth)
2
3 RuleForest = ParseOKARules(options)
4 For i = 1 To depth
5 For Each rule In RuleForest
6 options = Union(options, rule.AllObjects)
7 Next
8 RuleForest = ParseOKARules(options)
9 Next
10 Return RuleForest
11 End Function

Figure 67. Interaction Search Algorithm

201

APPENDIX D

Prototype Software Documentation: Conflict Detection

Support is provided to configuration management (CM) through development of

algorithmic methods to detect potentially faulty object relationships within the VRM and

TAIS databases. These methods are intended for use by launch and change control, to

validate system changes induced by a Project Nachtrag (PN). A suite of distinct

anomaly/conflict events is established to classify different failure modes, with

accompanying Boolean algebra proof-checking approaches for each.

7.3.7 Context: Option Change Management

PNs entail altering system constraint located in the OKA and/or TAIS databases.

Before implementation, investigation is required to validate whether the proposed

changes will induce problems. This research develops a tool to support this validation

process, which operates by first establishing a class of potential failure mode, then

applying satisfiability methods to detect whether any of the failure modes may occur.

The following list briefly summarizes the failure modes captured by the tool.

1. “Rule conflict.” Is there a subset of two or more VRM rules such that no
possible configuration may satisfy them?

2. “Object activation.” Can all options/parts/etc. that are declared as being
available for selection actually be selected?

3. “Antecedent satisfiability.” Are there any rules for which the antecedent (IF-
part) of the rule cannot be satisfied? If so, then the effects of the rule are
inconsequential, as the rule is never active.

4. “Implicit relationships.” Are there any binary inclusion/exclusion object
relationships that are implicitly enforced, through the collected effects of
explicit constraints?

202

5. “Part family allocation.” For a given family of alternative parts (e.g. all
windshields), will one (and only one) of the parts be allocated for every
configuration?

6. “Part family matching.” Consider a suite of several part families, some of
which are intended to match to others for geometry or color reasons. Are the
rules correctly implemented, or is there a configuration that mismatches
parts?

The tool takes as input a set of constraints derived from TAIS and VRM, which

relate part, option, FClass, model, and package objects. These constraints are collected

by methods described in report (“Configuration Management Model Refinement,”

Technical Report 2015-CEDAR-BMW-Configuration-005). The tool makes no

assumptions about whether PN changes have been implemented within this source data.

As described in the (“Configuration Management Project Wrapper Report,” Technical

Report 2015-CEDAR-BMW-Configuration-000), any version of constraint set data may

be checked with this tool, from the active model or any sandbox model. The system state

pre-change may also be checked, if desired, as it will presumably (but not necessarily)

contain no conflicts.

Section 7.3.8 presents an overview of Boolean satisfiability techniques used to

check for each conflict class. In section 7.3.9, each conflict class is described in detail,

along with the test protocols used to search for each. Section 7.3.10 describes the

technical steps for preparing constraint data for satisfiability testing.

7.3.8 Background: Satisfiability

First-order Boolean logic provides techniques for reasoning about logical

expressions. These expressions are constructed as a series of operators and literals,

assembled according to a formal grammar. Literals are Boolean objects, which may take

203

values of either TRUE or FALSE. Within this project, objects like options, parts, etc. are

literals, as they are either present on a vehicle instance (TRUE) or not (FALSE).

Operators are functions like OR, AND, and NOT, used to conjoin literals into expressions

that represent system constraints.

If all literals are assigned a truth value, then a Boolean expression containing

them may be resolved to either true or false. If, on the other hand, some or all of the

literals are unassigned, then the truth of the expression may be unresolved. Indeed,

within CM literals do not typically take explicit values, as it is the discretion of the

customer to choose which options, etc. are chosen for the vehicle. The task for CM is to

manage the set of system constraints, such that all valid, user-selectable configurations

result in correctly specified, buildable vehicles. When working with Boolean expressions

that contain unspecified literals, a pertinent question may be “Is there any set of true/false

values for literals that results in the expression resolving to true?” This question is

known as the Boolean satisfiability problem (SAT). SAT approaches have been

successfully applied in non-automotive sectors, for problems ranging from software

configuration validation, electronic circuit design validation, and mathematical proof-

checking.

Solvers for the SAT problem have been developed by several independent

researchers. These solvers take as input a set of Boolean expressions, and search for

some combination of literal values that will “satisfy,” i.e. result in all expressions

evaluating true. For this work the MiniSAT solver is adopted, available at

http://minisat.se/. If the solver finds that no possible combination of literal values can

204

satisfy all expressions, then the solver returns UNSATISFIABLE. Otherwise, the solver

returns SATISFIABLE along with the satisfying values found for each literal. There may

be many different sets of satisfying literal values; the solver returns only the first set

found within the search.

SAT does not strictly require that all literals be unspecified at the start. Partially

configured vehicles are discussed in the conflict detection methods used below. A

partially specified SAT problem is accomplished by appending an additional expression

for each literal that has an initial value. For example, appending the expression “-A” will

force solutions where A=false.

The research questions in section 7.3.3 are addressed by a general strategy of

constructing a SAT problem instance (or suite of parallel SAT instances) that is(are)

equivalent to a conflict. The SAT problem is then evaluated via the SAT solver. If the

solver finds a solution, then this means that there exists a set of literal true/false values

with which the conflict emerges.

7.3.8.1 BASESAT Constraint Set

Prior to testing for conflicts, first all system-level constraints, e.g. OKA and TAIS

rules, are collected. See (“Configuration Management Model Refinement,” Technical

Report 2015-CEDAR-BMW-Configuration-005) for description of the methods for

constructing Boolean expressions from TAIS and VRM system information. This

collection of constraints is herein referred to as the BASESAT, a set of constraints must

be obeyed for any valid vehicle, regardless of the details of any particular experiment.

205

During the conflict detection routines, additional constraints are appended to

BASESAT, as necessary for construction of the conflict conditions. Section 7.3.9

provides detailed descriptions for construction of the appended constraints for each

conflict class. After performing a conflict test, it is necessary to remove the appended

test constraints from the constraint pool before beginning another test. For this reason,

the BASESAT is tracked independently, so that the state of the constraint pool may be

restored after each test.

7.3.9 Methods

The following subsections describe independent experimental tests to check for

potential conflicts, matching to the research questions posed in the section 7.3.3. The

general methodology for each conflict detection method is to begin with the BASESAT

constraint information discussed in section 7.3.8.1, append test expressions for the

particular conflict detection class, solve via the SAT solver, and finally interpret the

results to answer the question posed. If a suite of tests is performed serially then all test

expressions are removed between tests, resetting the BASESAT to its original state. The

tool reports all conflict/problems found, and, if applicable, the particular configuration

found that caused the problem.

In each conflict class subsection below are details for constructing test

expressions, and logic for interpretation of SAT solver results.

7.3.9.1 Rule Conflict

Rule conflict tests check whether the change has created a conflict that prevents

all rules from being satisfied simultaneously. This test addresses research question 1 in

206

section 7.3.3. The method to perform this test is to append the proposed change onto the

BASESAT, and then apply the solver. If the solver returns UNSATISFIABLE, then the

change has created a conflict.

If, on the other hand, the solver returns SATISFIABLE, this is not sufficient

evidence to conclude that there are no problems with the change. There might still be

issues that could be detected by performing some of the other conflict detection tests. For

example, consider rule 0000037796 from VRM, and suppose the change is to induce a

new rule that is identical except that the Z/A type is switched, as shown in Table 38.

Rule Type IF THEN

0000037796 (current) Z & + L807A & + S609A / + S6AEA

New, (0000037796 inverted) A & + L807A & + S609A / + S6AEA

Table 38. New rule example

Although this pair of rules is clearly nonsense, the solver will return

SATISFIABLE if this experiment is performed. If either rule is “active,” i.e. its

antecedent is true, then the other rule will be violated. However, the apparent conflict

can be avoided by the satisfiability routine, and a valid configuration found, if both rules

are inactive. In this case, setting either option L807A or S609A to false will deactivate

both rules. Adding this new OKA rule would effectively forbid any valid configuration

from having both L807A and S609A. See section 7.3.9.2.2 for details on resolving this

issue.

7.3.9.2 Object Activation

Object activation tests iteratively check each individual object, to determine

whether there exists a configuration for which the object is active. An object is disabled

207

if no possible configuration activates the object. Disabled objects may be present in the

constraint databases for legacy reasons, or they may be evidence of errors arising from

the PN changes. The types of objects considered may be divided into two categories,

literals and constraints. The following subsections discuss these in turn.

7.3.9.2.1 Literal Activation

Literals include parts, options, packages, and FClasses. Each literal is checked

individually, to determine whether the literal is active on some configuration. This test

addresses research question 3 in section 7.3.3. A single test expression is appended to the

BASESAT during each iteration, forcing the literal to be active, e.g. ¬S323A → S323A.

If the solver returns SATISFIABLE then the literal may be active. Else, if

UNSATISFIABLE is returned, then the literal is not permitted on any configuration.

Disabled literals are evidence of potential errors in the implemented PN changes.

7.3.9.2.2 Antecedent Satisfiability

The antecedent is the “IF” portion of a rule. Testing antecedent satisfiability

verifies that a rule can be activated. This test addresses research question 2 in section

7.3.3.

The scenario presented in section 7.3.9.1 showed a latent conflict, causing rule

deactivation. In cases such as this, activating the rule results in no valid configurations.

This test iteratively tests each OKA rule, by appending a forcing expression for the rule

to the BASESAT. For example, Table 39 shows rules 0000027332, and a corresponding

test rule forcing rule 0000027332 to be active. If the solver returns SATISFIABLE for

208

this test, then the rule can be activated. Else, the proposed change has forced the rule to

be inert, and is evidence of a potential error.

Rule Type IF THEN

0000027332 Z
S2D4A / S2H4A / S2H7A / S2LSA / S2T2A / S2TZA /
S2WFA S258A

Force Z
- S2D4A & - S2H4A & - S2H7A & - S2LSA & - S2T2A
& - S2TZA & - S2WFA

S2D4A / S2H4A / S2H7A / S2LSA / S2T2A /
S2TZA / S2WFA

Table 39. Testing antecedent satisfiability

Antecedent satisfiability tests are performed only on OKA rules. The constraints

imposed by FClasses and PK rules are tested using the methods in section 7.3.9.2.1, and

do not need to be reproduced here.

There is a small set of existing OKA rules that are designed such that the

antecedent is unsatisfiable, e.g. J¬¿�¿ → ¿�¿K. These rules exist to force application

of options. The antecedent satisfiability test routine will always report these rules as

potential errors. It is the discretion of the user to ignore or act on the report.

7.3.9.3 Implicit Inclusion / Exclusion

Implicit relationships between option pairs can be either an inclusion, if the

options must always occur together, or an exclusion, if the options may never occur

together. This test addresses research question 4 in section 7.3.3. The test operates

iteratively, checking each pair of options in turn.

For a given pair of options, inclusions are found by testing the contradiction, “Can

one option be active, but not the other?” A pair of test expressions similar to those in

Table 40 are appended to the BASESAT. If the solver returns UNSATISFIABLE, then

the option pair has an inclusion relationship.

209

Rule Type IF THEN

Force + Z -S323A S323A

Force - Z S4FFA -S4FFA

Table 40. Testing implicit inclusion

Exclusions between the option pair are also found via contradiction, by testing the

question, “Can both options be active simultaneously?” A pair of test expressions similar

to those in Table 41 are appended to the BASESAT. If the solver returns

UNSATISFIABLE then the option pair has an exclusion relationship.

Rule Type IF THEN

Force + Z -S5DPA + S5DPA

Force + Z -S645A + S645A

Table 41. Testing implicit exclusion

7.3.9.4 Part Families

Parts may be tested upon as solitary objects, as seen in the activation tests in

section 7.3.9.2.1. To address questions pertaining to collections of parts, instead of

singletons, the concept of a part family is introduced. A part family is a set of related

parts, such as windshields, for which one and only one of the member parts should be

allocated for any valid vehicle. At the current time there are no BMW repositories that

list part families and their member parts, so the family content must be provided by the

user. An example family including windshields is shown in Table 42.

PNO Description

7292394 COVERING WINDSCREEN LAMINATED SAFETY GLA

7292399 ASSY WINDSCREEN GREEN WITH RLSBS

7292400 ASSY WINDSCREEN GREEN AND HUD WITH RLSBS

210

7292401 ASSY WINDSCREEN IR AND HUD WITH RLSBS

7292402 ASSY WINDSCREEN GREEN MT HUD RLSBS CAM-B

7292403 ASSY WINDSCREEN GREEN WTH GREY SHADE A R

7308905 ASSY WINDSCREEN IR WTH GREY SHADE RLSBS

Table 42. Example part family (Windscreen)

There are two classes of conflict tests that use part families. The first checks

whether 1-and-only-1 condition holds for all part families, as discussed in section

7.3.9.4.1. The second tests user-defined part family interaction rules, as discussed in

section 7.3.9.4.2.

7.3.9.4.1 Part Family Allocation

The part family allocation test verifies whether exactly one of the parts in the

family is allocated for every vehicle. This test addresses research question 5 in section

7.3.3. This result is achieved in two stages, first testing whether zero of the parts may be

allocated, then testing whether two or more of the parts may be allocated.

The first stage tests for contradiction, “Can all of the parts in the family be

inactive?” A test expression similar to that in Table 43 is appended to the BASESAT, to

force all parts in the family inactive. The example provided checks whether any

configuration results in no windshield. If the solver returns SATISFIABLE, then it is

possible to build a vehicle using none of them. If the solver returns UNSATISFIABLE

then the stage 1 test is passed, and stage 2 tests begin.

Rule Type IF THEN

Force off Z
7292394 / +7292399 / +7292400 / +7292401 /
+7292402 / +7292403 / +7308905

-7292394 & -7292399 & -7292400 & -7292401 & -
7292402 & -7292403 & -7308905

Table 43. Testing part family activation

The second stage tests whether more than one of the parts in the family may be

allocated for any vehicle. Note that this test counts the number of PNOs allocated, not

211

the quantity of individual parts. A single PNO may call any non-zero quantity of parts, or

any liquid volume, and here it is simply counted as 1 PNO.

This result is achieved iteratively, checking each part in the family in turn. A

direct proof is offered by the question, “If PNO i (chosen by iteration) is active, can

another PNO in the family be active as well?” A test expression similar to that in Table

44 is appended to the BASESAT, to force one of the other parts to be active along with

part i. If the solver returns SATISFIABLE for any of the iterated tests, then a

configuration has been identified that calls more than one of the parts. Else, if the solver

returns UNSATISFIABLE, then the stage 2 test is passed for this iteration. If all

iterations return UNSATISFIABLE, the stage 2 test is passed.

Rule Type IF THEN

Force i Z -7292394 7292394
Force
another Z 7292394 / +7292399 / +7292400 / +7292401 / +7292402 / +7292403 / +7308905

Table 44. Testing multiple PNO inclusion from one part family

7.3.9.4.2 Part Family Matching

Parts are commonly designed to fit with other specific parts. In this section

scenarios are considered where parts from one family are designed to match with another

family. This test addresses research question 6 in section 7.3.3. Consider the example

data in Table 45. There are two part families for exhaust tips, one for round profiles and

one for rectangular. There are two part families for bumpers, reflecting the shape of the

hole through which the exhaust tip fits. Geometry constraints require matching round

bumpers with round exhaust tips, and square with square.

Exhaust Tip, Round Exhaust Tip, Rect.
Bumper, Round Bumper, Rect.

;��J��, ��K
 ;��J��, ��K
 ;��Ji�, ��K
 ;��Ji�, ��K

212

… … … …

;��J��, ��K` ;��J��, ��K` ;��Ji�, ��K` ;��Ji�, ��K`
Table 45. Part families with geometry relationships

A contradiction test is performed to ensure that mismatches cannot occur. A test

expression similar to that in Table 46 is appended to the BASESAT, forcing one of the

part families to be active, and forcing its matching family inactive.

Rule Type IF THEN

Force Round Bumper Z -(RND BUMPER) (RND BUMPER)

Force Not Round Exhaust Z (RND EXHAUST) -(RND EXHAUST)

Table 46. Testing part family matching

If the solver returns SATISFIABLE for this test, then a configuration has been

identified with mismatched parts.

7.3.10 Implementation

This chapter describes the programming methods used to prepare constraint data

into a form suitable for SAT experimentation. There are two necessary tasks, performed

serially. The first task transforms the binary trees that represent constraint information

into conjunctive normal form (CNF), as discussed in section 7.3.10.1. The second task,

discussed in section 7.3.10.2, writes the content of all binary trees into a single text

output file, in the DIMACS format required by the SAT solver.

7.3.10.1 Transformation to Conjunctive Normal Form

The SAT solver requires input formatted in CNF. CNF expressions contain only

AND, OR, and NOT operators, and are written as conjunctions (ANDs) of disjunctive

(OR) clauses. Further, all negation operators must be applied directly to literals, and not

to parenthetical expressions. For example, the example expression JA & iK / −J� / ¿K

is not in CNF. A series of logical transformations can be applied to rearrange this

213

expression into a logically equivalent expression in CNF. For the example given above,

the result would be JA / −CK & J� / −¿K & JB / −CK & Ji / −¿K.

Recall that all constraint information is stored programmatically in a forest of

binary trees, as documented in (“Configuration Management Model Refinement,”

Technical Report 2015-CEDAR-BMW-Configuration-005). Each binary trees is

transformed to CNF using the process:

1. Transform “!” Exclusive-OR subtrees
2. Substitute STAN nodes with FClass
3. Reduce binconditionals to two conditionals
4. Reduce conditionals to AND, OR, NOT
5. Propagate NOT downward towards leaves
6. Distribute AND over OR

The following subsections describe each of these steps in turn.

7.3.10.1.1 Transform Exclusion Subtrees

Exclusion nodes indicate the start of a definite horn clause derived from a PK

rule. Definite horn clauses require exactly one of the lower leaf nodes to be true. Before

transformation, the subtree below the exclusion node will have a collection of OR

operators, and literal objects at the leaves. After transformation, the exclusion node will

be replaced by an AND node, with two child subtrees: one subtree to enforce that at least

one of the literals is true, and one subtree to enforce that no more than one of the literals

is true. The first subtree is simply a disjunction (OR) of all literals. The second subtree

is a conjunction of pairwise exclusion statements.

Consider the example clause J!A / i / �K. After the initial parse, the root node is

type EXC (“!”), and all lower-level nodes are either OR or VAR. After transformation,

214

the expression becomes JA / B / CK & − J� & iK & − J� & �K & − Ji & �K. The pre-

and post-transformation trees for this expression are shown in Figure 66.

The recursive method TransformEXC, detailed in Figure 69. CNF Step 1:

Transform Exclusion, is initially called upon the root node of each binary tree. If the

current node is not of type EXC, then the method is called upon any existing children

nodes, to search deeper in the tree. If the current node is type EXC, the AllLiterals

function is called to count all VAR-type leaf nodes in the subtree below. If only one

leaf node exists, then that literal must be located in LChild, the only child node

below. In this case the properties of the leaf node are simply copied to the current

node, then the leaf node is deleted. The former EXC node has been effectively removed

from the tree, replaced with the former LChild.

If there two or more leaf nodes below, several steps are undertaken to remodel the

tree. Note that LChild already contains the subtree of ORs, from the initial parse. The

OR

 (!A / B / C) EXC

C B

OR

A

AND

 (A / B / C) & -(A & B)
 & -(A & C) & -(B & C)

NOT

C

B A

AND

AND

B

OR

OR A

AND

NOT

C A

AND

NOT

C B

AND

Figure 68. Example trees before and after transformation of exclusion node

215

requirement that at least one literal is true is already fulfilled by the subtree contained in

LChild. RChild is currently null, and will be instanced to contain a subtree enforcing the

mutual exclusion logic between each literal pair. The current node is changed from type

EXC to type AND, so that both the LChild and RChild subtree logics are required to be

true.

A Boolean expression string (strRuleText) is written to contain the pair-wise

mutual exclusion logic. For each unique pair of literals A and B contained in leaf nodes,

an exclusion expression of form −JA & iK is written. Each of these pairwise exclusion

strings are concatenated into strRuleText, with “&” operators between each. Finally,

RChild is instanced, and its subtree constructed by calling its .ParseExpression method

with argument strRuleText. See (“Configuration Management Model Refinement,”

Technical Report 2015-CEDAR-BMW-Configuration-005) for details of the

.ParseExpression method.

216

1 Method TransformEXC
2 If Me.Oper = "!" Then
3 If Me.AllLiterals.count = 1 Then
4 Me.Oper = VAR
5 Me.Varname = Lchild.VarName
6 Lchild = Nothing
7 Else
8 Me.Oper = "&"
9 litArray = Me.AllLiterals.array
10 strRuletext = "-(" & litArray (1) & "&" & litArray (2) & ")"
11 For i = 2 To UBound(litArray) - 1
12 For j = i + 1 To UBound(litArray)
13 RHS = "-(" & litArray (i) & "&" & litArray (j) & ")"
14 strRuletext = strRuletext & "&" & RHS
15 Next
16 Next
17 Rchild = New CBinNode
18 Call Rchild.ParseExpression(strRuletext)
19 End If
20 End If
21 If Not Lchild Is Nothing Then Call Lchild.TransformEXC
22 If Not Rchild Is Nothing Then Call Rchild.TransformEXC
23 End Method

Figure 69. CNF Step 1: Transform Exclusion

7.3.10.1.2 Substitute Standard Nodes

The Standard field of OKA rules is reserved for standard equipment, applied to

any vehicle that satisfies the conditions of the rule. Standard equipment sometimes can

be upgraded by the customer, at additional cost. The FClass of the standard option

contains all upgrade alternatives. If the standard option is not a member of any FClass,

then it is mandatory equipment with no alternatives.

The recursive method SubstituteStandard performs these FClass replacements, as

detailed in Figure 70. The argument upperStandard tracks whether any upper-level

node oftype STAN was previously detected during recursion. The method is initially

called upon the root node of a rule tree, passing upperStandard = false .

217

If the current node is of type STAN, then the current node properties are removed

and replaced by LChild’s properties. Recursion continues on the current node’s newly

defined self, except this time passing upperStandard = true.

If the current node is of type VAR, and upperStandard is true, then the local node

is a literal within a standard clause. An SQL query is performed to find the FClass

membership of the local literal. If an FClass is found, then the name of the FClass

replaces the name of the local literal. Else, no adjustment to name is taken.

Finally, the method recurses to deeper into the tree. The .SubstituteStandard

method is called upon any existing children, passing the current value of upperStandard.

1 Method SubstituteStandard(upperStandard As Boolean)
2 If Me.Oper = "$" Then
3 Me.Oper = Lchild.Operator
4 Me.Varname = Lchild.VarName
5 Rchild = Lchild.RightChild
6 Lchild = Lchild.LeftChild
7 Call Me.SimplifyStandard(True)
8 ElseIf (Me.Oper = VAR) And (upperStandard = True) Then
9 RS = New ADODB.Recordset
10 SQL = SQL_GetFClassOfOption(Me.Varname)
11 RS.Open SQL, cn
12 If Not RS.eof Then
13 Me.Varname = RS.fields("FClass").value
14 End If
15 RS.Close
16 End If
17 If Not Lchild Is Nothing Then Call Lchild.SubstituteStandard(upperStandard)
18 If Not Rchild Is Nothing Then Call Rchild.SubstituteStandard(upperStandard)
19 End Method

Figure 70. CNF Step 2: Substitute Standard with FClass

7.3.10.1.3 Reduce Biconditionals

Biconditionals indicate “if and only if” logic, usually written A ↔ B. A pair of

conditional nodes may replace the biconditional, with the antecedent/consequent swapped

for the two conditionals, e.g. JA → BK & JB → AK . The two conditional nodes are

218

connected with an AND. An example of this reduction in binary tree form is shown in

Figure 69.

The recursive method described in Figure 72 is initially called upon the root node

of a rule tree. If the local node is type IFF, then it is a biconditional node. The operator

of the current node is changed to AND. Next, both LChild and RChild subtrees are

stored in method-level variables childA and childB, for later use. New instances are then

created for LChild and RChild, and assigned operator type IF. The children of the newly

created LChild and RChild are then copied from the previously stored childA and childB.

Finally, the recursion proceeds deeper into the tree searching for any other biconditional

nodes.

Figure 72. CNF Step 3: Reduce Biconditionals

1 Method ReduceBiconditional()
2 If Me.Oper = "=" Then
3 childA = Lchild
4 childB = Rchild
5 Me.Oper = "&"
6 Lchild = New CBinNode
7 Rchild = New CBinNode
8 Lchild.Operator = ">"
9 Rchild.Operator = ">"
10 Lchild.LeftChild = childA
11 Lchild.RightChild = childB
12 Rchild.LeftChild = childB .CopyNode
13 Rchild.RightChild = childA .CopyNode
14 End If
15 If Not Lchild Is Nothing Then Call Lchild.ReduceBiconditional()
16 If Not Rchild Is Nothing Then Call Rchild.ReduceBiconditional()
17 End Method

A B B A

IF IF B A

 A ↔ B IFF
 (A → B) &
 (B → A)

AND

Figure 71. Example trees before and after biconditional reduction

219

7.3.10.1.4 Reduce Conditionals

Conditionals indicate “if this, then that” logic, usually written A → B. Note that if

the antecedent is false, then no constraint is placed on the consequent, i.e. it may be true

or false. This insight motivates the reduction logic applied for a conditional expression.

Either the antecedent is false, or the consequent is true, e.g. -A / B. An example of this

A

B NOT B A

 A → B IF -A / B OR

Figure 73. Example trees before and after conditional reduction

reduction in binary tree form is shown in Figure 71.

 The recursive method described in Figure 74 is initially called upon the root node

of a rule tree. If the local node is type IF, then it is a conditional node. The operator of

the current node is changed to OR. Next, the LChild subtree is stored in a method-level

variable childA, for later use. A new instance is then created for LChild, and

assigned operator type NOT. The grandchild of the newly created LChild is then

copied from the previously stored childA. Finally, the recursion proceeds deeper

into the tree searching for any other conditional nodes.

220

1 Method ReduceConditional
2 If Me.Oper = ">" Then
3 Me.Oper = "/"
4 childA = Lchild
5 Lchild = New CBinNode
6 Lchild.Operator = "-"
7 Lchild.LeftChild = childA
8 End If
9 If Not Lchild Is Nothing Then Call Lchild.ReduceConditional
10 If Not Rchild Is Nothing Then Call Rchild.ReduceConditional
11 End Method

Figure 74. CNF Step 4: Reduce Conditionals

7.3.10.1.5 Propagate NOT

NOT nodes indicate that all logic in the child subtree is negated. In CNF, NOT

operators apply only to literals, and not to clauses with other operators inside. To achieve

this outcome, NOT nodes within binary trees are removed, recursively carried downward

in their subtree until leaf nodes are reached, and then re-instantiated just above the leaf if

applicable.

The downward propagation of negation modifies intermediate operator nodes. At

this point in the overall CNF transformation process, only AND, OR, and NOT operators

remain. The Boolean expression negation transformations for these three operator types

is summarized in Table 47.

Operator negated Initial expression Expression after propagation

NOT −J−�K �
AND −J� & iK J−� / −iK
OR −J� / iK J−� & − iK

Table 47. Negation propagation across operators

The recursive method PropagateNegation is detailed in

Figure 75. The argument upperNeg tracks whether negation is propagating

downward from a previous, higher recursion level. The method is initially called upon

the root node of each binary tree, passing upperNeg = false . The behavior of the

221

method depends on three items: the passed argument upperNeg, whether the local node is

type NOT, and whether the local node is type VAR. A summary of PropagateNegation

behavior for each combination of these items is shown in Table 48.

Cases 1 and 2: The current node is type NOT. Flip the polarity of upperNeg to

reflect the negation. Next, copy all of the child node’s properties to the local node, to

remove the NOT node from the tree. Recursion continues upon the newly-defined self

node, passing upperNeg.

Case 3: The current node is type AND or OR, and upperNeg is true. If the

current node is type AND, then change it to type OR, and vice-versa. Next, begin

recursion on both children nodes, passing upperNeg.

Case 4: The current node is type VAR, and upperNeg is true. A NOT node was

removed from the tree at a higher level of recursion. Here at the leaf, the NOT node is

restored. Instance LChild, and copy all local properties to it. Next, set the local operator

type to NOT.

Case 5: The current node is either and AND or OR. Since upperNeg is false, no

changes are made to the local node. Recursion proceeds to both children nodes, passing

upperNeg.

Case 6: Recursion terminates at leaf nodes. Since upperNeg is false, no changes

are required.

Argument Local Node Type

Case # upperNeg NOT VAR Action

1 F T F
Negation begin. Replace self with child. Recurse on (new) self, passing
upperNeg = true.

2 T T F
Double negative. Replace self with child. Recurse on (new) self, passing
upperNeg = false.

3 T F F
Transform operator. Swap self between AND/OR type. Recurse to all children,
passing upperNeg = true.

4 T F T Terminal negation. Insert negation node between self and parent. Recursion ends.

5 F F F Continue recursion to children.
6 F F T Terminus. Recursion ends.
7 F T T Impossible, self cannot be both NOT and VAR type.
8 T T T Impossible, self cannot be both NOT and VAR type.

Table 48. Propagate Negation criteria and behavior

1 Method PropagateNegation(upperNeg As Boolean)
2 If Me.Oper = "-" Then
3 If (Lchild.Operator = VAR) And (upperNeg = False) Then
4 'Do nothing, recursion terminates
5 Else
6 Me.Oper = Lchild.Operator
7 Me.Varname = Lchild.Varname
8 Rchild = Lchild.RightChild
9 Lchild = Lchild.LeftChild
10 Call Me.PropagateNegation(Not upperNeg)
11 End If
12 ElseIf (upperNeg = True) And (Not Me.Oper = VAR) Then
13 If Me.Oper = "/" Then
14 Me.Oper = "&"
15 ElseIf Me.Oper = "&" Then
16 Me.Oper = "/"
17 End If
18 If Not Lchild Is Nothing Then Call Lchild.PropagateNegation(upperNeg)
19 If Not Rchild Is Nothing Then Call Rchild.PropagateNegation(upperNeg)
20 ElseIf (upperNeg = True) And (Me.Oper = VAR) Then
21 Me.Lchild = Me.CopyNode
22 Me.Varname = ""
23 Me.Oper = "-"
24 ElseIf (Not upperNeg) And (Not Me.Oper = VAR) Then
25 If Not Lchild Is Nothing Then Call Lchild.PropagateNegation(upperNeg)
26 If Not Rchild Is Nothing Then Call Rchild.PropagateNegation(upperNeg)
27 End If
28 End Method

Figure 75. CNF Step 5: Propagate Negation

7.3.10.1.6 Distribute AND over OR

At the final stage of CNF transformation only type AND, OR, and VAR nodes

remain in the binary trees. The last step is to distribute ANDs over ORs. The process is

algebraically similar to multiplicative distribution, e.g. A / JB & CK becomes

 (A / B) & (A / C) A / (B & C)

A

OR AND

OR OR

B A

A AND

C B C

222

Figure 76. Example tree before and after AND distribution

223

JA / BK & JA / CK. Two AND distribution examples are shown in Figure 74 and Figure

75. Algebraically these examples behave identically. They are shown separately to

support the different coding approach used for each case.

 (W / Y) & (X / Y) &
 (W / Z) & (X / Z)

W

 (W & X) /
 (Y & Z)

OR

Y

W

OR AND

AND

X

AND

OR OR X

X Z

AND AND

Z

Z Y OR

Y W

Figure 77. Example tree before and after AND distribution

The recursive method DistributeAND, detailed in Figure 78, is initially called

upon the root node of each binary tree. If the local node has an OR operator, and at

least one child node is an AND operator, then the local subtree must be remodeled to

reflect distribution of the AND. Two separate cases are identified.

Case 1: The current node is an OR, and only one child is an AND node.

Temporary variables childA, gchildB, and gchildC are instantiated to hold links to lower-

level subtrees. Whichever child node is not the AND is assigned to childA. The children

of the AND node are stored in gchildB and gchildC. The local node is reassigned to type

AND, and new LChild and RChild nodes are instantiated, both of operator type OR. The

grandchildren nodes are assigned from the temporary variables. LChild receives childA

and gchildB as children, and RChild receives childA and gchildC as children.

224

Case 2: The current node is an OR, and both child nodes are type AND. Four

temporary variables gchildW, gchildX, gchildY, and gchildZ are instantiated and assigned

copies of the four existing grandchildren subtrees (e.g. LChild.RightChild). The local

node is reassigned to type AND. LChild and RChild are already AND nodes, and remain

so. All four existing grandchildren nodes are replaced with new node instances of type

OR (note that the subtree content overwritten here is retained in the temporary variables).

Finally, eight great-grandchildren nodes are assigned using the temporary variables. The

assignment pattern depends on the original location of the subtrees. Each OR pairs two

nodes that were not originally siblings. E.g. gchildW and gchildX were originally

siblings, so this pairing does not appear.

225

Figure 78. CNF Step 6: Distribute AND over OR

7.3.10.2 DIMACS Output

After transforming the binary trees into CNF, the next step is to write the

constraint content into a file compatible with the SAT solver. The MiniSAT solver

1 Method DistributeAND()
2 If Me.Oper = "/" Then
3 If (Lchild.Operator = "&") And (Rchild.Operator = "&") Then
4 gchildW = Lchild.LeftChild
5 gchildX = Lchild.RightChild
6 gchildY = Rchild.LeftChild
7 gchildZ = Rchild.RightChild
8 '0 layers below (this node): change operator to AND
9 Me.Oper = "&"
10 '1 layer below: both AND...
11 'no changes needed, both are already ANDs.
12 '2 layers below: 4 ORs...
13 Lchild.LeftChild = New CBinNode
14 Lchild.RightChild = New CBinNode
15 Rchild.LeftChild = New CBinNode
16 Rchild.RightChild = New CBinNode
17 Lchild.LeftChild.Operator = "/"
18 Lchild.RightChild.Operator = "/":
19 Rchild.LeftChild.Operator = "/"
20 Rchild.RightChild.Operator = "/"
21 '3 layers below: W,X,Y,Z
22 Lchild.LeftChild.LeftChild = gchildW
23 Lchild.LeftChild.RightChild = gchildY
24 Lchild.RightChild.LeftChild = gchildX
25 Lchild.RightChild.RightChild = gchildY .CopyNode
26 Rchild.LeftChild.LeftChild = gchildW .CopyNode
27 Rchild.LeftChild.RightChild = gchildZ
28 Rchild.RightChild.LeftChild = gchildX .CopyNode
29 Rchild.RightChild.RightChild = gchildZ .CopyNode
30 Else
31 If Lchild.Operator = "&" Then
32 childA = Rchild
33 gchildB = Lchild.LeftChild
34 gchildC = Lchild.RightChild
35 ElseIf Rchild.Operator = "&" Then
36 childA = Lchild
37 gchildB = Rchild.LeftChild
38 gchildC = Rchild.RightChild
39 End If
40 If Not childA Is Nothing Then
41 Me.Oper = "&"
42 Lchild = New CBinNode
43 Lchild.Operator = "/"
44 Lchild.LeftChild = childA
45 Lchild.RightChild = gchildB
46 Rchild = New CBinNode
47 Rchild.Operator = "/"
48 Rchild.LeftChild = childA .CopyNode
49 Rchild.RightChild = gchildC
50 End If
51 End If
52 End If
53 If Not Lchild Is Nothing Then Call Lchild.DistributeAND
54 If Not Rchild Is Nothing Then Call Rchild.DistributeAND
55 End Method

226

requires inputs as DIMACS formatted text files. The DIMACS format was created by,

and named after the Center for Discrete Mathematics and Theoretical Computer Science

(DIMACS). Originally created to standardize formats for organization-internal purposes,

it has since been widely accepted as the standard for CNF Boolean expressions. For

format specifications see ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/. This

section describes the method used to extract logical content from the CNF binary trees,

and write it into an equivalent representation in a DIMACS-formatted text file.

7.3.10.2.1 DIMACS Format

In the DIMACS format, each literal is encoded as a unique integer, counting

upward from one [1, 2, 3, …]. All operators are suppressed, not explicitly written to file.

Instead, line breaks in the text file implicitly encode the original location of operators.

All content on a single line of text comprises a single disjunctive (OR) clause. A line

break implies a conjunction (AND), and the next disjunctive clause is written in the

following line of text. Within a line of text, a literal’s number is written if that literal

appears in the corresponding disjunctive clause. If the literal is negated within the

disjunctive clause, then the integer is negative. Otherwise, the integer is positive. Spaces

are placed between each literal’s number, to prevent ambiguity. The text line for each

disjunctive clause is finished by appending a “0”. This “0” is merely an end-of-line flag,

and does not represent any literal.

Comments in the DIMACS format are denoted by lines that begin with the letter

“c”. The first non-comment line within the file begins with the letter “p”, and contains

metadata. Following the “p” flag, there are three pieces of metadata:

227

1 The format. This should always be “cnf”
2 The number of unique literals
3 The number of disjunctive clauses

Consider the Boolean expression J�
/−��/��K&J��/�Ô/��K&J−��/−��K. The

expression is CNF, with 5 unique literals and 3 disjunctive clauses. In the DIMACs

format, this expression is written as shown in Figure 79.

1 c Here is a comment.
2 p cnf 5 3
3 1 -5 4 0
4 5 2 4 0
5 -3 -4 0

Figure 79. Example DIMACS format

7.3.10.2.2 Converting Binary Trees to DIMACS

Recall that in CNF, expressions are written as conjunctions (ANDs) of

disjunctions (ORs). After running the routines described in section 7.3.10.1, the program

has a forest of binary trees stored in memory, each of which has been transformed

to CNF. Each binary tree represents a constraint that must be obeyed, and all

constraints must be obeyed simultaneously for any valid vehicle.

One logically equivalent approach would be to compile all binary trees into a

single, enormous tree, by conjoining the roots of each tree with AND nodes. These new

AND nodes would serve to simultaneously enforce all constraints within their subtrees.

It is useful to store each constraint as a separate object, however, so that each constraint

may retain reference properties of the source OKA or TAIS rules that it is based upon.

Instead of conjoining each binary tree, instead the DIMACS file writing routine reads

each tree sequentially, and simply inserts a line break after each tree. Line breaks

228

represent conjunctions in the DIMACS format, so this treatment delivers a file output that

enforces all constraints to be obeyed.

Figure 80 presents the algorithm for writing a DIMACS-formatted text file from

binary tree constraint information, which requires two passed parameters. The first,

RuleForest , contains the root nodes for all binary trees. The second,

fullpath_MiniSAT_datafile , is the path at which the text file output is to be

written. First the intmap variable is initialized, which manages mapping each literal

name to a unique integer. The following loop considers each binary tree root node one at

a time. From each root node an array of disjunctive clauses is extracted, using the node

function DIMAC_Array , as detailed in Figure 81. The literals within each disjunctive

clause are re-aliased to integers, and then the clause is stored into the local variable

dlines , which will accrue all lines of text to be written to file. Finally, a text file is

created at the specified path, and all text stored in dlines is written into it.

229

1 Method WriteDIMACS(RuleForest, fullpath_MiniSAT_datafile)
2 intmap .Initialize(RuleForest)
3 For Each root In RuleForest
4 root .TransformToCNF
5 rootDIMAC _Array = root .DIMAC_Array
6 dlines .Add(" c RuleNo: " & root .RuleNo)
7 For i = LBound(rootDIMAC _Array) To UBound(rootDIMAC _Array)
8 line = rootDIMAC _Array [i]
9 EncodeLiteralsToInts(line, intmap)
10 line = line & " 0"
11 dlines .Add(line)
12 numclauses = numclauses + 1
13 Next
14 Next
15 Open fullpath_MiniSAT_datafile For Output As #1
16 Print #1, "p cnf " & intmap .count & " " & numclauses
17 For Each line In dlines
18 Print #1, line
19 Next
20 Close #1
21 End Method

Figure 80. Write DIMACS file

The function DIMAC_Array is located in the binary node class, as detailed in Figure

81. The tree must be formatted CNF prior to executing this function. The

function’s purpose is to collect all disjunctive clauses within the subtree below into a

single array, such that each disjunctive clause is a separate element in the array. To this

end, a recursive approach examines the operator type of the local node. There are 4 types

of operators that may be present in CNF:

1 Literal. The returned array has one element, and that element is the name of
the local literal.

2 NOT. The returned array has one element, and that element is the negated
name of the child literal.

3 OR. OR nodes indicate that both child nodes are part of the same disjunctive
clause. The returned array has one element, and that element is the
concatenated elements from calling this function recursively upon both
children.

4 AND. AND nodes indicate a conjunction between the child nodes. This
function is called recursively upon both children, and the returned results are
stacked into separate elements in the returned array.

230

1 Function DIMAC_Array() As Array
2 Select Me.Oper
3 Case VAR
4 retArray [1] = Me.Varname
5 Case NOT
6 retArray [1] = "-" & Lchild.LiteralName
7 Case OR
8 retArray [1] = Lchild. DIMAC_Array[1] & " " & Rchild. DIMAC_Array[1]
9 Case AND
10 retArray = ArrayUnion(Lchild.DIMAC_Array, Rchild.DIMAC_Array)
11 End Select
12 Return retArray
13 End Function

Figure 81. Collect disjunctive clauses from a binary tree

7.3.11 Open Issues

Using a SAT proof checking engine requires all logic to be performed in Boolean

terms only, and prohibits arithmetic counting. Largely, this design decision meets the

needs of CM problems, though there are a small number of circumstances in which

counting may provide additional functionality. One example is provided by the TAIS

spring constraints, which are written using upper and lower bounds on the weight

permissible for each spring part. Currently these constraints are excluded from the

conflict detection methods. Another example is provided by the part allocation

quantities, given in the TAIS model code columns. These quantities are currently

modeled in binary terms (>0 = true, else false). The current framework detects whether a

PNO is allocated or not, but not the quantity allocated. To accommodate arithmetic

constraints and terms will likely require replacing the SAT framework. Pseudo-Boolean

satisfiability problems are a likely replacement candidate, as these problems generalize

the satisfiability problem to include numeric inequality constraints.

231

REFERENCES

Agrawal, P. "The Related Activity Concept in Assembly Line Balancing." International

Journal of Production Research 23 (1985): 403-421.

Ammer, E. D. "Rechnerunterstützte Planung Von Montageablaufstrukturen Für

Erzeugnisse Der Serienfertigung." IPA-IAO Forschung Und Praxis 81 (1985).

Arcus, A. "COMSOAL: A Computer Method of Sequencing Operations for Assembly

Lines." International Journal of Production Research 4 (1966): 259-277.

Bard, JF, E Dar-El and A Shtub. "An Analytic Framework for Sequencing Mixed Model

Assembly Lines." International Journal of Production Research 30 (1992): 35-

48.

Bartholdi, JJ. "Balancing Two-Sided Assembly Lines: A Case Study." International

Journal of Production Research 31 (1993): 2447-2461.

Bautista, J, et al. "Local Search Heuristics for the Assembly Line Balancing Problem

with Incompatibilities Between Tasks." Proceedings of the 2000 IEEE

International Conference on Robotics and Automation. San Francisco, CA, 2000.

2404-2409.

Baybars, I. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing

Problem." Management Sciences 32 (1986): 909-932.

—. "An Efficient Heuristic Method for the Simple Assembly Line Balancing Problem."

International Journal of Production Research 24 (1986): 149-166.

232

Baykasoglu, A. and T. Dereli. "Two-sided assembly line balancing using ant-colony-

based heuristic." International Journal of Advanced Manufacturing Technology

36.5-6 (2008): 582-588.

Becker, C and A Scholl. "A Survey on Problems and Methods in Generalized Assembly

Line Balancing." European Journal of Operational Research 183 (2006): 694-

715.

Boysen, N and M Flidener. "A versatile algorithm for assembly line balancing."

European Journal of Operations Research 184.1 (2008): 39-56.

Boysen, N, M Fliedner and A Scholl. "A Classification of Assembly Line Balancing

Problems." European Journal of Operational Research 183 (2007): 674-693.

—. "Production Planning of Mixed-Model Assembly Lines: Overview and Extensions."

Production Planning & Control: The Management of Operations 20.5 (2009):

455-471.

Bukchin, J, E Dar-El and J Rubinovitz. "Mixed Model Assembly Line Design in a Make-

to-order Environment." Computers & Industrial Engineering 41 (2002): 405-421.

Burns, L and C Daganzo. "Assembly Line Job Sequencing Principles." International

Journal of Production Research 25 (1987): 71-99.

Carnahan, B, B Norman and M Redfern. "Incorporating Physical Demand Criteria into

Assembly Line Balancing." IIE Transactions 33 (2001): 875-887.

Carraway, R. "A Dynamic Programming Approach to Stochastic Assembly Line

Balancing." Management Science 35 (1989): 459-471.

Chase, R. "Survey of Paced Assembly Lines." Industrial Engineering 6.2 (1974): 14-18.

233

Chutima, P and P Chimklai. "Multi-Objective Two-Sided Mixed-Model Assembly Line

Balancing Using Particle Swarm Optimization with Negative Knowledge."

Computers and Industrial Engineering 62 (2012): 39-55.

Deutsch, D. "A Branch and Bound Technique for Mixed-Product Assembly Line

Balancing." Ph.D. Dissertation, Arizona State University (1971).

Dobson, G and C Yano. "Cyclic Scheduling to Minimize Inventory in a Batch Flow

Line." European Journal of Operational Research 75 (1994): 441-461.

Dolgui, A, N Guschinsky and G Levin. "A Special Case of Transfer Lines Balancing by

Graph Approach." European Journal of Operational Research 168 (2006): 732-

746.

Domm, Robert. Michigan Yesterday and Today. Minneapolis, MN: Voyageur Press,

2009.

Domschke, W, R Klein and A Scholl. "Antizipative Leistungabstimmung bei moderner

Variantenfließfertigung." Zeitschrift für Betriebswirtschaft 66 (1996): 1465-1490.

Emde, S, N Boysen and A Scholl. "Balancing Mixed-Model Assembly Lines: A

Computational Evaluation of Objectives to Smoothen Workload." International

Journal of Production Research 48.11 (2010): 3173-3191.

Frenk, J and G Galambos. "Hybrid Next-Fit Algorithm for the Two-Dimensional

Rectangle Bin-Packing Problem." Computing 39 (1987): 201-217.

Garey, M and D Johnson. Computers and Intractability - A Guide to the Theory of NP-

completeness. New York: W.H. Freeman & Co, 1979.

234

Gökcen, H and Ö Baykoc. "A New Line Remedial Policy for the Paced Lines with

Stochastic Task Times." International Journal of Production Economics 58

(1999): 191-197.

Helgeson, W and D Birnie. "Assembly Line Balancing using the Ranked Positional

Weight Technique." Journal of Industrial Engineering 12 (1961): 394-398.

Huang, E and R Korf. "New Improvements in Optimal Rectangle Packing." Proceedings

of the 21st International Joint Conference on Artificial Intelligence. 2009.

Johnson, R. "A Branch and Bound Algorithm for Assembly Line Balancing Problems

with Formulation Irregularities." Management Science 29 (1983): 1309-1324.

Kao, E. "A Preference Order Dynamic Program for Stochastic Assembly Line

Balancing." Management Science 22 (1976): 1097-1104.

Kim, YK, JY Kim and Y Kim. "A Coevolutionary Algorithm for Balancing and

Sequencing in Mixed Model Assembly Lines." Applied Intelligence 13 (2000):

247-258.

—. "Two-sided Assembly Line Balancing: A Genetic Algorithm Approach." Production

Planning and Control 11 (2000): 44-53.

Kottas, J and H Lau. "A Cost-oriented Approach to Stochastic Line Balancing." AIIE

Transactions 5 (1973): 164-171.

—. "A Total Operating Cost Model for Paced Lines with Stochastic Task Times." AIIE

Transactions 8 (1976): 234-240.

235

Kukchin, J, E Dar-El and J Rubinobitz. "Mixed-model Assembly Line Design in a Make-

to-order Environment." Computers and Industrial Engineering 41 (2002): 405-

421.

Lapierre, S. D. and A. D. Ruiz. "Balancing assembly lines: An industrial case study."

Journal of Operational Research Society 55 (2004): 589-597.

Lau, H and A Shtub. "An Exploratory Study on Stopping a Paced Line when

Incompletions Occur." IIE Transactions 19 (1987): 463-467.

Lee, T, Y Kim and YK Kim. "Two-sided Assembly Line Balancing to Maximize Work

Relatedness and Slackness." Computers and Industrial Engineering 40 (2001):

273-292.

Macaskill, J. "Production-line Balances for Mixed-model Lines." Management Science

19 (1972): 423-434.

Mather, H. Competitive Manufacturing. Englewood Cliffs: Prentice Hall, 1989.

Merengo, C, F Nava and A Pozetti. "Balancing and Sequencing Manual Mixed-model

Assembly Lines." International Journal of Production Research 37 (1999): 2835-

2860.

Meyr, H. "Supply Chain Planning in the German Automotive Industry." OR Spectrum 26

(2004): 447-470.

Moodie, C and H Young. "A Heuristic Method of Assembly Line Balancing for

Assumptions of Constant or Variable Work Element Times." Journal of Industrial

Engineering 16 (1965): 23-29.

236

Nkasu, M and K Leung. "A Stochastic Approach to Assembly Line Balancing."

International Journal of Production Research 33 (1995): 975-991.

Pastor, R and A Corominas. "Assembly Line Balancing with Incompatibilities and

Bounded Workstations." Ricerca Operativa 30 (2000): 23-45.

Pine, B. Mass Customization: The New Frontier in Business Competition. Boston:

Harvard Business School Press, 1993.

Pinto, P, D Dannenbring and B Khumawala. "A Heuristic Network Procedure for the

Assembly Line Balancing Problem." Naval Research Logistics Review 25 (1978):

299-307.

Rao, D. "Single and Mixed-model Assembly Line Balancing Methods for both

Deterministic and Normally Distributed Work Element Times." M.S. Thesis,

Industrial Engineering Department, Oregon State University (1971).

Rekiek, Brahim and Alain Delchambre. Assembly Line Design. London: Springer-Verlag,

2006.

Roberts, S and C Villa. "On a Multiproduct Assembly Line Balancing Problem." AIIE

Transactions 2 (1970): 361-364.

Roder, A and B Tibken. "A Methodology for Modeling Inter-company Supply Chains

and for Evaluating a Method of Integrated Product and Process Documentation."

European Journal of Operational Research 169 (2006): 1010-1029.

Roe, Joseph Wickham. English and American Tool Builders. New Haven, CT: Yale

University Press, 1916.

237

Salveson, M. "The Assembly Line Balancing Problem." The Journal of Industrial

Engineering 6.3 (1955): 18-25.

Sarin, S and E Erel. "Development of Cost Model for the Single-model Stochastic

Assembly Line Balancing Problem." International Joural of Production Research

28 (1990): 1305-1316.

Sarin, S, E Erel and E Dar-El. "A Methodology for Solving Single-model, Stochastic

Assembly Line Balancing Problems." Omega 27 (1999): 525-535.

Scholl, A. Balancing and Sequencing Assembly Lines. 2nd. Heidelberg: Physica-Verlag,

1999.

Schöniger, J and J Spingler. "Planung der Montageanlage." Technica 14 (1989): 27-32.

Shtub, A and E Dar-El. "A Methodology for the Selection of Assembly Systems."

International Journal of Production Research 27 (1989): 175-186.

Silverman, F and J Carter. "A Cost-based Methodology for Stochastic Line Balancing

with Intermittent Line Stoppages." Management Science 32 (1986): 455-463.

Simaria, A and P Vilarinho. "2-ANTBAL: An Ant Colony Optimization Algorithm for

Balancing Two-sided Assembly Lines." Computers and Industrial Engineering 56

(2009): 489-506.

Smith, Adam. The Wealth of Nations. London: Methuen & Co., Ltd., 1776.

Sniedovich, M. "Analysis of a Preference Order Assembly Line Problem." Management

Science 27 (1981): 1067-1080.

Sphicas, G and F Silverman. "Deterministic Equivalents for Stochastic Assembly Line

Balancing." AIIE Transactions 8 (1976): 280-282.

238

Sumichrast, R and R Russell. "Evaluating Mixed-model Assembly Line Sequencing

Heuristics for Just-in-time Production Systems." Journal of Operations

Management 9 (1990): 371-390.

Sumichrast, R, R Russell and B Taylor. "A Comparative Analysis of Sequencing

Procedures for Mixed-model Assembly Lines in a Just-in-time Production

System." International Journal of Production Research 30 (1992): 199-214.

Thomopoulos, N. "Mixed Model Line Balancing with Smoothed Station Assignments."

Management Science 16 (1970): 593-603.

Tonge, F. A Heuristic Program for Assembly Line Balancing. Prentice-Hall, 1961.

—. "Assembly Line Balancing Using Probabilistic Combinations of Heuristics."

Management Science 11 (1965): 727-735.

—. "Summary of a Heuristic Line Balancing Procedure." Management Science 7 (1960):

21-42.

Townsend, Beverly. The Basics of Line Balancing and JIT Kitting. Boca Raton, FL:

Taylor & Francis Group, 2012.

Vilarinho, P and A Simaria. "A Two-stage Heuristic Method for Balancing Mixed-model

Assembly Lines with Parallel Workstations." International Journal of Production

Research 40 (2002): 1405-1420.

Wee, T and M Magazine. "Assembly Line Balancing as Generalized Bin Packing."

Operations Research Letters 1.2 (1982): 56-59.

239

Yano, C and A Bolat. "Survey, Development, and Application of Algorithms for

Sequenced Paced Assembly Lines." Journal of Manufacturing and Operations

Management 2 (1989): 172-198.

	Clemson University
	TigerPrints
	12-2015

	A STUDY ON GENERAL ASSEMBLY LINE BALANCING MODELING METHODS AND TECHNIQUES
	Bryan Pearce
	Recommended Citation

	A Study on General Assembly Line Balancing Modeling Methods and Techniques

