UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

STAIRS 2014

proceedings of the 7th European Starting Al Researcher Symposium
Endriss, U.; Leite, J.

Publication date
2014

Document Version
Final published version

License
CC BY-NC

Link to publication

Citation for published version (APA):

Endriss, U., & Leite, J. (Eds.) (2014). STAIRS 2014: proceedings of the 7th European Starting
Al Researcher Symposium. (Frontiers in Atrtificial Intelligence and Applications; Vol. 264). |IOS
Press. http://ebooks.iospress.nl/volume/stairs-2014

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:10 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/stairs-2014(79a5dc2c-9f97-46a8-98b0-7affa7670878).html
http://ebooks.iospress.nl/volume/stairs-2014

STAIRS 2014

Frontiers in Artificial Intelligence and
Applications

FAIA covers all aspects of theoretical and applied artificial intelligence research in the form of
monographs, doctoral dissertations, textbooks, handbooks and proceedings volumes. The FAIA
series contains several sub-series, including “Information Modelling and Knowledge Bases” and
“Knowledge-Based Intelligent Engineering Systems”. It also includes the biennial ECAI, the
European Conference on Artificial Intelligence, proceedings volumes, and other ECCAI — the
European Coordinating Committee on Artificial Intelligence — sponsored publications. An
editorial panel of internationally well-known scholars is appointed to provide a high quality
selection.

Series Editors:
J. Breuker, N. Guarino, J.N. Kok, J. Liu, R. Lépez de Mantaras,
R. Mizoguchi, M. Musen, S.K. Pal and N. Zhong

Volume 264

Recently published in this series

Vol. 263. T. Schaub, G. Friedrich and B. O’Sullivan (Eds.), ECAI 2014 — 21st European
Conference on Artificial Intelligence

Vol. 262. R. Neves-Silva, G.A. Tshirintzis, V. Uskov, R.J. Howlett and L.C. Jain (Eds.), Smart
Digital Futures 2014

Vol. 261. G. Phillips-Wren, S. Carlsson, A. Respicio and P. Brézillon (Eds.), DSS 2.0 —
Supporting Decision Making with New Technologies

Vol. 260. T. Tokuda, Y. Kiyoki, H. Jaakkola and N. Yoshida (Eds.), Information Modelling and
Knowledge Bases XXV

Vol. 259. K.D. Ashley (Ed.), Legal Knowledge and Information Systems — JURIX 2013: The
Twenty-Sixth Annual Conference

Vol. 258. K. Gerdes, E. Hajicova and L. Wanner (Eds.), Computational Dependency Theory

Vol. 257. M. Jaeger, T.D. Nielsen and P. Viappiani (Eds.), Twelfth Scandinavian Conference on
Artificial Intelligence — SCAI 2013

Vol. 256. K. Gibert, V. Botti and R. Reig-Bolafio (Eds.), Artificial Intelligence Research and
Development — Proceedings of the 16th International Conference of the Catalan
Association for Artificial Intelligence

Vol. 255. R. Neves-Silva, J. Watada, G. Phillips-Wren, L.C. Jain and R.J. Howlett (Eds.),
Intelligent Decision Technologies — Proceedings of the 5th KES International
Conference on Intelligent Decision Technologies (KES-IDT 2013)

Vol. 254. G.A. Tsihrintzis, M. Virvou, T. Watanabe, L..C. Jain and R.J. Howlett (Eds.),
Intelligent Interactive Multimedia Systems and Services

ISSN 0922-6389 (print)
ISSN 1879-8314 (online)

STAIRS 2014

Proceedings of the 7th European Starting Al Researcher
Symposium

Edited by

Ulle Endriss
ILLC, University of Amsterdam
and

Jodo Leite
CENTRIA, Universidade NOVA de Lisboa

10S

Press

Amsterdam e Berlin e Tokyo ¢ Washington, DC

© 2014 The Authors and I10S Press.

This book is published online with Open Access by IOS Press and distributed under the terms of the
Creative Commons Attribution Non-Commercial License.

ISBN 978-1-61499-420-6 (print)
ISBN 978-1-61499-421-3 (online)
Library of Congress Control Number: 2014944111

Publisher

I0S Press BV

Nieuwe Hemweg 6B
1013 BG Amsterdam
Netherlands

fax: +31 20 687 0019
e-mail: order@jiospress.nl

Distributor in the USA and Canada
10S Press, Inc.

4502 Rachael Manor Drive

Fairfax, VA 22032

USA

fax: +1 703 323 3668

e-mail: iosbooks@jiospress.com

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

STAIRS 2014 v
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

Preface

These are the proceedings of the 7th European Starting Al Researcher Symposium
(STAIRS), held as a satellite event of the 21st European Conference of Artificial Intel-
ligence (ECAI) in Prague, Czech Republic, on 18th and 19th of August 2014. STAIRS
is aimed at young researchers in Europe and beyond, particularly PhD students. It pro-
vides an opportunity to go through the experience of submitting to and presenting at an
international event with a broad scientific scope.

The Call for Papers was soliciting submissions from all areas of Al, ranging from
foundations to applications. Topics of interest for STAIRS include autonomous agents
and multiagent systems; constraints, satisfiability, and search; knowledge representation,
reasoning, and logic; machine learning and data mining; planning and scheduling; uncer-
tainty in Al; natural language processing; as well as robotics, sensing, and vision. That
is, the scope of STAIRS is the same as that of the major international conferences in Al
What sets STAIRS apart is that the principal author of every submitted paper must be a
young researcher who either does not yet hold a PhD or who has obtained their PhD less
than one year before the paper submission deadline.

We received a total of 45 submissions. All of them were carefully reviewed by the
STAIRS Programme Committee, consisting of leading European researchers who to-
gether cover the depth and breadth of the field of AI. We are very grateful for the great
service provided by these colleagues, as well as by the additional reviewers assisting
them in their task. In the end, 16 papers were accepted for oral presentation at the sympo-
sium, and a further 14 for presentation during a poster session. These 30 accepted papers
are included in this volume.

The body of submitted papers together covers the field of Al well, with knowledge
representation and reasoning, machine learning, and planning and scheduling being the
areas attracting the largest numbers of submissions. The problems tackled range from
classical Al themes such as search, all the way to emerging research trends, e.g., at the
interface of Al with economics. Also in terms of the foundations/application divide the
STAIRS programme covers the full spectrum.

Besides the presentation of contributed papers and posters, the STAIRS programme
will feature two keynote talks. On the first day of the symposium, Michael Wooldridge,
Professor of Computer Science at the University of Oxford, UK, will offer an introduc-
tion to characterisation results for equilibria in repeated games and the significance of
such results to multiagent systems. On the second day, Francesca Rossi, Professor of
Computer Science at the University of Padova, Italy, will talk about new approaches to
sentiment analysis, harnessing modern techniques from Al, such as preference reasoning
and computational social choice. We thank both of them for accepting our invitation.

We are looking forward to an exciting two days in Prague, and we hope that read-
ers of this volume will find it as useful as we have in getting an impression of current
developments in our field.

June 2014 Ulle Endriss
Jodo Leite

This page intentionally left blank

Symposium Organisation

Program Co-chairs

Ulle Endriss
Jodo Leite

Program Committee

Natasha Alechina
Jose Julio Alferes
Pietro Baroni

Ronen Brafman
Gerhard Brewka
Hubie Chen

Martine De Cock
Eric De La Clergerie
Piotr Faliszewski
Michael Fink

Jorg Hoffmann
Paolo Liberatore
Weiru Liu

Ramon Lopez De Mantaras
Ines Lynce

Pierre Marquis
Nicolas Maudet
Hector Palacios
David Schlangen
Stefan Schlobach
Steven Schockaert
Elizabeth Sklar
Stefan Szeider

Ivan Titov

Wiebe Van Der Hoek
Stefan Woltran
Pinar Yolum

Marius Zollner

Additional Reviewers

Kim Bauters
Golnoosh Farnadi
Ronald de Haan
Oliver Kutz

Els Lefever

ILLC, University of Amsterdam
Universidade NOVA de Lisboa

University of Nottingham
Universidade NOVA de Lisboa
University of Brescia

Ben-Gurion University

Leipzig University

Universidad del Pais Vasco and Ikerbasque
Ghent University

INRIA

AGH University of Science and Technology
Vienna University of Technology
Saarland University

University of Rome

Queen’s University Belfast

IITA — CSIC

INESC-ID/IST, University of Lisbon
CRIL-CNRS and Universit d’ Artois
Université Paris 6

Universidad Carlos III

Bielefeld University

Vrije Universiteit Amsterdam
Cardiff University

University of Liverpool

Vienna University of Technology
ILLC, University of Amsterdam
University of Liverpool

Vienna University of Technology
Bogazici University

Karlsruhe Institute of Technology

Frederic Moisan
Nysret Musliu
Sebastian Ordyniak
Andreas Pfandler

Jordi Planes
Stephanie Roussel
Stefan Riimmele
Henning Schnoor

vii

This page intentionally left blank

Contents

Preface
Ulle Endriss and Jodo Leite

Symposium Organisation

On the Extension of Learning for Max-SAT
André Abramé and Djamal Habet

A Two-Levels Local Search Algorithm for Random SAT Instances with Long
Clauses
André Abramé, Djamal Habet and Donia Toumi

Computing Subjective Expected Utility Using Probabilistic Description Logics
Erman Acar

Towards Modeling Surprise in Economics and Finance: A Cognitive Science
Perspective
Davi Baccan, Luis Macedo and Elton Sbruzzi

Temporal Plan Quality Improvement and Repair Using Local Search
Josef Bajada, Maria Fox and Derek Long

HiPOP: Hierarchical Partial-Order Planning
Patrick Bechon, Magali Barbier, Guillaume Infantes, Charles Lesire
and Vincent Vidal

Value Iteration for Relational MDPs in Rewriting Logic
Lenz Belzner

On Evaluating Interestingness Measures of Closed Itemsets
Aleksey Buzmakov, Sergei O. Kuznetsov and Amedeo Napoli

Learning Probabilistic CP-Nets from Observations of Optimal Items
Damien Bigot, Jérome Mengin and Bruno Zanuttini

A Logic of Part and Whole for Buffered Geometries
Heshan Du and Natasha Alechina

Computing Optimal Policies for Attack Graphs with Action Failures and Costs
Karel Durkota and Viliam Lisy

Semantifying Triples from Open Information Extraction Systems
Arnab Dutta, Christian Meilicke and Heiner Stuckenschmidt

Towards the Usage of Advanced Behavioral Simulations for Simultaneous
Tracking and Activity Recognition

Arsene Fansi T., Vincent Thomas, Olivier Buffet, Fabien Flacher

and Alain Dutech

ix

vil

11

21

31

41

51

61

71

81

91

101

111

121

X

Human Speech Processing for Pedestrian Assistance: Towards Cognitive Error
Handling in Spoken Dialogue Systems
Martin Hacker

A! — A Cooperative Heuristic Search Algorithm
Antti Halme

Run-Time Plan Repair for AUV Missions
Catherine Harris and Richard Dearden

Embedding a Card Game Language into a General Game Playing Language
Jakub Kowalski

Effective and Efficient Identification of Persistent-State Hidden (Semi-) Markov
Models
Tingting Liu and Jan Lemeire

Supervised Separation of Speech from Background Piano Music Using

a Nonnegative Matrix Factorization Approach
A. Martinez-Colon, F.J. Canadas-Quesada, P. Vera-Candeas, N. Ruiz-Reyes
and F. Moreno-Fuentes

Practical Defeasible Reasoning for Description Logics
Kody Moodley, Thomas Meyer and Uli Sattler

Integration of Temporal Abstraction and Dynamic Bayesian Networks
for Coronary Heart Diagnosis
Kalia Orphanou, Athena Stassopoulou and Elpida Keravnou

Clause Simplifications in Search-Space Decomposition-Based SAT Solvers
Tobias Philipp

Multi-Objective Learning of Accurate and Comprehensible Classifiers —
A Case Study
Rok Piltaver, Mitja LuStrek and Matjaz Gams

Predicting Players Behavior in Games with Microtransactions
Ondrej Pluskal and Jan Sedivy

Extension-Based Semantics of Abstract Dialectical Frameworks
Sylwia Polberg

The Margin of Victory in Schulze, Cup, and Copeland Elections: Complexity
of the Regular and Exact Variants
Yannick Reisch, Jorg Rothe and Lena Schend

Electronic Tourist Guides: User-Friendly Editing of Automatically Planned
Routes
Richard Schaller

A Cost-Based Relaxed Planning Graph Heuristic for Enhanced Metric
Sensitivity
Michal Sroka and Derek Long

131

141

151

161

171

181

191

201

211

220

230

240

250

260

270

xi

Towards Learning and Classifying Spatio-Temporal Activities in a Stream
Processing Framework 280
Mattias Tiger and Fredrik Heintz

Empirical Study of Classification Models for Web Page Categorization 290
Tomdas Tunys and Jan Sedivy

Subject Index 301

Author Index 303

This page intentionally left blank

STAIRS 2014 1
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-421-3-1

On the Extension of Learning for
Max-SAT

André ABRAME and Djamal HABET

Aix Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397, Marseille, France.
emails: {andre.abrame,djamal.habet} @lsis.org

Abstract. One of the most critical components of Branch & Bound (BnB) solvers
for Max-SAT is the estimation of the lower bound. At each node of the search
tree, they detect inconsistent subsets (IS) of the formula by unit propagation based
methods and apply a treatment to them. The currently best performing Max-SAT
BnB solvers perform a very little amount of memorization, thus the same IS may
be detected and treated several times during the exploration of the search tree. We
address in this paper the problem of increasing the learning performed by BnB
solvers. We present new sets of clause patterns which produce unit resolvent clauses
when they are transformed by max-resolution. We study experimentally the impact
of these transformation’ memorization in our solver AHMAXSAT and we discuss
their effects on the solver behavior.

1. Introduction

The Max-SAT problem consists in finding, for a given CNF formula, a Boolean assign-
ment of the variables of this problem which maximizes (minimizes) the number of satis-
fied (falsified) clauses. In the weighted version of Max-SAT, a positive weight is associ-
ated to each clause and the goal is to find an assignment which maximizes (minimizes)
the sum of the weights of the satisfied (falsified) clauses. For clarity reasons, we use in
this paper unweighted notations and examples. Nevertheless, all the presented results can
easily be extended to weighted Max-SAT.

Among the complete methods for solving Max-SAT, Branch and Bound (BnB) al-
gorithms (e.g. WMAXSATZ [10,8,9]) have shown their efficiency, especially on random
and crafted instances. BnB solvers explore the whole search space and compare, at each
node of the search tree, the current number of falsified clauses plus an (under-)estimation
of the ones which will become falsified (the lower bound, LB) to the best solution found
so far (the upper bound, UB). If LB > UB, then no better solution can be found by ex-
tending the current branch and they perform a backtrack. The estimation of the remain-
ing inconsistencies is a critical component of BnB solvers: it is one of the most time-
consuming components of the solvers and its quality determines the number of explored
nodes.

Efficient BnB Max-SAT solvers estimate the number of clauses which will become
falsified by counting the disjoint inconsistent subsets (IS) of the formula. They use unit
propagation (UP) based methods to detect inconsistencies and analyze the propagation

2 A. Abramé and D. Habet / On the Extension of Learning for Max-SAT

steps which have led to them to build inconsistent subsets. Each detected IS must be
treated to ensure it will be counted only once. Two treatments are actually used by BnB
solvers. If an IS matches (completely or partially) some patterns, then solvers transform
it (completely or partially) by applying several max-resolution steps [1,3,4,9,5] on its
clauses, and they keep the modifications in the lower nodes of the search tree. This treat-
ment acts as a (restricted) learning or memorizing mechanism. Otherwise, they simply
remove the IS’s clauses from the formula or apply the max-resolution based treatment
and, in both cases, they keep the modifications only at the current node of the search tree
(i.e. modifications are undone before the next decision).

We propose in this paper to increase the amount of learning performed by BnB
solvers. We focus on the subsets of clauses which produce, once transformed by max-
resolution, unit resolvent clauses. The benefits of memorizing such transformations are
double. They reduce the number of redundant propagations and max-resolution transfor-
mations. Moreover, the produced unit clauses may empower the detection of IS by unit
propagation. We define new patterns corresponding to these subsets. We study experi-
mentally the impact of their transformation’s memorization on the behavior of our solver
AHMAXSAT by varying the sizes of the patterns and the sizes of their clauses. The results
obtained show the interest of our approach and give interesting clues on the impact of
the max-resolution transformations on the solver’s behavior.

2. Preliminaries

We give in this section the definitions and notations used in this paper and we present
the max-resolution inference rule, which is the keystone of the learning procedure for
Max-SAT.

2.1. Definitions and Notations

A formula @ in conjunctive normal form (CNF) defined on a set of propositional vari-
ables X = {xi,...,x,} is a conjunction of clauses. A clause c; is a disjunction of literals
and a literal / is a variable x; or its negation X;. Alternatively, a formula can be represented
as amultiset of clauses ® = {c,...,c, } and a clause as a set of literals ¢; = {/},,...,1;, }.
An assignment can be represented as a set [of literals which cannot contain both a literal
and its negation. If x; is assigned to true (resp. false) then x; € I (resp. x; € I). [is a
complete assignment if |I| = n and it is partial otherwise. A literal [is said to be satisfied
by an assignment if / € I and falsified if / € I. A variable which does not appear either
positively or negatively in / is unassigned. A clause is satisfied by [if at least one of
its literals is satisfied, and it is falsified if all its literals are falsified. By convention, an
empty clause (denoted by [) is always falsified. Eventually, solving the Max-SAT prob-
lem consists in finding a complete assignment which maximizes (minimizes) the number
of satisfied (falsified) clauses of &.

2.2. max-resolution rule

The max-resolution inference rule [1,3,4] is the Max-SAT version of the SAT resolution.
It is defined as follows:

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 3

ci=A{xy1,...,yst, ¢;={%z1,.. ..z}
r=AY1,-- V5,20 12}y CCly vy CCpy CCryly -e oy CCrpsg

With: cep = {6, Y15+, V5,21225 52t by €C2 = {X, V1541 Y5522, 235+ 521 Fs vy CC =X, V1503 V552t Jy CCri1 =
{2,205 320515 Y25+ 3 Vs Js CC42 = Xy Z05 320,725 Y35 5 Vs by oo v CCris = 1%,21, -+, 21, Y5} T he premises
of the rule are the original clauses ¢; and ¢; which are removed from the formula, while
the conclusions are the resolvent clause cr and the compensation clauses ccy,...,CCr+g
added to keep formula’s equivalency.

3. Learning in State of the Art BnB Solvers

At each node of the search tree, BnB solvers calculate the lower bound (LB) by esti-
mating the number of disjoint inconsistent subsets (IS) remaining in the current formula.
In this section, we first present the main techniques of IS detection and transformation.
Then, we recall the learning scheme used by the best performing BnB solvers.

Recent BnB Max-SAT solvers apply unit propagation (UP) based methods to detect
inconsistent subsets (more precisely simulated unit propagation (SUP) [7] and failed
literals (FL) [8]). For each unit clause {/}, they remove all the occurrences of [from the
clauses and all the clauses containing /. This process is repeated until an empty clause
(a conflict) is found or no more unit clause remains. When an empty clause is found by
UP, an inconsistent subset (IS) of the formula can be built by analyzing the propagation
steps which have led to the conflict. The propagation steps made by SUP or FL can be
represented by an implication graph [11], where the nodes are the assigned variables and
the arrows connect the falsified literals of the unit clauses to the variables they propagate.

Once detected, an IS can be transformed by applying max-resolution operations be-
tween its clauses. The original clauses of the IS are removed from the formula, while a
resolvent clause and compensation clauses are added. The resolvent is falsified by the
current decisions. Thus, SUP or FL are not needed anymore to detect again the trans-
formed IS. Consequently, by keeping the formula’s transformations solvers memorize
the IS and avoid its redundant detection and treatment. The following example illustrates
the transformation of an IS by max-resolution.

Example 1 Lets consider a formula ® = {cy,...,cs} withc; = {x1}, co = {X1, %2}, ¢3 =
{x1,x3}, ca = {%2,x4} and c5 = {X3,%4}. The application of SUP leads to the propagation
sequence < x1@c,x)@cy,x3@c3,x4@cyq > (meaning that x| is propagated by cy, then
X2 by ¢y, etc.). The clause cs is empty and the corresponding implication graph is shown
on Fig. 1(a). Hence, ® is an inconsistent subset. Its transformation by the max-resolution
rule is done as follows. Max-resolution is first applied between cs and c4 on the variable
x4. The intermediary resolvent c¢ = {X2,%3} is produced as well as the compensation
clauses c7 = {xp,X3,%4} and cg = {X»,x3,x4 }. The original clauses c4 and cs are removed
from the formula. Then, the max-resolution is applied between the intermediary resolvent
c¢ and the next original clause c3 on the variable x3 and so forth. Fig. 1(b) shows the
max-resolution steps with in boxes the compensation clauses (note that this treatment
is close to the conflict analysis procedure of modern SAT solvers [11]). After complete
transformation, we obtain the formula ® = {(J,c7,cg,c10,c11} with c10 = {x1,%2,%3}
and c11 = {f],)@,)@}.

4 A. Abramé and D. Habet / On the Extension of Learning for Max-SAT

= {x2,X3,%4}

s ={x3,%} cs={%,x4} o8 = {T2, 03,03}
,X3,

.

c6 ={%,%} = {x1,x53}

c10 = {x1,%2,%3}

e = {X1,x0,x3}
(o) X2 *ﬂm ‘ A3 /
/ \ c9 = {f] ,762} c) = {f] ,xz}

X2

C\3*‘Xg / ‘ - /

crn={%} cr={x1}

[

ci3 =0
(a) Implication graph (b) Max-SAT resolution steps

Figure 1. Implication graph and Max-SAT resolution steps applied on the formula ® from Example 1.

However, the Max-SAT clause learning scheme has two drawbacks which prevent
its generalization. Firstly, the added resolvents and compensation clauses can increase
quickly the size of the formula if learning is frequently used. Secondly, it may reduce the
quality of the LB estimation and thus the number of explored nodes of the search tree
may increase.

For the reasons cited above, the current best performing BnB solvers [6] keep the
transformations made by the max-resolution rule only in the sub-part of the search tree
(i.e. changes are undone when backtracking). Also, they restrict the application of this
rule to particular sets of clauses corresponding to one (or a combination) of the follow-
ing patterns (with on top the clauses of the original formula and on bottom the clauses
obtained after transformation):

{{x10}: {x, %3} {{xi} x5} (%2, %1} 3 Hadb F o) %) e, (%)

R e o) b mh Eos)) O (0 Gnnl om))

» (2)

These patterns do not necessarily cover the IS entirely. Especially, the application of
the max-resolution based transformation on patterns (1) or (2) produces a unit resolvent
clause {x;}. Memorizing such transformations reduce the number of redundant propa-
gations and max-resolution steps. Moreover, the produced unit clauses can be used in
the sub-part of the search tree to make further unit propagation steps, and thus it may
improve the number of detected IS.

4. Extended Learning

The lower bound computation, based on the estimation of the number of disjoint incon-
sistent subsets, is a critical part of BnB Max-SAT solvers. Indeed, it is one of their most
time-consuming components and the estimation quality guides the backtrack and thus
determines the number of explored nodes in the search tree. Thus, a balance must be
struck between the time spent computing this estimation and its quality. In this regard,
learning seems a natural way to limit the time spent on the LB computation by making
the IS detection and transformation more incremental.

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 5

We present in this section a generalization of the patterns producing unit resolvent
clauses, which we name Unit Clause Subsets. We motivate this generalization and show
that the corresponding patterns can be detected efficiently. Also, we give statistics on
their occurrences in the instances of the benchmark used in Section 5.

4.1. Unit Clause Subset

We have seen in the previous section that two of the patterns used for memorization by
the current best performing BnB solvers produce after transformation a unit resolvent
clause. The goal of memorizing such transformations is double. On the one hand, it
reduces the number of redundant propagations and on the other hand, it may empower
the detection of inconsistencies in lower nodes of the search tree since more unit clauses
are available for applying unit propagation.

We propose in this paper to extend the amount of learning performed by BnB solvers
by considering more patterns which produce unit resolvent clauses when transformed by
max-resolution. These patterns can be formally defined as follows.

Definition 1 (Unit Clause Subset (UCS)) Ler ® be a CNF formula. A unit clause subset
(UCS) is a set {ciy,...,ci,} CPwithVj € {l,....k}, |ci;| > 1 such that there exists an
order of application of k — 1 max-resolution steps on c;,,...,c; which produces a unit
resolvent clause. We denote the set of the UCS’s patterns of size k by k-UCS.

Example 2 Below the patterns of the 3-UCS set:
2 Hxiwd {xxs), {F2, %1}) Hxix} %, x3), {01, %, %31}
{{xl},{xl,xz,X3},{f1,X2,X3}}’ {{xl}v{xhx%x?)}} ’

{{X| .,xz}, {xl ,X3}, {xl 122#j3}} (6) {{X] 7x2}#{x| %j27x3}7 {xl ,X2,f3}}
{{xi}{x1 ;2,233 ’ {{x:1}}

()

Since one of the goals of memorizing transformations which produce unit resolvent
clauses is to increase the number of assignments made by unit propagation (SUP or FL),
we do not consider the subsets of clauses which contain unit clauses. In the best case (if
they contain only one unit clause), the transformation of such subsets lets the number
of unit clauses of the formula unchanged. In the worst case (if they contain more than
one unit clause), the transformed formula contains less unit clauses than the original one.
Thus the number of assignments made by unit propagation and consequently the number
of detected IS may be reduced. Eventually, we make a distinction between the patterns
of the k-UCS sets depending on the size of their clauses. We denote k?-UCS the subset
of k-UCS composed of the patterns which contain only binary clauses and k'-UCS the
subset composed of the patterns which contain at least one ternary clause. It should be
noted that the patterns (1) and (2) presented in Section 3 belong respectively to the sets
2-UCS and 3°-UCS.

4.2. Detecting k-UCS
The k-UCS patterns are easily detectable by analyzing the implication graph. Indeed,

the clauses which are between the conflict and the first unit implication point (FUIP)
[11] produce a unit resolvent clause when transformed by max-resolution. Thus, solvers

6 A. Abramé and D. Habet / On the Extension of Learning for Max-SAT

simply have to count the number and the sizes of clauses between the conflict and the
FUIP to know if they are in presence of a valid UCS. This does not change the complexity
of the conflict analysis procedure and the computational overhead is negligible.

4.3. Occurrences of k-UCS

We have measured the rate of occurrences of the k-UCS patterns in the inconsistent sub-
sets detected by our solver AHMAXSAT. Tab. 1 show the results obtained on the bench-
mark presented in Section 5. It is interesting to observe that the patterns which are cur-
rently used for learning by state of the art solvers (2-UCS and 3°-UCS) occur in less than
3.5% of the IS. On average, UCS are detected in 35% of the ISs. This value however
varies considerably from one instance class to another.

Table 1. Percentage of occurrences of the k-UCS’s patterns.

Instances classes || 2-UCS || 32-UCS | 3/-UCS || 4°-UCS | 4/-UCS || 5”-UCS | 5'-UCS k;icss’
crafted/bipartite 0 0.41 0 0 0.01 38.45 0.14 21.47

B crafted/maxcut 0 11.58 0 3.17 5.48 3.81 3.6 8.64
_'Eo random/highgirth || 0.06 0.05 0.01 0.03 0.02 0.02 0.03 0.53
2 random/max2sat 0 1.91 0 15.97 0.11 8.41 1.01 17.5
£ random/max3sat|| 0.38 1.75 0.98 2.29 2.54 0.91 3.52 12.35
random/min2sat 0 1.91 0 13.01 0.01 9.13 0.06 21.4
crafted/frb 0 5.36 0 0 8.05 1.17 0 5.08

2 crafted/ramsey 0 1.06 0 0 0.19 0.12 0.21 0.85
%) crafted/wmaxcut 0 12.99 0 0.66 8.25 3.87 5.39 10.37
‘s random/wmax2sat 0 2.13 0 17.69 0.09 9.56 1.21 14.58
B random/wmax3sat || 0.17 1.02 0.52 1.53 1.55 0.66 2.36 8.77
Total | 0.06 3.33 0.15 6.72 1.87 8.99 1.61 13.14

5. Empirical Evaluation of UCS Learning

We present in this section an empirical evaluation of the impact of the k-UCS trans-
formation’s memorization on all the random and crafted instances from the unweighted
and weighted categories of the Max-SAT Competition 2013'. Note that we do not in-
clude any (weighted) Partial Max-SAT instances nor industrial ones in our experiments.
Even if the results presented in this paper can naturally be extended to these instance
categories, our solver AHMAXSAT does not handle them efficiently. A performing BnB
solver for (weighted) Partial Max-SAT must consider both the soft and the hard parts of
the instances. Thus, it must include SAT mechanisms such as nogood learning, activity-
based branching heuristic or backjumping and our solver currently does not [2,11]. For
the industrial instances, solvers must have a very efficient memory management. None
of the best performing BnB solvers (including ours) handles huge industrial instances
efficiently?.

We have implemented the UCS learning scheme in our BnB solver AHMAXSAT>.
The experiments are performed on machines equipped with Intel Xeon 2.4 Ghz proces-

! Available from http:/maxsat.ia.udl.cat:81/13/benchmarks.

2See for instance http:/maxsat.ia.udl.cat:81/13/results/index.html

3 An early version of AHMAXSAT has been submitted to the Max-SAT Competition 2013. It was the version
1.16. Since that competition, we have made numerous optimizations. The version presented in this paper is
numbered 1.52.

http://maxsat.ia.udl.cat:81/13/benchmarks
http://maxsat.ia.udl.cat:81/13/results/index.html

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 7

sors and 24 Gb of RAM and running under a GNU/Linux operating system. The cutoff
time is fixed to 1800 seconds per instance, as in the Max-SAT Competitions.

In the rest of this section, we present and discuss the results obtained by increasing
the learning performed by AHMAXSAT. Starting from a variant using the patterns used
by state of the art solvers ({2, 3P }-UCS), we add the memorization of the 3'-UCS trans-
formations, then the 4-UCS ones and the 5-UCS ones. Preliminary results (not reported
in this paper) suggest that memorizing k-UCS transformations with k£ > 5 has a negative
impact on the solver performances. The obtained results are presented in the Tables 2, 3
and 4. For each AHMAXSAT variant, we present the number of solved instances (columns
S) and the averages of: numbers of decisions (columns D), solving time (columns T),
number of propagations per decision (columns P/D) and number of IS detected per deci-
sion (columns /D). The main goal of these two last indicators is to show the reduction
of the redundant propagations and IS detections. They may also indicate a loss in the
quality of the LB estimation, which is one of the known drawbacks of the memorization.

{2,3"}-UCS vs. {2,3}-UCS As one can have expected, memorizing the transforma-
tions of the 3/-UCS in addition to the ones of the patterns used by state of the art BnB
solvers (i.e. {2, 3b}-UCS) does not change much the behavior of AHMAXSAT since these
patterns occur very rarely in the benchmark’s instances. On the instances with a non-null
rate of occurrences (random/max3sat and random/wmax3sat), we can observe a slight
reduction of the average number of decisions (column D) and of the average solving time
(column T). On the overall benchmark, the average solving time is reduced by 2%.

{2,3}-UCS vs. {2,3,4}-UCS If we add the memorization of the transformations of
the 4-UCS, both the averages of the number of propagations per decision (column P/D)
and of the number of inconsistencies detected per decision (column [J/D) decrease sig-
nificantly (respectively -13% and -26%). Since the amount of memorization increases,
one can expect a slight reduction of these two values, but not in such proportion. An
important reduction probably indicates a loss in the quality of the LB estimation. This
explanation is confirmed by the increase of the average number of decisions (+8% on
average). Consequently, 4 less instances are solved and the solving time is on average
36% higher.

It is interesting to notice that the impact of memorizing the 4-UCS transformations
vary from one instance’s class to another. The loss in performances occurs on the classes
with a high percentage of 4”-UCS occurrences (random/max2sat and random/wmax2sat
where the average solving time increases of 244% and 171% respectively). Conversely,
on the instance’s classes with a low percentage of occurrences of 4°-UCS (crafted/frb and
crafted/wmaxcut), the average solving time is reduced (-35% and -34% respectively).

{2,3}-UCS vs. {2,3,4'}-UCS 1If we ignore the 4°-UCS and memorize only the trans-
formations of the {2,3,4'}-UCS, both the average number of decisions and the average
solving time are equal or reduced on all the instance classes (respectively -14% and -7%
on average) and one more instance is solved. One can observe that the average numbers
of propagations per decision and of IS detected per decision decrease slightly (respec-
tively -0.5% and -2.5% on average).

{2,3,4"}-UCS vs. {2,3,4",5}-UCS The same behavior as for the 4-UCS can be ob-
served if we add the memorization of the transformations of the 5S-UCS. Both the average
number of propagations per decision and the average number of inconsistencies detected

8 A. Abramé and D. Habet / On the Extension of Learning for Max-SAT

per decision decrease significantly (-20% and -35%). Consequently, the average number
of decisions increases (+42%), 7 instances less are solved and the average solving time
increases of 90%. As for the 4-UCS, the loss is particularly high on instance classes
with a high percentage of 5”-UCS occurrences (crafted/bipartite, random/max2sat, ran-
dom/min2sat and random/wmax2sat where the average solving time increase of respec-

tively 235%, 322%, 188% and 261%).

Table 2. Detailed results of the variants AHMAXSAT {2,37}-UCS and AHMAXSAT {2,3}-UCS. The two first
columns give respectively the instances classes and the number of instances per class.

AHMAXSAT {2,37}-UCS

AHMAXSAT {2,3}-UCS

Instances 4 s D T [pD|OD| s D T |PD|OD
crafted/bipartite | 100 || 100 | 35392 | 969 |2267| 148 || 100| 35416 | 972 |2267] 143

B crafted/maxcut | 67 || 56 | 235202 | 58.9 | 274 | 42 || 56 | 235202 | 59.5 | 274 | 42
£, random/highgirth | 82 || 7 (4953454 |1194.1| 87 | 5 || 7 |4991152(11993| 87 | 5
g random/max2sat | 100 || 100 | 40410 849 |1860| 99 || 100 | 40408 84.7 | 1859 | 99
£ random/max3sat | 100 || 98 | 425744 | 332.6 | 432 | 46 || 98 | 407917 | 315.6 | 429 | 45
random/min2sat | 96 || 96 | 1025 | 2.5 |1937] 64 || 96 | 1019 | 2.5 |1937]| 64
crafied/ftb | 34 || 14 | 494542 | 77 | 79 | 12 || 14 | 494542 | 76.7 | 79 | 12

T crafted/ramsey | 15 || 4 | 158350 | 554 | 26 | 10 || 4 | 158350 | 553 | 26 | 10
2 crafted/wmaxcut| 67 || 62 | 40645 | 606 | 409 | 169 || 62 | 40649 | 60.6 | 409 | 169
2 random/wmax2sat | 120|| 120 | 4337 | 544 [4957|534 || 120| 4307 | 53.7 |4955| 535
% random/wmax3sat | 40 || 40 | 49771 | 138 |1142] 202 || 40 | 48515 | 134.8 | 1140 | 201
Global | 821 ([697 | 157583 | 114.5 [1902] 173 |[697| 155380 | 111.9 | 1901 | 173

Table 3. Detailed results

of the variants AHMAXSAT {2,3,4}-UCS and AHMAXSAT {2,3,4'}-UCS.

AHMAXSAT {2,3,4}-UCS

AHMAXSAT {2,3,4}-UCS

Instances # s D T |PD|OD| s D T |PD|OD
crafted/bipartite | 100 || 100 | 35436 | 969 |2266| 148 || 100| 35478 | 973 |2266] 143

B crafted/maxcut | 67 || 56 | 153539 | 37.5 | 207 | 30 || 56 | 153326 | 423 | 267 | 39
£, random/highgirth | 82 || 7 [4960255|1186.5| 88 | 5 || 6 |4603981|10912| 87 | 5
S random/max2sat | 100 || 94 | 175425 | 291.8 |1375| 62 | 100| 38878 | 814 |1854| 98
£ random/max3sat | 100 || 100 | 443640 | 319.5 | 401 | 41 || 100| 413013 | 3084 | 414 | 43
random/min2sat | 96 || 96 1198 2.3 1433 | 34 96 1025 2.5 1936 | 64
crafted/ftb | 34 || 14 | 289467 | 493 | 71 | 9 || 14 | 288458 | 486 | 71 | 9

5 crafted/ramsey | 15 || 4 | 158040 | 566 | 26 [10 | 4 | 157902 | 554 | 26 | 10
£ crafted/wmaxcut | 67 || 62 | 21703 | 351 [395 | 143 || 62 | 21757 | 352 | 397 | 142
% random/wmax2sat | 120|| 120 | 13386 | 145.8 4434|353 || 120 4250 | 52.9 |4957| 531
® random/wmax3sat | 40 || 40 | 46640 | 126.3 | 1114 192 || 40 | 45956 | 126.6 | 1126 | 196
Global | 821 ([693 | 169317 | 152 | 1636 128 |[698 | 133820 | 103.7 | 1892 | 169

Table 4. Detailed results of the variants AHMAXSAT {2,3,4",5}-UCS and AHMAXSAT {2,3,4',5"}-UCS.

AHMAXSAT {2,3,475}-UCS

AHMAXSAT {2,3,4",5"}-UCS

Instances # 'S D T |pD|OD| s D T |pD|OD
crafted/bipartite | 100]| 99 | 185669 | 326,1 | 1365| 60 || 100| 34909 | 94,7 |2258 | 147

B crafted/maxcut| 67 || 56 | 188088 | 46,7 | 240 | 33 || 56 | 177964 | 43,8 | 251 | 35
% random/highgirth | 82 || 6 |4607524 | 1101,1| 87 | 5 || 6 |4597721|1102,3| 87 | 5
® random/max2sat | 100 || 94 | 214125 | 3442 [1327] 59 ||100| 38841 | 77.8 |1793| 91
5 random/max3sat | 100 || 100 | 450338 | 309,3 | 380 | 38 || 100| 426143 | 293,5 | 385 | 39
random/min2sat | 96 || 96 | 3856 | 7,2 |1484| 37 || 96 | 979 24 [1931] 64
crafted/frb | 34 || 14 | 247556 | 424 | 66 | 8 || 14 | 210245 | 372 | 70 | 8

2 crafted/ramsey | 15 4 | 157332 | 56,0 26 10 4 | 157478 | 55,5 26 10
£ crafted/wmaxcut | 67 || 62 | 21521 | 334 | 347 | 117 | 62 | 19993 | 308 | 346 | 116
‘5 random/wmax2sat | 120 |[120 | 16751 | 191,0 |4322| 333 || 120| 3898 | 482 |4844 504
® random/wmax3sat | 40 || 40 | 45874 | 123.4 | 1093 | 187 || 40 | 44804 | 1203 | 1100] 188
Global | 821 [[691 | 190109 | 197,2 | 1504 | 109 || 698 | 135686 | 99,1 | 1850 159

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 9

{2,3,4'}-UCS vs. {2,3,4",5"}-UCS As previously, if we ignore the 5°-UCS and
memorize only the transformation of the {2,3,4",5"}-UCS there is no significant loss in
solving time on any instance classes and the average solving time is reduced by 4,5%.

To summarize. by memorizing the transformations of the patterns of the sets
{3",4,5'}-UCS in addition to the sets {2,3”}-UCS used by state of the art solvers, our
solver AHMAXSAT solves one instance more. The average number of decisions and the
average solving time are both reduced by 14%. It should be noted that the increase of the
formula’s size is limited and does not affect the solver efficiency.

Discussion It is commonly admitted that memorizing the transformations made by the
max-resolution rule may in some cases reduce the quality of the LB estimation. How-
ever, to the best of our knowledge, the reasons of this behavior have never been prop-
erly described. The empirical study we have performed shows that the transformations
of some specific patterns (i.e. the 4°-UCS and the 5°-UCS) seem particularly affected by
this phenomenon. Moreover, the detailed statistics obtained show a correlation between
a decrease of the number of propagations, a decrease of the number of detected IS and an
increase of the number of decisions. Indeed, if the number of propagated variables is re-
duced, then less IS will be detected and the quality of the LB estimation will be reduced.
Consequently, the backtracks will occur below in the search tree and more decisions will
be needed to solve instances. We illustrate in the example below how the transformation
of a 4°-UCS decreases the number of propagated variables.

Example 3 Lets consider the subset " = {cy,c3,c4,c5} of the formula ® from Exam-
ple 1. If we add the clause c14 = {X1,x4} to @, there are two possible UCS: y; =
{c3,¢5,c14} and W = {ca,¢3,¢4,c5} which are respectively a 3°-UCS and a 4°-UCS. If
Y is transformed by max-resolution, we obtain the formula ®0) = {c2,c4,c15,¢16,€17}
with c1s = {X1}, c16 = {X1,x3,%4 } and c¢17 = {x1,%3,%4 }. The assignment x| = true leads
to the following propagation sequence in ®O): < xy@cy,x4@cy >. The clause 15 is fal-
sified while c16 and c17 are satisfied. If W, is transformed by max-resolution, we obtain
the formula o¢ = {c12,¢7,¢8,¢10,C11,C14} (this transformation is described in Exam-
ple 1). The assignment x| = true in ®W leads to the propagation sequence < x4 @ci4 >.
The clause c is falsified, cg and cyg are satisfied and c7 and c11 are reduced. There is
no more unit clauses, and xy cannot be propagated. It is interesting to notice that the
two remaining reduced clauses c¢7 = {x2,X3} and c11 = {x2,x3} may lead to the propa-
gation of x, if we apply the max-resolution between them. But the sole unit propagation
mechanism is not sufficient to propagate x;.

Even if we have described here via an example how transformations may reduce the
number of propagated variables and its impact on the quality of the LB estimation, the
specific features of the transformed subsets of clauses concerned by this phenomenon are
unclear. A thorough study of these characteristics would be of great interest to improve
the BnB solvers learning procedure.

Finally, we have tested (using the protocol described previously) the two best
performing BnB solvers of the Max-SAT Competition 2013: WMAXSATZ2009 and
WMAXSATZ2013. The results (Tab. 5) shows that AHMAXSAT solves more instances
than the two other solvers (respectively 41 and 7 more, columns S) and its average solv-
ing time is respectively 59% and 32% lower (columns T).

10

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT

Table 5. Detailed comparison of AHMAXSAT {2,3,4,5'}-UCS, WMAXSATZ2009 and WMAXSATZ2013.

WMAXSATZ2009 WMAXSATZ2013 AHMAXSAT

Instances 4| s D T || s D T || s D T

unweighted

crafted/bipartite | 100 || 99 | 527295 |268.7 | 99 | 796983 [282.3 | 100 | 34909 | 94.7
crafted/maxcut | 67 || 55 | 850803 | 97.4 || 55 | 755340 | 54.7 || 56 | 177964 | 43.8
random/highgirth | 82 || 0 - - 0 - - 6 |4597721|1102.3
random/max2sat | 100 || 96 | 666713 |288.1 || 100 | 523266 |169.8 || 100 | 38841 77.8
random/max3sat | 100 || 97 | 2211487 | 381.7 || 100 | 1476192 | 242.9 || 100 | 426143 | 293.5
random/min2sat | 96 || 77 | 648900 | 185.5 96 | 22402 | 94 || 96 979 24

weighted

crafted/frb | 34 [[9 [1379041 | 12.2 || 14 | 1537566 | 62.8 || 14 | 210245 | 37.2
crafted/ramsey | 15 || 4 | 876667 | 93.4 || 4 | 549137 | 52.6 || 4 | 157478 | 55.5
crafted/wmaxcut | 67 || 61 | 75186 | 80.8 || 63 | 126254 | 73.5 || 62 | 19993 30.8
random/wmax2sat | 120 || 119 | 82064 |288.9 | 120 | 81440 |134.2| 120| 3898 48.2
random/wmax3sat | 40 || 40 | 328504 | 177.1| 40 | 257175 |130.7 || 40 | 44804 | 120.3

Total | 821 || 657 | 716729 | 240.2 || 691 | 541647 | 145 |[698 | 135686 | 99.1

6. Conclusion

We have presented in this paper new sets of patterns which produce, when transformed
by max-resolution, unit resolvent clauses. The experimental study shows that the trans-
formation” memorization of some pattern sets (namely the {2,3,4',5'}-UCS) reduces
significantly both the number of decisions made by our solver AHMAXSAT and its solving

time.

These experiments show that the transformation’s memorization of the {4%,50}-

UCS reduces the solver’s capability to detect inconsistencies and thus its performances.
We have described this phenomenon, which had never been done before to the best of
our knowledge. As future work, we will make a thorough study of this phenomenon to
draw up a general learning framework for BnB Max-SAT solvers.

References

[1]

(2]
[3]

[4]
[5]
[6]
[71
[8]
[9]
[10]

(1]

M. L. Bonet, J. Levy, and F. Manya, ‘Resolution for max-sat’, Artificial Intelligence, 171(8-9), 606-618,
(2007).

N. Eén and N. Sorensson, ‘An extensible sat-solver’, in SAT’03, pp. 502-518. Springer, (2003).

F. Heras and J. Larrosa, ‘New inference rules for efficient max-sat solving’, in AAAI’06, volume 1, pp.
68-73. AAAI Press, (2006).

J. Larrosa and F. Heras, ‘Resolution in max-sat and its relation to local consistency in weighted csps’, in
IJCAI’05, pp. 193-198. Morgan Kaufmann Publishers Inc., (2005).

J. Larrosa, F. Heras, and S. de Givry, ‘A logical approach to efficient max-sat solving’, Artificial Intelli-
gence, 172(23), 204-233, (2008).

C. M. Li, E. Manya, N. Mohamedou, and J. Planes, ‘Exploiting cycle structures in max-sat’, in SAT"09,
pp. 467480, Springer Berlin / Heidelberg, (2009).

C. M. Li, F. Manya, and J. Planes, ‘Exploiting unit propagation to compute lower bounds in branch and
bound max-sat solvers’, in CP’05, pp. 403—414, Springer Berlin / Heidelberg, (2005).

C. M. Li, F. Manya, and J. Planes, ‘Detecting disjoint inconsistent subformulas for computing lower
bounds for max-sat’, in AAAI’06, pp. 86-91. AAAI Press, (2006).

C. M. Li, F. Manya, and J. Planes, ‘New inference rules for max-sat’, Journal of Artificial Intelligence
Research, 30, 321-359, (2007).

C. M. Li, E. Many, N. Mohamedou, and J. Planes, ‘Resolution-based lower bounds in maxsat’, Con-
straints, 15(4), pp. 456-484, (2010).

J. P. Marques-Silva and K. A. Sakallah, ‘Grasp: A search algorithm for propositional satisfiability’, IEEE
Transactions on Computers, 48(5), pp. 506-521, (August 1999).

STAIRS 2014 11
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-421-3-11

A Two-Levels Local Search Algorithm for
Random SAT Instances with Long
Clauses

André ABRAME, Djamal HABET and Donia TOUMI

Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397, Marseille, France

Abstract. We present a local search algorithm exploiting two efficient solvers for
SAT. The first one is based on the configuration checking strategy and the second
one on an algorithm of the Walksat family. This new solver is dedicated to solve
random k-SAT instances, such that k > 4. We have carried tests on the instances
of the SAT Challenge 2012. The obtained results confirm the relevance of our ap-
proach.

Keywords. Configuration Checking, Novelty Heuristic, Random large k-SAT
instances

1. Introduction

The satisfiability problem (SAT) consists of testing whether all clauses in a propositional
formula F, in the Conjunctive Normal Form on a set of Boolean variables, can be satis-
fied by an assignment of truth values to its variables. The incomplete methods for SAT
solving are generally based on the Stochastic Local Search (SLS). Starting by a randomly
generated truth assignment of the variables of F, an SLS algorithm explores the search
space by trying, at each step, to minimize the number of falsified clauses by flipping the
truth value of a given variable. In dynamic local search algorithms [17], each clause has
a dynamic weight and a variable is evaluated regarding its score. The score of a variable
is the variation of the sum of the weights of the falsified clauses, if it is flipped. In the last
years, the Configuration Checking (CC) strategy appears as a promising dynamic local
search approach to solve SAT [4,6]. The main purpose of CC is to prevent cycling in
local search by considering neighbors of variables. Two variables are neighbors if they
appear in the same clause at least once. The configuration of a variable is the set of its
neighbor variables and their corresponding truth values.

In this paper, we propose to improve the configuration checking strategy on random
k-SAT such that k > 4. This improvement is carried out by using the Novelty heuristic
with adaptive noise setting. Novelty is a powerful SLS algorithm from the Walksat
family algorithms [11,16,19]. Our motivation is also to enhance the efficiency of diversi-
fication and intensification phases in CC-based solvers. The result of our work is a two-
level SLS algorithm which we name Ncca+. The first stage in Ncca+ consists of flipping
a configuration changed decreasing variable (a variable with a positive score and hav-

12 A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances

ing the value of one of its neighbor variables changed since its last flip) [6], if it exists.
Otherwise, Ncca+ enters its second stage and applies a Novelty+ like heuristic to select
the variable to flip. Our algorithm is implemented on the basis of the powerful CC-based
solver CCASat [4] which is the winner of the random SAT track of the SAT Challenge
2012!. We evaluate empirically Ncca+ on the instances of this challenge regarding its
robustness and its running time by a comparison to CCASat. We also compare Ncca+
to other performing state-of-the-art SLS solvers. This empirical study confirms the effi-
ciency of our solver. Ncca+ also participated in the SAT competition 2013 [9] and won
the bronze medal of the random SAT track®.

The paper is organized as follows. Section 2 gives the necessary background and
elements for the rest of the paper. Section 3 describes in details our contribution. Section
4 is dedicated to the experimental evaluation. Finally, we conclude in Section 5.

2. Preliminaries
2.1. Definitions and Notations

An instance F of the satisfiability problem (SAT) is defined by a pair F = (X, C) such that
X = {x1---x,} is a set of n Boolean variables and C = {c| - -- ¢, } is a set of m clauses.
A clause ¢; € C is a finite disjunction of literals and a literal is either a variable x; or its
negation —x;. Two variables occurring in the same clause are neighbors. The set of the
neighbors of x; is denoted by N(x;). The size of a clause ¢; is the number of its literals
(denoted by |c;|). If the size of each clause in C is equal to k then the instance is called
k—SAT. An assignment is a mapping I : X — {True, False}. I is complete if it maps all
the variables of F. A clause c¢; € C is satisfied by a complete assignment / iff it contains
at least one satisfied literal, otherwise c; is falsified. A model of F is an assignment that
satisfies all the clauses of F. The satisfiability problem (SAT) consists of deciding if F’
has a model. If this is the case then F is satisfiable, otherwise F' is unsatisfiable.

2.2. Stochastic Local Search for SAT

For a given CNF formula F, a basic Stochastic Local Search (SLS) algorithm for SAT
starts by randomly generating a complete assignment / which may falsify some clauses.
Hence, it attempts to minimize the number of falsified clauses by repeatedly repairing
this assignment by flipping the value of one variable at once (changing its value from
false to true, or true to false) until satisfying all clauses or reaching a cutoff time. In
a dynamic SLS algorithm for SAT, a positive weight w(c;) is associated to each clause
c¢j in C and the evaluation of an assignment / is the sum of the weights of the clauses
falsified under I, which we denote by E(I). The score of a variable x; is defined by
score(x;) = E(I) — E(I,) where I, is the complete assignment obtained by flipping x; in
I.If score(x;) > 0 then x; is called a decreasing variable.

SLS algorithms for SAT differ by their employed heuristic to choose the variable
to flip. In this paper, we are interested in the heuristic used in Novelty, which is based
on the Walksat algorithm architecture [16,19]. Novelty(p) selects randomly a falsified

'baldur.iti.kit.edu/SAT-Challenge-2012/
2w satcompetition.org/2013/

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 13

clause c;. Then it sorts the variables of c; according to their scores breaking ties in favor
of the least recently flipped variable and considers the two best variables under this sort-
ing. If the best variable is not the most recently flipped one in ¢ then Novelty(p) selects
it for flipping. Otherwise, with probability p, it picks the second best one, and with prob-
ability 1 — p, it picks the best variable. When Novelty(p) gets stuck in local minima, a
diversification phase is introduced in Novelty+(p,wp) [10] and Novelty++(p,dp) [12]
to escape from such regions of the search space. With a probability wp, Novelty+(p,wp)
picks randomly a variable from ¢; and with probability 1 —wp it does like Novelty(p).
With a probability dp, Novelty++(p,dp) picks the least recently flipped variable in ¢;
and with probability 1 — dp it acts like Novelty(p). In the adaptive versions of these
algorithms, the values of p, wp and dp are adjusted depending on the evolution of the
search. This adaptive noise setting was first introduced by Hoos [11] and has been applied
in other works (see for instance [12]).

2.3. Configuration Checking for SAT

The Configuration Checking (CC) strategy for SAT considers during the search the rela-
tions between variables and their neighbors. It defines the configuration C(x;) of a vari-
able x; by a subset of I which is restricted to the variables of N(x;). If a variable in C(x;)
has been flipped since the last flip of x; then C(x;) is changed.

A typical CC-based algorithm for SAT follows the general scheme of an SLS algo-
rithm. Its variable selection heuristic attempts first to flip those decreasing variables (with
positive scores) that have their configurations changed [6]. Such variables are called Con-
figuration Changed Decreasing (CCD). Xccp is the set of CCD variables. Hence, a CC-
based algorithm forbids the flip of a variable x; if its configuration C(x;) has not changed
since the last flip of x;. If there is no CCD variable (Xccp = 0), an aspiration criterion is
employed. The one defined by Cai and Su [6] selects a significant decreasing variable
(SD) to be flipped. A variable x; is SD if score(x;) is greater than some threshold g, g > 0.
In practice, the value of g is equal to the average of clause weights in C and denoted by
w. We use Xsp to denote the set of the SD variables.

One of the most powerful algorithms based on the CC strategy is CCASat [7]. It
selects the variable to flip as follows: if Xccp # 0 then it selects the CCD variable with
the highest score. Else, if Xgp # 0 then it chooses the SD variable with the highest score.
In these two cases, CCASat is in an intensification/greedy phase. Otherwise (both Xccp
and Xgp are empty), it enters in the diversification phase which consists of choosing the
least recently flipped variable appearing in a falsified clause selected randomly. We name
such variables focused random ones.

3. The Ncca+ Algorithm for Random k-SAT Instances with £ > 4

In this section, we start by giving some experimental observations on one of the most
powerful CC-based solver, CCASat [7]. These observations have been performed on 480
k-SAT instances (120 instances for each k value in {4...7}) of the SAT Challenge 2012.
We have limited the running time of CCASat to 300 seconds per instance. We are inter-
ested in the nature of the flipped variables (CCD or SD). We have measured the average
rates of flips of CCD variables (Sccp), SD ones (Ssp) and focused random ones (Sgg).

14 A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances

The results are summarized in Table 1. On the whole, we can observe that 77.63% of
flips are done on X¢cp variables and only 1.5% of flips are done on Xgsp variables (this
rate is only 0.25% for the 7-SAT instances). Finally, the focused random walk is applied
for 20.87% of the performed flips and ranges from 12.06% for the 4-SAT instances to
28.47% for the 7-SAT instances.

Table 1. Observations on the flips done in CCASat on the k-SAT instances, k > 4, of the SAT Challenge 2012.

k H Scep ‘ Ssp ‘ SFR ‘
4 8359 | 435 12.06
5 81.97 1.01 17.02
6 7368 | 040 | 2591
7 7128 | 025 | 2847
Average || 77.63 | 150 | 2087

According to these observations, it is clear that the aspiration criterion (which corre-
sponds to the flip of SD variables) is rarely applied. Let us recall that this criterion selects
a variable to flip with a score greater than some threshold which is the average of the
clause weights, w. We have measured the value of this threshold for the above instances
and observed that this value remains around 1 which means that the weights of clauses
do not vary significantly during the search. Hence, if there is no CCD variable, it is hard
to have an SD one. These elements may explain the low values of Ssp.

To obtain a more accurate aspiration phase and to balance the use of the diversifica-
tion phase, we propose to replace the selection of SD variables by the heuristic used in
Novelty. Indeed, instead of selecting a SD variable when Xccp = 0, we select a vari-
able appearing in a falsified clause selected randomly according to the Novelty heuris-
tic. However, the variable scores used in Novelty are those obtained by considering the
weights of clauses (in the original version of Novelty, the score of a variable x; is equal
to the number of falsified clauses which will become satisfied if x; is flipped minus the
number of satisfied clauses which will become falsified if x; is flipped). Such adaptation
of Novelty is close to the one used in gNovelty+ [18].

Accordingly, we modify the heuristic used in CCASat to consider the integration of
Novelty. The resulting algorithm is called Ncca+. It works as follows:

1. If the set of configuration changed decreasing variables is not empty (Xcc # 0)
then Ncca+ selects a variable among Xc¢ of the highest score breaking ties in
favor of the variable with the highest subscore.

2. Else, Ncca+ updates the weights of the clauses of F' according to PAWS scheme
[20]. In PAWS, all clause weights are initialized to 1. Hence, with probability sp
(smooth probability) and for each satisfied clause whose weight is greater than
1, PAWS decreases the weight of this clause by 1. Otherwise (with probability
1 —sp), PAWS increases by 1 the weights of all the falsified clauses.

3. With a probability dp (diversification probability), Ncca+ selects a variable to
flip according to Novelty(p) heuristic. Otherwise (with a probability 1 — dp),
Ncca+ selects the oldest variable in a falsified clause selected randomly.

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 15

Algorithm 1. Ncca+ Algorithm for k-SAT instances, k > 4
Input: k-SAT formula F, maxTries, maxSteps
Output: A Satisfying assignment /, if F is SAT, or “Unknown”
for try =1 to maxTries do

I < randomly generated truth assignment
Initialize clause weights to 1
Initialize p and dp 0
for step =1 to maxSteps do
if I satisfies F then
return /
end if
x; + Pick Var(p,dp)
Update Novelty probability parameters p and dp
I < I with x; flipped
end for
end for
return "Unknown”

We give the general scheme of Ncca+ in Algorithm 1. It starts by generating ran-
domly a complete truth assignment / and while 7 does not satisfy the input formula F
or a maximum number of flips maxSteps is not reached, Ncca+ selects a variable to flip
following the heuristic detailed before.The values of the probabilities p and dp (used in
Pick_Var function) are dynamically updated [11,13] (it is based on two parameters P
and © to control the change of values of p and dp). The selected variable is flipped. All
these steps (the inner loop of Algorithm 1) are repeated up to maxTries (the outer loop).

4. Experimental Evaluation

This section is dedicated to the experimental evaluation of Ncca+. The evaluation is done
on 480 random k-SAT instances (all satisfiable) from the SAT Challenge held in 20123.
The values of k are ranging from 4 to 7 with 120 instances per k value. Each set is also
divided into 10 subsets of 12 instances with different sizes (regarding the number of
the variables and the clauses). Table 2 gives the characteristics of these instances. Balint
et al. [1] detail the generation and selection of these instances. We have selected these
instances because they have different sizes and difficulties. The instances of the SAT
Competition 2011, particularly the 5S-SAT ones, are treatable rather easily by the current
SLS SAT solvers. Thus, we do not include them in these experiments.

Ncca+ is implemented in C/C++ and compiled with g++ with the compilation flags
-static -03. The experiments are made on a cluster of servers equipped with Intel
Xeon 2.4 Ghz processors and 24 GB of RAM and running under a GNU/Linux operating
system. The smooth probability sp of the PAWS scheme is sp = 0.75 for k-SAT with
k€ {4,5} and sp = 0.92 for k-SAT with k € {6,7} [4].

3paldur.iti.kit.edu/SAT-Challenge-2012/downloads.html

16 A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances

Table 2. The minimum (min.) and the maximum (max.) number of variables (n) and of clauses (m) of the
k-SAT instances, k > 4, of the SAT Challenge 2012.

4-SAT 5-SAT 6-SAT 7-SAT
n m n m n m n m
max. 10000 90000 1600 32000 400 16000 200 17000
min. 800 7945 300 6335 200 8674 100 8779

4.1. Ncca+vs. CCASat

Since Ncca+ is based on CCASat, we have first performed a detailed comparison of the
two solvers. For this purpose, each solver is launched 30 times on each instance. Each
launch terminates when a solution is found or the cutoff time of 1000 seconds is reached*.
For each instance, we calculate the number of successful runs and the average runtime
to reach a solution. If a run failed to solve an instance, a penalized time of 1000 seconds
is used to compute the average time. We use two types of graphics to compare the two
solvers: the first one compares the number of successful runs and consequently the solver
robustness. The second one compares the average runtimes. We give and discuss these
two graphs for each k = 4---7 (Fig. 1 to 4) where each point in the graphs correspond to
one instance. However, some plotted points may overlap if the results of the two solvers
are equal or close. Finally, the parameter values of the adaptive noise mechanism are
® = 10 and ® = 5. These values are those used in competitive SLS solvers, such as TNM
[13] and Sattime [14].

Random 4-SAT (Fig. 1) For these instances, we find the role of Novelty in the im-
provement of the robustness and the speed of CCASat. Indeed, Ncca+ enhances the ro-
bustness of the last solver on 22 instances. Also, the right graphic of Fig. 1 indicates
clearly the reduction of the running time of CCASat to reach a solution. This observation
is confirmed by the comparison of the average runtimes of the two solvers over the 120
4-SAT instances: 129 seconds for Ncca+ and 179 seconds for CCASat. For the instances
with 3800 to 10000 variables, this time is almost divided by 2.

1000

800

600

CCASat

400

200

L L L L L
0 200 400 600 800 1000
[} 5 10 15 20 25 30 Ncca+

Ncca+

(a) Number of successful runs (b) Solving time

Figure 1. Ncca+ vs. CCASat on random 4-SAT instances.

4The used cutoff time during the SAT Challenge was 900 seconds under Intel Xeon 2.83 Ghz processors.

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 17

Random 5-SAT (Fig. 2) CCASat seems to be better particularly regarding the robust-
ness criterion. It has a better success rate on 55 instances while Ncca+ is better on 40
instances. However, the average number of successful runs are very close: 15.87 success-
ful runs for CCASat and 16.70 for Ncca+. Also, Ncca+ solved all the instances, at least
once, while CCASat failed to solve 3 instances. Concerning the average runtimes over all
the instances, the values are 650 and 620 seconds for Ncca+ and CCASat respectively.
Hence, the last solver is 5% faster than the first one.

CCASat

0 200 400 600 800 1000
0 5 10 15 20 25 30 Ncca+
Ncca+

(a) Number of successful runs (b) Solving time

Figure 2. Ncca+ vs. CCASat on random 5-SAT instances.

Random 6-SAT (Fig. 3) Ncca+ seems to be better. Indeed, CCASat is more robust on
21 instances while Ncca+ outperforms CCASat on 33 instances. Also, over all the runs,
Ncca+ successfully solved all the instances while CCASat failed to solve 1 instance. The
average runtimes are 344 seconds for Ncca+ against 362 seconds for CCASat. Ncca+
solves better the instances with 200 to 300 variables, while CCASat is better on the in-
stances with 320 and 340 variables.

L L L L L L
0 200 400 600 800 1000
0 5 10 15 20 25 30 Ncca+

Ncca+

(a) Number of successful runs (b) Solving time

Figure 3. Ncca+ vs. CCASat on random 6-SAT instances.

Random 7-SAT (Fig. 4) For these instances, the results are mixed. Indeed, CCASat
is more robust on 43 instances and Ncca+ on 38 instances. The average runtimes are
519 seconds for CCASat and 541 seconds for Ncca+. However, Ncca+ does better than

18 A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances

CCASat by solving all the instances at least one time. CCASat failed to solve 4 instances.
The average number of successful runs of the two solvers over all the instances are very
close: 18.57 for Ncca+ and 19.08 for CCASat.

o 200 400 600 800 1000
0 5 10 15 20 25 30 Ncca+
Ncca+

(a) Number of successful runs (b) Solving time
Figure 4. Ncca+ vs. CCASat on random 7-SAT instances.

Over all these first results, Ncca+ seems generally better than CCASat regarding the
number of solved instances. Concerning the robustness, the improvements provided by
Ncca+ are clearly visible for the 4-SAT and 6-SAT instances. The same observation re-
mains true concerning the running times. For the 5-SAT and 7-SAT instances, the re-
sults are more mixed. Nevertheless, Ncca+ solved all the instances while CCASat never
reached a solution for some of them.

4.2. Ncca+vs. State-of-the-Art SLS Solvers

In this section, we compare Ncca+ to other powerful SLS solvers including TNM [13],
Sparrow2011 [2], CScoreSAT2013 [5], Sattime2013 [15], ProbSAT2013 [3] and
CCASat. The solvers labelled by 2013 are taken from the SAT Competition 2013°.
Sparrow2011 and ProbSAT2013 are the winners of the gold medal of the random SAT
track of the SAT competitions 2011 and 2013 respectively. CCASat was the winner of
this same category during the SAT Challenge 2012. CScoreSAT2013 is a powerful solver
based on configuration checking. Sattime regularly won medals during SAT competi-
tions of the same track. The comparison to TNM and Sattime is also motivated by the
fact that these two solvers use Novelty and the set of promising decreasing variables
[12] which is a subset of configuration changed decreasing variables [6].

All the solvers are run on the random instances of the SAT Challenge 2012. The
cutoff time is 3600 seconds to observe the behavior of the solvers with a higher execu-
tion time than the one used during this challenge. We run each solver one time for each
instance. Table 3 details the results for each k-SAT problem. It appears that Ncca+ im-
proves CCASat for each k value, except for k = 7 for which CCASat solves one instance
more.

5 Available from www . satcompetition.org/2013/

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 19

Table 3. Detailed results on the 7 solvers. For each k = 3---7, we give the number of solved instances by the
solvers. A number in bold indicates that the solver outperforms its challengers. The numbers between brackets
are the average times to find a solution for the instances in the k-SAT sets. If a solver fails to reach a solution
then its runtime is penalized by 3600 seconds.

k | Nccat+ | CCASat Prob- CScore- | Sattime- | Sparrow- TNM
SAT2013 | SAT2013 2013 2011

4 120 119 119 118 61 93 84
(220) (246) (102) (253) (2250) (1125) (1320)

5 96 94 84 99 68 76 41
(1380) (1357) (1763) (1227) (2221) (1883) (2819)

6 113 108 101 113 110 87 105
(599) (755) (1215) (490) (863) (1688) (1253)

7 103 104 81 96 97 86 95
(1090) (1154) (1833) (1192) (1183) (1503) (1366)

For k = 4, Ncca+ remains better than the other solvers. For k = 5, CScoreSAT2013
solves 3 instances more than Ncca+ and 5 instances more than CCASat. For k = 6, Ncca+
and CScoreSAT2013 solve the highest number of instances (113). For k = 7, CCASat
solves only one instance more than Ncca+ which seems to be faster. Ncca+ is clearly
better than Sattime and TNM. These two last solvers also integrate the Novelty++ algo-
rithm and they have better performances than this algorithm. Regarding all the SAT in-
stances, Ncca+ is the better solver by solving 432 instances, the second and the third best
ones are CScoreSAT2013 and CCASat which solve 426 and 425 instances respectively.
We would like to note that the current scheme of Ncca+ is close to AdaptG2Wsat2009++
which alternates between greedy search thanks to the promising decreasing variables
and diversification thanks to Novelty++ with adaptive noise setting [12]. We have not
included the results of AdaptG2Wsat2009++ because it is outperformed by the recent
solvers of the same authors, such as Sattime and TNM.

5. Conclusion

In this paper, we have presented a competitive and robust algorithm Ncca+ dedicated to
random k-SAT instances with long clauses. It combines the configuration checking (CC)
strategy and a heuristic similar to Novelty with adaptive noise setting. Ncca+ improved
the intensification and the diversification phases used in CC-based solvers. The empirical
evaluation accomplished on random instances of the SAT Challenge 2012 confirmed our
purpose and the bronze medal obtained in the SAT Competition 2013 consolidated this
evaluation .

The detailed results of the SAT Competition 2013 are available from http://satcompetition.org/
2013

20

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances

References
[1] Balint, A., Belov, A., Jarvisalo, M., Sinz, C.: Sat challenge 2012 random sat track: Description of bench-
mark generation. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pp.
72-73 (2012)
[2] Balint, A., Frohlich, A.: Improving stochastic local search for sat with a new probability distribution. In:
Proceedings of SAT’ 10, pp. 10-15 (2010)
[3] Balint, A., Schoning, U.: Probsat. In: Proceedings of SAT Competition 2013: Solver and Benchmark
Descriptions, p. 70 (2013)
[4] Cai, S., Luo, C., Su, K.: Ccasat: Solver description. In: Proceedings of SAT Challenge 2012: Solver and
Benchmark Descriptions, pp. 13—14 (2012)
[5] Cai, S., Luo, C., Su, K.: Cscore2013. In: Proceedings of SAT Competition 2013: Solver and Benchmark
Descriptions, pp. 18-19 (2013)
[6] Cai, S., Su, K.: Configuration checking with aspiration in local search for sat. In: Proceedings of AAAI-
2012, pp. 434-440 (2012)
[7] Cai, S., Su, K.: Local search for boolean satisfiability with configuration checking and subscore. Artif.
Intell. 204, 75-98 (2013)
[8] Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for
minimum vertex cover. Artif. Intell. 175(9-10), 1672—-1696 (2011)
[9] Habet, D., Toumi, D., Abramé, A.: Ncca+: Configuration checking and novelty+ like heuristic. In:
Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, p. 62 (2013)
[10] Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for sat. In: Proceedings of
AAAI’99/TAAI *99, pp. 661-666 (1999)
[11] Hoos, H.H.: An adaptive noise mechanism for walksat. In: Proceedings of AAAI-2002, pp. 655-660
(2002)
[12] Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In: Proceedings
of SAT’05, pp. 158-172 (2005)
[13] Li, C.M., Huang, W.Q.: Switching between two adaptive noise mechanisms in local search for sat. In:
SAT 2009 competitive events booklet, p. 57 (2009)
[14] LI, C.M.,, LI, Y.: Satisfying versus falsifying in local search for satisfiability. In: Proceedings of SAT-
2012, pp. 477-478. Springer (2012)
[15] Li, C.M,, Li, Y.: Description of sattime2013. In: Proceedings of SAT Competition 2013: Solver and
Benchmark Descriptions, pp. 77-78 (2013)
[16] McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of AAAI-
1997, pp. 321-326 (1997)
[17] Morris, P.: The breakout method for escaping from local minima. In: Proceedings of AAAI’93, pp.
40-45. AAAI Press (1993)
[18] Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for
satisfiability. JSAT 4(2-4), 149-172 (2008)
[19] Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of
AAAI-94, pp. 337-343 (1994)
[20] Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for sat.

In: Proceedings of AAAI’04, pp. 191-196. AAAI Press (2004)

STAIRS 2014 21
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-421-3-21

Computing Subjective Expected Utility
using Probabilistic Description Logics

Erman ACAR®!,

& Research Group Data and Web Science,
University of Mannheim, Germany

Abstract. We introduce a framework which is based on probabilistic De-
scription logics (Prob-DL), to represent and solve multi-criteria discrete
alternative problems by calculating expected utility. To our knowledge,
this is the first ever approach for calculating expected utility using a
Description logics based formalism.

Keywords. Description Logics, Probabilistic Description Logic, Prob-
DL, Multicriteria Decision Making, Decision Theory, Utility Theory,
Subjective Expected Utility, Probabilistic Ontology

1. Introduction

Since the first serious attention of multi-attribute utility theory (MAUT) in [7,4]
to solve problems regarding multi-criteria decision making (MCDM), numerous
approaches have been proposed, including probabilistic, possibilistic, fuzzy and
graphical models [2,15,5] amongst others. In parallel, preference representation
has become an ongoing research subject in artificial intelligence, gaining more
popularity every day, which also lets the discipline to deal with the problems from
Decision Theory. To represent preferences and encode decision-theoretic problems,
a relatively new common approach stepping forward over the last decade is the
use of logical languages [16,3,18,11,12,14,13].

Description Logics (DL) is a family of logic languages which is mainly based
on decidable fragments of first order logic. It has been designed to be used as
a formalism in the field of knowledge representation, and it has become one of
the major approaches over the last decade. In the context of the Semantic Web,
it embodies a theoretical foundation for the OWL Web Ontology Language, a
standard defined by the World Wide Web Consortium.

In this paper, we introduce a formal framework which is based on probabilis-
tic Description Logic Prob-DL ([10]), a family of DL languages designed to model
subjective uncertainty. The aim of our framework is to encode and solve decision
problems via computing expected utility using the inference services specific to

L Address: Universitdt Mannheim, Institut fiir Informatik und Wirtschaftsinformatik, B6 26,
Raum C1.05, D-68159 Mannheim, Germany; E-mail: erman@informatik.uni-mannheim.de

22 E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics

the employed language (Prob-ALC in our case). To our knowledge, this is also
the first DL-based framework aimed to calculate the expected utility. In our ap-
proach, we represent preferences of the decision maker (agent), from the utility
theory perspective, where each criteria has an assigned utility value (weight). We
consider alternatives in the form of ABoxes, and criteria as concepts. We represent
decision maker’s background knowledge via a Prob-DL knowledge base.

The framework can be applied to multiple criteria discrete alternative prob-
lems (see [17]). In general, it can be applied to every domain where background
knowledge which is relevant for our decisions, can be shared, matched and re-
lated via knowledge bases in terms of ontologies. One motivation is that, within a
DL-based decision making framework, one can express the dependency between
attributes/criteria using the concept hierarchy and evaluate an alternative (a
choice) in terms of its logical implications.

In the remainder of the paper, we first briefly present preliminaries in Prob-
DL, in Section 2. Then, we introduce our framework and discuss an example in
Section 3. In Section 4, we discuss the related works. We conclude the paper with
a brief outline and ideas about future research in Section 5.

2. Basic Prob-DL

Probabilistic Description Logics family, Prob-DL is proposed in [10] as a fragment
of First-Order Logic of Type-2 probability (see [6]). Type-2 probability refers to
subjective uncertainty, or degree of belief e.g., “Tweety the bird flies with prob-
ability greater than 0.9”, whereas Type-1 probability refers to statistical proba-
bility. Therefore, a probabilistic logic which solely models Type-1 probabilities,
fails to represent the above statement since it can be either true or false (i.e.,
Flies(Tweety) holds with probability of either 0 or 1).

We assume that the reader has familiarity with the basic DL [1].To introduce
the basic notions and notations, following [10], we give the definition of Prob-
ALC as a probabilistic counterpart of ALC. N¢, Ng, N; are denumerable sets of
concept names, role names and individual names respectively. The syntax of the
concepts in Prob-ALC extends ALC inductively as follows:

Cu=A|-C|CND|3IrC|PonC| 3P nr.C (1)

where A € N¢ , C and D are concepts, r € Ng, rel € {>,>} and n € [0,1]. CUD
is an abbreviation for —=(=C N —D), ¥r.C' for =3.-C, T for C U —C and L for
—T. Furthermore, P.,,C' is an abbreviation for = P-,,C, P<,C for P>;_,—C, and
P..,,C is for P.1_,—C. A TBox is a finite set of axioms (concept inclusions) C' C
D, which represents the ontology. A probabilistic ABox A is defined according to
the following rule

A:x=C(a) | r(a,b) | ~A|ANA | PspA (2)

where C € Ng, 7 € Ng, a,b € Ny, n € [0,1], A and A’ ranges over probabilistic
ABoxes. Abbreviations (i.e., P ,A) are defined similarly as for concepts. A
knowledge base K is a pair (T,.A) where T is a TBox and A is an ABox.

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics 23

The semantics of Prob-DL is defined by generalizing the standard semantics
of DL . In particular, a probabilistic interpretation has the form

7= (Aza 18 (Iw)wGWa N)? (3)

where A7 is the non-empty domain, W is a non-empty set of possible worlds, p
is a discrete probability distribution on W, and for each w € W, 7, is a classical
DL interpretation with domain AZ. It is supposed that a’» = a%+' for all a € N
and w,w’ € W, therefore we write a” in short. For A € N¢, the probability that
a € AT is an A, is defined as

pa(A) = p({w € W | a € A™}). (4)

Similarly, for € Ng, the probability that a,b € AT are related by r, is defined
as

Pas(r) = p({w € W (a,b) € r}). ()

This is extended to complex concepts C, by defining the extension CZ* of complex
concepts by mutual recursion on C. The definition of pZ(C) is exactly as above
(i.e., Aisreplaced by C), and as the case for non-probabilistic concepts are defined
in parallel to classical-DLs (e.g., (C'M D)Tv = C%w 1 DTv), we give only the cases
with probabilistic concepts:

(Prei nC’)I’“ ={ac€ AT | pf(C’)rel n}

6

(3Pres n.C)F» = {3 O :pf’b(r)rel n} ©

A probabilistic int