
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

STAIRS 2014
proceedings of the 7th European Starting AI Researcher Symposium
Endriss, U.; Leite, J.

Publication date
2014
Document Version
Final published version
License
CC BY-NC

Link to publication

Citation for published version (APA):
Endriss, U., & Leite, J. (Eds.) (2014). STAIRS 2014: proceedings of the 7th European Starting
AI Researcher Symposium. (Frontiers in Artificial Intelligence and Applications; Vol. 264). IOS
Press. http://ebooks.iospress.nl/volume/stairs-2014

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/stairs-2014(79a5dc2c-9f97-46a8-98b0-7affa7670878).html
http://ebooks.iospress.nl/volume/stairs-2014

STAIRS 2014

Frontiers in Artificial Intelligence and

Applications

FAIA covers all aspects of theoretical and applied artificial intelligence research in the form of

monographs, doctoral dissertations, textbooks, handbooks and proceedings volumes. The FAIA

series contains several sub-series, including “Information Modelling and Knowledge Bases” and

“Knowledge-Based Intelligent Engineering Systems”. It also includes the biennial ECAI, the

European Conference on Artificial Intelligence, proceedings volumes, and other ECCAI – the

European Coordinating Committee on Artificial Intelligence – sponsored publications. An

editorial panel of internationally well-known scholars is appointed to provide a high quality

selection.

Series Editors:

J. Breuker, N. Guarino, J.N. Kok, J. Liu, R. López de Mántaras,

R. Mizoguchi, M. Musen, S.K. Pal and N. Zhong

Volume 264

Recently published in this series

Vol. 263. T. Schaub, G. Friedrich and B. O’Sullivan (Eds.), ECAI 2014 – 21st European

Conference on Artificial Intelligence

Vol. 262. R. Neves-Silva, G.A. Tshirintzis, V. Uskov, R.J. Howlett and L.C. Jain (Eds.), Smart

Digital Futures 2014

Vol. 261. G. Phillips-Wren, S. Carlsson, A. Respício and P. Brézillon (Eds.), DSS 2.0 –

Supporting Decision Making with New Technologies

Vol. 260. T. Tokuda, Y. Kiyoki, H. Jaakkola and N. Yoshida (Eds.), Information Modelling and

Knowledge Bases XXV

Vol. 259. K.D. Ashley (Ed.), Legal Knowledge and Information Systems – JURIX 2013: The

Twenty-Sixth Annual Conference

Vol. 258. K. Gerdes, E. Hajičová and L. Wanner (Eds.), Computational Dependency Theory

Vol. 257. M. Jaeger, T.D. Nielsen and P. Viappiani (Eds.), Twelfth Scandinavian Conference on

Artificial Intelligence – SCAI 2013

Vol. 256. K. Gibert , V. Botti and R. Reig-Bolaño (Eds.), Artificial Intelligence Research and

Development – Proceedings of the 16th International Conference of the Catalan

Association for Artificial Intelligence

Vol. 255. R. Neves-Silva, J. Watada, G. Phillips-Wren, L.C. Jain and R.J. Howlett (Eds.),

Intelligent Decision Technologies – Proceedings of the 5th KES International

Conference on Intelligent Decision Technologies (KES-IDT 2013)

Vol. 254. G.A. Tsihrintzis, M. Virvou, T. Watanabe, L.C. Jain and R.J. Howlett (Eds.),

Intelligent Interactive Multimedia Systems and Services

ISSN 0922-6389 (print)

ISSN 1879-8314 (online)

Prroceedings

CE

Amst

STA

 of the 7th

S

U

ILLC, Un

J

ENTRIA, Uni

terdam • Ber

AIRS 2

European

Symposium

Edited by

Ulle Endri

niversity of A

and

João Leit

iversidade N

rlin • Tokyo •

2014

Starting A

m

y

iss

Amsterdam

te

NOVA de Lisb

• Washingto

AI Research

boa

n, DC

her

© 2014 The Authors and IOS Press.

This book is published online with Open Access by IOS Press and distributed under the terms of the

Creative Commons Attribution Non-Commercial License.

ISBN 978-1-61499-420-6 (print)

ISBN 978-1-61499-421-3 (online)

Library of Congress Control Number: 2014944111

Publisher

IOS Press BV

Nieuwe Hemweg 6B

1013 BG Amsterdam

Netherlands

fax: +31 20 687 0019

e-mail: order@iospress.nl

Distributor in the USA and Canada

IOS Press, Inc.

4502 Rachael Manor Drive

Fairfax, VA 22032

USA

fax: +1 703 323 3668

e-mail: iosbooks@iospress.com

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Preface

These are the proceedings of the 7th European Starting AI Researcher Symposium

(STAIRS), held as a satellite event of the 21st European Conference of Artificial Intel-

ligence (ECAI) in Prague, Czech Republic, on 18th and 19th of August 2014. STAIRS

is aimed at young researchers in Europe and beyond, particularly PhD students. It pro-

vides an opportunity to go through the experience of submitting to and presenting at an

international event with a broad scientific scope.

The Call for Papers was soliciting submissions from all areas of AI, ranging from

foundations to applications. Topics of interest for STAIRS include autonomous agents

and multiagent systems; constraints, satisfiability, and search; knowledge representation,

reasoning, and logic; machine learning and data mining; planning and scheduling; uncer-

tainty in AI; natural language processing; as well as robotics, sensing, and vision. That

is, the scope of STAIRS is the same as that of the major international conferences in AI.

What sets STAIRS apart is that the principal author of every submitted paper must be a

young researcher who either does not yet hold a PhD or who has obtained their PhD less

than one year before the paper submission deadline.

We received a total of 45 submissions. All of them were carefully reviewed by the

STAIRS Programme Committee, consisting of leading European researchers who to-

gether cover the depth and breadth of the field of AI. We are very grateful for the great

service provided by these colleagues, as well as by the additional reviewers assisting

them in their task. In the end, 16 papers were accepted for oral presentation at the sympo-

sium, and a further 14 for presentation during a poster session. These 30 accepted papers

are included in this volume.

The body of submitted papers together covers the field of AI well, with knowledge

representation and reasoning, machine learning, and planning and scheduling being the

areas attracting the largest numbers of submissions. The problems tackled range from

classical AI themes such as search, all the way to emerging research trends, e.g., at the

interface of AI with economics. Also in terms of the foundations/application divide the

STAIRS programme covers the full spectrum.

Besides the presentation of contributed papers and posters, the STAIRS programme

will feature two keynote talks. On the first day of the symposium, Michael Wooldridge,

Professor of Computer Science at the University of Oxford, UK, will offer an introduc-

tion to characterisation results for equilibria in repeated games and the significance of

such results to multiagent systems. On the second day, Francesca Rossi, Professor of

Computer Science at the University of Padova, Italy, will talk about new approaches to

sentiment analysis, harnessing modern techniques from AI, such as preference reasoning

and computational social choice. We thank both of them for accepting our invitation.

We are looking forward to an exciting two days in Prague, and we hope that read-

ers of this volume will find it as useful as we have in getting an impression of current

developments in our field.

June 2014 Ulle Endriss

João Leite

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

v

This page intentionally left blank

Symposium Organisation

Program Co-chairs

Ulle Endriss ILLC, University of Amsterdam

João Leite Universidade NOVA de Lisboa

Program Committee

Natasha Alechina University of Nottingham

Jose Julio Alferes Universidade NOVA de Lisboa

Pietro Baroni University of Brescia

Ronen Brafman Ben-Gurion University

Gerhard Brewka Leipzig University

Hubie Chen Universidad del Paı́s Vasco and Ikerbasque

Martine De Cock Ghent University

Eric De La Clergerie INRIA

Piotr Faliszewski AGH University of Science and Technology

Michael Fink Vienna University of Technology

Jörg Hoffmann Saarland University

Paolo Liberatore University of Rome

Weiru Liu Queen’s University Belfast

Ramon Lopez De Mantaras IIIA – CSIC

Ines Lynce INESC-ID/IST, University of Lisbon

Pierre Marquis CRIL-CNRS and Universit d’Artois

Nicolas Maudet Université Paris 6

Hector Palacios Universidad Carlos III

David Schlangen Bielefeld University

Stefan Schlobach Vrije Universiteit Amsterdam

Steven Schockaert Cardiff University

Elizabeth Sklar University of Liverpool

Stefan Szeider Vienna University of Technology

Ivan Titov ILLC, University of Amsterdam

Wiebe Van Der Hoek University of Liverpool

Stefan Woltran Vienna University of Technology

Pinar Yolum Bogazici University

Marius Zöllner Karlsruhe Institute of Technology

Additional Reviewers

Kim Bauters Frederic Moisan Jordi Planes

Golnoosh Farnadi Nysret Musliu Stephanie Roussel

Ronald de Haan Sebastian Ordyniak Stefan Rümmele

Oliver Kutz Andreas Pfandler Henning Schnoor

Els Lefever

vii

This page intentionally left blank

Contents

Preface v

Ulle Endriss and João Leite

Symposium Organisation vii

On the Extension of Learning for Max-SAT 1

André Abramé and Djamal Habet

A Two-Levels Local Search Algorithm for Random SAT Instances with Long

Clauses 11

André Abramé, Djamal Habet and Donia Toumi

Computing Subjective Expected Utility Using Probabilistic Description Logics 21

Erman Acar

Towards Modeling Surprise in Economics and Finance: A Cognitive Science

Perspective 31

Davi Baccan, Luis Macedo and Elton Sbruzzi

Temporal Plan Quality Improvement and Repair Using Local Search 41

Josef Bajada, Maria Fox and Derek Long

HiPOP: Hierarchical Partial-Order Planning 51

Patrick Bechon, Magali Barbier, Guillaume Infantes, Charles Lesire

and Vincent Vidal

Value Iteration for Relational MDPs in Rewriting Logic 61

Lenz Belzner

On Evaluating Interestingness Measures of Closed Itemsets 71

Aleksey Buzmakov, Sergei O. Kuznetsov and Amedeo Napoli

Learning Probabilistic CP-Nets from Observations of Optimal Items 81

Damien Bigot, Jérôme Mengin and Bruno Zanuttini

A Logic of Part and Whole for Buffered Geometries 91

Heshan Du and Natasha Alechina

Computing Optimal Policies for Attack Graphs with Action Failures and Costs 101

Karel Durkota and Viliam Lisy

Semantifying Triples from Open Information Extraction Systems 111

Arnab Dutta, Christian Meilicke and Heiner Stuckenschmidt

Towards the Usage of Advanced Behavioral Simulations for Simultaneous

Tracking and Activity Recognition 121

Arsène Fansi T., Vincent Thomas, Olivier Buffet, Fabien Flacher

and Alain Dutech

ix

Human Speech Processing for Pedestrian Assistance: Towards Cognitive Error

Handling in Spoken Dialogue Systems 131

Martin Hacker

A! – A Cooperative Heuristic Search Algorithm 141

Antti Halme

Run-Time Plan Repair for AUV Missions 151

Catherine Harris and Richard Dearden

Embedding a Card Game Language into a General Game Playing Language 161

Jakub Kowalski

Effective and Efficient Identification of Persistent-State Hidden (Semi-) Markov

Models 171

Tingting Liu and Jan Lemeire

Supervised Separation of Speech from Background Piano Music Using

a Nonnegative Matrix Factorization Approach 181

A. Martinez-Colón, F.J. Canadas-Quesada, P. Vera-Candeas, N. Ruiz-Reyes

and F. Moreno-Fuentes

Practical Defeasible Reasoning for Description Logics 191

Kody Moodley, Thomas Meyer and Uli Sattler

Integration of Temporal Abstraction and Dynamic Bayesian Networks

for Coronary Heart Diagnosis 201

Kalia Orphanou, Athena Stassopoulou and Elpida Keravnou

Clause Simplifications in Search-Space Decomposition-Based SAT Solvers 211

Tobias Philipp

Multi-Objective Learning of Accurate and Comprehensible Classifiers –

A Case Study 220

Rok Piltaver, Mitja Luštrek and Matjaž Gams

Predicting Players Behavior in Games with Microtransactions 230

Ondřej Pluskal and Jan Šedivý

Extension-Based Semantics of Abstract Dialectical Frameworks 240

Sylwia Polberg

The Margin of Victory in Schulze, Cup, and Copeland Elections: Complexity

of the Regular and Exact Variants 250

Yannick Reisch, Jörg Rothe and Lena Schend

Electronic Tourist Guides: User-Friendly Editing of Automatically Planned

Routes 260

Richard Schaller

A Cost-Based Relaxed Planning Graph Heuristic for Enhanced Metric

Sensitivity 270

Michal Sroka and Derek Long

x

Towards Learning and Classifying Spatio-Temporal Activities in a Stream

Processing Framework 280

Mattias Tiger and Fredrik Heintz

Empirical Study of Classification Models for Web Page Categorization 290

Tomáš Tunys and Jan Šedivý

Subject Index 301

Author Index 303

xi

This page intentionally left blank

On the Extension of Learning for

Max-SAT

André ABRAMÉ and Djamal HABET

Aix Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397, Marseille, France.

emails: {andre.abrame,djamal.habet}@lsis.org

Abstract. One of the most critical components of Branch & Bound (BnB) solvers

for Max-SAT is the estimation of the lower bound. At each node of the search

tree, they detect inconsistent subsets (IS) of the formula by unit propagation based

methods and apply a treatment to them. The currently best performing Max-SAT

BnB solvers perform a very little amount of memorization, thus the same IS may

be detected and treated several times during the exploration of the search tree. We

address in this paper the problem of increasing the learning performed by BnB

solvers. We present new sets of clause patterns which produce unit resolvent clauses

when they are transformed by max-resolution. We study experimentally the impact

of these transformation’ memorization in our solver AHMAXSAT and we discuss

their effects on the solver behavior.

1. Introduction

The Max-SAT problem consists in finding, for a given CNF formula, a Boolean assign-

ment of the variables of this problem which maximizes (minimizes) the number of satis-

fied (falsified) clauses. In the weighted version of Max-SAT, a positive weight is associ-

ated to each clause and the goal is to find an assignment which maximizes (minimizes)

the sum of the weights of the satisfied (falsified) clauses. For clarity reasons, we use in

this paper unweighted notations and examples. Nevertheless, all the presented results can

easily be extended to weighted Max-SAT.

Among the complete methods for solving Max-SAT, Branch and Bound (BnB) al-

gorithms (e.g. WMAXSATZ [10,8,9]) have shown their efficiency, especially on random

and crafted instances. BnB solvers explore the whole search space and compare, at each

node of the search tree, the current number of falsified clauses plus an (under-)estimation

of the ones which will become falsified (the lower bound, LB) to the best solution found

so far (the upper bound, UB). If LB ≥ UB, then no better solution can be found by ex-

tending the current branch and they perform a backtrack. The estimation of the remain-

ing inconsistencies is a critical component of BnB solvers: it is one of the most time-

consuming components of the solvers and its quality determines the number of explored

nodes.

Efficient BnB Max-SAT solvers estimate the number of clauses which will become

falsified by counting the disjoint inconsistent subsets (IS) of the formula. They use unit

propagation (UP) based methods to detect inconsistencies and analyze the propagation

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-1

1

steps which have led to them to build inconsistent subsets. Each detected IS must be

treated to ensure it will be counted only once. Two treatments are actually used by BnB

solvers. If an IS matches (completely or partially) some patterns, then solvers transform

it (completely or partially) by applying several max-resolution steps [1,3,4,9,5] on its

clauses, and they keep the modifications in the lower nodes of the search tree. This treat-

ment acts as a (restricted) learning or memorizing mechanism. Otherwise, they simply

remove the IS’s clauses from the formula or apply the max-resolution based treatment

and, in both cases, they keep the modifications only at the current node of the search tree

(i.e. modifications are undone before the next decision).

We propose in this paper to increase the amount of learning performed by BnB

solvers. We focus on the subsets of clauses which produce, once transformed by max-

resolution, unit resolvent clauses. The benefits of memorizing such transformations are

double. They reduce the number of redundant propagations and max-resolution transfor-

mations. Moreover, the produced unit clauses may empower the detection of IS by unit

propagation. We define new patterns corresponding to these subsets. We study experi-

mentally the impact of their transformation’s memorization on the behavior of our solver

AHMAXSAT by varying the sizes of the patterns and the sizes of their clauses. The results

obtained show the interest of our approach and give interesting clues on the impact of

the max-resolution transformations on the solver’s behavior.

2. Preliminaries

We give in this section the definitions and notations used in this paper and we present

the max-resolution inference rule, which is the keystone of the learning procedure for

Max-SAT.

2.1. Definitions and Notations

A formula Φ in conjunctive normal form (CNF) defined on a set of propositional vari-

ables X = {x1, . . . ,xn} is a conjunction of clauses. A clause c j is a disjunction of literals

and a literal l is a variable xi or its negation xi. Alternatively, a formula can be represented

as a multiset of clauses Φ= {c1, . . . ,cm} and a clause as a set of literals c j = {l j1 , . . . , l jk}.

An assignment can be represented as a set I of literals which cannot contain both a literal

and its negation. If xi is assigned to true (resp. f alse) then xi ∈ I (resp. xi ∈ I). I is a

complete assignment if |I|= n and it is partial otherwise. A literal l is said to be satisfied

by an assignment I if l ∈ I and falsified if l ∈ I. A variable which does not appear either

positively or negatively in I is unassigned. A clause is satisfied by I if at least one of

its literals is satisfied, and it is falsified if all its literals are falsified. By convention, an

empty clause (denoted by �) is always falsified. Eventually, solving the Max-SAT prob-

lem consists in finding a complete assignment which maximizes (minimizes) the number

of satisfied (falsified) clauses of Φ.

2.2. max-resolution rule

The max-resolution inference rule [1,3,4] is the Max-SAT version of the SAT resolution.

It is defined as follows:

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT2

ci = {x,y1, . . . ,ys}, c j = {x,z1, . . . ,zt}
cr = {y1, . . . ,ys,z1, . . . ,zt}, cc1, . . . , cct , cct+1, . . . , cct+s

with: cc1 = {x,y1, . . . ,ys,z1,z2, . . . ,zt}, cc2 = {x,y1, . . . ,ys,z2,z3, . . . ,zt}, . . . , cct = {x,y1, . . . ,ys,zt}, cct+1=

{x,z1, . . . ,zt ,y1,y2, . . . ,ys}, cct+2 = {x,z1, . . . ,zt ,y2,y3, . . . ,ys}, . . . , cct+s = {x,z1, . . . ,zt ,ys}.The premises

of the rule are the original clauses ci and c j which are removed from the formula, while

the conclusions are the resolvent clause cr and the compensation clauses cc1, . . . ,cct+s
added to keep formula’s equivalency.

3. Learning in State of the Art BnB Solvers

At each node of the search tree, BnB solvers calculate the lower bound (LB) by esti-

mating the number of disjoint inconsistent subsets (IS) remaining in the current formula.

In this section, we first present the main techniques of IS detection and transformation.

Then, we recall the learning scheme used by the best performing BnB solvers.

Recent BnB Max-SAT solvers apply unit propagation (UP) based methods to detect

inconsistent subsets (more precisely simulated unit propagation (SUP) [7] and failed

literals (FL) [8]). For each unit clause {l}, they remove all the occurrences of l from the

clauses and all the clauses containing l. This process is repeated until an empty clause

(a conflict) is found or no more unit clause remains. When an empty clause is found by

UP, an inconsistent subset (IS) of the formula can be built by analyzing the propagation

steps which have led to the conflict. The propagation steps made by SUP or FL can be

represented by an implication graph [11], where the nodes are the assigned variables and

the arrows connect the falsified literals of the unit clauses to the variables they propagate.

Once detected, an IS can be transformed by applying max-resolution operations be-

tween its clauses. The original clauses of the IS are removed from the formula, while a

resolvent clause and compensation clauses are added. The resolvent is falsified by the

current decisions. Thus, SUP or FL are not needed anymore to detect again the trans-

formed IS. Consequently, by keeping the formula’s transformations solvers memorize

the IS and avoid its redundant detection and treatment. The following example illustrates

the transformation of an IS by max-resolution.

Example 1 Lets consider a formula Φ = {c1, . . . ,c5} with c1 = {x1}, c2 = {x1,x2}, c3 =
{x1,x3}, c4 = {x2,x4} and c5 = {x3,x4}. The application of SUP leads to the propagation
sequence < x1@c1,x2@c2,x3@c3,x4@c4 > (meaning that x1 is propagated by c1, then
x2 by c2, etc.). The clause c5 is empty and the corresponding implication graph is shown
on Fig. 1(a). Hence, Φ is an inconsistent subset. Its transformation by the max-resolution
rule is done as follows. Max-resolution is first applied between c5 and c4 on the variable
x4. The intermediary resolvent c6 = {x2,x3} is produced as well as the compensation
clauses c7 = {x2,x3,x4} and c8 = {x2,x3,x4}. The original clauses c4 and c5 are removed
from the formula. Then, the max-resolution is applied between the intermediary resolvent
c6 and the next original clause c3 on the variable x3 and so forth. Fig. 1(b) shows the
max-resolution steps with in boxes the compensation clauses (note that this treatment
is close to the conflict analysis procedure of modern SAT solvers [11]). After complete
transformation, we obtain the formula Φ′ = {�,c7,c8,c10,c11} with c10 = {x1,x2,x3}
and c11 = {x1,x2,x3}.

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 3

x2 x4

x1 �

x3

c1

c2

c3

c4

c5

c5

(a) Implication graph

c5 = {x3,x4} c4 = {x2,x4}
c7 = {x2,x3,x4}
c8 = {x2,x3,x4}

c6 = {x2,x3} c3 = {x1,x3}
c10 = {x1,x2,x3}
c11 = {x1,x2,x3}

c9 = {x1,x2} c2 = {x1,x2}

c12 = {x1} c1 = {x1}

c13 =�

x4

x3

x2

x1

(b) Max-SAT resolution steps

Figure 1. Implication graph and Max-SAT resolution steps applied on the formula Φ from Example 1.

However, the Max-SAT clause learning scheme has two drawbacks which prevent

its generalization. Firstly, the added resolvents and compensation clauses can increase

quickly the size of the formula if learning is frequently used. Secondly, it may reduce the

quality of the LB estimation and thus the number of explored nodes of the search tree

may increase.

For the reasons cited above, the current best performing BnB solvers [6] keep the

transformations made by the max-resolution rule only in the sub-part of the search tree

(i.e. changes are undone when backtracking). Also, they restrict the application of this

rule to particular sets of clauses corresponding to one (or a combination) of the follow-

ing patterns (with on top the clauses of the original formula and on bottom the clauses

obtained after transformation):

(1)
{{x1,x2},{x1,x2}}

{{x1}}
, (2)

{{x1,x2},{x1,x3},{x2,x3}}
{{x1},{x1,x2,x3},{x1,x2,x3}}

, (3)
{{x1},{x1,x2},{x2,x3}, . . . ,{xk−1,xk},{xk}}

{�,{x1,x2},{x2,x3}, . . . ,{xk−1,xk}}

These patterns do not necessarily cover the IS entirely. Especially, the application of

the max-resolution based transformation on patterns (1) or (2) produces a unit resolvent

clause {x1}. Memorizing such transformations reduce the number of redundant propa-

gations and max-resolution steps. Moreover, the produced unit clauses can be used in

the sub-part of the search tree to make further unit propagation steps, and thus it may

improve the number of detected IS.

4. Extended Learning

The lower bound computation, based on the estimation of the number of disjoint incon-

sistent subsets, is a critical part of BnB Max-SAT solvers. Indeed, it is one of their most

time-consuming components and the estimation quality guides the backtrack and thus

determines the number of explored nodes in the search tree. Thus, a balance must be

struck between the time spent computing this estimation and its quality. In this regard,

learning seems a natural way to limit the time spent on the LB computation by making

the IS detection and transformation more incremental.

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT4

We present in this section a generalization of the patterns producing unit resolvent

clauses, which we name Unit Clause Subsets. We motivate this generalization and show

that the corresponding patterns can be detected efficiently. Also, we give statistics on

their occurrences in the instances of the benchmark used in Section 5.

4.1. Unit Clause Subset

We have seen in the previous section that two of the patterns used for memorization by

the current best performing BnB solvers produce after transformation a unit resolvent

clause. The goal of memorizing such transformations is double. On the one hand, it

reduces the number of redundant propagations and on the other hand, it may empower

the detection of inconsistencies in lower nodes of the search tree since more unit clauses

are available for applying unit propagation.

We propose in this paper to extend the amount of learning performed by BnB solvers

by considering more patterns which produce unit resolvent clauses when transformed by

max-resolution. These patterns can be formally defined as follows.

Definition 1 (Unit Clause Subset (UCS)) Let Φ be a CNF formula. A unit clause subset
(UCS) is a set {ci1 , . . . ,cik} ⊂ Φ with ∀ j ∈ {1, . . . ,k}, |ci j | > 1 such that there exists an
order of application of k− 1 max-resolution steps on ci1 , . . . ,cik which produces a unit
resolvent clause. We denote the set of the UCS’s patterns of size k by k-UCS.

Example 2 Below the patterns of the 3-UCS set:

(2)
{{x1,x2},{x1,x3},{x2,x3}}

{{x1},{x1,x2,x3},{x1,x2,x3}}
, (4)

{{x1,x2},{x2,x3},{x1,x2,x3}}
{{x1},{x1,x2,x3}}

,

(5)
{{x1,x2},{x1,x3},{x1,x2,x3}}

{{x1},{x1,x2,x3}}
, (6)

{{x1,x2},{x1,x2,x3},{x1,x2,x3}}
{{x1}}

Since one of the goals of memorizing transformations which produce unit resolvent

clauses is to increase the number of assignments made by unit propagation (SUP or FL),

we do not consider the subsets of clauses which contain unit clauses. In the best case (if

they contain only one unit clause), the transformation of such subsets lets the number

of unit clauses of the formula unchanged. In the worst case (if they contain more than

one unit clause), the transformed formula contains less unit clauses than the original one.

Thus the number of assignments made by unit propagation and consequently the number

of detected IS may be reduced. Eventually, we make a distinction between the patterns

of the k-UCS sets depending on the size of their clauses. We denote kb-UCS the subset

of k-UCS composed of the patterns which contain only binary clauses and kt -UCS the

subset composed of the patterns which contain at least one ternary clause. It should be

noted that the patterns (1) and (2) presented in Section 3 belong respectively to the sets

2-UCS and 3b-UCS.

4.2. Detecting k-UCS

The k-UCS patterns are easily detectable by analyzing the implication graph. Indeed,

the clauses which are between the conflict and the first unit implication point (FUIP)

[11] produce a unit resolvent clause when transformed by max-resolution. Thus, solvers

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 5

simply have to count the number and the sizes of clauses between the conflict and the

FUIP to know if they are in presence of a valid UCS. This does not change the complexity

of the conflict analysis procedure and the computational overhead is negligible.

4.3. Occurrences of k-UCS

We have measured the rate of occurrences of the k-UCS patterns in the inconsistent sub-

sets detected by our solver AHMAXSAT. Tab. 1 show the results obtained on the bench-

mark presented in Section 5. It is interesting to observe that the patterns which are cur-

rently used for learning by state of the art solvers (2-UCS and 3b-UCS) occur in less than

3.5% of the IS. On average, UCS are detected in 35% of the ISs. This value however

varies considerably from one instance class to another.

Table 1. Percentage of occurrences of the k-UCS’s patterns.

Instances classes 2-UCS 3b-UCS 3t -UCS 4b-UCS 4t -UCS 5b-UCS 5t -UCS
k-UCS,

k > 5

u
n

w
ei

g
h

te
d

crafted/bipartite 0 0.41 0 0 0.01 38.45 0.14 21.47

crafted/maxcut 0 11.58 0 3.17 5.48 3.81 3.6 8.64

random/highgirth 0.06 0.05 0.01 0.03 0.02 0.02 0.03 0.53

random/max2sat 0 1.91 0 15.97 0.11 8.41 1.01 17.5

random/max3sat 0.38 1.75 0.98 2.29 2.54 0.91 3.52 12.35

random/min2sat 0 1.91 0 13.01 0.01 9.13 0.06 21.4

w
ei

g
h

te
d

crafted/frb 0 5.36 0 0 8.05 1.17 0 5.08

crafted/ramsey 0 1.06 0 0 0.19 0.12 0.21 0.85

crafted/wmaxcut 0 12.99 0 0.66 8.25 3.87 5.39 10.37

random/wmax2sat 0 2.13 0 17.69 0.09 9.56 1.21 14.58

random/wmax3sat 0.17 1.02 0.52 1.53 1.55 0.66 2.36 8.77

Total 0.06 3.33 0.15 6.72 1.87 8.99 1.61 13.14

5. Empirical Evaluation of UCS Learning

We present in this section an empirical evaluation of the impact of the k-UCS trans-

formation’s memorization on all the random and crafted instances from the unweighted

and weighted categories of the Max-SAT Competition 20131. Note that we do not in-

clude any (weighted) Partial Max-SAT instances nor industrial ones in our experiments.

Even if the results presented in this paper can naturally be extended to these instance

categories, our solver AHMAXSAT does not handle them efficiently. A performing BnB

solver for (weighted) Partial Max-SAT must consider both the soft and the hard parts of

the instances. Thus, it must include SAT mechanisms such as nogood learning, activity-

based branching heuristic or backjumping and our solver currently does not [2,11]. For

the industrial instances, solvers must have a very efficient memory management. None

of the best performing BnB solvers (including ours) handles huge industrial instances

efficiently2.

We have implemented the UCS learning scheme in our BnB solver AHMAXSAT3.

The experiments are performed on machines equipped with Intel Xeon 2.4 Ghz proces-

1Available from http://maxsat.ia.udl.cat:81/13/benchmarks.
2See for instance http://maxsat.ia.udl.cat:81/13/results/index.html
3An early version of AHMAXSAT has been submitted to the Max-SAT Competition 2013. It was the version

1.16. Since that competition, we have made numerous optimizations. The version presented in this paper is

numbered 1.52.

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT6

http://maxsat.ia.udl.cat:81/13/benchmarks
http://maxsat.ia.udl.cat:81/13/results/index.html

sors and 24 Gb of RAM and running under a GNU/Linux operating system. The cutoff

time is fixed to 1800 seconds per instance, as in the Max-SAT Competitions.

In the rest of this section, we present and discuss the results obtained by increasing

the learning performed by AHMAXSAT. Starting from a variant using the patterns used

by state of the art solvers ({2,3b}-UCS), we add the memorization of the 3t -UCS trans-

formations, then the 4-UCS ones and the 5-UCS ones. Preliminary results (not reported

in this paper) suggest that memorizing k-UCS transformations with k > 5 has a negative

impact on the solver performances. The obtained results are presented in the Tables 2, 3

and 4. For each AHMAXSAT variant, we present the number of solved instances (columns

S) and the averages of: numbers of decisions (columns D), solving time (columns T),

number of propagations per decision (columns P/D) and number of IS detected per deci-

sion (columns �/D). The main goal of these two last indicators is to show the reduction

of the redundant propagations and IS detections. They may also indicate a loss in the

quality of the LB estimation, which is one of the known drawbacks of the memorization.

{222,,,333ttt}-UCS vs. {222,,,333}-UCS As one can have expected, memorizing the transforma-

tions of the 3t -UCS in addition to the ones of the patterns used by state of the art BnB

solvers (i.e. {2,3b}-UCS) does not change much the behavior of AHMAXSAT since these

patterns occur very rarely in the benchmark’s instances. On the instances with a non-null

rate of occurrences (random/max3sat and random/wmax3sat), we can observe a slight

reduction of the average number of decisions (column D) and of the average solving time

(column T). On the overall benchmark, the average solving time is reduced by 2%.

{222,,,333}-UCS vs. {222,,,333,,,444}-UCS If we add the memorization of the transformations of

the 4-UCS, both the averages of the number of propagations per decision (column P/D)

and of the number of inconsistencies detected per decision (column �/D) decrease sig-

nificantly (respectively -13% and -26%). Since the amount of memorization increases,

one can expect a slight reduction of these two values, but not in such proportion. An

important reduction probably indicates a loss in the quality of the LB estimation. This

explanation is confirmed by the increase of the average number of decisions (+8% on

average). Consequently, 4 less instances are solved and the solving time is on average

36% higher.

It is interesting to notice that the impact of memorizing the 4-UCS transformations

vary from one instance’s class to another. The loss in performances occurs on the classes

with a high percentage of 4b-UCS occurrences (random/max2sat and random/wmax2sat

where the average solving time increases of 244% and 171% respectively). Conversely,

on the instance’s classes with a low percentage of occurrences of 4b-UCS (crafted/frb and

crafted/wmaxcut), the average solving time is reduced (-35% and -34% respectively).

{222,,,333}-UCS vs. {222,,,333,,,444ttt}-UCS If we ignore the 4b-UCS and memorize only the trans-

formations of the {2,3,4t}-UCS, both the average number of decisions and the average

solving time are equal or reduced on all the instance classes (respectively -14% and -7%

on average) and one more instance is solved. One can observe that the average numbers

of propagations per decision and of IS detected per decision decrease slightly (respec-

tively -0.5% and -2.5% on average).

{222,,,333,,,444ttt}-UCS vs. {222,,,333,,,444ttt ,,,555}-UCS The same behavior as for the 4-UCS can be ob-

served if we add the memorization of the transformations of the 5-UCS. Both the average

number of propagations per decision and the average number of inconsistencies detected

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 7

per decision decrease significantly (-20% and -35%). Consequently, the average number

of decisions increases (+42%), 7 instances less are solved and the average solving time

increases of 90%. As for the 4-UCS, the loss is particularly high on instance classes

with a high percentage of 5b-UCS occurrences (crafted/bipartite, random/max2sat, ran-

dom/min2sat and random/wmax2sat where the average solving time increase of respec-

tively 235%, 322%, 188% and 261%).

Table 2. Detailed results of the variants AHMAXSAT {2,3b}-UCS and AHMAXSAT {2,3}-UCS. The two first

columns give respectively the instances classes and the number of instances per class.

Instances
AHMAXSAT {2,3b}-UCS AHMAXSAT {2,3}-UCS

S D T P/D �/D S D T P/D �/D

u
n

w
ei

g
h

te
d

crafted/bipartite 100 100 35392 96.9 2267 148 100 35416 97.2 2267 148

crafted/maxcut 67 56 235202 58.9 274 42 56 235202 59.5 274 42

random/highgirth 82 7 4953454 1194.1 87 5 7 4991152 1199.3 87 5

random/max2sat 100 100 40410 84.9 1860 99 100 40408 84.7 1859 99

random/max3sat 100 98 425744 332.6 432 46 98 407917 315.6 429 45

random/min2sat 96 96 1025 2.5 1937 64 96 1019 2.5 1937 64

w
ei

g
h

te
d

crafted/frb 34 14 494542 77 79 12 14 494542 76.7 79 12

crafted/ramsey 15 4 158350 55.4 26 10 4 158350 55.3 26 10

crafted/wmaxcut 67 62 40645 60.6 409 169 62 40649 60.6 409 169

random/wmax2sat 120 120 4337 54.4 4957 534 120 4307 53.7 4955 535

random/wmax3sat 40 40 49771 138 1142 202 40 48515 134.8 1140 201

Global 821 697 157583 114.5 1902 173 697 155380 111.9 1901 173

Table 3. Detailed results of the variants AHMAXSAT {2,3,4}-UCS and AHMAXSAT {2,3,4t}-UCS.

Instances
AHMAXSAT {2,3,4}-UCS AHMAXSAT {2,3,4t}-UCS

S D T P/D �/D S D T P/D �/D

u
n

w
ei

g
h

te
d

crafted/bipartite 100 100 35456 96.9 2266 148 100 35478 97.3 2266 148

crafted/maxcut 67 56 153539 37.5 207 30 56 153326 42.3 267 39

random/highgirth 82 7 4960255 1186.5 88 5 6 4603981 1091.2 87 5

random/max2sat 100 94 175425 291.8 1375 62 100 38878 81.4 1854 98

random/max3sat 100 100 443640 319.5 401 41 100 413013 308.4 414 43

random/min2sat 96 96 1198 2.3 1433 34 96 1025 2.5 1936 64

w
ei

g
h

te
d

crafted/frb 34 14 289467 49.3 71 9 14 288458 48.6 71 9

crafted/ramsey 15 4 158040 56.6 26 10 4 157902 55.4 26 10

crafted/wmaxcut 67 62 21703 35.1 395 143 62 21757 35.2 397 142

random/wmax2sat 120 120 13386 145.8 4434 353 120 4250 52.9 4957 531

random/wmax3sat 40 40 46640 126.3 1114 192 40 45956 126.6 1126 196

Global 821 693 169317 152 1656 128 698 133829 103.7 1892 169

Table 4. Detailed results of the variants AHMAXSAT {2,3,4t ,5}-UCS and AHMAXSAT {2,3,4t ,5t}-UCS.

Instances
AHMAXSAT {2,3,4t ,5}-UCS AHMAXSAT {2,3,4t ,5t}-UCS

S D T P/D �/D S D T P/D �/D

u
n

w
ei

g
h

te
d

crafted/bipartite 100 99 185669 326,1 1365 60 100 34909 94,7 2258 147

crafted/maxcut 67 56 188088 46,7 240 33 56 177964 43,8 251 35

random/highgirth 82 6 4607524 1101,1 87 5 6 4597721 1102,3 87 5

random/max2sat 100 94 214125 344,2 1327 59 100 38841 77,8 1793 91

random/max3sat 100 100 450338 309,3 380 38 100 426143 293,5 385 39

random/min2sat 96 96 3856 7,2 1484 37 96 979 2,4 1931 64

w
ei

g
h

te
d

crafted/frb 34 14 247556 42,4 66 8 14 210245 37,2 70 8

crafted/ramsey 15 4 157332 56,0 26 10 4 157478 55,5 26 10

crafted/wmaxcut 67 62 21521 33,4 347 117 62 19993 30,8 346 116

random/wmax2sat 120 120 16751 191,0 4322 333 120 3898 48,2 4844 504

random/wmax3sat 40 40 45874 123,4 1093 187 40 44804 120,3 1100 188

Global 821 691 190109 197,2 1504 109 698 135686 99,1 1850 159

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT8

{222,,,333,,,444ttt}-UCS vs. {222,,,333,,,444ttt ,,,555ttt}-UCS As previously, if we ignore the 5b-UCS and

memorize only the transformation of the {2,3,4t ,5t}-UCS there is no significant loss in

solving time on any instance classes and the average solving time is reduced by 4,5%.

To summarize. by memorizing the transformations of the patterns of the sets

{3t ,4t ,5t}-UCS in addition to the sets {2,3b}-UCS used by state of the art solvers, our

solver AHMAXSAT solves one instance more. The average number of decisions and the

average solving time are both reduced by 14%. It should be noted that the increase of the

formula’s size is limited and does not affect the solver efficiency.

Discussion It is commonly admitted that memorizing the transformations made by the

max-resolution rule may in some cases reduce the quality of the LB estimation. How-

ever, to the best of our knowledge, the reasons of this behavior have never been prop-

erly described. The empirical study we have performed shows that the transformations

of some specific patterns (i.e. the 4b-UCS and the 5b-UCS) seem particularly affected by

this phenomenon. Moreover, the detailed statistics obtained show a correlation between

a decrease of the number of propagations, a decrease of the number of detected IS and an

increase of the number of decisions. Indeed, if the number of propagated variables is re-

duced, then less IS will be detected and the quality of the LB estimation will be reduced.

Consequently, the backtracks will occur below in the search tree and more decisions will

be needed to solve instances. We illustrate in the example below how the transformation

of a 4b-UCS decreases the number of propagated variables.

Example 3 Lets consider the subset Φ′′ = {c2,c3,c4,c5} of the formula Φ from Exam-
ple 1. If we add the clause c14 = {x1,x4} to Φ′′, there are two possible UCS: ψ1 =
{c3,c5,c14} and ψ2 = {c2,c3,c4,c5} which are respectively a 3b-UCS and a 4b-UCS. If
ψ1 is transformed by max-resolution, we obtain the formula Φ(3) = {c2,c4,c15,c16,c17}
with c15 = {x1}, c16 = {x1,x3,x4} and c17 = {x1,x3,x4}. The assignment x1 = true leads
to the following propagation sequence in Φ(3): < x2@c2,x4@c4 >. The clause c15 is fal-
sified while c16 and c17 are satisfied. If ψ2 is transformed by max-resolution, we obtain
the formula Φ(4) = {c12,c7,c8,c10,c11,c14} (this transformation is described in Exam-
ple 1). The assignment x1 = true in Φ(4) leads to the propagation sequence < x4@c14 >.
The clause c12 is falsified, c8 and c10 are satisfied and c7 and c11 are reduced. There is
no more unit clauses, and x2 cannot be propagated. It is interesting to notice that the
two remaining reduced clauses c7 = {x2,x3} and c11 = {x2,x3} may lead to the propa-
gation of x2 if we apply the max-resolution between them. But the sole unit propagation
mechanism is not sufficient to propagate x2.

Even if we have described here via an example how transformations may reduce the

number of propagated variables and its impact on the quality of the LB estimation, the

specific features of the transformed subsets of clauses concerned by this phenomenon are

unclear. A thorough study of these characteristics would be of great interest to improve

the BnB solvers learning procedure.

Finally, we have tested (using the protocol described previously) the two best

performing BnB solvers of the Max-SAT Competition 2013: WMAXSATZ2009 and

WMAXSATZ2013. The results (Tab. 5) shows that AHMAXSAT solves more instances

than the two other solvers (respectively 41 and 7 more, columns S) and its average solv-

ing time is respectively 59% and 32% lower (columns T).

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT 9

Table 5. Detailed comparison of AHMAXSAT {2,3,4t ,5t}-UCS, WMAXSATZ2009 and WMAXSATZ2013.

Instances
WMAXSATZ2009 WMAXSATZ2013 AHMAXSAT

S D T S D T S D T
u

n
w

ei
g

h
te

d

crafted/bipartite 100 99 527295 268.7 99 796983 282.3 100 34909 94.7
crafted/maxcut 67 55 850803 97.4 55 755340 54.7 56 177964 43.8

random/highgirth 82 0 - - 0 - - 6 4597721 1102.3

random/max2sat 100 96 666713 288.1 100 523266 169.8 100 38841 77.8
random/max3sat 100 97 2211487 381.7 100 1476192 242.9 100 426143 293.5

random/min2sat 96 77 648900 185.5 96 22402 9.4 96 979 2.4

w
ei

g
h

te
d

crafted/frb 34 9 1379041 12.2 14 1537566 62.8 14 210245 37.2
crafted/ramsey 15 4 876667 93.4 4 549137 52.6 4 157478 55.5

crafted/wmaxcut 67 61 75186 80.8 63 126254 73.5 62 19993 30.8

random/wmax2sat 120 119 82064 288.9 120 81440 134.2 120 3898 48.2
random/wmax3sat 40 40 328504 177.1 40 257175 130.7 40 44804 120.3

Total 821 657 716729 240.2 691 541647 145 698 135686 99.1

6. Conclusion

We have presented in this paper new sets of patterns which produce, when transformed

by max-resolution, unit resolvent clauses. The experimental study shows that the trans-

formation’ memorization of some pattern sets (namely the {2,3,4t ,5t}-UCS) reduces

significantly both the number of decisions made by our solver AHMAXSAT and its solving

time. These experiments show that the transformation’s memorization of the {4b,5b}-

UCS reduces the solver’s capability to detect inconsistencies and thus its performances.

We have described this phenomenon, which had never been done before to the best of

our knowledge. As future work, we will make a thorough study of this phenomenon to

draw up a general learning framework for BnB Max-SAT solvers.

References

[1] M. L. Bonet, J. Levy, and F. Manyà, ‘Resolution for max-sat’, Artificial Intelligence, 171(8-9), 606–618,

(2007).

[2] N. Eén and N. Sorensson, ‘An extensible sat-solver’, in SAT’03, pp. 502–518. Springer, (2003).

[3] F. Heras and J. Larrosa, ‘New inference rules for efficient max-sat solving’, in AAAI’06, volume 1, pp.

68–73. AAAI Press, (2006).

[4] J. Larrosa and F. Heras, ‘Resolution in max-sat and its relation to local consistency in weighted csps’, in

IJCAI’05, pp. 193–198. Morgan Kaufmann Publishers Inc., (2005).

[5] J. Larrosa, F. Heras, and S. de Givry, ‘A logical approach to efficient max-sat solving’, Artificial Intelli-
gence, 172(23), 204–233, (2008).

[6] C. M. Li, F. Manyà, N. Mohamedou, and J. Planes, ‘Exploiting cycle structures in max-sat’, in SAT’09,

pp. 467–480, Springer Berlin / Heidelberg, (2009).

[7] C. M. Li, F. Manyà, and J. Planes, ‘Exploiting unit propagation to compute lower bounds in branch and

bound max-sat solvers’, in CP’05, pp. 403–414, Springer Berlin / Heidelberg, (2005).

[8] C. M. Li, F. Manyà, and J. Planes, ‘Detecting disjoint inconsistent subformulas for computing lower

bounds for max-sat’, in AAAI’06, pp. 86–91. AAAI Press, (2006).

[9] C. M. Li, F. Manyà, and J. Planes, ‘New inference rules for max-sat’, Journal of Artificial Intelligence
Research, 30, 321–359, (2007).

[10] C. M. Li, F. Many, N. Mohamedou, and J. Planes, ‘Resolution-based lower bounds in maxsat’, Con-
straints, 15(4), pp. 456–484, (2010).

[11] J. P. Marques-Silva and K. A. Sakallah, ‘Grasp: A search algorithm for propositional satisfiability’, IEEE
Transactions on Computers, 48(5), pp. 506–521, (August 1999).

A. Abramé and D. Habet / On the Extension of Learning for Max-SAT10

A Two-Levels Local Search Algorithm for

Random SAT Instances with Long

Clauses

André ABRAMÉ, Djamal HABET and Donia TOUMI

Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397, Marseille, France

Abstract. We present a local search algorithm exploiting two efficient solvers for

SAT. The first one is based on the configuration checking strategy and the second

one on an algorithm of the Walksat family. This new solver is dedicated to solve

random k-SAT instances, such that k ≥ 4. We have carried tests on the instances

of the SAT Challenge 2012. The obtained results confirm the relevance of our ap-

proach.

Keywords. Configuration Checking, Novelty Heuristic, Random large k-SAT

instances

1. Introduction

The satisfiability problem (SAT) consists of testing whether all clauses in a propositional

formula F , in the Conjunctive Normal Form on a set of Boolean variables, can be satis-

fied by an assignment of truth values to its variables. The incomplete methods for SAT

solving are generally based on the Stochastic Local Search (SLS). Starting by a randomly

generated truth assignment of the variables of F , an SLS algorithm explores the search

space by trying, at each step, to minimize the number of falsified clauses by flipping the

truth value of a given variable. In dynamic local search algorithms [17], each clause has

a dynamic weight and a variable is evaluated regarding its score. The score of a variable

is the variation of the sum of the weights of the falsified clauses, if it is flipped. In the last

years, the Configuration Checking (CC) strategy appears as a promising dynamic local

search approach to solve SAT [4,6]. The main purpose of CC is to prevent cycling in

local search by considering neighbors of variables. Two variables are neighbors if they

appear in the same clause at least once. The configuration of a variable is the set of its

neighbor variables and their corresponding truth values.

In this paper, we propose to improve the configuration checking strategy on random

k-SAT such that k ≥ 4. This improvement is carried out by using the Novelty heuristic

with adaptive noise setting. Novelty is a powerful SLS algorithm from the Walksat

family algorithms [11,16,19]. Our motivation is also to enhance the efficiency of diversi-

fication and intensification phases in CC-based solvers. The result of our work is a two-

level SLS algorithm which we name Ncca+. The first stage in Ncca+ consists of flipping

a configuration changed decreasing variable (a variable with a positive score and hav-

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-11

11

ing the value of one of its neighbor variables changed since its last flip) [6], if it exists.

Otherwise, Ncca+ enters its second stage and applies a Novelty+ like heuristic to select

the variable to flip. Our algorithm is implemented on the basis of the powerful CC-based

solver CCASat [4] which is the winner of the random SAT track of the SAT Challenge

20121. We evaluate empirically Ncca+ on the instances of this challenge regarding its

robustness and its running time by a comparison to CCASat. We also compare Ncca+

to other performing state-of-the-art SLS solvers. This empirical study confirms the effi-

ciency of our solver. Ncca+ also participated in the SAT competition 2013 [9] and won

the bronze medal of the random SAT track2.

The paper is organized as follows. Section 2 gives the necessary background and

elements for the rest of the paper. Section 3 describes in details our contribution. Section

4 is dedicated to the experimental evaluation. Finally, we conclude in Section 5.

2. Preliminaries

2.1. Definitions and Notations

An instance F of the satisfiability problem (SAT) is defined by a pair F = (X ,C) such that

X = {x1 · · ·xn} is a set of n Boolean variables and C = {c1 · · ·cm} is a set of m clauses.

A clause ci ∈ C is a finite disjunction of literals and a literal is either a variable xi or its

negation ¬xi. Two variables occurring in the same clause are neighbors. The set of the

neighbors of xi is denoted by N(xi). The size of a clause ci is the number of its literals

(denoted by |ci|). If the size of each clause in C is equal to k then the instance is called

k−SAT. An assignment is a mapping I : X →{True, False}. I is complete if it maps all

the variables of F . A clause c j ∈C is satisfied by a complete assignment I iff it contains

at least one satisfied literal, otherwise c j is falsified. A model of F is an assignment that

satisfies all the clauses of F . The satisfiability problem (SAT) consists of deciding if F
has a model. If this is the case then F is satisfiable, otherwise F is unsatisfiable.

2.2. Stochastic Local Search for SAT

For a given CNF formula F , a basic Stochastic Local Search (SLS) algorithm for SAT

starts by randomly generating a complete assignment I which may falsify some clauses.

Hence, it attempts to minimize the number of falsified clauses by repeatedly repairing

this assignment by flipping the value of one variable at once (changing its value from

f alse to true, or true to f alse) until satisfying all clauses or reaching a cutoff time. In

a dynamic SLS algorithm for SAT, a positive weight w(c j) is associated to each clause

c j in C and the evaluation of an assignment I is the sum of the weights of the clauses

falsified under I, which we denote by E(I). The score of a variable xi is defined by

score(xi) = E(I)−E(Ixi) where Ixi is the complete assignment obtained by flipping xi in

I. If score(xi)> 0 then xi is called a decreasing variable.

SLS algorithms for SAT differ by their employed heuristic to choose the variable

to flip. In this paper, we are interested in the heuristic used in Novelty, which is based

on the Walksat algorithm architecture [16,19]. Novelty(p) selects randomly a falsified

1baldur.iti.kit.edu/SAT-Challenge-2012/
2www.satcompetition.org/2013/

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances12

clause c j. Then it sorts the variables of c j according to their scores breaking ties in favor

of the least recently flipped variable and considers the two best variables under this sort-

ing. If the best variable is not the most recently flipped one in c j then Novelty(p) selects

it for flipping. Otherwise, with probability p, it picks the second best one, and with prob-

ability 1− p, it picks the best variable. When Novelty(p) gets stuck in local minima, a

diversification phase is introduced in Novelty+(p,wp) [10] and Novelty++(p,d p) [12]

to escape from such regions of the search space. With a probability wp, Novelty+(p,wp)
picks randomly a variable from c j and with probability 1−wp it does like Novelty(p).
With a probability d p, Novelty++(p,d p) picks the least recently flipped variable in c j
and with probability 1− d p it acts like Novelty(p). In the adaptive versions of these

algorithms, the values of p, wp and d p are adjusted depending on the evolution of the

search. This adaptive noise setting was first introduced by Hoos [11] and has been applied

in other works (see for instance [12]).

2.3. Configuration Checking for SAT

The Configuration Checking (CC) strategy for SAT considers during the search the rela-

tions between variables and their neighbors. It defines the configuration C(xi) of a vari-

able xi by a subset of I which is restricted to the variables of N(xi). If a variable in C(xi)
has been flipped since the last flip of xi then C(xi) is changed.

A typical CC-based algorithm for SAT follows the general scheme of an SLS algo-

rithm. Its variable selection heuristic attempts first to flip those decreasing variables (with

positive scores) that have their configurations changed [6]. Such variables are called Con-
figuration Changed Decreasing (CCD). XCCD is the set of CCD variables. Hence, a CC-

based algorithm forbids the flip of a variable xi if its configuration C(xi) has not changed

since the last flip of xi. If there is no CCD variable (XCCD = /0), an aspiration criterion is

employed. The one defined by Cai and Su [6] selects a significant decreasing variable
(SD) to be flipped. A variable xi is SD if score(xi) is greater than some threshold g, g> 0.

In practice, the value of g is equal to the average of clause weights in C and denoted by

w. We use XSD to denote the set of the SD variables.

One of the most powerful algorithms based on the CC strategy is CCASat [7]. It

selects the variable to flip as follows: if XCCD �= /0 then it selects the CCD variable with

the highest score. Else, if XSD �= /0 then it chooses the SD variable with the highest score.

In these two cases, CCASat is in an intensification/greedy phase. Otherwise (both XCCD
and XSD are empty), it enters in the diversification phase which consists of choosing the

least recently flipped variable appearing in a falsified clause selected randomly. We name

such variables focused random ones.

3. The Ncca+ Algorithm for Random k-SAT Instances with k ≥ 4

In this section, we start by giving some experimental observations on one of the most

powerful CC-based solver, CCASat [7]. These observations have been performed on 480

k-SAT instances (120 instances for each k value in {4 . . .7}) of the SAT Challenge 2012.

We have limited the running time of CCASat to 300 seconds per instance. We are inter-

ested in the nature of the flipped variables (CCD or SD). We have measured the average

rates of flips of CCD variables (SCCD), SD ones (SSD) and focused random ones (SFR).

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 13

The results are summarized in Table 1. On the whole, we can observe that 77.63% of

flips are done on XCCD variables and only 1.5% of flips are done on XSD variables (this

rate is only 0.25% for the 7-SAT instances). Finally, the focused random walk is applied

for 20.87% of the performed flips and ranges from 12.06% for the 4-SAT instances to

28.47% for the 7-SAT instances.

Table 1. Observations on the flips done in CCASat on the k-SAT instances, k ≥ 4, of the SAT Challenge 2012.

k SCCD SSD SFR

4 83.59 4.35 12.06

5 81.97 1.01 17.02

6 73.68 0.40 25.91

7 71.28 0.25 28.47

Average 77.63 1.50 20.87

According to these observations, it is clear that the aspiration criterion (which corre-

sponds to the flip of SD variables) is rarely applied. Let us recall that this criterion selects

a variable to flip with a score greater than some threshold which is the average of the

clause weights, w. We have measured the value of this threshold for the above instances

and observed that this value remains around 1 which means that the weights of clauses

do not vary significantly during the search. Hence, if there is no CCD variable, it is hard

to have an SD one. These elements may explain the low values of SSD.

To obtain a more accurate aspiration phase and to balance the use of the diversifica-

tion phase, we propose to replace the selection of SD variables by the heuristic used in

Novelty. Indeed, instead of selecting a SD variable when XCCD = /0, we select a vari-

able appearing in a falsified clause selected randomly according to the Novelty heuris-

tic. However, the variable scores used in Novelty are those obtained by considering the

weights of clauses (in the original version of Novelty, the score of a variable xi is equal

to the number of falsified clauses which will become satisfied if xi is flipped minus the

number of satisfied clauses which will become falsified if xi is flipped). Such adaptation

of Novelty is close to the one used in gNovelty+ [18].

Accordingly, we modify the heuristic used in CCASat to consider the integration of

Novelty. The resulting algorithm is called Ncca+. It works as follows:

1. If the set of configuration changed decreasing variables is not empty (XCC �= /0)

then Ncca+ selects a variable among XCC of the highest score breaking ties in

favor of the variable with the highest subscore.

2. Else, Ncca+ updates the weights of the clauses of F according to PAWS scheme

[20]. In PAWS, all clause weights are initialized to 1. Hence, with probability sp
(smooth probability) and for each satisfied clause whose weight is greater than

1, PAWS decreases the weight of this clause by 1. Otherwise (with probability

1− sp), PAWS increases by 1 the weights of all the falsified clauses.

3. With a probability d p (diversification probability), Ncca+ selects a variable to

flip according to Novelty(p) heuristic. Otherwise (with a probability 1− d p),

Ncca+ selects the oldest variable in a falsified clause selected randomly.

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances14

Algorithm 1. Ncca+ Algorithm for k-SAT instances, k ≥ 4

Input: k-SAT formula F , maxTries, maxSteps
Output: A Satisfying assignment I, if F is SAT, or ”Unknown”

for try =1 to maxTries do
I ← randomly generated truth assignment

Initialize clause weights to 1

Initialize p and d p 0

for step =1 to maxSteps do
if I satisfies F then

return I
end if
xi ← Pick Var(p,d p)
Update Novelty probability parameters p and d p
I ← I with xi flipped

end for
end for
return ”Unknown”

We give the general scheme of Ncca+ in Algorithm 1. It starts by generating ran-

domly a complete truth assignment I and while I does not satisfy the input formula F
or a maximum number of flips maxSteps is not reached, Ncca+ selects a variable to flip

following the heuristic detailed before.The values of the probabilities p and d p (used in

Pick Var function) are dynamically updated [11,13] (it is based on two parameters Φ
and Θ to control the change of values of p and d p). The selected variable is flipped. All

these steps (the inner loop of Algorithm 1) are repeated up to maxTries (the outer loop).

4. Experimental Evaluation

This section is dedicated to the experimental evaluation of Ncca+. The evaluation is done

on 480 random k-SAT instances (all satisfiable) from the SAT Challenge held in 20123.

The values of k are ranging from 4 to 7 with 120 instances per k value. Each set is also

divided into 10 subsets of 12 instances with different sizes (regarding the number of

the variables and the clauses). Table 2 gives the characteristics of these instances. Balint

et al. [1] detail the generation and selection of these instances. We have selected these

instances because they have different sizes and difficulties. The instances of the SAT

Competition 2011, particularly the 5-SAT ones, are treatable rather easily by the current

SLS SAT solvers. Thus, we do not include them in these experiments.

Ncca+ is implemented in C/C++ and compiled with g++ with the compilation flags

-static -03. The experiments are made on a cluster of servers equipped with Intel

Xeon 2.4 Ghz processors and 24 GB of RAM and running under a GNU/Linux operating

system. The smooth probability sp of the PAWS scheme is sp = 0.75 for k-SAT with

k ∈ {4,5} and sp = 0.92 for k-SAT with k ∈ {6,7} [4].

3baldur.iti.kit.edu/SAT-Challenge-2012/downloads.html

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 15

Table 2. The minimum (min.) and the maximum (max.) number of variables (n) and of clauses (m) of the

k-SAT instances, k ≥ 4, of the SAT Challenge 2012.

4-SAT 5-SAT 6-SAT 7-SAT

n m n m n m n m
max. 10000 90000 1600 32000 400 16000 200 17000

min. 800 7945 300 6335 200 8674 100 8779

4.1. Ncca+ vs. CCASat

Since Ncca+ is based on CCASat, we have first performed a detailed comparison of the

two solvers. For this purpose, each solver is launched 30 times on each instance. Each

launch terminates when a solution is found or the cutoff time of 1000 seconds is reached4.

For each instance, we calculate the number of successful runs and the average runtime

to reach a solution. If a run failed to solve an instance, a penalized time of 1000 seconds

is used to compute the average time. We use two types of graphics to compare the two

solvers: the first one compares the number of successful runs and consequently the solver

robustness. The second one compares the average runtimes. We give and discuss these

two graphs for each k = 4 · · ·7 (Fig. 1 to 4) where each point in the graphs correspond to

one instance. However, some plotted points may overlap if the results of the two solvers

are equal or close. Finally, the parameter values of the adaptive noise mechanism are

Φ = 10 and Θ = 5. These values are those used in competitive SLS solvers, such as TNM

[13] and Sattime [14].

Random 4-SAT (Fig. 1) For these instances, we find the role of Novelty in the im-

provement of the robustness and the speed of CCASat. Indeed, Ncca+ enhances the ro-

bustness of the last solver on 22 instances. Also, the right graphic of Fig. 1 indicates

clearly the reduction of the running time of CCASat to reach a solution. This observation

is confirmed by the comparison of the average runtimes of the two solvers over the 120

4-SAT instances: 129 seconds for Ncca+ and 179 seconds for CCASat. For the instances

with 3800 to 10000 variables, this time is almost divided by 2.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ncca+

C
C
A
S
at

(a) Number of successful runs

0 200 400 600 800 1000

0

200

400

600

800

1000

Ncca+

C
C
A
S
at

(b) Solving time

Figure 1. Ncca+ vs. CCASat on random 4-SAT instances.

4The used cutoff time during the SAT Challenge was 900 seconds under Intel Xeon 2.83 Ghz processors.

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances16

Random 5-SAT (Fig. 2) CCASat seems to be better particularly regarding the robust-

ness criterion. It has a better success rate on 55 instances while Ncca+ is better on 40

instances. However, the average number of successful runs are very close: 15.87 success-

ful runs for CCASat and 16.70 for Ncca+. Also, Ncca+ solved all the instances, at least

once, while CCASat failed to solve 3 instances. Concerning the average runtimes over all

the instances, the values are 650 and 620 seconds for Ncca+ and CCASat respectively.

Hence, the last solver is 5% faster than the first one.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ncca+

C
C
A
S
at

(a) Number of successful runs

0 200 400 600 800 1000

0

200

400

600

800

1000

Ncca+

C
C
A
S
at

(b) Solving time

Figure 2. Ncca+ vs. CCASat on random 5-SAT instances.

Random 6-SAT (Fig. 3) Ncca+ seems to be better. Indeed, CCASat is more robust on

21 instances while Ncca+ outperforms CCASat on 33 instances. Also, over all the runs,

Ncca+ successfully solved all the instances while CCASat failed to solve 1 instance. The

average runtimes are 344 seconds for Ncca+ against 362 seconds for CCASat. Ncca+

solves better the instances with 200 to 300 variables, while CCASat is better on the in-

stances with 320 and 340 variables.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ncca+

C
C
A
S
at

(a) Number of successful runs

0 200 400 600 800 1000

0

200

400

600

800

1000

Ncca+

C
C
A
S
at

(b) Solving time

Figure 3. Ncca+ vs. CCASat on random 6-SAT instances.

Random 7-SAT (Fig. 4) For these instances, the results are mixed. Indeed, CCASat

is more robust on 43 instances and Ncca+ on 38 instances. The average runtimes are

519 seconds for CCASat and 541 seconds for Ncca+. However, Ncca+ does better than

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 17

CCASat by solving all the instances at least one time. CCASat failed to solve 4 instances.

The average number of successful runs of the two solvers over all the instances are very

close: 18.57 for Ncca+ and 19.08 for CCASat.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ncca+

C
C
A
S
at

(a) Number of successful runs

0 200 400 600 800 1000

0

200

400

600

800

1000

Ncca+

C
C
A
S
at

(b) Solving time

Figure 4. Ncca+ vs. CCASat on random 7-SAT instances.

Over all these first results, Ncca+ seems generally better than CCASat regarding the

number of solved instances. Concerning the robustness, the improvements provided by

Ncca+ are clearly visible for the 4-SAT and 6-SAT instances. The same observation re-

mains true concerning the running times. For the 5-SAT and 7-SAT instances, the re-

sults are more mixed. Nevertheless, Ncca+ solved all the instances while CCASat never

reached a solution for some of them.

4.2. Ncca+ vs. State-of-the-Art SLS Solvers

In this section, we compare Ncca+ to other powerful SLS solvers including TNM [13],

Sparrow2011 [2], CScoreSAT2013 [5], Sattime2013 [15], ProbSAT2013 [3] and

CCASat. The solvers labelled by 2013 are taken from the SAT Competition 20135.

Sparrow2011 and ProbSAT2013 are the winners of the gold medal of the random SAT

track of the SAT competitions 2011 and 2013 respectively. CCASat was the winner of

this same category during the SAT Challenge 2012. CScoreSAT2013 is a powerful solver

based on configuration checking. Sattime regularly won medals during SAT competi-

tions of the same track. The comparison to TNM and Sattime is also motivated by the

fact that these two solvers use Novelty and the set of promising decreasing variables

[12] which is a subset of configuration changed decreasing variables [6].

All the solvers are run on the random instances of the SAT Challenge 2012. The

cutoff time is 3600 seconds to observe the behavior of the solvers with a higher execu-

tion time than the one used during this challenge. We run each solver one time for each

instance. Table 3 details the results for each k-SAT problem. It appears that Ncca+ im-

proves CCASat for each k value, except for k = 7 for which CCASat solves one instance

more.

5Available from www.satcompetition.org/2013/

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances18

Table 3. Detailed results on the 7 solvers. For each k = 3 · · ·7, we give the number of solved instances by the

solvers. A number in bold indicates that the solver outperforms its challengers. The numbers between brackets

are the average times to find a solution for the instances in the k-SAT sets. If a solver fails to reach a solution

then its runtime is penalized by 3600 seconds.

k Ncca+ CCASat Prob- CScore- Sattime- Sparrow- TNM

SAT2013 SAT2013 2013 2011

4 120 119 119 118 61 93 84

(220) (246) (102) (253) (2250) (1125) (1320)

5 96 94 84 99 68 76 41

(1380) (1357) (1763) (1227) (2221) (1883) (2819)

6 113 108 101 113 110 87 105

(599) (755) (1215) (490) (863) (1688) (1253)

7 103 104 81 96 97 86 95

(1090) (1154) (1833) (1192) (1183) (1503) (1366)

For k = 4, Ncca+ remains better than the other solvers. For k = 5, CScoreSAT2013

solves 3 instances more than Ncca+ and 5 instances more than CCASat. For k = 6, Ncca+

and CScoreSAT2013 solve the highest number of instances (113). For k = 7, CCASat

solves only one instance more than Ncca+ which seems to be faster. Ncca+ is clearly

better than Sattime and TNM. These two last solvers also integrate the Novelty++ algo-

rithm and they have better performances than this algorithm. Regarding all the SAT in-

stances, Ncca+ is the better solver by solving 432 instances, the second and the third best

ones are CScoreSAT2013 and CCASat which solve 426 and 425 instances respectively.

We would like to note that the current scheme of Ncca+ is close to AdaptG2Wsat2009++

which alternates between greedy search thanks to the promising decreasing variables

and diversification thanks to Novelty++ with adaptive noise setting [12]. We have not

included the results of AdaptG2Wsat2009++ because it is outperformed by the recent

solvers of the same authors, such as Sattime and TNM.

5. Conclusion

In this paper, we have presented a competitive and robust algorithm Ncca+ dedicated to

random k-SAT instances with long clauses. It combines the configuration checking (CC)

strategy and a heuristic similar to Novelty with adaptive noise setting. Ncca+ improved

the intensification and the diversification phases used in CC-based solvers. The empirical

evaluation accomplished on random instances of the SAT Challenge 2012 confirmed our

purpose and the bronze medal obtained in the SAT Competition 2013 consolidated this

evaluation 6.

6The detailed results of the SAT Competition 2013 are available from http://satcompetition.org/

2013

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances 19

References

[1] Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Sat challenge 2012 random sat track: Description of bench-

mark generation. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pp.

72–73 (2012)

[2] Balint, A., Fröhlich, A.: Improving stochastic local search for sat with a new probability distribution. In:

Proceedings of SAT’10, pp. 10–15 (2010)

[3] Balint, A., Schöning, U.: Probsat. In: Proceedings of SAT Competition 2013: Solver and Benchmark

Descriptions, p. 70 (2013)

[4] Cai, S., Luo, C., Su, K.: Ccasat: Solver description. In: Proceedings of SAT Challenge 2012: Solver and

Benchmark Descriptions, pp. 13–14 (2012)

[5] Cai, S., Luo, C., Su, K.: Cscore2013. In: Proceedings of SAT Competition 2013: Solver and Benchmark

Descriptions, pp. 18–19 (2013)

[6] Cai, S., Su, K.: Configuration checking with aspiration in local search for sat. In: Proceedings of AAAI-

2012, pp. 434–440 (2012)

[7] Cai, S., Su, K.: Local search for boolean satisfiability with configuration checking and subscore. Artif.

Intell. 204, 75–98 (2013)

[8] Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for

minimum vertex cover. Artif. Intell. 175(9-10), 1672–1696 (2011)

[9] Habet, D., Toumi, D., Abramé, A.: Ncca+: Configuration checking and novelty+ like heuristic. In:

Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, p. 62 (2013)

[10] Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for sat. In: Proceedings of

AAAI ’99/IAAI ’99, pp. 661–666 (1999)

[11] Hoos, H.H.: An adaptive noise mechanism for walksat. In: Proceedings of AAAI-2002, pp. 655–660

(2002)

[12] Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In: Proceedings

of SAT’05, pp. 158–172 (2005)

[13] Li, C.M., Huang, W.Q.: Switching between two adaptive noise mechanisms in local search for sat. In:

SAT 2009 competitive events booklet, p. 57 (2009)

[14] LI, C.M., LI, Y.: Satisfying versus falsifying in local search for satisfiability. In: Proceedings of SAT-

2012, pp. 477–478. Springer (2012)

[15] Li, C.M., Li, Y.: Description of sattime2013. In: Proceedings of SAT Competition 2013: Solver and

Benchmark Descriptions, pp. 77–78 (2013)

[16] McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of AAAI-

1997, pp. 321–326 (1997)

[17] Morris, P.: The breakout method for escaping from local minima. In: Proceedings of AAAI’93, pp.

40–45. AAAI Press (1993)

[18] Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for

satisfiability. JSAT 4(2-4), 149–172 (2008)

[19] Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of

AAAI-94, pp. 337–343 (1994)

[20] Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for sat.

In: Proceedings of AAAI’04, pp. 191–196. AAAI Press (2004)

A. Abramé et al. / A Two-Levels Local Search Algorithm for Random SAT Instances20

Computing Subjective Expected Utility
using Probabilistic Description Logics

Erman ACAR a,1,
aResearch Group Data and Web Science,

University of Mannheim, Germany

Abstract. We introduce a framework which is based on probabilistic De-
scription logics (Prob-DL), to represent and solve multi-criteria discrete
alternative problems by calculating expected utility. To our knowledge,
this is the first ever approach for calculating expected utility using a
Description logics based formalism.

Keywords. Description Logics, Probabilistic Description Logic, Prob-
DL, Multicriteria Decision Making, Decision Theory, Utility Theory,
Subjective Expected Utility, Probabilistic Ontology

1. Introduction

Since the first serious attention of multi-attribute utility theory (MAUT) in [7,4]
to solve problems regarding multi-criteria decision making (MCDM), numerous
approaches have been proposed, including probabilistic, possibilistic, fuzzy and
graphical models [2,15,5] amongst others. In parallel, preference representation
has become an ongoing research subject in artificial intelligence, gaining more
popularity every day, which also lets the discipline to deal with the problems from
Decision Theory. To represent preferences and encode decision-theoretic problems,
a relatively new common approach stepping forward over the last decade is the
use of logical languages [16,3,18,11,12,14,13].

Description Logics (DL) is a family of logic languages which is mainly based
on decidable fragments of first order logic. It has been designed to be used as
a formalism in the field of knowledge representation, and it has become one of
the major approaches over the last decade. In the context of the Semantic Web,
it embodies a theoretical foundation for the OWL Web Ontology Language, a
standard defined by the World Wide Web Consortium.

In this paper, we introduce a formal framework which is based on probabilis-
tic Description Logic Prob-DL ([10]), a family of DL languages designed to model
subjective uncertainty. The aim of our framework is to encode and solve decision
problems via computing expected utility using the inference services specific to

1Address: Universität Mannheim, Institut für Informatik und Wirtschaftsinformatik, B6 26,
Raum C1.05, D-68159 Mannheim, Germany; E-mail: erman@informatik.uni-mannheim.de

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-21

21

the employed language (Prob-ALC in our case). To our knowledge, this is also
the first DL-based framework aimed to calculate the expected utility. In our ap-
proach, we represent preferences of the decision maker (agent), from the utility
theory perspective, where each criteria has an assigned utility value (weight). We
consider alternatives in the form of ABoxes, and criteria as concepts. We represent
decision maker’s background knowledge via a Prob-DL knowledge base.

The framework can be applied to multiple criteria discrete alternative prob-
lems (see [17]). In general, it can be applied to every domain where background
knowledge which is relevant for our decisions, can be shared, matched and re-
lated via knowledge bases in terms of ontologies. One motivation is that, within a
DL-based decision making framework, one can express the dependency between
attributes/criteria using the concept hierarchy and evaluate an alternative (a
choice) in terms of its logical implications.

In the remainder of the paper, we first briefly present preliminaries in Prob-
DL, in Section 2. Then, we introduce our framework and discuss an example in
Section 3. In Section 4, we discuss the related works. We conclude the paper with
a brief outline and ideas about future research in Section 5.

2. Basic Prob-DL

Probabilistic Description Logics family, Prob-DL is proposed in [10] as a fragment
of First-Order Logic of Type-2 probability (see [6]). Type-2 probability refers to
subjective uncertainty, or degree of belief e.g., “Tweety the bird flies with prob-
ability greater than 0.9”, whereas Type-1 probability refers to statistical proba-
bility. Therefore, a probabilistic logic which solely models Type-1 probabilities,
fails to represent the above statement since it can be either true or false (i.e.,
Flies(Tweety) holds with probability of either 0 or 1).

We assume that the reader has familiarity with the basic DL [1].To introduce
the basic notions and notations, following [10], we give the definition of Prob-
ALC as a probabilistic counterpart of ALC. NC , NR, NI are denumerable sets of
concept names, role names and individual names respectively. The syntax of the
concepts in Prob-ALC extends ALC inductively as follows:

C ::= A | ¬C | C
D | ∃r.C | P≥nC | ∃Prel nr.C (1)

where A ∈ NC , C and D are concepts, r ∈ NR, rel ∈ {≥, >} and n ∈ [0, 1]. C�D
is an abbreviation for ¬(¬C
 ¬D), ∀r.C for ¬∃.¬C, for C � ¬C and ⊥ for
¬. Furthermore, P<nC is an abbreviation for ¬P≥nC, P≤nC for P≥1−n¬C, and
P>nC is for P<1−n¬C. A TBox is a finite set of axioms (concept inclusions) C �
D, which represents the ontology. A probabilistic ABox A is defined according to
the following rule

A ::= C(a) | r(a, b) | ¬A | A ∧ A′ | P≥nA (2)

where C ∈ NC , r ∈ NR, a, b ∈ NI , n ∈ [0, 1], A and A′ ranges over probabilistic
ABoxes. Abbreviations (i.e., Prel nA) are defined similarly as for concepts. A
knowledge base K is a pair (T ,A) where T is a TBox and A is an ABox.

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics22

The semantics of Prob-DL is defined by generalizing the standard semantics
of DL . In particular, a probabilistic interpretation has the form

I = (ΔI ,W, (Iw)w∈W , μ), (3)

where ΔI is the non-empty domain, W is a non-empty set of possible worlds, μ
is a discrete probability distribution on W , and for each w ∈ W , Iw is a classical
DL interpretation with domain ΔI . It is supposed that aIw = aIw′ for all a ∈ NI

and w,w′ ∈ W , therefore we write aI in short. For A ∈ NC , the probability that
a ∈ ΔI is an A, is defined as

pIa(A) = μ({w ∈ W | a ∈ AIw}). (4)

Similarly, for r ∈ NR, the probability that a, b ∈ ΔI are related by r, is defined
as

pIa,b(r) = μ({w ∈ W | (a, b) ∈ rIw}). (5)

This is extended to complex concepts C, by defining the extension CIw of complex
concepts by mutual recursion on C. The definition of pIa(C) is exactly as above
(i.e., A is replaced by C), and as the case for non-probabilistic concepts are defined
in parallel to classical-DLs (e.g., (C
D)Iw = CIw
DIw), we give only the cases
with probabilistic concepts:

(Prel nC)Iw = {a ∈ ΔI | pIa(C)rel n}

(∃Prel n.C)Iw = {∃b ∈ CIw : pIa,b(r)rel n}
(6)

A probabilistic interpretation I satisfies a concept inclusion C � D if CIw ⊆
DIw for all w ∈ W . The interpretation I is a model of a TBox T if it satisfies
all inclusions in T . Similarly, Iw satisfies assertions parallel to classical DLs (i.e.,
Iw |= C(a) iff aI ∈ CIw), and this is defined inductively for ABoxes. Again we
provide the probabilistic case;

Iw |= Prel n(A) iff pI(A)rel n (7)

where pI(A) is the probability that an ABox A holds and it is defined as

pI(A) = μ({w ∈ W | Iw |= A}). (8)

Note that, in this semantics Prel n(C(a)) and (Prel nC)(a) are equivalent. It is
said that I is a model of A if Iw |= A for some w, and is a model of K = (T ,A)
if it is a model of both T and A. A knowledge base K is consistent if it has a
model. For convenience, we restrict ourselves to the language Prob-ALCc which
does not allow probabilistic roles, that is ∃Prel n.C. This is because Prob-ALCc

is expressive enough for our purpose and also expectedly it provides much better
complexity results (the consistency in full Prob-ALC is 2-exptime-hard, whereas

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics 23

for Prob-ALCc it is exptime-complete) [10]. For the procedure for consistency
check and details we refer the reader to [10].

As mentioned in [10], standard semantics of Prob-ALC does not support
deducing the probability of independent events (i.e., p(A∧B) = p(A) · p(B)). For
that reason, Prob-ALCindep is introduced (see [10]) as an extension of Prob-ALC,
which allows independence constraints in the form of indep(C,D) in the TBox;
C, D being concepts, pId (C) · pId (D) = pId (C
D).

3. Decision Bases and Expected Utility

We model a discrete multi-criteria decision problem from the agent’s perspec-
tive in the sense that in the light of background knowledge and ranked outcomes
which choice (alternative) should the agent take? Here, ranking of outcomes are
projected by agent’s subjective utility values, and background knowledge is rep-
resented by a probabilistic knowledge base. We note that, although we assume
the basic Prob-ALCc as our base for clarity, the main working principle of our
framework is not based on a specific Prob-DL language. We also note that, in
this paper we do not concern ourselves with problems regarding elicitation. We
assume that agent’s preferences are sufficiently elicited.

3.1. Representing Discrete Multicriteria Decision Problems

We represent the background knowledge of the agent by the Prob-DL knowledge
base K, which includes the hierarchy T of probabilistic concepts and assertions
about individuals which are represented in A. The choice set C represents a priori
alternatives which utilities yet are unknown to the agent. U is the criteria set
where each of its element consists of non-probabilistic concept denoted by Yi and
a corresponding value denoted by ui.

Definition 1 (Decision Base). A decision base, D = (K, C,U) is a triple with;

• K = (T ,A) is Prob-DL knowledge base (background knowledge) in which
T is a probabilistic general acyclic TBox and A is a probabilistic ABox,

• C = {Ch1, . . . , Chn} is a choice box, a non-empty finite set of choices,
each being a probabilistic ABox,

• U = {〈Y1, u1〉, . . . , 〈Ym, um〉} is a utility box (UBox), a finite set of non-
probabilistic concepts Yi (criterion) and a corresponding basic utility ui ∈
R

+ with Yi ≡T Yj =⇒ ui = uj,

with the restrictions that no nested probabilistic constructor occurs in D (e.g.,
P≥n(P>n(C))), and for each probabilistic concept Prel nC, rel ∈ {≥, >} and n ∈
(0, 1].

In a description logic decision base, we refer to a choice or alternative, as a
list of specifications about individual(s) (DL), e.g., for a car buyer, choices can
be technical specifications about cars whereas for a medical doctor, they can be
treatment/medication alternatives. Notice that, one could also give an alternative
definition that allows probabilistic concepts to occur in UBox. However, this in

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics24

turn yields so much expressivity which is not very intuitive and without immedi-
ate obvious benefits. Also, we did not prefer to allow concept or role assertions
in UBox, for a simpler and intuitive exposition of the framework (including the
sequel). However, to make distinction between individuals and provide more ex-
pressivity from the utility perspective, one can extend the definition. Recall that
basic utility values are solely subjective, serving our purpose. Also, we have re-
stricted them to be non-negative reals for the sake of a simpler exposition in the
sequel. This restriction can optionally be removed to model a particular decision
problem conveniently.

3.2. Subjective Expected Utility

Given that Prob-DL is developed to represent subjective uncertainty, and basic
utility values for each criterion is specified, now we can define the subjective
expected utility of a choice. For that purpose, let us introduce few useful notions:

• clashK(C) = {C ′(a) | {C(a), C ′(a)} is inconsistent : K |= C ′(a) ∧ a ∈
Ind(A)} where Ind(A) is the set of individuals occuring in A,

• The function int : A → 2[0,1] for int(C(a)) = [n, 1] if C is in the form
of P≥ nD(a); int(C(a)) = [1, 1] if C is a non-probabilistic concept. Simi-
larly, for the concepts with other probabilistic concept constructors (e.g.,
int(C(a)) = (n, 1] if C is in the form of P> nD(a)),

• ℘rel(A) = inf{⋂C(a)∈A{int(C(a))}} where rel ∈ {≥, >},

Informally, for any given concept C, clashK(C) denotes the set of all entailed
assertions (from knowledge base K) which yields a clash. A clash is considered
as the form of [C(a),¬C(a))], or in particular [P<αC(a), P≥βC(a)] where β ≥ α,
due to abbreviations of probability constructors. The function int outputs the
probability interval for a given assertion. The function ℘rel gives the infimum of
the intersection interval of all concept assertions in a given ABox. Contrary to
Analysis, we leave infimum of an empty set as undefined.

Definition 2 (Expected Utility). The expected utility Urel of a choice Ch w.r.t
D = (K, C,U) is,

Urel(Ch) = Σ{〈Yi,u〉∈U}℘
rel(clashK∪Ch(P≤0Y)) · u

where Ch ∈ C, K ∪ Ch is consistent and K ∪ Ch ∪ P≤0Y (a) is inconsistent
for an a ∈ Ind(Ch ∪ A), rel ∈ {≥, >}.

Informally, (subjective) expected utility of a choice is the sum of the products
between the infimum of the intersection of intervals of probabilities that criteria
are satisfied, and basic utilities of criteria in U , that are satisfied by that choice
w.r.t. the knowledge base. Intuitively, a knowledge base and a choice (K∪Ch) will
entail a criterion Y with a degree of probability more than zero, if P≤0Y yields
inconsistency (w.r.t. K ∪ Ch) for any a ∈ Ind(Ch ∪ A). Semantically, Urel(Ch)
is interpreted as rel utility of a choice, e.g., U≥(Ch) = 40 means that Ch has
utility of at least or equal to 40. Note that Urel yields a complete and transitive
preference relation � over choices;

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics 25

Ch1 � Ch2 ⇐⇒ Urel(Ch1) ≥ Urel(Ch2). (9)

In a similar fashion, an upper bound for the expected utility w.r.t. <,≤ can be
defined via the help of using sup in ℘rel instead. We conjecture that the use of
sup and inf can induce a characterisation of risk-seeking and risk averse agents
respectively, once the maximum expected utility is defined. We leave this to future
work. In the sequel, we will drop rel, and write just U instead for the sake of
simplicity.

From the definition above, it follows that the utility of an inconsistent al-
ternative/choice (with respect to the knowledge base) is undefined. Thus we re-
strict ourselves to assess only the consistent decisions. This naturally provides us
a service to eliminate alternatives which can cause inconsistencies.

Notice that calculating the utility of a choice, can be thought of as answering
a series of consistency checking problems. We speculate that it is at least of the
complexity of the consistency checking problem (of the employed Prob-DL lan-
guage) in the size of the given UBox. We leave a detailed formal investigation on
complexity issues to future work.

Now, given the decision base and the expected utility of a choice Ch, one can
easily define the type of the problem such as calculating the maximum expected
utility:

Chmax = argmax
Ch

{U(Ch) | Ch ∈ C} (10)

This can be generalised in terms of picking up the best n choices together.

Chn
max = arg max

(Ch1,...,Chn)
{U(

n⋃
i=1

Chi) | Ch1, . . . , Chn ∈ C and n ≤ |C|} (11)

Or it can be logically restricted to a situation that agent can pick up at most
one choice (mutually exclusive), with the following definition.

Definition 3 (Mutual Exclusion). A decision base D = (K, C,U) is mutually ex-
clusive if for every Chi, Chj ∈ C with i �= j, Chi ∪ Chj ∪ K is inconsistent.

In general, in order to model the concerned type of a decision problem,
one can bring some restrictions on C and U . Also, in U one can express com-
plement attributes that is the utility of having both attribute is greater than
sum of each, e.g, 〈TechnicallySkilled, 20〉 and 〈FluentInEnglish, 30〉 whereas
〈TechnicallySkilled � FluentInEnglish, 70〉. Similarly one can express substi-
tute attributes i.e., having both attribute has a lower basic utility than each.

3.3. Example: Hiring an employee

We give an example on an agent (employer) giving a decision on hiring an em-
ployee based on criteria such as friendliness, punctuality, being technically skilled

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics26

T = {∃hasPassed.Toefl � P≥0.7FluentInEnglish,

Australian � FluentInEnglish,

∃hasStudied.Math � P≥0.9TechnicallySkilled,

∃hasStudied.Business � P≥0.4TechnicallySkilled,

∃StudiedIn.EliteUni � P≥0.8Smart,

∃StudiedIn.AverageUni � P≥0.5Smart,

P≥0.8Friendly
 Punctual � Reliable}

A = {EliteUni(UniB),

AverageUni(UniA)

Ch1 = { StudiedIn(Alice, UniB), Ch2 = { StudiedIn(Bob, UniA),

Australian(Alice), hasStudied.Math(Bob),

hasStudied.Business(Alice), hasPassedToefl(Bob)}

Punctual(Alice),

P≥0.8Friendly(Alice)}

U = { 〈TechnicallySkilled, 90〉,

〈FluentInEnglish, 70〉

〈Smart, 55〉,

〈Friendly, 20〉,

〈Reliable, 60〉}

Figure 1. Employer’s background knowledge K = (T ,A), choices set CBox C = {Ch1, Ch2}
representing two candidates for the job position, and UBox U on criteria and respective weights

representing the preferences for the position.

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics 27

etc. It can be thought of as impressions of the employer about two candidates
after interviews.

Some of the information (subjective) given in Figure 1, is if someone studied
in a elite university, she is smart at least with the probability 0.8. If an individual
is known to be an Australian than she is certainly fluent in English. Moreover it
is defined that P≥0.8Friendly(Alice) and a Punctual individual is Reliable. It
can be interpreted that the agent also has the impression that Alice is punctual
(which might follow from a possible scenario that she appeared on time to the
interview) etc.

The interested reader can check that the expected utility of both choices and
see that Ch1 � Ch2 since U(Ch1) ≥ 70+90×0.4+55×0.8+0.8×20+60 = 226
whereas U(Ch2) ≥ 0.9 × 90 + 0.5 × 55 + 0.7 × 70 = 157, which is not a surprise
as Bob fails to satisfy reliability and friendliness.

Notice that using Prob-ALCindep
c , one can calculate the expected utility

w.r.t. an extended UBox including a criterion such as 〈TechnicallySkilled

FluentInEnglish, 100〉. In this case, the probability of TechnicallySkilled

FluentInEnglish is implicitly inferred to be ≥ 0.63 for Bob, in turn, getting an
additional score of 63.

4. Related Work

Preference representation using logical languages has become popular over the
last decade. Many of these approaches are based on propositional logic [3,8,18].
DL languages are used for preference representation in [9,11,12,14,13,16], yet most
of them are not including uncertainty. Regarding the first use of DL in the context
of MAUT, [14,13], Ragone et al focus on multi-issue bilateral negotiation. In [11,
12], they mainly discuss how to compute utilities (without uncertainty), where
preferences are represented by weighted DL-formulas (preference set), just as
UBox in our approach.

According to their terminology, our approach can be understood as an
implication-based approach. They define logical implication in terms of member-
ship, i.e., m |= C iff m ∈ CI . The minimal model that they introduced in order
to define the minimal utility value is more restrictive than ordinary models in
DL. They change this definition to ordinary models in their next paper [12], while
keeping the formal machinery the same (except the way they compute utilities).
Hence, in addition to not dealing with uncertainty, the main difference of our
approach is the formal extension to multiple alternatives and the use of ABoxes,
which provides considerable expressivity.

To our knowledge, the only work which attempts to ground MCDM problems
to (fuzzy) DL formally is [16]. The main difference is the choice of fuzzy DL
as formalism to deal with uncertainty. Although the terms utility and preference
are not explicitly used, it consists of preferences implicitly. They base their work
on a standard MCDM feature, a decision matrix wherein the performance score
of each alternative over each criteria is explicitly stated. Criteria are expressed
as fuzzy concepts. Among alternatives, the optimal alternative (w.r.t the fuzzy
knowledge base) is the one with the highest maximum satisfiability degree. In the

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics28

explained framework, authors do not explicitly make a distinction between the
knowledge base and the set of criteria. In general, the focus of the work is to show
the potential and flexibility of fuzzy DL in encompassing the usual numerical
methods used in MCDM, rather than leveraging the practicality of description
logics in MCDM for expressing relations and handling inconsistencies between
criteria, alternatives, and the knowledge base.

5. Conclusion and Further Plan

We have introduced a description logic based framework, to effectively express
and solve decision problems of multi-attribute discrete alternatives.

As the major part of the utility theory and decision making literature is con-
cerned with uncertainty, we based our approach on probabilistic description logics
Prob-DL ([10]). In particular, the probabilistic extension allowed us to compute
the subjective expected utility of choices in terms of their logical implications.
This will allow us in our further work, to access the essential utility theory liter-
ature from the DL perspective, along with lots of new application possibilities.

One major direction is to investigate the decision theoretic properties of the
utility function U , and the expressivity of D, defining some restrictions on the
UBox. Another major research direction is to extend the framework to sequential
decisions (e.g. Di → Di+1, sequence of decision bases). Once sequential decisions
are defined, we will be able to represent policies and define a planner. Further-
more, it can be extended to represent collaborative decision making scenarios as
well as game theoretical set-ups by considering more than one agent and speci-
fying restrictions between their choice sets and knowledge bases. For instance in
an arbitrary set-up, rules of the game could be a subset of intersection of both
agent’s knowledge bases, then the knowledge bases would get extended according
to each players choices if each player can see what others choose. It can be checked
whether a game-theoretical condition is satisfied, in terms of some corresponding
conditions on ontologies.

Currently, we are working on the implementation of the basic framework as a
Protégé2 plug-in. Our plugin is planned to consist of an editor for the definition of
UBoxes and choices, while the background knowledge is loaded via the standard
interfaces of Protégé. Our extension will then be able to compute the utility of the
given choices w.r.t background knowledge and display a ranking of choices. The
development of our Protégé plugin is motivated by the idea to demonstrate the
benefits of our approach to a set of different application scenarios where decision
making is involved.

References

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

2http://protege.stanford.edu/

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics 29

[2] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using

adaptive utility elicitation. In Proceedings of the 7th Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-00), pages 363–369, Menlo Park, CA, July 30– 3 2000. AAAI Press.

[3] Yann Chevaleyre, Ulle Endriss, and Jérôme Lang. Expressive power of weighted proposi-
tional formulas for cardinal preference modelling, December 08 2006.

[4] P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected
utility theory. Intl. Economic Review, 8:335342, 1967.

[5] Phan H. Giang and Prakash P. Shenoy. Two axiomatic approaches to decision making us-
ing possibility theory. European Journal of Operational Research, 162(2):450–467, April 16
2005.

[6] J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,

46:311–350, 1990.
[7] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value

tradeoffs. J. Wiley, New York, 1976.
[8] Céline Lafage and Jérôme Lang. Logical representation of preferences for group decision

making. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000:
Principles of Knowledge Representation and Reasoning, pages 457–468, San Francisco,
2000. Morgan Kaufmann.

[9] Thomas Lukasiewicz and Jörg Schellhase. Variable-strength conditional preferences for
ranking objects in ontologies. J. Web Sem, 5(3):180–194, 2007.

[10] Carsten Lutz and Lutz Schröder. Probabilistic description logics for subjective uncer-
tainty. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Twelfth International
Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.

[11] Azzurra Ragone, Tommaso Di Noia, Francesco M. Donini, Eugenio Di Sciascio, and
Michael P. Wellman. Computing utility from weighted description logic preference formu-
las. In Matteo Baldoni, Jamal Bentahar, M. Birna van Riemsdijk, and John Lloyd, edi-
tors, DALT, volume 5948 of Lecture Notes in Computer Science, pages 158–173. Springer,
2009.

[12] Azzurra Ragone, Tommaso Di Noia, Francesco M. Donini, Eugenio Di Sciascio, and
Michael P. Wellman. Weighted description logics preference formulas for multiattribute
negotiation. In Lluis Godo and Andrea Pugliese, editors, Scalable Uncertainty Manage-
ment, Third International Conference, SUM 2009, Washington, DC, USA, September 28-
30, 2009. Proceedings, volume 5785 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2009.

[13] Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini. De-
scription logics for multi-issue bilateral negotiation with incomplete information. In AAAI,
pages 477–482. AAAI Press, 2007.

[14] Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini. DL-
based alternating-offers protocol for automated multi-issue bilateral negotiation. In Diego
Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin
Turhan, and Sergio Tessaris, editors, Proceedings of the 2007 International Workshop on
Description Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June,
2007, volume 250 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[15] Yoav Shoham. Conditional utility, utility independence, and utility networks. CoRR,

abs/1302.1568, 2013.
[16] Umberto Straccia. Multi criteria decision making in fuzzy description logics: A first step.

In Juan D. Velásquez, Sebastián A. Ŕıos, Robert J. Howlett, and Lakhmi C. Jain, editors,
KES (1), volume 5711 of Lecture Notes in Computer Science, pages 78–86. Springer, 2009.

[17] Jyrki Wallenius, James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Stanley Zionts, and
Kalyanmoy Deb. Multiple criteria decision making, multiattribute utility theory: Recent

accomplishments and what lies ahead. Management Science, 54(7):1336–1349, 2008.
[18] Dongmo Zhang and Yan Zhang. A computational model of logic-based negotiation. In

AAAI, pages 728–733. AAAI Press, 2006.

E. Acar / Computing Subjective Expected Utility Using Probabilistic Description Logics30

Towards modeling surprise in economics

and finance: a cognitive science

perspective

Davi Baccan a,1 , Luis Macedo a and Elton Sbruzzi b

a CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal
b CCFEA, University of Essex, Essex, UK

Abstract. In financial markets, market participants need to cope with risk and un-

certainty, to forecast possible scenarios, and to constantly analyze and revise their

beliefs, expectations, and strategies in the light of the massive amount of econom-

ical and financial information they receive. Interestingly, the relevance does not

seem to reside in the numbers itself but rather whether they elicit “surprise” for

market participants. In this paper we review the presence of the term surprise in

economics and finance as well as how it is computed. Then, we present how emo-

tions are defined in cognitive science, provide a formal definition of surprise, and

describe the surprise process. Additionally, we present some theories regarding how

artificial surprise can be computed. In a case study we compare the two different

perspectives on surprise, discussing some similarities and differences. Finally, we

present some possible applications of the cognitive science perspective.

Keywords. Autonomous agents and multiagent systems, cognitive modeling,

multi-agent-based simulation, multidisciplinary topics, social simulation and

modeling

1. Introduction

One of the essential tasks in the context of economics and finance is forecasting. Perhaps

one of the best contexts to observe the importance of forecasting as well as the effects

of a good or bad forecast is the context presented by financial markets, especially stock

markets. In a stock market, market participants need to cope with risk and uncertainty

[16], by assessing and, ultimately, attributing probabilities to the occurrence of a poten-

tially good or bad/risky/unexpected event. This kind of assessment is essential because

a series of strategies depend somewhat on the probability of the occurrence of events

that may have an impact on asset prices [22]. Additionally, participants tend to typically

trade based on the risk-return trade-off, i.e., lower (higher) levels of risk are generally

associated with lower (higher) levels of potential returns.

In this complex and dynamic environment, market participants need to constantly

analyze and revise their beliefs, expectations, and strategies in the light of the massive

1Davi Baccan is supported by TribeCA (“Trading and investing with behavioral-emotional Cognitive

Agents”) project, funded by the FEDER through the “Programa Operacional Regional do Centro”.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-31

31

amount of information they receive [29]. Such information includes a wide variety of

financial and economic indicators, and data regarding companies. Interestingly, what

seems to be relevant for asset behaviour and prices are not the numbers in itself, but ac-

tually whether they are lower, equal, or higher than the general beliefs and expectations,

the so-called market consensus (e.g., see [2]). Terms such as “lower (higher) than ex-

pected” and “beat (miss) the expectation” are indeed commonly employed in the context

of stock markets.

In the literature related to economics and finance there are several different theories

and hypotheses that try to explain how a stock market works (e.g., [17, 9]). Traditional

economic theories, such as the Efficient Market Hypothesis (EMH) (e.g., [9]), relies on

the assumption that market participants have stable and well-defined preferences [28].

Additionally, such theories assume that when participants are confronted with decisions

that involve risk, they are able to correctly form their probabilistic assessments according

to the laws of probability, calculating which of the alternative courses of action maximize

their expected utility. Therefore, most of the participants are efficient in reflecting new

information accurately [21]. The EMH refers to hypothesis that market prices fully and

instantaneously incorporate the information and expectations of all market participants.

Last but not least, the EMH assumes that market participants have no cost in acquiring

and analyzing information.

However, behavioral economics (e.g., [15]), i.e., the combination of psychology and

economics that aims to understand human decision-making under risk as well as how

this behaviour matters in economic contexts, have documented extensive experimental

evidence that there are deviations from the rational behaviour. Such deviations, known

as behavioral biases, are believed to be ubiquitous to humans, and several of them are

clearly counterproductive from the economics perspective. Examples of behavioral bi-

ases are herding, and overreaction [5] (i.e., the evidence that most people tend to “over-

react” to unexpected and dramatic news events).

In this paper we review in Section 2 the presence of the term surprise in economics

and finance as well as how it is computed. Then, we present in Section 3 how emotions

are defined in cognitive science, provide a formal definition of surprise, and describe the

surprise process. Additionally, we present some theories regarding how artificial surprise

can be computed. In Section 4 we describe a case study in which we compare the two

different perspectives on surprise. In Section 5 we discuss some similarities and differ-

ences between the perspectives and point out some possible applications of the cognitive

science perspective on artificial surprise.

2. Surprise in economics and finance

In this section we briefly present which investment and trading strategies are used by

market participants, show evidence of the presence of the term surprise in the context of

economics and finance as well as how it is computed.

2.1. Investment and trading strategies

In the scenario of a stock market there are, generally speaking, three investment or trading

strategies commonly used by market participants in creating beliefs, expectations, and

goals.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance32

First, technical analysis (also referred to as graphical analysis) (e.g., [8]) make use

of a myriad of statistical indicators derived from and build upon stocks data together

with graphical patterns and tools to understand stock prices behaviour, identify trends

and ultimately to discover and explore profit opportunities. The underlying assumption is

that prices incorporate all relevant information, and both past behaviour and returns are

rich in information concerning future behavior so that they can be used to some extent to

predict or indicate future movements, i.e., history repeats itself.

Second, some market participants, known as “noise traders” [4], do not employ any

“rational” mechanism, tend to form incorrect beliefs and expectations as well as base

their trading strategies on what they consider to be worth information but actually is

simple noise.

Third, fundamental analysis (e.g., [11]), whose rational is more in line with this

work, is concerned with the estimation of the intrinsic (also referred to as fundamental

or “fair”) price. It begins with the estimation of the intrinsic value of a company, which

includes both tangible and intangible assets. This task also involves the analysis of a

wide range of factors like the understanding of the current macroeconomics scenario as

well as the forecasting of possible scenarios. Additionally, it requires a close examination

of financial information regarding the company (e.g., earnings). Finally, fundamental

analysis is interested in identifying the internal and external risks which may affect the

company. The work of fundamental analysis commonly results in a variety of ratios (e.g.,

P/E ratio, i.e., price-to-earnings ratio) which are used to estimate whether a current asset

price deviates from the “fair” price. The problem relies on the fact that fundamentals are

not totally observable. Forecasters often diverge in their opinions and forecasts to that the

success of fundamental analysis resides in the estimation accuracy regarding the “fair”

price.

2.2. The term surprise in economics and finance

There are a series of examples of the presence of the term surprise in the context of

finance and economics (e.g., interest rates [12], surprise indexes [27], and overreaction

[5]). However, some of the most prominent examples come from the research related to

earnings surprise (e.g., [3, 7]). Considering the rational presented by the fundamental

analysis, the basic interpretation is that when the actual earnings, released by companies

with a given periodicity, are higher (lower) than the expected by the so-called market

consensus, market participants should, according to Efficient Market Hypothesis (EMH),

react to this new and surprising information accordingly.

The rational regarding earnings surprise can also be applied to other financial and

economic indicators of different kinds (e.g., leading economic indicators). Generally

speaking, a better than expected data about a relevant indicator (e.g., unemployment rate)

may signal that the economy is behaving better than the expected and therefore the earn-

ings of the companies will be also higher than the expected. Some indicators such as the

Citigroup Economic Surprise Index (CESI) try to gauge that (see [27] for more details).

To illustrate how different indicators relate to each other as well as to stress the impor-

tance of earnings/profits for asset behaviour and prices, we show in Figure 1 the evolu-

tion of the S&P500, i.e., an index that includes 500 companies in leading industries in

the U.S. economy, corporate business profits before tax, and real gross domestic product

(GDP).

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance 33

Figure 1. S&P500 index, corporate business profits before tax, and real gross domestic product (GDP), from

01-07-2004 to 01-07-2013, quarterly adjusted, generated with the Economic Research Federal Reserve Bank

of St. Louis site - http://research.stlouisfed.org/.

2.3. Market consensus and the computation of surprise

Forecasts with the goal of creating a so-called market consensus are generated by a set

of persons such as economists and professionals of financial markets. For instance, tra-

ditional economic and financial services periodically surveys groups of economists and

professionals on a set of indicators. In this context, there are several different methods for

computing earnings surprise (e.g., [14]). The earnings surprise is calculated by perform-

ing some kind of comparison between the actual earnings with the consensus estimate

(generally the mean or the median of the forecasts).

The basic method for computing the unexpected earnings (UEq) is calculated by

dividing the actual earnings (EPSq) by the consensus estimate (ESTq) in the time pre-

ceding the announcement, e.g., a quarter q: UEq1 = EPSq/ESTq (Equation 1). The un-

expected earnings (UEq) can also be calculated by a slightly different method: UEq2 =
EPSq −ESTq (Equation 2). Also, there are two different and more sophisticated scal-

ing methods for computing the unexpected earnings. The scaled unexpected earnings

(SCUEq) is calculated by dividing unexpected earnings (UEq2) by the absolute value of

reported eps (EPSq): SCUEq =
UEq2

abs(EPSq)
(Equation 3). Similarly, the standardized un-

expected earnings (SUEq) is calculated by dividing the unexpected earnings (UEq) by

the standard deviation of the consensus estimate (σ ESTq): SUEq =
UEq2

σESTq
(Equation 4).

The same rational used to compute earnings surprise can be applied to compute the sur-

prise “felt” by market participants with respect to other micro and macro economic and

financial indicators.

3. Surprise in cognitive science

In this section we briefly present how emotions are defined by cognitive emotion theories.

Then, we provide a formal definition of surprise, describe the surprise process, as well

as present some theories regarding artificial surprise.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance34

3.1. Cognitive Emotion Theories

Cognitive emotion theories (e.g., [26]), such as the Belief-Desire Theory of Emotions

(BDTE) [25], rely on the assumption that emotions are mental states elicited as a result

of the evaluation or appraisal of stimuli of all kinds (e.g., events) and can be computed

in terms of cognitions (beliefs) and motives (desires). Beliefs are mental states in which

one holds a particular proposition to be true, whereas desires represent the motives or

future states that one wants to accomplish.

The BDTE [25] is consisted of propositions, beliefs, desires, new beliefs, and two

hard-wired comparator mechanisms, namely the Belief-Belief Comparator (BBC) and

the Belief-Desire Comparator (BDC). The conceptual framework of the BDTE is the

same as the belief-desire theory of action which inspired the BDI (belief-desire-intention)

approach to artificial agents. In this section we provide a concise but sufficient descrip-

tion of the BDTE relevant to this work. To understand the nature of both the BDTE and

the BDI approach, please see Reisenzein et al. [26].

A proposition p is represented as a tuple 〈S,B,D〉 where S is the mental language ex-

pressing the proposition p, B and D are quantities representing, respectively, the agent’s

degree of belief and desire regarding proposition p. The strength of a belief in a propo-

sition p at time t, is defined as b(p,t), where b(p,t) ∈ R and 0.0 ≤ b(p,t) ≤ 1.0, where

1.0 denotes certainty that p, 0.5 maximal uncertainty, and 0.0 certainty that not p. Simi-

larly, the strength of a desire about a proposition p at time t, is defined as d(p,t), where

d(p,t) ∈ Z and −100 ≤ d(p,t) ≤ +100, where positive values denote desire in favor of

p, negative values denote desire against p, and 0 denotes indifference. A new belief is

the belief or fact in a proposition that agents receive basically through its sensors (e.g.,

vision).

The Belief-Belief Comparator (BBC) compares each newly acquired belief with all

pre-existing beliefs, looking for match versus mismatch. A match (mismatch) means that

a pre-existing belief was confirmed (disconfirmed) by the newly acquired belief. As a

result, BBC yields either a belief-confirmation signal or belief-disconfirmation signal.

Similarly, the Belief-Desire Comparator (BDC) compares each newly acquired belief

with all pre-existing desires, looking for match versus mismatch. A match (mismatch)

means that a desire was “fulfilled” (“frustrated”). As a result, BDC yields either a desire-

fulfillment signal or desire-frustration signal. BDTE defines emotions as products or sig-

nals produced by the BBC and BDC.

For example, suppose an agent has b(p,t) = 0.9 and d(p,t) = +80, i.e., at time t the

agent believes proposition p will happen, and has a desire in favor of p. When the agent

receives a new belief at time t +1 that actually p not happened, the BBC yields a belief-

disconfirmation signal (surprise), since what the agent believed at t as less likely really

happened. Similarly, the BDC yields a desire-frustration signal, since the agent has a

desire in favor of p.

3.2. Surprise

Surprise is a neutral valence emotion, formally defined as a peculiar state of mind, usu-

ally of brief duration, caused by unexpected events, or proximally the detection of a con-

tradiction or conflict between newly acquired and pre-existing beliefs [23, 19]. Surprise

serves us in many functions such as attention and learning, being considered, from an

evolutionary perspective, crucial for survival in a rapidly changing environment.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance 35

Surprise is closely related to how beliefs are stored in memory. Our semantic mem-

ory, i.e., our general knowledge and concepts about the world, is assumed to be repre-

sented in memory through knowledge structures known as schemas (e.g., [1]). A schema

is a well-integrated chunk of knowledge or sets of beliefs, which main source of infor-

mation available comes from abstraction from repeated personally experienced events or

generalizations. Schemas serve the interpretation of present and past, and make it possi-

ble the prediction of future events by means of the adaptive guidance of action.

3.2.1. The Surprise Process

Meyer et el. [23] proposed a cognitive-psychoevolutionary model of surprise. They claim

surprise-eliciting events elicit a four-step sequence of processes.

The first step is the appraisal of an event as unexpected or schema-discrepant. For

instance, in the case of the BDTE, one of the functions of the BBC is the detection of

disconfirmation between pre-existing and newly acquired beliefs or, in other words, to

detect whether a schema-discrepancy occurs.

If the degree of unexpectedness or schema-discrepancy exceeds a certain threshold

then, in the second step, surprise is experienced, ongoing mental process are interrupted

and resources such as attention are reallocated towards the unexpected event.

The third step is the analysis and evaluation of the unexpected event. It generally

includes a set of subprocesses namely the verification of the schema discrepancy, the

analysis of the causes of the unexpected event, the evaluation of the unexpected event’s

significance for well-being, and the assessment of the event’s relevance for ongoing ac-

tion. It is assumed that some aspects of the analysis concerning the unexpected event are

stored as part of the schema for this event so that in the future analysis of similar events

can be significantly reduced both in terms of time and cognitive effort.

The fourth step is the schema update. It involves producing the immediate reactions

to the unexpected event (if it is the case), and/or operations such as the update, extension,

or revision of the schema or sets of beliefs that gave rise to the discrepancy. The schema

change (belief update process) ideally enables one to some extent to predict and control

future occurrences of the schema-discrepant event and, if possible, to avoid the event if

it is negative and uncontrollable, or to ignore the event if it is irrelevant for action.

3.2.2. Artificial Surprise

Two models of artificial surprise for artificial agents can be stressed namely the model

proposed by Macedo and Cardoso [20] and the model proposed by Lorini and Castel-

franchi [18]. Both models were mainly inspired by the cognitive-psychoevolutionary

model of surprise proposed by Meyer et el. and have influence of the analysis of the

cognitive causes of surprise from a cognitive science perspective proposed by Ortony

and Partridge [24]. To a detailed description of the similarities and differences of the

models see [19]. There are other approaches of artificial surprise proposed for other con-

text rather than artificial agents (e.g., [13]). We consider the model proposed by Macedo

and Cardoso as the simplest, easy to understand, and straightforward existing model for

artificial surprise.

Macedo et el. carried out an empirical study [20] with the goal of investigating how

to compute the intensity of surprise in an artificial agent. They proposed several alter-

native functions for computing the surprise intensity based on the assumption that the

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance36

surprise “felt” by an agent elicited by an event Eg is proportional to the degree of un-

expectedness of the event Eg. They examined the functions by carrying out a two-step

experiment. First, they collected ratings of probability and surprise intensity provided

by human participants in two domains (political elections and sports games). Second,

they empowered artificial agents with the alternative functions as well as with the ratings

of probability provided by human participants so that the artificial agents were able to

compute the surprise intensity values. Finally, the values obtained by the artificial agents

were compared with the actual surprise intensity given by human participants.

This study suggested that the intensity of surprise about an event Eg, from a set of

mutually exclusive events E1, E2, ..., Em, is a nonlinear function of the difference, or

contrast, between its probability/belief and the probability/belief of the highest expected

event (Eh) in the set of mutually exclusive events E1, E2, ..., Em. Formally, let (Ω,A,P)
be a probability space where Ω is the sample space (i.e., the set of possible outcomes of

the event), A = A1,A2, ...,An, is a σ f ield of subsets of Ω (also called the event space,

i.e., all the possible events), and P is a probability measure which assigns a real number

P(F) to every member F of the σ f ield A. Let E = E1,E2, ...,Em, Ei ∈ A, be a set of

mutually exclusive events in that probability space with probabilities P(Ei) ≥ 0, such

that
m
∑

i=1
P(Ei) = 1. Let Eh be the highest expected event from E. The intensity of surprise

about an event Eg, defined as S(Eg), is calculated as: S(Eg) = log2(1+P(Eh)−P(Eg))
(Equation 5). In each set of mutually exclusive events, there is always at least one event

whose occurrence is unsurprising, namely Eh.

4. Comparing different perspectives on surprise: a case study

We carried out a case study to compare the computation of surprise from the per-

spective of economics and finance to the perspective of cognitive science. We ob-

tained the free data related to the forecasts from the Wall Street Journal (WSJ)

(http://projects.wsj.com/econforecast/). The WSJ monthly surveys a group of nearly 50

economists on more than 10 major economic indicators. For this case study we selected

the unemployment rate as indicator as well as compiled its data from 01-07-2008 to 01-

01-2014 in a total of 70 months. Similarly, we obtained the actual/released data regarding

the selected economic indicator from the Economic Research Federal Reserve Bank of

St. Louis (http://research.stlouisfed.org/).

The economical and financial approach is straightforward. We applied the earnings

surprise rational to compute the surprise regarding the unemployment rate (UR). We

computed the mean and the standard deviation σESTm of the forecasts, where m refers to

the monthly periodicity, the unexpected unemployment rate by UURm (Equation 1) and

UURm (Equation 2), the scaled unexpected unemployment rate SCUURm (Equation 3)

and the standardized unexpected unemployment rate SUUREm (Equation 4).

The results of this case study are shown in Figure 2.

5. Discussion and conclusion

First of all, it is important to bear in mind that our goal is not to provide evidence neither

in favor of nor against the use of a given indicator. We could have selected another

indicator(s) without any impact on our results.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance 37

Figure 2. Top: Real data vs mean forecast (left), SCUURm (Equation 3) (center), (Equation 4), SUUREm
(Equation 4) (right); Bottom: Mean forecast, standard deviation vs real data (left), Violation of confidence level

(center), S(Eg) (Equation 5) (right).

The cognitive science perspective rely on the subjective probabilities to compute

artificial surprise (Equation 5). As it should be, considering the underlying theory, it

does not capture whether it is positive or negative. Additionally, the higher the difference

between the outcomes, the higher may be the surprise.

The economical and financial perspective can be thought of as a pure mathematical

approach. It uses a standard deviation to try to capture whether forecasters diverge or

converge as well as to present whether the surprise is positive or negative, however, it

requires an understanding of the related indicator (e.g., a lower than expected data in

unemployment rate is a good thing).

Unlike the straightforward economical and financial perspective, the cognitive sci-

ence perspective requires the creation of the outcomes and the estimation of its subjective

probabilities. For instance, in this work we rely on the assumption that forecasts follow a

Normal distribution pattern. We could have used a normality test (e.g., Shapiro Wilk test)

or analyzed other variables (e.g., kurtosis) to test that assumption. However, the results

may be true for one group and false for another group (the efforts spent on such task

would be probably in vain). Nevertheless, we consider that relying on this assumption

does not have any impact on our results, especially taking into account that we used this

rational just to create the so-called consensus. Despite that, one should indeed be careful

in assuming the Normal distribution pattern in other contexts (e.g., there is substantial

evidence that financial asset returns are not normally distributed [16]). Other methods

would ideally include mechanisms such as self-reports so that forecasters should be able

to express their confidence in their forecasts. With this information one may be able to

weight the forecasts more precisely. Another approach may include the analysis of dif-

ferent financial instruments (e.g., options) to try to infer the beliefs of market participants

by observing their actions.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance38

Considering the cognitive science perspective, what we are able to say is that the

release of an indicator may elicit surprise only on a given set of persons, the so-called

market consensus and not the entire market. Instead of carrying meaningful information,

terms such as “beat (miss) market expectation” seem to carry just “noise” and, in the end,

does not seem to make much sense, at least from this perspective.

The findings of the behavioral economics together with empirical observations of

the behaviour of market participants have been stressing the necessity of adopting novel

approaches [10] in order to improve our understanding of complex economical and finan-

cial systems [6]. One of the possible ideas is the use of cognitive modeling approaches.

Having cognitive agents means that artificial agents will be empowered with mechanisms

similar to or inspired in those used by humans. Therefore, the behaviour of artificial

agents tends to be closer to the behaviour of humans in a similar scenario. Our multidis-

ciplinary work is line with this context. It is, as far as we know, one of the first attempts

(possibly the first) to bring together two different approaches on surprise, by presenting

and describing what surprise is from the cognitive science perspective and, furthermore,

how an artificial surprise model can be computed and applied to economics and finance.

The use of cognitive modeling approaches in this kind of complex systems is in its early

stages. We consider that the use of relatively simple but powerful tools in conjunction

with other cognitive models, like those discussed in this work, offers a rich and novel set

of possibilities for investigation and to shed light on the behaviour of cognitive agents.

References

[1] Alan Baddeley, Michael Eysenck, and Michael C. Anderson. Memory. Psychology

Press, 1 edition, February 2009.

[2] Eli Bartov, Dan Givoly, and Carla Hayn. The rewards to meeting or beating earnings

expectations. Journal of Accounting and Economics, 33(2):173–204, June 2002.

[3] Victor L. Bernard and Jacob K. Thomas. Post-earnings-announcement drift: De-

layed price response or risk premium? Journal of Accounting Research, 27:1–36,

1989. ArticleType: primary article / Issue Title: Current Studies on The Informa-

tion Content of Accounting Earnings / Full publication date: 1989 / Copyright 1989

Accounting Research Center, Booth School of Business, University of Chicago.

[4] Fischer Black. Noise. Journal of Finance, 41(3):529–543, 1986.

[5] Werner F M De Bondt and Richard Thaler. Does the stock market overreact? Jour-
nal of Finance, 40(3):793–805, 1985.

[6] Jean-Philippe Bouchaud. Economics needs a scientific revolution. Nature,

455(7217):1181, October 2008.

[7] Lawrence D. Brown. Small negative surprises: frequency and consequence. Inter-
national Journal of Forecasting, 19(1):149–159, January 2003.

[8] Robert Edwards and John Magee. Technical Analysis of Stock Trends. Snowball

Publishing, July 2010.

[9] Eugene F. Fama. Efficient capital markets: A review of theory and empirical work.

The Journal of Finance, 25(2):383–417, May 1970.

[10] J. Doyne Farmer and Duncan Foley. The economy needs agent-based modelling.

Nature, 460(7256):685–686, 2009.

[11] Robert G. Hagstrom. The Warren Buffett Way. Wiley, 2 edition, October 2005.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance 39

[12] Young Wook Han. The effects of US macroeconomic surprises on the intraday

movements of foreign exchange rates: Cases of USD-EUR and USD-JPY exchange

rates. International Economic Journal, 24(3):375–396, 2010.

[13] Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. Vision
Research, 49(10):1295–1306, June 2009.

[14] Michael Kaestner. Investors’ misreaction to unexpected earnings: Evidence of si-

multaneous overreaction and underreaction. Behavioral Finance, 3, 2006.

[15] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision

under risk. Econometrica, 47(2):263–291, 1979.

[16] Andrew Lo and Mark Mueller. WARNING: physics envy may be hazardous to your

wealth! Journal of Investment Management, 8:13–63, 2010.

[17] Andrew W. Lo. Reconciling efficient markets with behavioral finance: The adaptive

markets hypothesis. Journal of Investment Consulting, 7:21–44, 2005.

[18] Emiliano Lorini and Cristiano Castelfranchi. The cognitive structure of surprise:

looking for basic principles. Topoi: An International Review of Philosophy, 26:133–

149, 2007.

[19] Luis Macedo, Amilcar Cardoso, Rainer Reisenzein, Emiliano Lorini, and C. Castel-

franchi. Artificial surprise. In Handbook of Research on Synthetic Emotions and
Sociable Robotics: New Applications in Affective Computing and Artificial Intelli-
gence, pages 267–291. 2009.

[20] Luis Macedo, Rainer Reisenzein, and Amilcar Cardoso. Modeling forms of surprise

in artificial agents: empirical and theoretical study of surprise functions. In 26th
Annual Conference of the Cognitive Science Society, pages 588–593, 2004.

[21] Burton G Malkiel. The efficient market hypothesis and its critics. Journal of Eco-
nomic Perspectives, 17(1):59–82, 2003.

[22] Harry Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.

[23] W. U. Meyer, Rainer Reisenzein, and A. Schutzwohl. Toward a process analysis

of emotions: The case of surprise. In Motivation and Emotion, volume 21, pages

251–274, 1997.

[24] Andrew Ortony and Derek Partridge. Surprisingness and expectation failure: what’s

the difference? In Proceedings of the 10th international joint conference on Artifi-
cial intelligence - Volume 1, pages 106–108, Milan, Italy, 1987. Morgan Kaufmann

Publishers Inc.

[25] Rainer Reisenzein. Emotions as metarepresentational states of mind: Naturaliz-

ing the belief-desire theory of emotion. Cognitive Systems Research, 10(1):6–20,

March 2009.

[26] Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks,

Emiliano Lorini, and John-Jules Meyer. Computational modeling of emotion: To-

wards improving the inter- and intradisciplinary exchange. IEEE Transactions on
Affective Computing, 99(1):1, 2013.

[27] Chiara Scotti. Surprise and uncertainty indexes: real-time aggregation of real-

activity macro surprises. International Finance Discussion Paper 1093, Board of

Governors of the Federal Reserve System (U.S.), 2013.

[28] Herbert A. Simon. A behavioral model of rational choice. The Quarterly Journal
of Economics, 69(1):99–118, February 1955.

[29] Karl-Erik Warneryd. Stock-Market Psychology: How People Value and Trade
Stocks. Edward Elgar Publishing, illustrated edition edition, October 2001.

D. Baccan et al. / Towards Modeling Surprise in Economics and Finance40

Temporal Plan Quality Improvement and

Repair using Local Search

Josef Bajada 1, Maria Fox and Derek Long

Department of Informatics, King’s College London,
Strand, London WC2R 2LS, United Kingdom.

{josef.bajada, maria.fox, derek.long}@kcl.ac.uk

Abstract. This paper presents an approach to repair or improve the quality of

plans which make use of temporal and numeric constructs. While current state-

of-the-art temporal planners are biased towards minimising makespan, the focus

of this approach is to maximise plan quality. Local search is used to explore the

neighbourhood of an input seed plan and find valid plans of a better quality with

respect to the specified cost function. Experiments show that this algorithm is

effective to improve plans generated by other planners, or to perform plan repair

when the problem definition changes during the execution of a plan.

Keywords. temporal planning, scheduling, optimisation, local search, plan repair

Introduction

Real world planning problems often need to take into account time and resources together

with concurrency and exogenous events. PDDL 2.1 [1] and 2.2 [2] introduced the

constructs necessary to model such problem domains, under the form of durative actions,

numeric fluents and timed initial literals. Nevertheless, most of the state-of-the-art

temporal planners struggle to cope with complex metric functions and concurrency. Most

planners are biased to generate feasible plans that minimise plan length or makespan.

However, in some problem domains it is preferable to generate plans that minimise a

certain cost rather than plan duration. This is especially true for domains where plan

execution is continual and the goal is to maintain some variables within specific bounds,

or new goals are queued into the system during the plan’s execution. One example

is the demand-side electricity aggregator domain. In this case the system needs to

find a plan, comprising of task-completing actions and load-shifting actions, within a

planning horizon that features frequent electricity price fluctuations, with the objective

of minimising wholesale electricity costs [3].

In this paper we present a domain-independent approach that generates high quality

plans, in terms of some cost function. The proposed technique involves performing a

local search on a provided input seed plan to explore its neighbourhood for better quality

plans. This process can then be repeated until the time allocated for the algorithm has

1This research is funded by the UK Engineering and Physical Sciences Research Council (EPSRC) as part

of the project entitled The Autonomic Power System (Grant Ref: EP/I031650/1)

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-41

41

elapsed. One can also utilise one of the existent temporal planners to generate a valid

feasible plan, and use that as the input seed plan to find better quality plans. The proposed

algorithm is also effective for plan repair, when exogenous events or changes in goals

invalidate a plan.

1. Background

Local search is commonly used in various combinatorial problems, such as discrete

optimisation, and it has also proved to be successful in classical planning. LPG [4] is one

popular planner that uses this approach. An action graph that connects the initial state

to the goal is found by adding or removing random actions from the problem’s planning

graph. The process is then repeated until the action graph becomes a solution graph, that

is, until it has no flaws and the goal facts are present in the final state, making it a valid

plan. While the original version of LPG caters only for propositional planning, it was

later enhanced [5] to support some of the temporal constructs introduced in PDDL 2.1.

Local search was also proposed as a solution for plan improvement in the context of

classical planning [6]. In this case a neighbourhood graph of states is constructed from

the states of the given seed plan, and the shortest plan that leads from the initial state to

the goal is then extracted using Dijkstra’s algorithm.

We propose to use local search to find plans in domains that not only require

concurrent durative actions, but also have invariant conditions that are potentially

mutually exclusive. Furthermore, our objective is to find plans of a high quality with

respect to some metric. A problem’s time-related constraints and characteristics, such as

action durations and timed events, are used to build a planning time line. The respective

plan violations at each time point are analysed and the respective metrics at each state

are also calculated. This enables the algorithm to consider concurrent actions and also

account for non-linear numeric effects. Most state-of-the-art temporal planners struggle

with concurrent durative actions and non-linear numeric effects. While these planners

are biased towards finding shorter plans, our approach can find plans of a better quality.

Moreover, valid plans generated by these planners can be used as input seed plans for our

algorithm, which will then search for a better plan in terms of some objective function.

The input seed plan does not have to be valid, which also makes this algorithm useful

for plan repair. If a plan becomes invalid due to changes in the environment, the new

problem definition can be analysed in conjunction with the old plan to generate a new

valid plan for the new version of the problem.

Local search algorithms comprise of two main components:

1. A neighbourhood function, which transforms an input state into a set of new

but very similar states, with a very limited number of differences.

2. An evaluation function, which determines the states that are more desirable,

according to some objective.

Using these two components new neighbours are generated, evaluated and explored

according to the algorithm being used. Hill climbing algorithms incrementally choose

neighbours that provide a better solution until no further improvements are possible. This

carries the risk of getting stuck into a local minimum. Other flavours of local search

algorithms include simulated annealing [7], which allows the exploration of inferior

solutions with a certain probability, improving the chances of finding a global minimum.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search42

2. Temporal Planning

Our notion of temporal planning follows the semantics of PDDL 2.1 [1], where actions

have a duration, together with conditions and effects that are associated with the start,

end or execution of the action. We also consider exogenous timed events, as defined in

PDDL 2.2 [2]. The following definitions formulate the fundamental underpinnings of

these semantics.

Definition 2.1. A temporal problem, P = 〈A, I,L,G〉, consists of a set of possible actions

A, the initial state I, a set of timed initial literals L, and a goal condition G.

Definition 2.2. A temporal plan, π = {a0,a1, ...,ak}, is defined as a list of durative

actions. Each action a has a start time, denoted start(a), and a duration, dur(a).

The start time of a durative action is a positive rational number, indicating the time,

after the start of the plan, when the action should commence. The duration is also a

positive rational number. Multiple durative actions can be executed concurrently in a

temporal plan.

Definition 2.3. A durative action, a, may have conditions that need to be satisfied just

before it starts, referred to as startCond(a), conditions that need to be satisfied just before

it ends, referred to as endCond(a), and invariant conditions that need to hold throughout

the execution of the action, referred to as inv(a).

Definition 2.4. A durative action, a, may have effects that are applied when the action

starts, referred to as startE f f (a), and effects that are applied when the action ends,

referred to as endE f f (a).

PDDL 2.1 [1] also defines continuous effects, to represent continuously changing

values with respect to the time elapsed from the start of the action. This construct is not

currently supported in the work presented here.

Timed initial literals (TILs) were introduced in PDDL 2.2 [2] to support predictable

exogenous state-changing events that will occur at some predetermined time during the

plan. A timed initial literal, l, has a time when it is predicted to take place, time(l),
and an associated proposition that will become true or false. This construct is useful

to denote external changes in the environment, or time windows when certain activities

can take place. For example, in the demand-side electricity aggregator domain, TILs are

used to perform tariff switches. TILs can be seen as instantaneous actions without any

preconditions that will take place at a predefined time.

Each durative action, a, can be translated into two snap actions [8], a�, correspond-

ing to the start of the action, and a�, corresponding to the end of the action. Snap

actions are essentially instantaneous actions where pre(a�) = startCond(a), pre(a�) =
endCond(a), e f f (a�) = startE f f (a) and e f f (a�) = endE f f (a).

In order to avoid ambiguity in the application of action effects, a total order is

enforced by introducing a minimal time separation ε between two successive actions,

and only one snap action is allowed to be applied at a certain point in time. The sequence

Eπ = {e1,e2, ...,en} corresponds to the state-changing activities (snap actions and TILs)

of π , with time(ei) denoting the time when ei will be executed.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 43

Definition 2.5. A plan’s state time-line ϒ(π) = {〈0,s0〉,〈t1,s1〉,〈t2,s2〉, ...,〈tn,sn〉} is a

sequence of pairs 〈t,s〉 where t is a rational number corresponding to the time from the

start of the plan when the current state will become s. State s0 is the initial state.

A period, pi, denotes the time interval between two successive states on the time-

line. These periods are used to identify possible insertion points where new actions could

be added to the plan. The last period pn is open-ended since it denotes the time interval

that follows the final state sn, thus allowing actions to be added to the end of the plan.

∀〈ti,si〉 ∈ ϒ(π), where 0 ≤ i ≤ n : pi =

{
〈ti, ti+1〉, if i < n
〈ti,∞〉, if i = n

(1)

The invariant conditions of a period pi correspond to all the invariant conditions of

the actions running concurrently throughout that period, as defined in Equation 2.

invp(pi) =
⋃

a∈Ai

inv(a), where 0 ≤ i < n and

Ai = {a|start(a)≤ ti < ti+1 ≤ start(a)+dur(a)}
(2)

3. The Neighbourhood of a Temporal Plan

We define a plan π ′ as the neighbour of a plan π , denoted π ′ ∈ N(π), if π ′ can be

obtained by either adding one applicable action at some point on the time-line, removing
an existent action from the plan, or moving an action to start and end at a different time

point on the plan’s time-line. Each of these operations will naturally change the plan’s

state time-line and also the invariant conditions for each period.

3.1. Adding an Action

By adding a new durative action, anew, to start within period pi and end within period

p j, where 0 ≤ i ≤ j ≤ n, two new states, ss and se, will be added to the time-line,

corresponding to the two snap actions of anew. The state ss = startE f f (anew)(si), reflects

the start effects of anew applied to state si. The state se = endE f f (anew)(s′j), reflects

the application of the end effects of the action, where s′j is the new state obtained from

applying all subsequent actions following ss in sequence up till t j. All the states sx,

where i < x ≤ n, following ss on the time-line, need to be propagated and updated to

s′x, to account for the effects of the new action. All the states {s0, ..., si} will remain

the same while the subsequent states will be updated. The new action will naturally run

concurrently with any other actions scheduled to run during periods {pi, ..., p j}, making

it possible to find solutions in cases where concurrency is required [9].

A durative action, anew, is only eligible for addition to the plan’s time-line at an

arbitrary time point during period pi if it satisfies the following compatibility criteria:

1. The state si satisfies the start conditions of anew, that is si |= startCond(anew).

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search44

2. The new state ss satisfies all the invariant conditions during that period, including

those of anew, that is ss |= inv(anew)∪ invp(pi).
3. All the subsequent states of ss up to and including se satisfy the invariant

conditions of anew, that is ∀s ∈ {ss,s′i+1, ...,s
′
j,se} : s |= inv(anew)

This ensures that the new action is compliant with the plan. However, this does not

mean that subsequent conditions or invariants associated with any periods p j, where

j > i, will not be violated by adding anew at pi. Nevertheless, invalid neighbouring plans

can still lead to valid plans that are further away in the neighbourhood of the seed plan π .

By considering a violated plan π ′, that can be repaired through further exploration, the

algorithm improves its chances of escaping from local minima.

The set {p j|i ≤ j ∧ start(p j) < end(pi) + dur(anew) ∧ end(p j) > start(pi) +
dur(anew)} (where start(p) and end(p) correspond to the start and end time-point of

period p respectively) defines the possible candidate periods where anew can end. Each

possibility that also satisfies the above compatibility criteria can be used to obtain a valid

neighbouring plan π ′. The start time of anew is then set to an arbitrary value that satisfies

max[start(pi),start(p j)−dur(anew)]< start(anew)< min[end(pi),end(p j)−dur(anew)]
and ∀e ∈ Eπ : start(anew) �= time(e) �= start(anew)+dur(anew).

3.2. Removing an Action

Any durative action, adel , that is already in the plan, can be selected for removal. The

two states, sd and sr, where 0 < d < r ≤ n, correspond to states obtained by applying the

start and end effects of the action adel respectively. By removing the action, these two

states are removed from the plan’s time-line, and the rest of the states that follow sd are

updated accordingly.

3.3. Moving an Action

Moving an action, amov, can be seen as a macro action that involves removing an action

and adding it again at a different point on the time-line. The effect of this modification

would be a change in the plan’s total ordering of the actions rather than a change of the

plan’s set of actions. This is especially useful in domains where the order of the actions

has an impact on the cost of the plan, or exogenous events change the action costs at

specific time points. This move needs to satisfy the same compatibility criteria used for

adding an action to be considered a valid operation.

Substituting an action with another one might intuitively also seem like a valid

neighbourhood operation. However, the benefits of such an operation in a temporal

context, where actions have different durations and action swapping can change the total

ordering of state-changing events, need to be analysed further.

4. Evaluation of Neighbouring Temporal Plans

A temporal plan obtained through the neighbourhood function needs to be evaluated

on two levels. Firstly, we need to determine how close the plan is to a valid solution.

Secondly, we need to measure the cost of the plan, with respect to some cost function. In

order not to get stuck in local minima, inferior plans to the current one are also evaluated

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 45

and explored, with a certain probability. This is governed by a probability distribution

that diminishes proportionally with the exploration distance, that is the number of nodes

traversed from the best one. This means that immediate neighbours of the best plan have a

higher probability of being accepted than ones further away in the neighbourhood graph.

However, valid plans that have a better cost than the current best plan will always be

accepted. This is intuitively similar to the approach used in simulated annealing [7],

where a temperature value decreases with each iteration, and the probability of accepting

a weaker solution is computed using a function of this temperature. However, in our

case we reset the distance each time we restart searching again from the best plan, thus

assigning a high acceptance probability to closer neighbours, irrespective of when they

were discovered.

4.1. Computing a Plan’s Validity

Let αi = {a|start(a) = ti} be the set of actions in a plan π starting at a time point ti,
and ωi = {a|start(a)+dur(a) = ti} be the set of actions ending at a time point ti, where

0 < i ≤ n. Equation 3c defines the set of conditions that need to be satisfied at time point

ti, in terms of the start and end conditions of actions starting or ending at ti, defined by

Equations 3a and 3b respectively. G(ti) represents any goal conditions that need to be

satisfied at ti. Goals that are only required to be satisfied at the end of the plan and do not

have any time constraints are included in the set G(tn).

startCondT (ti) =
⋃

a∈αi

startCond(a) (3a)

endCondT (ti) =
⋃

a∈ωi

endCond(a) (3b)

cond(ti) = startCondT (ti)∪ endCondT (ti)∪ invp(pi)∪G(ti) (3c)

The conditions that are actually satisfied at ti are those that are satisfied by the state

si−1, defined as σ(ti) = {c|c ∈ cond(ti)∧ si−1 |= c}. Conversely, φ(ti) = cond(ti)\σ(ti)
defines the set of conditions that are not satisfied at ti. A plan is considered valid if

∀ti ∈ {t1, ..., tn} : φ(ti) = /0. If a plan is invalid, the number of violations v(π) is calculated

by accumulating all the unsatisfied conditions at a given time point ti, excluding any

conditions that were already unsatisfied at ti−1. This helps to avoid inflating the violation

count from a common condition that is required by more than one action or by the same

action at more than one point on the time-line. This process is defined recursively through

Equations 4a to 4d, where 0< i≤ n. cond+(ti) represents the cumulative set of conditions

that need to be satisfied at ti together with any conditions that were not satisfied at ti−1.

Similarly, σ+(ti) represents the cumulative conditions that are satisfied at ti, including

any conditions carried forward from previous states, and conversely φ+(ti) represents

the cumulative set of conditions unsatisfied at ti. We can then extract φ ∗(ti), the set of

conditions that are introduced at ti.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search46

cond+(ti) = cond(ti)∪φ+(ti−1) (4a)

σ+(ti) = {c|c ∈ cond+(ti)∧ si−1 |= c} (4b)

φ+(ti) = cond+(ti)\σ+(ti) (4c)

φ ∗(ti) = φ(ti)\φ+(ti−1) (4d)

If a condition becomes satisfied at t j, but becomes unsatisfied again at a later time

tk, (where i < j < k), and is needed by an action at or after tk, it is counted twice. This

is because at least two additional actions are needed to make the plan valid. Equation 5

defines the violation count v(π) for a plan π . If v(π) = 0, the plan π is valid.

v(π) =
n

∑
i=1

|φ ∗(ti)| (5)

4.2. Acceptance Probability Function

In order to promote the exploration of a broader neighbourhood we need a function

that has a high probability of accepting plans that are close neighbours of the initial

plan. On the other hand, in order to avoid exploring deep branches that do not lead to a

solution, we need such a function to asymptotically decrease towards 0 in proportion to

the exploration distance d, parametrised by the maximum distance m we want to explore.

One candidate that fits these criteria is the sigmoid function defined in Equation 6.

gm(d) = 1−
(

1

1+ e(m−d)

)
(6)

We also want to increase the chances of accepting a good candidate at any

exploration distance, depending on its fitness ratio with respect to the previous plan. This

value is computed using the function f (π ′,π), which compares two plans π ′ and π , as

shown in Equation 7.

f (π ′,π) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(π ′)+1

c(π)+1
, if v(π) = v(π ′) = 0

v(π ′)+1

v(π)+1
, otherwise

(7)

If both plans are valid, the actual cost function c(π) is used, which is subject to

the respective domain and problem instance. If one of the plans is invalid, the fitness

ratio with respect to an adjacent plan is calculated using the number of violations in the

two plans. In both cases 1 is added as a smoothing parameter. Equation 8 defines the

acceptance probability function of exploring π ′ from its adjacent neighbouring plan π ,

with the current distance from the best plan π∗ being d.

pm(π ′,π,d) = gm(d) f (π ′,π) (8)

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 47

5. Searching for Temporal Plans

The algorithm to search for a better temporal plan, starting from an initial seed plan π ,

involves exploring its neighbourhood until a better one is found. A plan π ′ is considered

better than π , denoted by the relation ≺c, if the plan π ′ has no violations, and either π is

not a valid plan, or the cost of π is more than that of π ′. Formally, π ′ ≺c π if (v(π ′) =
0)∧(v(π)> 0∨c(π ′)< c(π)). Given that the neighbourhood of a plan can be very large,

a neighbour is generated randomly, with the search taking the form of a random walk

guided by the acceptance probability function, pm, as described in Algorithm 1. The set

visited keeps track of the plans explored during one random walk to avoid cycles.

Algorithm 1 Local search for a better temporal plan

Require: Seed plan π∗, maximum distance m
1: π ← π∗ ; d ← 0

2: visited ←{π}
3: while not(π ≺c π∗) and not(term) do
4: if d ≥ m then
5: π ← π∗ ; d ← 0

6: visited ←{π}
7: end if
8: π ′ ← select random plan from N(π)\ visited
9: if (v(π ′)> 0) and (v(π ′)< v(π∗)) then

10: π∗ ← π ← π ′ ; d ← 0

11: visited ←{π}
12: else if π ′ ≺c π then
13: π ← π ′ ; d ← d +1

14: visited ← visited ∪{π}
15: else
16: r ← random double between 0 and 1

17: if r ≤ pm(π ′,π,d) then
18: π ← π ′ ; d ← d +1

19: visited ← visited ∪{π}
20: end if
21: end if
22: end while
23: return π

In its simplest form, this algorithm carries the risk of running indefinitely if no better

plan is found, or if no valid solution actually exists. The terminating condition term
determines whether the loop should stop or continue iterating, even if no better plan has

been found. This terminating condition could depend on the total number of iterations,

the time elapsed from the start of the search, or some other context-dependent condition.

Once a better plan is found, this algorithm can be executed again using the new plan as

the input seed plan π∗, in order to improve the plan quality further.

The initial seed plan can be an invalid one. This algorithm will compute the number

of violations in the seed plan and try to find valid plans that do not have any violations.

This makes it also suitable for plan repair, since it will exploit the plan structure of the

initial plan to try to find a similar one that satisfies all the required conditions.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search48

6. Preliminary Experiments

The proposed algorithm has been implemented within a temporal plan solver capable of

parsing PDDL 2.2 domain and problem files, together with a seed plan for the problem.

This solver performs a local search and outputs a new improved plan. If no seed plan is

provided, it will try to find a feasible solution to the problem, which will then be used as

the seed plan for subsequent iterations.

Some preliminary experiments have been performed with two temporal domains;

the Transport domain, from the IPC 2008 competition, and the Aggregator domain,

specifically designed to find solutions for managing demand-side electrical loads. Since

the original version of the Transport domain was designed to minimise time, it has been

slightly modified to also keep track of the total fuel used. The problem instances were

also modified to make alternative cheaper or more expensive solutions also possible.

The aggregator domain represents a demand-side electricity aggregator that needs

to schedule flexible load (such as dish-washing or EV charging), and also use storage

devices to shift load to more preferable times of the day. Both the forecasted inflexible

load and wholesale electricity prices fluctuate throughout the day and the goal is to

find the best combination of actions that minimises the cost of inflexible and flexible

load. The cost of the plan is calculated by adding the inflexible and flexible load

components and multiplying the result with the energy cost at that time. This domain

is particularly challenging for existent planners due to the fact that this cost depends on

various variables that are changing over time rather than accumulating a monotonically

increasing cost with each action.

Table 1 shows an example of how an initial seed plan generated by the planner POPF

[10] for the Aggregator domain was improved to minimise the costs by moving activities

to cheaper periods and making use of batteries. Each line indicates a separate durative

action in the plan. The number before the action indicates its start time, while the number

in square brackets indicates its duration.

Table 1. Initial seed plan and improved plan for the Aggregator domain.

Seed Plan 0.000: (start-metering) [1440.000]
0.001: (perform wash-dishes-h3 wash-dishes-normal) [110.000]
0.001: (perform wash-dishes-h2 wash-dishes-fast) [80.000]
0.001: (perform wash-dishes-h1 wash-dishes-fast) [90.000]

Improved
Plan

0.0: (start-metering) [1440.0]
251.222: (charge battery-s1 charge-normal) [166.667]
296.667: (perform wash-dishes-h2 wash-dishes-fast) [80.0]
298.333: (charge battery-s2 charge-normal) [66.667]
308.944: (perform wash-dishes-h3 wash-dishes-normal) [110.0]
315.0: (perform wash-dishes-h1 wash-dishes-fast) [90.0]
626.667: (discharge battery-s1 discharge-fast) [83.333]
630.0: (discharge battery-s2 discharge-fast) [44.444]

Figure 1a shows the plan improvements when running the proposed algorithm on a

problem instance of the Transport domain with 5 cities, 2 trucks and 2 packages. Figure

1b shows the plan improvements for the Aggregator domain with 10 household tasks,

10 electricity storage units and 6 tariff switches over 24 hours. One should keep in mind

that the potential plan improvement is naturally problem dependent and Figure 1 only

demonstrates that for temporal numeric planning problems that have a broad solution

space this approach is capable of improving plan quality.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search 49

��

����

����

����

����

����

�� �� �� �� �� �� �	 �

��

���

���

�	�

���

����

��
��
��
�	

��
�
��
	

�
���
���

����
������	

�����
�������	���
���

(a) Transport domain

��

�����

�����

�����

�����

�����

�	���

�
���

�����

��� ��� ��� ��� ��� �	� �
� ��� ��� ����
��

���

���

���

���

���

��
��
��
�	

��
�
��
	

�
���
���

����
������	

�����
�������	���
���

(b) Aggregator domain

Figure 1. Improvements in plan costs with respect to the number of iterations.

7. Conclusions and Future Work

We have presented an algorithm that improves the quality of plans for temporal planning

problems with numeric properties. While current state-of-the-art temporal planners are

very capable of finding feasible plans, the proposed algorithm is able to exploit the

structure of such plans to find better solutions. Preliminary experiments have been

performed using two temporal domains and it has been demonstrated that this algorithm

can improve plan quality, albeit more effective in problems with a broad solution space.

Future work includes incorporating techniques that shorten the makespan of a plan

when it does not have any impact on the plan cost and inter-period optimisation to find

the best schedule of a sequence of actions. Support for additional PDDL 2.1 constructs

such as continuous effects and duration inequalities is also being investigated, together

with further experiments with other domains using temporal and numeric characteristics.

References

[1] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal planning domains,”

Journal of Artificial Intelligence Research, vol. 20, pp. 61–124, 2003.

[2] S. Edelkamp and J. Hoffmann, “PDDL2.2: The language for the classical part of the 4th international

planning competition,” Tech. Rep. 195, 2004.

[3] J. Bajada, M. Fox, and D. Long, “Challenges in Temporal Planning for Aggregate Load Management

of Household Electricity Demand,” in 31st Workshop of the UK Planning & Scheduling Special Interest
Group (PlanSIG), 2014.

[4] A. Gerevini, A. Saetti, and I. Serina, “Planning Through Stochastic Local Search and Temporal Action

Graphs in LPG.,” Journal of Artificial Intelligence Research, vol. 20, pp. 239–290, 2003.

[5] A. E. Gerevini, A. Saetti, and I. Serina, “Temporal Planning with Problems Requiring Concurrency

through Action Graphs and Local Search,” in Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS 2010), no. Icaps, pp. 226–229, 2010.

[6] H. Nakhost and M. Martin, “Action Elimination and Plan Neighborhood Graph Search : Two Algorithms

for Plan Improvement,” in Proceedings of the 20th International Conference on Automated Planning
and Scheduling (ICAPS 2010), pp. 121–128, 2010.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.,” Science (New
York, N.Y.), vol. 220, pp. 671–80, May 1983.

[8] A. Coles, M. Fox, D. Long, and A. Smith, “Planning with Problems Requiring Temporal Coordination,”

in Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-08), pp. 892–897, 2008.

[9] W. Cushing, S. Kambhampati, Mausam, and D. S. Weld, “When is Temporal Planning Really

Temporal?,” in 20th International Joint Conference on Artificial Intelligence (IJCAI-07), 2007.

[10] A. Coles, M. Fox, and D. Long, “POPF2: a Forward-Chaining Partial Order Planner,” The 2011
International Planning Competition, pp. 65–70, 2011.

J. Bajada et al. / Temporal Plan Quality Improvement and Repair Using Local Search50

HiPOP: Hierarchical Partial-Order
Planning

Patrick BECHON , Magali BARBIER , Guillaume INFANTES ,
Charles LESIRE and Vincent VIDAL

Onera — The French Aerospace Lab; F-31055, Toulouse, France;
name.surname@onera.fr

Abstract. This paper describes a new planner, HiPOP (Hierarchical
Partial-Order Planner), which is domain-configurable and uses POP

techniques to create hierarchical time-flexible plans. HiPOP takes as

inputs a description of a domain, a problem, and some optional user-
defined search-control knowledge. This additional knowledge takes the
form of a set of abstract actions with optional methods to achieve them.
HiPOP uses this knowledge to enrich the output by providing a hier-
archical time-flexible partial-order plan that follows the given methods.
We show in this paper how to use this additional knowledge in a POP
algorithm and provide results on a domain with a strong hierarchy of
actions. We compare our approach with other temporal planners on this
domain.

1. Introduction

The main focus of our approach is to deal with multi-agent missions where several
teams of robots must collaborate and schedule concurrent tasks to achieve a
common goal. In some cases, for instance for sea rescue [1], it is also compulsory
to follow known patterns. This is especially appropriate when the system has to
interact with humans trained to follow certain procedures. In this paper, we are
only concerned with the initial plan production but our approach is designed to
be easily used in cases where there is a need to execute and repair the plan.

In order to achieve those goals, we designed a planner that will output a
time-flexible plan with hierarchical actions. A time-flexible plan will be easier to
execute and to repair since small delays in actions can be dealt with without
replanning everything. The hierarchical structure of the actions will allow the user
to provide additional knowledge to the planner to improve the planning time and
to impose additional constraints such as following some procedures.

We can use the hierarchical actions to plan on a higher level, for instance with
teams or robots. And then use this plan at the team level to instantiate it into a
plan for every robot. This leads to solutions where robots on the same team share
the same high-level goal at any time (which is not expressible in term of low-level
action) and they move together as much as possible. For a given high-level goal
we can also describe how to achieve it with elementary actions. This also allows

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-51

51

the output of a higher-level solution to a human operator while each robot has
the full plan with all elementary actions.

These reasons lead us to investigate in this first step both partial-order plan-
ning and hierarchical task network planning, aiming at obtaining a new algorithm
that will mix the best of both worlds. The unification of those two approaches
has already been discussed under the term hybrid planning.

The goal of HiPOP is to output a partial-order plan, with time flexibility
and time concurrent actions, including a hierarchy among actions. The additional
user-provided knowledge is also used to improve the planner performance. This
knowledge being optional, HiPOP will resort to a POP algorithm if none is pro-
vided.

2. Background and related work

POP (Partial-Order Planning) is an algorithm already used by several planners
such as VHPOP [20] and CPT [19]. One of the main drawbacks of POP compared
to other commonly used algorithms is that it is usually slower [20]. But partial-
order plans are more convenient to use in plan reparation [10], plan merging [8]
and plan adaptation [11]. They can also output time-flexible plans.

On the other hand, introducing higher-level (abstract) actions like in Hierar-
chical Task Network (HTN) planning has been shown to improve planning time
in some cases [13] and to help during plan reparation [6]. It is also more expres-
sive than first principle planners [5]. Since the first HTN planners were state-
based, they usually could not deal with time constraints and with concurrent ac-
tions. Some formalisms have been proposed to deal with those conditions, such
as [2,7,13].

The idea of HiPOP to mix those two approaches was inspired by DPOCL
[21], which introduced decomposition of actions in the context of POP. The same
idea was already studied under the name hybrid planning, including the extension
of hierarchical planning in UCP [9] and the PANDA system [16]. PANDA is a
formal framework meant to compare different algorithms and heuristics, but not
meant to be used in a real world setting.

This work can also be related to several ideas used in other situations. Adding
preconditions and effects to higher-level actions to better control search is explored
in Angelic planning [12]. GoDeL [17] uses optional user-defined knowledge to guide
a landmark-based planner. Mixing HTN and POP in a domain-specific planner
with a strict separation between several hierarchical levels is described in [3].
SIADEX [2] adds temporal reasoning into a HTN planner, keeping a forward-
chaining algorithm.

HiPOP uses its POP component to output a time-flexible plan with concur-
rent actions, unlike state-based planners. It is able to plan with several levels of
abstraction concurrently. And unlike other work on hybrid planning, HiPOP is
implemented and compared to other temporal planners.

As HiPOP is an extension to classical POP, we first explain POP algorithm
before introducing our additions. We then describe the search-control heuristics
used, before explaining our experimental setup and showing some results.

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning52

3. Classical POP algorithm

We describe here a plain fully instantiated Partial-Order Planning algorithm (also
called Partial-Order Causal Link). We selected a literal-based description of the
world where a state is represented as a set of positive literals. The negation of
literal l is noted ¬l. A domain is defined as a set of actions. The resulting state
of the application of an action is obtained from a starting state by removing the
set of its negative effects and adding the positive ones.

Definition 1 (action). An action is a tuple (P, E , dur) where P is a set of literals
representing the preconditions, E is the set of literals representing the effects and
dur is the duration of the action.

Definition 2 (step). A step s is a tuple s = (a, ts) where a = (P, E , dur) is an
action and ts is an index of a time point in an STN. This timepoint represents
the start time of s. We denote act(s) = a, tstart(s) = ts, tend(s) = ts + dur,
E(s) = E, P(s) = P and dur(s) = dur.

tend(s) represents the end time of the step s. It is used as a convenience
notation to represent time constraints that only deal with the start time of each
step. A Simple Temporal Network (STN) [4] is used to check schedulability over
the time point indexes. If the set of constraints allows at least one solution, the
STN (or equivalently the set of constraints) is said to be consistent.

Let si, sj be steps. si ≺ sj is a shorthand for tend(si) ≤ tstart(sj). We will
use the classical definitions of causal links (noted (si

l−→ sj) where l is a literal),
open links (noted (l−→ si)) and threats (noted as a tuple (sk, si

l−→ sj) where sk
is the threatening step and si

l−→ sj is the threatened causal link).

Definition 3 (flaw). A flaw is either an open link or a threat.

Definition 4 (partial plan). A partial plan P is a tuple (S, T C, CL,F) where S is
a set of steps, T C is a set of (simple temporal) constraints over the time points
of S, CL is a set of causal links, F is a set of flaws. We denote S(P) = S and
F(P) = F .

A POP algorithm will explore the space of partial plans to find a complete
plan. P is said to be consistent if T C(P) is consistent. P is said to be complete if
F(P) = ∅ and P is consistent.

Definition 5 (planning problem). A problem instance is a tuple (A, I, G) where A
is the set of available actions, I is a set of literals representing the initial state,
G is a set of literals representing the goal.

Algorithm 1 shows the pseudocode for a POP algorithm solving a planning
problem Prb = {A, I, G}. It works by keeping a set of all the generated but not
yet visited plans: Π.

The initial plan is built by the procedure InitialPartialPlan. It creates a plan
with two dummy steps, corresponding to actions as and ae. as is the dummy
start action with P(as) = ∅, E(as) = I and ae is the dummy end action with

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning 53

Algorithm 1: Basic POP algorithm

1 Π = {InitialPartialPlan(I,G)} ;
2 while Π �= ∅ do
3 P = PopBestPlan(Π) ;
4 if F(P) = ∅ then
5 return P ;
6 end
7 f = PopBestFlaw(F(P)) ;
8 Π = Π ∪ Resolvers(A, P, f) ;

9 end
10 return ∅

P(ae) = G, E(ae) = ∅. All other steps must appears after the dummy start step
and the dummy end step.

The PopBestP lan procedure removes the best partial plan from Π according
to a heuristic and returns it. PopBestF law does the same with the set of flaws.
At each iteration the algorithm selects the next plan to expand (line 3). Then
a flaw is chosen (line 7) and the successors of P are generated and added to Π
(line 8). The Resolvers (A, P, f) procedure returns a set of partial plans, each
consistent and solving f in P in a different way accordingly to the type of the
flaw. The algorithm stops when a complete plan is found (line 5) or when Π is
empty (line 10).

To remove an open link to s, the Resolvers procedure has to add a causal
link from si. si can be an existing step in P or a newly introduced step built from
an action of A. When adding a new causal link new threats can appear. When
adding a new step all of its preconditions must be added as open links.

To remove a threat (sk, si
l−→ sj), there are only two ways: either the con-

straint sk ≺ si (demotion) or sj ≺ sk (promotion) has to be added to the STN.

4. Adding abstract actions to classical POP

The goal of HiPOP is to use higher-level actions during search. The planner should
be able to use abstract steps as elementary steps and to refine them when needed
into a set of steps, causal links and temporal constraints.

Definition 6 (abstract action). An abstract action, also called higher-level action,
is a tuple (P, E , dur,M, C):

• the first three elements (P, E , dur) are the same as in an elementary action
(Definition 1),

• M is a set of partial plans (called methods), used to instantiate the action,
• C is a set of conflicts (see Definition 8 below).

A step with an abstract action is called an abstract step. The method of an
abstract action is a partial plan in itself. During search, abstract actions can be

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning54

used as any other actions. But a new type of flaw is introduced: the abstract flaw.
It represents the fact that there is an abstract step in the plan.

Definition 7 (flaw in abstract POP). (Replaces Definition 3) A flaw is an open
link, a threat or the presence of an abstract step in P (abstract flaw).

The only way to solve this new flaw is to pick one of its methods and to
introduce the partial plan representing it in the current plan. It means adding
all the steps, causal links, temporal constraints and flaws of the method to the
plan, along with the dummy actions (see below). When adding the steps, a new
time point is created for each one. After that, the abstract step has no effect
on search (it cannot be used as the origin of a new causal link), but the newly
created (non-dummy) steps can be used normally. The hierarchy of steps (which
steps were introduced as children of which other steps) is also kept and returned
at the end of the algorithm. Algorithm 1 is still valid, but Resolvers have to be
adapted to deal with this new type of flaw.
Dummy actions (and their corresponding steps) are introduced in every partial
plan. They are slightly different in case of methods associated to the abstract
action ai: the dummy actions asi and aei are such that P(asi) = E(asi) = P(ai) and
P(aei) = E(aei) = E(ai); their duration is null. The difference with the dummy
actions introduced in the initial plan is that the initial action has now a set of
preconditions and the end dummy action has a set of effects.

They are introduced to deal with the following case. Assume that the open
link l−→ si exists when si is instantiated, where si is a step using ai. Assume also
that l is used by several steps in si. Then each step of si can be linked to the
dummy initial step ssi . This open link is then the only one needed to guarantee
that all the requirements of the child actions are met. Without dummy actions,
we would have an open link for each step using l, increasing the number of plans
to explore to solve them. This also guarantees than the same provider of l will be
used for all steps in si.
Allowed actions. Using HiPOP as presented above leads to very poor performance
and the output does not always take advantage of the hierarchical description of
actions. This is because we only increased the branching factor, but even if the
abstract actions are efficient the algorithm will explore in parallel plans with and
without abstract actions. Those branches will produce the same elementary plan
but will be explored concurrently.

To solve this issue we used an idea from HTN planning: the user provides a
set of highest-level actions, the only actions that the planner can use to add a
step. All the other actions are only used when refining an existing step. So the
only change is in the Resolvers procedure, when adding a new step the algorithm
can only select an explicitly allowed action. Planners like TALPlan and TLPlan
also use the additional knowledge to prune the search tree, and this is similar to
the search of plan respecting the user-intent presented in [9].
Threats of abstract actions. Some issues arise that can over-constrain the problem
if threat solving procedures are not adapted to deal with abstract steps. Let us
consider a threat (sk, si

l−→ sj). If sk is abstract and encompasses several steps,
it might be enough to promote only the last one and not all of them. If si is
abstract and encompasses several steps, it might be enough to demote sk before

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning 55

the last step and not before all of them. If sj is abstract and encompasses several
steps, it might be enough to promote sk after the first step and not after all of
them. To deal with this problem, we use a new kind of promotion. The idea is to
add only the mandatory constraint before the refinement even if it means that
another constraint will need to be added after.

The constraint for demotion is tkdem < tidem and the constraint for promotion
is tjpro < tkpro where each variable, defined below, depends on the fact that the
respective steps involved are elementary or abstract. If any step is abstract, the
constraint will be loosened compared to the one enforced by the previous defini-
tion. If all the steps are elementary, the definitions are identical to the previous
algorithm. It is generally not enough to ensure that the plan will be consistent.
The algorithm will have to wait until the refinement to compute more precise
threats.

• tidem ← tstart(si) if si is elementary else tend(si)
• tkdem ← tend(sk) if sk is elementary else tstart(sk)
• tjpro ← tend(sj) if sj is elementary else tstart(sj)

• tkpro ← tstart(sk) if sk is elementary else tend(sk)

If si is abstract we want to avoid scheduling sk before the whole abstract step,
so we restrict the demotion constraint to consider tend(si) instead of tstart(si). If
sj is abstract we want to avoid scheduling sk after the whole abstract step, so we
restrict the promotion constraint to consider tstart(sj) instead of tend(sj).If sk is
abstract we want to allow the promotion of only the last step of sk (line 4) after
sj and the demotion of only the first step of sk before si.

Another problem arises from the fact that a literal can be destroyed and
recreated inside an abstract action. For instance in the survivors domain, one can
create an abstract action where each team has a hospital as a homebase. Each
step of this abstract action will move the team from its homebase to a survivor
and back to the hospital. So the preconditions and the effects will have (at ?team
?homebase) but no causal link on the position of the team can be valid through
the abstract step. It is inefficient to wait until the refinement of the abstract step
to detect it.

To solve this issue, we introduced the notion of resource conflicts. Resource
conflicts are provided in the description of abstract actions. They serve as a way to
find which causal link does an abstract step threaten, independently of its effects.
This also allows to detect two abstract steps that cannot appear concurrently.

Definition 8 (resource conflict). A resource conflict is a (hand-given) set of literals
for an abstract action that may threaten causal links (but are not necessary a
negative effect of the abstract action).

Definition 9 (abstract resource conflict). Two abstract steps are in abstract re-
source conflict if the intersection of their resource conflicts is not empty.

Abstract resource conflicts are considered as a new type of flaw. They can be
solved in the same way than threats: removing a resource conflict between ai and
aj if ai and aj are abstract is done by adding either ai ≺ aj or aj ≺ ai to the set
of temporal constraints.

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning56

Soundness. The soundness proof of HiPOP follows the same pattern than the
soundness proof of POP. If the algorithm returns a plan, one can remove all the
abstract steps from this plan and only consider the elementary steps. The chain of
causal links and the absence of threats are a guarantee that the plan is executable
and accomplishes the goal.
Completeness. It highly depends on the available description and hypothesis. For
instance literals can be masked by the hierarchical description if we assume that
the elementary actions are forbidden. The proof is quick and easy if we allow the
algorithm to plan with abstract or elementary actions without restriction, but
this does not represent the actual use of the algorithm. The search is complete
among the space of all plans that can be represented using only allowed action at
the higher level, ie. among the plans respecting the user intend.

5. Search control

Algorithm 1 uses two heuristics to control search. On line 3 a first one is used to
choose the next plan that will be expanded, called the plan heuristic. On line 7
another one is used to choose the next flaw that will be solved in a given plan,
called the flaw heuristic. Those two heuristics are highly critical for the efficiency
of HiPOP.
Plan heuristics. HiPOP uses the A∗ algorithm to sort the set Π of all plans
generated but not yet explored. They are stored in increasing order of f(P) =
g(P) + h(P) where g(P) is the “distance” from the start point and h(P) is a
heuristic estimation of the cost to reach a complete plan from P . In HiPOP g(P)
is an estimation of the number of elementary (non-dummy) steps in P . It is an
estimation because we cannot be sure of the number of steps in an abstract step
if several methods are available to refine it. In this case, the minimum is taken.
It can thus be defined recursively as:

g(P) =
∑

s∈S(P)

{
1 if s is elementary

min
m∈M(act(s))

g(m) if s is abstract (1)

The computation of h(P) uses the hadd heuristic as described by VHPOP
[20]. Due to the lack of space we cannot describe it here, but we used the sum of
the cost of each open link to sort plan, breaking ties using the effort.

The hadd heuristic does not take into account action reuse, and VHPOP
proposes a modification of hadd to partially take care of it, called reuse.
Flaw heuristics. Previous work on VHPOP [20] as well as our initial results show
that solving threat first is usually a good heuristic, especially when choosing first
the ones with the fewest available resolvers.

To choose between open link flaws and abstract flaws, it is possible to always
pick first abstract flaws or to mix their resolution with open link flaw or to pick
them last.

Picking them first means that there is almost no planning done with abstract
steps, but rather than they are used as a template of what steps should be created

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning 57

together. Our tests showed that this leads to poor results since we do not have
the benefits of planning with abstract steps but have to refine a lot of them.

Mixing the resolution of open link and abstract flaws is not yet studied in
HiPOP due to the lack of heuristics that would allow to compare them. Instead, we
focused on heuristics where the abstract flaws are solved at the end to plan as long
as possible with abstract steps. This means that the planner will first compute
an abstract plan, a plan whose only flaws are abstract, before refining them. This
allows the planner to deal with smaller plans during the search, thus reducing the
planning time until an abstract plan is found. If the abstract description ensures
that any valid abstract plan can be refined into a complete plan without much
backtrack, refining this abstract plan can be done quickly. And it also allows to
separate the search on each instantiation of an abstract action.

While refining abstract steps, it is possible that some literals get “hidden”
by the description: they are created by the elementary steps but are not in the
abstract description (for instance they can depend on the choice of which method
to use for this step). If those literals are needed to finish the plan, this can be
an issue for the planner. To avoid this, the abstract flaws can be refined in their
chronological partial order. If no literal is hidden and if the description allows a
backtrack-free refinement, then the solving order does not matter.

To sort the open links, we used the same heuristics as the one described
by VHPOP namely MW-Loc. It ranks open link according to the effort of their
literals for the most recently added step. This is a compromise between staying
focused on the current sub-goal and solving the harder literals first.

All the following results uses MW-Loc. It means that plans are sorted with
A∗ using the remaining cost as a heuristic. If the costs are equal, the remaining
effort is used as a tie-breaker. The flaws are selected first on their type: threats
first, then open links then abstract flaw. Threats are sorted in LIFO order. The
first open link to be chosen is the one coming from the most recently added step,
with the effort of this open link used as a tie-breaker. Abstract flaws are solved
in chronological order (this is only a partial order, if two steps can be scheduled
together, the flaws are solved in LIFO order).

6. Experimentation and results

We implemented HiPOP in C++, using the IPPC algorithm [14] to incrementally
solve STNs. The domains and problems are modeled in PDDL and the abstract
actions definition in a PDDL-like language. We created a random generator of
problems for the survivors domain and a description of hierarchical actions. It is
possible to vary the number of teams, of hospitals, of survivors and the size of
zones. The position of hospitals and survivors are randomly chosen.

The goal of the hierarchical actions is to allow HiPOP to plan first by rea-
soning with teams (instead of individual robots) and zones (instead of individual
locations). Once a plan with only abstract flaws is encountered, every abstract
action will be instantiated into a set of elementary actions. Those elementary
actions will be concerned with individual robots.

The only actions the planner is allowed to insert to solve an open link are
elementary moves of a robot or a team, a hierarchical action to use a team to

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning58

0 50 100 150

1
e

+
0

2
5

e
+

0
2

5
e

+
0

3
5

e
+

0
4

5
e

+
0

5

●
●●

●

●●
●
●
●

●

●●●

●●

●●●

●
●

Problems

T
im

e
 t

o
 s

o
lv

e
 (

m
s

)

●

HiPOP−R

HiPOP−R−Bare

TFD

YASHP

0 50 100 150

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0

●●
●●

●●

●●●●●●

●

●
●

●

●●
●

●

Problems

L
e

n
g

th
 o

f
s

o
lu

ti
o

n

●

HiPOP−R

HiPOP−R−Bare

TFD

YASHP

Figure 1. Time to solve (left) and makespan (right) on the survivors domain. HiPOP-R uses
the reuse heuristics. HiPOP-R-Bare uses the same heuristics but without abstract actions. We
also included the results of TFD (Temporal Fast Downward) and YASHP

explore a zone and a hierarchical action to use a team to bring a survivor back
to a hospital. For each exploration action, there is one pre-computed patrol for
a team to explore a zone that is not necessarily optimal. This means that the
planner must still make sure that all actions are correctly chained up but does
not need to solve a multi-vehicle travelling salesman problem on the whole zone.
For each action bringing back a survivor, only a skeleton is given and the planner
has to add some motion actions to create a valid plan.

We ran four different planners on a set of 180 randomly generated problems in
the survivors domain. We used two versions of HiPOP, with the reuse heuristics
: HiPOP-R and HiPOP-R-Bare. The latter does not use user-defined knowledge,
so it is a classical POP algorithm. We also used two other temporal planners used
in the temporal track of the IPC: Temporal Fast Downward [15] and YASHP [18].
The experiments were all run on an Intel X5670 processor running at 2.93Ghz
with 24GB of RAM and a timeout of 10 min. The results are shown on Figure 1.

First we can see that adding the additional knowledge to HiPOP helps to
reduce the planning time (by a factor of 10 on the first problems) and to improve
the quality of the output plan. This mostly comes from the fact that HiPOP
does not have to solve a generic travelling salesman problem but can use the
precomputed patrol to solve it more quickly (even if it means that it cannot find
the optimal solution, it will only find solutions that use those patrols).

Comparing it to other planners we can see that YASHP can very quickly
find a solution that is almost always of poorer quality than that of HiPOP. On
the opposite TFD is always slower than HiPOP but finds good solutions. The
solutions found by TFD do not respect the abstract decomposition so they are
not available to HiPOP.

7. Conclusion

We have shown how to add additional user knowledge into a POP planner and
how this knowledge can be used by the planner to improve its performance. We
presented HiPOP, a planning algorithm that uses this knowledge to output hier-
archical, temporally flexible plans. The output plan also provides the information

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning 59

about all the hierarchical actions that were used to generate the plan, so for each
elementary action we can know the hierarchical action it belongs to.

For future work, we will further improve the performance of HiPOP. Several
heuristics could be useful as shown by other research on POP algorithm, such as
sorting the flaws by their number of resolvers. Another direction of study will also
be to use the enriched plans to repair or merge them. It can also be used to better
control its execution, in addition to the flexibility added by the least-commitment
principle for temporal constraints used by POP.

References

[1] International aeronautical and maritime search and rescue manual, volume 3. IMO Pub-

lishing, 1998.
[2] L Castillo, J Fdez-Olivares, O Garcia-Pérez, and F Palao. Efficiently handling temporal

knowledge in an HTN planner. In ICAPS, 2006.
[3] L Castillo, J Fdez-Olivares, and A Gonzalez. Integrating hierarchical and conditional plan-

ning techniques into a software design process for automated manufacturing. Workshop
on Planning under Uncertainty and Incomplete Information, ICAPS, 2003.

[4] R Dechter, I Meiri, and J Pearl. Temporal constraint networks. Artificial intelligence,
49(1):61–95, 1991.

[5] Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and expres-

sivity. In AAAI, volume 94, pages 1123–1128, 1994.
[6] T Gateau, C Lesire, and M Barbier. HiDDeN: Cooperative Plan Execution and Repair

for Heterogeneous Robots in Dynamic Environments. In IROS, Tokyo, Japan, 2013.
[7] RP Goldman. Durative Planning in HTNs. ICAPS, 2006.
[8] M A Hashmi and A El Fallah Seghrouchni. Merging of Temporal Plans Supported by

Plan Repairing. ICTAI, 2010.
[9] S Kambhampati, A Mali, and B Srivastava. Hybrid planning for partially hierarchical

domains. AAAI/IAAI, pages 882—-888, 1998.
[10] Roman Van Der Krogt and Mathijs De Weerdt. Plan Repair as an Extension of Planning.

ICAPS, pages 161–170, 2005.
[11] S M Lee-Urban. Hierarchical Planning Knowledge for Refining Partial-Order Plans. PhD

thesis, Lehigh University, 2012.

[12] B Marthi, S J Russell, and J Wolfe. Angelic semantics for high-level actions. In ICAPS,
2007.

[13] D Nau, T C Au, O Ilghami, U Kuter, J W Murdock, D Wu, and F Yaman. SHOP2: An
HTN planning system. Journal of Artificial Intelligence Research, 20(1):379–404, 2003.

[14] L Planken, M de Weerdt, and N Yorke-Smith. Incrementally solving STNs by enforcing
partial path consistency. ICAPS, 2010.

[15] G Röger, P Eyerich, and R Mattmüller. Tfd: A numeric temporal extension to fast
downward. 6th IPC planners descriptions, 2008.

[16] B Schattenberg. Hybrid Planning And Scheduling. PhD thesis, Ulm University, Institute

of Artificial Intelligence, 2009.
[17] V Shivashankar, R Alford, U Kuter, and D Nau. The GoDeL Planning System: A More

Perfect Union of Domain-Independent and Hierarchical Planning. IJCAI, 2013.
[18] V Vidal. YAHSP2: Keep it simple, stupid. IPC, pages 83–90, 2011.

[19] V Vidal and H Geffner. Branching and pruning: An optimal temporal POCL planner
based on constraint programming. Artificial Intelligence, 170(3):298–335, 2006.

[20] HLS Younes and RG Simmons. VHPOP: Versatile heuristic partial order planner. Journal

on Artificial Intelligence Research (JAIR), 20:405–430, 2003.
[21] RM Young, ME Pollack, and JD Moore. Decomposition and causality in partial-order

planning. International Conference on AI and Planning Systems (AIPS), 1994.

P. Bechon et al. / HiPOP: Hierarchical Partial-Order Planning60

Value Iteration for Relational MDPs in

Rewriting Logic

Lenz BELZNER a,1

a LMU Munich, PST Chair

Abstract. Relational approaches to represent and solve MDPs exploit structure that

is inherent to modelled domains in order to avoid or at least reduce the impact of the

curse of dimensionality that propositional representations suffer from. By explic-

itly reasoning about relational structure, policies that lead to specific goals can be

derived on a very general, abstract level; thus, these policies are valid for numerous

domain instantiations, regardless of the particular objects participating in it. This

paper describes the encoding of relational MDPs as rewrite theories, allowing for

highly domain-specific domain encoding and abstraction. Narrowing is employed

to solve these relational MDPs symbolically. Resulting symbolic value functions

are simplified by Ax-matching abstract state terms. It is shown that relational state

representations significantly reduce the size of state space and value function when

compared to propositional representations.

Keywords. RMDP, Symbolic Value Iteration, Rewriting Logic, Narrowing

1. Introduction

The framework of Markov decision processes (MDPs) allows to model domains with

non-deterministic action outcomes and arbitrary reward functions, thus serving well for

modelling problems of sequential decision making under uncertainty [15]. Various exact

and approximate techniques to solve MDPs exist, such as value iteration, policy iteration
and modified policy iteration [18]. Given a reward specification (i.e. system goals), a

solution of a MDP can be computed that is either a value function mapping states to

their corresponding expected values (according to the reward function of the MDP) or a

policy mapping states to actions that are maximizing the expected reward as the policy

is executed. Algorithms for solving MDPs suffer from the curse of dimensionality [1],

rendering them infeasible for large-scale domains. To overcome this problem, effort has

been made to exploit inherent structure of domains by employing factored or relational,

first-order representations of states and actions instead of propositional ones, allowing

to represent structured problem domains more concisely. Thus, computation becomes

feasible also for larger domains, but the additional complexity that arises from structured

domain representations has to accounted for when solving the according MDP [3,12,16].

Rewriting logic is a formal logical framework that lends itself naturally to mod-

elling non-deterministic and concurrent domains on a symbolic level [14,5]. It provides

1This work has been partially funded by the EU project ASCENS, 257414.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-61

61

support for formally specifying structured domains through modularization and object-

orientation, as well as explicitly ordered sorts and polymorphism. Previous work of the

author introduced the specification of relational MDPs (RMDPs) in rewriting logic [2].

This paper shows how matching [9] and narrowing [10,4] can be employed to solve them

using first-order abstraction and avoiding propositionalization. A model-based dynamic

programming algorithm for relational MDPs is introduced that employs first-order rea-

soning and computes exact solutions with the following properties:

• It operates on order-sorted state representations, allowing for polymorphism.

• User-definable constraints assure regression of valid states.

• Only goal-relevant abstract states are regressively constructed and evaluated.

• Reasoning is performed on the first-order level wherever possible.

• The state-action space is factored, leading to concise results.

• Partial goal specifications are supported.

Using rewriting logic to encode domains as RMDPs allows to incorporate features

like user-definable term syntax and equivalence classes, sort-ordering, polymorphism

and object-orientated representation [6]. This enables domain encoding with only a small

representational difference to human expert knowledge. E.g., as many modern software

systems are modelled according to the OO paradigm, this way to specify system auto-

nomicity may help to brigde the gap between software engineering and AI techniques.

The paper is outlined as follows: Section 2 discusses in more detail value iteration to

solve MDPs exactly as well as the rewriting logic framework and the concepts of match-

ing and narrowing. Section 3 describes how RMDPs can be encoded in terms of a rewrite

theory and how rewriting logic concepts can be used to solve these relational MDPs sym-

bolically. Section 4 discusses experimental results and a visualization approach. Finally,

section 5 compares the approach to related work, summarizes the results described in

this paper and hints at possibilities for further research.

2. Preliminaries

2.1. MDPs and Value Iteration

Definition 2.1. A Markov decision process (MDP) is a tuple (S,A,T,γ,R) with S a set

of states, A a set of actions, T : S×A×S → R a transition function, γ ∈ [0;1] a discount

factor and R : S → R a reward function.2

A tuple as given in definiton 2.1 specifies the non-deterministic, discrete time dy-

namics of a domain in terms of a transition system. The transition function T encodes

the probability that executing an action a ∈ A in a particular state s ∈ S will result in a

state s′ ∈ S; note that s and s′ may be equal, indicating absence of an action effect. The

discount factor γ reflects how much an agent prefers immediate over long-term rewards;

the smaller γ is chosen, the more immediate rewards will impact behaviour of an agent

acting according to the MDP. The reward function defines incentives that are given to the

agent in particular states; in other words, it specifies which states are valuable to achieve.

2State-based rewards are used for the sake of simplicity. The approach described in this paper can be ex-

tended straightforwardly to allow for transition-based rewards as well.

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic62

Definition 2.2. A value function V : S → R maps states to values. The value of a state

s ∈ S is the reward gained in s plus the expected discounted future reward when acting

greedily w.r.t. V . A policy π : S → A maps states to actions. An agent acting according
to a policy π executes action π(s) when being in state s.

Solving a MDP means to compute either a value function V mapping states to ex-

pected values w.r.t. the given reward function, or to provide a policy π that maps states

in S to actions in A that are going to maximize the expected reward of an agent acting

according to π .

Vi+1(s)← R(s)+ γ max
a∈A

(
∑
s′∈S

T (s,a,s′)Vi(s′)

)
(1)

Equation (1) shows the value iteration algorithm that computes V iteratively, which

is guaranteed to converge to the optimal solution [1]. The general idea is that the value

of a state is the sum of the reward this state will expose to the agent and the expected

discounted future reward when moving on to the next state by executing an action that is

assumed to be optimal w.r.t. the current value function Vi. V0 can be arbitrarily initialized,

a common approach is to set V0(s) = R(s). Iteration is performed until |Vi+1(s)−Vi(s)|<
ε(1−γ)/γ for each state s ∈ S and a given error bound ε ∈R. This ensures that the max-

imum difference of Vi+1 to the real value function V is smaller than ε for all states [18].

2.2. Rewriting Logic

Rewriting logic is suited towards the formal specification of non-deterministic, concur-

rent systems. System states are encoded in user-definable terms that are constructed from

specified operations that can be enhanced with axioms like associativity, commutativity

or idempotency. System dynamics are then described in terms of so-called rewrite rules,

that allow to specify non-deterministic and concurrent behaviour. The core element to de-

scribe systems in rewriting logic are rewrite theories, i.e. tuples of the form (Σ,E∪A,R),
where Σ contains sorts and operations that are used to construct state terms, E is a set

of equations that define equivalence classes for these terms, A is a set of axioms like

associativity, commutativity or idempotency specified for operations in Σ, and R is a set

of rewrite rules that define the system dynamics. A rewrite theory represents a transition

system, where states are terms in Σ, and rewrite rules in R define state transitions. A cen-

tral concept in rewriting logic is matching, which is performed modulo axioms and with

extensions (Ax-matching, denoted :=Ax). Consider an infix operation ◦ being associative

and commutative, i.e. rendering terms constructed by means of ◦ into a multiset. Then,

for example, a ◦ b :=Ax a ◦ c ◦ b, as the latter has the same equivalence class as the term

a◦b◦ c (due to commutativity) and a◦b is a subterm of a◦b◦ c.

While state terms in Σ specify the static representation of a system, its dynamics are

formalized in terms of rewrite rules of the form label : t → t ′ if Conditions where t and

t ′ are terms of the same kind and may contain free sorted variables. If t Ax-matches a

given subject term, the subject term’s matched portions are rewritten to t ′. A rule’s label

may be omitted. Rewrite rules can optionally be conditional, in which case rewriting only

is applied if all conditions evaluate to true (e.g. sort tests, boolean conditions or matching

and rewriting conditions checking whether a term has a certain structure w.r.t. rewrite

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic 63

theory). As a rule may match different portions of a subject term, this representation

of system dynamics offers a natural way to model concurrency by rewriting a term on

various positions simultaneously according to one or multiple rewrite rules. On the other

hand, non-determinism is expressed if (partially or completely) overlapping portions of

a subject term match one or more rewrite rules, i.e. if different applications of rewrite

rules are possible without being applicable concurrently. In this case, a subject term

evolves non-deterministically in any possible way. For example, consider the rewrite

rules (i) : a → a′, (ii) : a → a′′ and (iii) : b → b′. Then, the term a ◦ b rewrites to a′ ◦ b′

by applying rules (i) and (iii), and also to the form a′′ ◦b′ (using rules (ii) and (iii)).
While rewriting treats variables in a rewriting problem universally quantified, i.e. an-

swering a problem of the form ∀�x : t(�x)→? t ′(�x), a technique called narrowing deals with

corresponding problems where variables are treated existentially, i.e. ∃�x : t(�x)→? t ′(�x),
representing symbolic reachability problems. To answer queries of this form, instead of

matching rules and subject terms as in rewriting, they are unified in order to perform

narrowing, meaning that variables in both terms may be instantiated to achieve syntactic

term unification. I.e., when narrowing, rewrite rules are applied if (one or more subterms

of) the subject term can be unified with a rule’s lefthand side. Note that, when narrowing,

righthand sides of rewrite rules may contain variables not specified in their lefthand side,

allowing rewrite rules to introduce fresh variables. For an in-depth discussion of rewrit-

ing logic and the concepts of matching, rewriting and narrowing see for example [6].

3. Value Iteration for Relational MDPs in Rewriting Logic

3.1. Relational MDPs in Rewriting Logic

In order to perform symbolic value iteration, a relational MDP (S,A,T,γ,R) is encoded

as a rewrite theory (Σ,E∪A,R). States are represented as associative-commutative terms

with user-definable syntax parametrizable with first-order variables, thus allowing to

specify relations between domain objects and to avoid propositional representation where

possible. Axioms and equations of the rewrite theory define equivalence classes for state

(and action) terms, which in turn are representation of non-ground, abstract states. Also,

state terms can be constrained by equations. This allows for a concise representation of

MDPs even when there is a large number of domain objects. Also, as will be shown in

section 3.2, a RMDP specified as a rewrite theory can be solved completely symbolically,

only grounding variables where this is relevant for goal reachability.

For example, in a fluent-based representation, dynamically changing relations of

domain objects can be encoded by a corresponding sort FLUENT. Negation of fluents

(i.e. the explicit absence of a particular state property) is represented by an operation

¬ : FLUENT → FLUENT. The state space is constructed in terms of a sort STATE (with

FLUENT being a subsort of sort STATE) by an associative and commutative operation

∧ : STATE × STATE → STATE that is representing logical conjunction. A constant false
is defined for sort STATE to denote constraint violations, and ¬F ∧ F = false for all

F ∈ FLUENT. State terms that are syntactically constructed in this way may still contain

semantic inconsistencies. Semantic constraints (e.g. state invariants) can be specified in

terms of equations that reduce states that violate constraints to false. States that violate

constraints (e.g. invariants) are reduced to false: S∧ false = false for all S ∈ STATE. The

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic64

set of equivalence classes of state terms can then be considered the set S of states of

a relational MDP. Note that each equivalence class may render different instances of

state terms equal according to their relational structure, thus providing a representation

of abstract first-order states. Primitive actions executable by agents are encoded by a

parametrizable sort ACTION. Equivalence classes on terms of sort ACTION then form the

set of actions A of a relational MDP. As for state terms, free variables are allowed in

action terms. The action space is thus raised to an abstract level that allows to exploit

its relational structure, especially when taking into account relations between state and

action space, e.g. if state and action terms share free variables.

Example 3.1. Consider a signature with sorts TRUCK, BOX and CITY and the sorts

FLUENT, STATE and ACTION as above. One can then for example define a fluent

on : BOX × TRUCK → FLUENT. Consider e.g. a polymorph fluent in defined similarly.

Then in(t,c)∧ on(b, t)∧ in(b′,c) is a term of sort STATE in Σ.3 An action representing

a truck loading a box can be defined by an operation load : TRUCK × BOX → ACTION.

Then, load(t,b) is an ACTION-term in Σ. The constraint that a truck can only be in

one city at a time can be specified by a conditional equation in(T,C)∧ in(T,C′)∧ S =
false if C �=C′. �

To encode the relation of states, actions (e.g. an optimal action in a particular state)

and any corresponding values (e.g. a state’s probability to be reached or its expected

value), SAV-tuples (state-action-value tuples) of the form (s,a,v) are defined. When ei-

ther a or v are omitted, the relation is valid for all actions or values, respectively. Note that

SAV-tuples may relate state and action terms that share variables, consider for example a

SAV-tuple (s(�x∪�y),a(�y∪�z),v) where state and action share the variables�y. Thus, SAV-

tuples allow to partition not only the state space, but the combined state-action space.

To model the transition function T of a MDP, a rewrite rule can be defined for any

transition T(s,a,s′) = p to specify this transition in a rewrite theory5. The transitions in T
for an action a ∈ A are encoded as a disjunctive rewrite rule (with ∑ pi = 1; considering

∨ as disjunctive constructor for sets of SAV-tuples):

(s,a)→ (s′1, p1)∨ (s′2, p2)∨ ...∨ (s′n, pn) .

The state terms s and the s′i can be considered as pre- and postconditions of action a.

This representation of domain dynamics provides a solution to the frame problem [13],

avoiding the necessity to specify all state properties unchanged by action execution.

Finally, a MDP’s reward function R is represented in terms of appropriate equations,

e.g. reward(in(b,c)∧S) = 1.0. Reward is considered to be zero for all other states.

Example 3.2. Consider action load from example 3.1. If a truck executing this action

succeeds to load a box (supposing the truck is in the same city as the box) with a proba-

3The following notational conventions are introduced, unless stated otherwise: Lowercase letters represent

terms (that may contain free variables), uppercase letters represent free variables. In particular, t, t ′,T,∈ TRUCK,

b,b′,B ∈ BOX and c,C ∈ CITY represent constants and free variables denoting domain objects; s,s′,s′i ∈ STATE

and a,a′ ∈ ACTION represent state and action terms, S ∈ STATE denotes a free state variable; p, pi,v,v′ ∈ R
4

denote probabilities of transitions and values of states, respectively.
5In order to match or unify a subject SAV-tuple with the rule’s lefthand side in MAUDE, the rule has to

be encoded in the form (s∧ S,a) → (s′ ∧ S, p). This encoding also explicitly shows the solution to the frame

problem.

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic 65

bility of 0.9, and fails to load it with a probability of 0.1, these transitions are expressed

in terms of the following rewrite rule:

(in(T,C)∧ in(B,C)∧S, load(T,B))→
(in(T,C)∧on(B,T)∧S, 0.9)∨ (in(T,C)∧ in(B,C)∧S, 0.1) .

Note that if there were multiple types of boxes, e.g. light and heavy ones with different

dynamics, these can be specified by exploiting sort-orders and polymorphism. For exam-

ple, sorts LIGHT-BOX and HEAVY-BOX could be defined as subsort of sort BOX, allowing

for polymorph specification of transition dynamics’ rewrite rules. �

Note that specifying RMDPs as rewrite theories is parametric in the underlying rep-

resentation of states and actions. Thus, while the example in this section treated the en-

coding of RMDPs as rewrite theories for a fluent-based representation, the approach can

easily be transferred to other representational paradigms, e.g. OO-MDPs [8] or object-

focused MDPs [7], as rewriting logic provides user-definable syntax, equational abstrac-

tion and order-sorted, polymorph specification of objects and operations [6]. Note that

the MAUDE language also implements support for these features.

3.2. Symbolic Value Iteration

Regression through Narrowing. To allow for regressive induction of state-action space

abstractions from given goal states, rewrite rules that specify domain dynamics are trans-

formed into regressive rewrite rules. The key idea is to define for a given state from

which preceding states it can be reached by execution of a particular action, and with

what probability this action will lead to the given state. The value of the reached state is

then used to compute values of preceding states according to transition probabilities.

Consider a relational MDP (S,A,T,γ,R), a value function V : S → R, and a rewrite

theory (Σ,E ∪A,R) encoding the MDP as outlined in section 3.1. Then, the regressive

dynamics of an action can be specified by inverting the rewrite rule that specifies an

effect for this action (which is of the form (s,a)→ (s′1, p1)∨ ...∨ (s′n, pn)) for each of the

effects specified in its righthand side, i.e. for each i ∈ [1, ...,n]:

(s′i,V (s′i))→ (s,a,V (s′i)∗ pi ∗ γ) .

Example 3.3. Let V ∈ R encode the value for particular abstract states, then the regres-

sive rewrite rules for action load from example 3.2 are:

(in(T,C)∧on(B,T)∧S, V)→ (in(T,C)∧ in(B,C)∧S, load(T,B), V ∗0.9∗ γ).

(in(T,C)∧ in(B,C)∧S, V)→ (in(T,C)∧ in(B,C)∧S, load(T,B), V ∗0.1∗ γ).

�

For value iteration, this representation of domain dynamics serves two purposes.

First, it allows to compute from a given value function V all abstract (i.e. relational)

states from which a particular state s′ ∈ Domain(V) is reachable by narrowing (for a

single step) a SAV-tuple (s′,v) with v = V (s′) according to the inverted rewrite rules of

a rewrite theory encoding a RMDP. Second, with regard to value iteration as outlined

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic66

in equation 1, this narrowing step resembles computation of γ ∗ T (s,a,s′)Vi(s′) when

computing Vi+1(s): It produces a set of SAV-tuples (s,a,v∗ p∗ γ) that encode the action

a that, when executed in state s, would result in state s′ with probability p.

As narrowing is employed, variable grounding is (only) applied where necessary

(i.e. where relevant to the reachable state s′) through unification of the state that is cur-

rently regressed with the lefthand sides of rewrite rules specifying domain dynamics.

Also, if the state to be regressed misses any action postconditions, these are induced to

regressed state terms by unification if the subject term to be regressed and action effect

rules’ lefthand sides contain a free state variable (i.e. are of the form s∧ S). Thus, also

partially specified goal states can be regressed. If system goals are specified in V0 (e.g.

by instantiating V0 with a set of SAV-tuples (s,R(s)), thus resembling the MDP’s reward

function R), narrowing exactly grounds variables and induces fluents that are relevant for

an optimal policy w.r.t. these goals. Note that regression may lead to states that violate

constraints (see section 3.1), which are ignored by further computation.

Summation of Non-Deterministic Action Effects. Regressing the SAV-tuples of a given

value function computes a set of SAV-tuples (s,a,v) denoting the states s from which

the states in the value function domain can be reached through execution of action a.

While v already incorporates transition probabilities and known state values, it does not

yet take into account that an action may have multiple outcomes. In equation 1, this

fact is addressed by the summation of expected values of all states that are reachable by

execution of a particular action a, weighted by transition probabilities. This computation

can be resembled by performing a progressive one-step rewrite of s×a according to the

rewrite rules from the RMDP specification (see section 3.1), and adding up the values of

the resulting states s′ according to V , weighted by transition probabilities. More formally,

for all regressed (s,a,v) compute v by (s×a)→1
∨

i(si × pi)⇒ v = ∑i(V (si)∗ pi).

Maximization through Abstract State Subsumption. To ensure that only optimal actions

for each abstract state remain in the new value function Vi+1, only those elements that

exhibit the maximal value that can be gained through action execution for each possible

state are kept in the set of SAV-tuples. As states are relational, they may overlap or

even subsume other states completely. To deal with subsumption, the concept of Ax-

matching can directly be employed to model state subsumption, as a more general term

Ax-matches a more concrete one. For maximization over the set of actions, a state s′ with

value v′ is removed from the regressed set of SAV-tuples if it is subsumed by another

state s with greater or equal value: (s,a,v)∨ (s′,a′,v′) = (s,a,v) if s :=Ax s′ ∧ v ≥ v′ .

Example 3.4. Let (on(b, t)∧S,a,1.0) and (on(B,T)∧S,a′,2.0) be SAV-tuples in the set

to be maximized. In this case, it is clearly preferable to execute action a′ when any box

is on any truck, because the expected value of this action is 2.0. Thus, the former tuple

can be dropped. Now suppose (on(b, t)∧ S,a,3.0) and (on(B,T)∧ S,a′,2.0) should be

maximized. Then the former should not be dropped, as action a is preferable if exactly

box b is on truck t; otherwise, if another box or another truck are involved, action a′

should be executed. Both tuples are necessary to deduce this behaviour. �

Value Iteration & Decision List Policies. To complete a value iteration step according

to equation 1 after performing maximization, the currently gained reward for all states in

the set of SAV-tuples has to be distributed according to the MDP’s reward function R.

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic 67

Figure 1. Number of regressed states (left) and value function entries (right) per iteration step for propositional

and relational domains; reward for three boxes at destination.

New SAV-sets resembling a RMDP’s value function are iteratively constructed by

abstract state regression, summation of state values taking into account non-deterministic

action effects, maximization of expected value for states and actions, discounting and

reward distribution. For each iteration i, the resulting SAV-set exactly resembles Vi+1 in

value iteration according to equation 1 for all s ∈ S from which states in the domain of Vi
are reachable. States that are not covered by the set are assigned a value of zero, thus the

SAV-set can be considered a function. Iteration stops if for all (s,a,v) ∈Vi+1 there exists

a (s,a,v′) ∈Vi such that |v− v′|< ε(1− γ)/γ for a given error bound ε ∈ R.

The resulting SAV-set representing the converged optimal value function V (with an

error bounded by ε) can then be interpreted as a decision list, sorted by values of the

SAV-tuples it contains; thus, overlapping and subsuming states are dealt with. I.e., the

decision list resembles a policy π : S → A for the MDP that was solved with the presented

algorithm, considering π(s) = a ⇔ (s,a,v) ∈ V ∧∀(s,a′,v′) ∈ V : v ≥ v′ and π(s) being

any action (e.g. noop) if � ∃ a,v : (s,a,v) ∈V .

4. Evaluation

The approach was experimentally evaluated with an implementation6 of value iteration

in MAUDE [6]. Experiments were conducted with the BOXWORLD domain [3], where a

truck has to deliver boxes to their destination cities. A truck can either do nothing, drive

from one city to another, load boxes, or unload them. Actions succeed with a probability

of 0.9, and fail with no effect otherwise. Comparison was performed for a relational ver-

sion of the underlying MDP (7 transition rules) and two propositional instantiations of it,

one with 3 boxes and 2 cities (37 rules), the other one with 3 boxes and 3 cities (55 rules).

Note that the relational rules are valid for any number of domain objects. This gain of

scalability is not limited to specification, it holds as well for computation of solutions and

for value functions themselves. Figure 1 shows the number of regressed states (and size

of the value function) per iteration step for the two propositional MDPs and the relational

one when a reward is specified for three boxes being in a particular city: The number

of regressed states (the number of entries in the value function, respectively) grows sub-

stantially with domain size and iteration depth; even the smaller propositional MDP is

outperformed by the relational one. As for the specification, the result of symbolic value

iteration is valid for any number of domain objects. Correctness of the relational solution

6The implementation is available at http://www.pst.ifi.lmu.de/˜belzner/odin/.

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic68

http://www.pst.ifi.lmu.de/~belzner/odin/

w.r.t the propositional ones was experimentally approved by checking if for each entry

in the propositional value function there is a corresponding entry in the relational one.

5. Related Work & Conclusion

Related Work. The first successful approach to solve MDPs with value iteration

completely on the symbolic level was achieved by Symbolic Dynamic Programming
(SDP) [3]. It uses the situation calculus [17] to represent first-order MDPs, thus allow-

ing for full first-order logic quantifications for variables. While the situation calculus is

a very expressive specification language, the frame problem has to be addressed explic-

itly in the specification of domain dynamics, in contrast to specifications in rewriting

logic. Another difference of SDP to the approach presented in this paper is that dynam-

ics are defined in a regressive manner and per fluent (in terms of so-called successor
state axioms) and not per action, diverging from modern software design paradigms as

for example object-orientation, where dynamics are typically defined in terms of oper-

ations. In consequence, compilation of regressive successor state axioms from progres-

sive, operation-oriented specifications becomes a complex transformation. Also, because

of the complexity of regressed state formulas, consistency checking and simplification

is a complex task. Even if these tasks are manageable automatically in theory, the au-

thors of SDP only reported on a preliminary implementation that illustrated their ap-

proach, but simplification of results was applied manually. The fluent calculus [20] can

be considered a progressive counterpart to the situation calculus as it represents states as

associative-commutative terms of fluents. First-order value iteration for the fluent calcu-

lus (FOVIA) [11,12] can be performed in a fully automated manner due to restricted ex-

pressivity of the fluent calculus when compared to the situation calculus, as only existen-

tial quantification of variables is allowed. As the presented approach, FOVIA performs

state subsumption for value function simplification and employs AC1-unification to per-

form regression, but it is not parametrizable in terms of state representation. In contrast

to both SDP and FOVIA, using rewrite theories for symbolic value iteration leads to nat-

ural support for flexible, domain-specific representations when it comes to specification

of RMDPs, allowing to include features like free choice of syntax and abstraction level,

explicit sort ordering, polymorphism or object-orientation.

Summary & Further Work. This paper discussed the representation of RMDPs in

rewriting logic and how to use the concepts of matching and narrowing to solve them

symbolically, resulting in advantages regarding computational effort and expressivity

when compared to propositional solution techniques. To this end, RMPDs were rep-

resented as rewrite theories. Regression is performed by exploiting the capabilities of

narrowing, allowing for symbolic computation. Simplification of the resulting symbolic

value function through state subsumption was realized by Ax-matching state terms. By

relating variables in state and action terms, both state and action space are partitioned

properly. The specification of RMDPs in terms of rewrite theories allows for domain-

specific, user-definable representations by exploiting free syntax choice, sort-hierarchies,

polymorphism and object-orientation, achieving small representational gaps between hu-

man expert knowledge and domain encoding. A clear reduction of state space and value

function size was shown when comparing relational value iteration with rewrite theo-

ries to propositional value iteration. A possible direction for future research is to ex-

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic 69

plore the combination of rewrite theories with algebraic representations for RMDPs (e.g.

FOADDs, see [19]).

References

[1] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

[2] Lenz Belzner. Verifiable decisions in autonomous concurrent systems. In Eva Kühn and Rosario

Pugliese, editors, COORDINATION, volume 8459 of Lecture Notes in Computer Science, pages 17–32.

Springer, 2014.

[3] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic programming for first-order MDPs.

In Bernhard Nebel, editor, IJCAI, pages 690–700. Morgan Kaufmann, 2001.

[4] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso Martı́-Oliet,

José Meseguer, and Carolyn L. Talcott. Unification and narrowing in maude 2.4. In Ralf Treinen, editor,

RTA, volume 5595 of Lecture Notes in Computer Science, pages 380–390. Springer, 2009.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer,

and Jose F. Quesada. Maude: specification and programming in rewriting logic. Theor. Comput. Sci.,
285(2):187–243, 2002.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer, and

Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.

Springer, 2007.

[7] Luis C. Cobo, Charles L. Isbell, and Andrea Lockerd Thomaz. Object focused q-learning for au-

tonomous agents. In Maria L. Gini, Onn Shehory, Takayuki Ito, and Catholijn M. Jonker, editors, AA-
MAS, pages 1061–1068. IFAAMAS, 2013.

[8] Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient

reinforcement learning. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, ICML,

volume 307 of ACM International Conference Proceeding Series, pages 240–247. ACM, 2008.

[9] Steven Eker. Fast matching in combinations of regular equational theories. Electr. Notes Theor. Comput.
Sci., 4:90–109, 1996.

[10] Santiago Escobar, José Meseguer, and Prasanna Thati. Narrowing and rewriting logic: from foundations

to applications. Electr. Notes Theor. Comput. Sci., 177:5–33, 2007.

[11] Axel Großmann, Steffen Hölldobler, and Olga Skvortsova. Symbolic dynamic programming within the

fluent calculus. In Proceedings of the IASTED International conference on Artificial and Computational
Intelligence, pages 378–383, 2002.

[12] Steffen Hölldobler and Olga Skvortsova. A logic-based approach to dynamic programming. In Pro-
ceedings of the Workshop on Learning and Planning in Markov Processes–Advances and Challenges at
the Nineteenth National Conference on Artificial Intelligence (AAAI04), pages 31–36, 2004.

[13] John Mccarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. In Machine Intelligence, volume 4, pages 463–502, 1969.

[14] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci.,
96(1):73–155, April 1992.

[15] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[16] Aswin Raghavan, Saket Joshi, Alan Fern, Prasad Tadepalli, and Roni Khardon. Planning in factored

action spaces with symbolic dynamic programming. In Jörg Hoffmann and Bart Selman, editors, AAAI.
AAAI Press, 2012.

[17] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynami-
cal Systems. The MIT Press, Massachusetts, MA, illustrated edition, 2001.

[18] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson

Education, 2010.

[19] Scott Sanner and Craig Boutilier. Practical solution techniques for first-order mdps. Artificial Intelli-
gence, 173(56):748 – 788, 2009. Advances in Automated Plan Generation.

[20] Michael Thielscher. Introduction to the fluent calculus. Electron. Trans. Artif. Intell., 2:179–192, 1998.

L. Belzner / Value Iteration for Relational MDPs in Rewriting Logic70

On Evaluating Interestingness Measures

for Closed Itemsets

Aleksey BUZMAKOV a,b,1, Sergei KUZNETSOV a and Amedeo NAPOLI b

a Higher School of Economics, Moscow, Russia
b LORIA (CNRS – Inria NGE – Université de Lorraine), France

Abstract. There are a lot of measures for selecting interesting itemsets. But which

one is better? In this paper we introduce a methodology for evaluating interesting-

ness measures. This methodology relies on supervised classification. It allows us to

avoid experts and artificial datasets in the evaluation process. We apply our method-

ology to evaluate promising measures for itemset selection, such as leverage and

stability. We show that although there is no evident winner between them, stability

has a slightly better performance.

Keywords. data mining, pattern selection, interestingness measures, stability,

leverage, comparison

1. Introduction

One of the most important and frequent tasks in artificial intelligence is selection of the

best option(s) among a huge set of possibilities. For example, in data mining one should

often determine which patterns are of high interest. Usually patterns are evaluated w.r.t. a

formal relevancy measure. Webb [1] says that measures cannot often reflect the true value

of patterns because they “often depend on many factors that are difficult to formalize”.

Are we able to evaluate how well a measure approximates an expert interest?
One way to do that is to evaluate patterns with experts [2]. In that case we evaluate

how close the selected patterns approximate the expert knowledge. It is an expensive

strategy requiring many experts for a domain. Thus, if one wants to compare measures

on datasets from different domains the experiments become very expensive. Additionally

such an experimentation requires a lot of time to be carried out.

Another way to evaluate patterns is to use artificial datasets [3], where the target pat-

terns are known. The drawback of this approach is the relevancy of the artificial datasets

w.r.t. real ones. Thus, one goal of this paper is to develop and evaluate a methodology

for comparison of interestingness measures for itemsets without involving experts or ar-

tificial datasets (below we use indifferently “pattern” or “itemste”).

Our methodology is based on semi-supervised classification, where every data entry

has a class label but labels are not directly involved into computation of a measure. A

label is an additional information to entry description modeling domain knowledge or

1Corresponding Author: Aleksey Buzmakov, LORIA (CNRS – Inria NGE – Université de Lorraine), 615,

Jardin Botanique street, 54600, Vandoeuvre-les-Nancy, France; E-mail: aleksey.buzmakov@inria.fr.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-71

71

Table 1. A toy dataset

a b c d e f Label

g1 x x x +

g2 x x x -

g3 x x x +

g4 x x x -

g5 x x x +

g6 x x x x ?(+)

g7 x x x ?(+)

g8 x x x x ?(-)

expert intent. The basic idea is to rank patterns with an interestingness measure and,

then, find among them the patterns that are relevant to classification. And if a measure

M1 is better than another measure M2 w.r.t. expert interest, i.e. M1 attributes more

systematically high ranks to more relevant patterns, thus increasing the performance of

a classifier based on M1.

This methodology can be applied when a measure does not rely on class labels.

Then it can find itemsets that are suitable for expert interest (and not biased towards the

classification task).

The second goal of this paper is to evaluate some measures for itemset ranking. We

evaluate leverage [4] and stability [5] measures that seem to be well adapted to itemset

ranking. We also introduce difference measure that comes from an estimate of stabil-

ity [6]. This measure is computed faster than stability. As it is widely used, the support

of an itemset is used as a baseline measure. Finally, we also consider another leverage

measure (rule leverage) which in contrast to the afore mentioned measures, relies on

class labels. This rule leverage measure provides an idea of rule ranking measures w.r.t.

itemset ranking measures.

Finally, we show that although there is no evident winner among stability and lever-

age measures, stability seems to be better on average. It is also shown that difference and

stability have a similar behaviour. But according to previous studies, difference is faster

to compute [6]. We can summarize the novelty of this paper as follows:

1. Methodology for comparison of measures for itemset ranking.

2. Comparison of leverage and stability measures for itemsets.

The rest of the paper is organised as follows. Section 2 introduces basic notions.

Then related work is discussed. In Section 4 we define and discuss the evaluated mea-

sures. The next section describes our methodology. And finally before concluding the

paper the experiments are discussed.

2. Preliminaries

In this section we discuss the basic definitions in terms of Formal Concept Analysis [7].

Definition 1. A dataset or a context is a triple (G,M, I), where G is a set of objects, M
is a set of attributes, and I ⊆ G×M is a relation between G and M.

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets72

Every subset of attributes is called a pattern or an itemset. The description of a set

of objects X is the set of attributes shared by all objects from X , φ(X) = {m ∈ M | (∀g ∈
X)gIm}. The image of itemset Y is the set of objects sharing Y , ψ(Y) = {g ∈ G | (∀m ∈
Y)gIm}. The cardinality of the image of Y is called support of Y , Supp(Y) = |ψ(Y)|,
while the value σ(Y) = Supp(Y)

|G| is called frequency of Y .

Consider the toy dataset in Table 1. Let G = {g1,g2,g3,g4,g5}, M = {a,b,c,d,e, f}
and I is shown in the table, then φ({g1,g2}) = {e, f} is the set of attributes shared by g1

and g2 or the description of the set {g1,g2}. Similarly ψ({e, f}) = {g1,g2,g3,g4} is the

image of {e, f}. We say that the support of the itemset {e, f} is Supp({e, f}) = 4 and its

frequency is σ({e, f}) = 4
|G| = 0.8.

Definition 2. An itemset X is closed if and only if there is no superset Y ⊃ X such that
Supp(Y) = Supp(X).

It means that an itemset X is closed if it is not possible to add any attribute to X
preserving the set of objects that supports X . The operator φ ◦ψ is a closure operator and

thus an itemset X is closed if and only if φ(ψ(X)) = X .

Definition 3. An association rule between an itemset X and an itemset Y is denoted by
X → Y , where X is called the premise and Y is called the conclusion of the rule.

Rule X → Y means that if the description of some objects from G contains X , then

it contains Y . There are two measures attached to an association rule: support (or fre-

quency) and confidence.

Definition 4. The support of a rule X → Y is Supp(X ∪Y) and frequency of the rule
X → Y is σ(X ∪Y).

Definition 5. The confidence of a rule X → Y is Conf(X → Y) = Supp(X∪Y)
Supp(X) .

The support and the frequency of a rule show how often one can find the premise

in the dataset, while a rule X → Y with a high confidence means that in most of the

cases if an object description includes X it is likely to include Y . For example, in the

dataset in Table 1 with the set of objects G = {g1,g2,g3,g4,g5} the confidence of the rule

{e} → { f} is 1 because in every case when an object description contains e it contains

also f , while Conf({c}→ {e, f}) = 1
2 .

A common objective in data mining is search for interesting patterns, i.e. for inter-

esting itemsets or rules, that are usually related to a task. Among those different tasks,

there are classification, clustering and expert analysis of the result. Here we focus on

searching for patterns that are likely to be interesting to an expert. In the next section we

describe the existing approaches for mining interesting itemsets.

3. Related Works

Probably, the most elaborated area of mining interesting patterns is association rule min-

ing. Most of the measures created in this area optimize a formal criterion using statisti-

cal methods [8]. Although there is a huge number of interestingness measures, there are

only few comparisons between them [2,9]. The main reasons for that are the diversity of

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets 73

formal criteria and the fact that no measure wins in all criteria. In [2] the authors evaluate

different measures by means of expert interest. This is an important approach for pattern

evaluation as it directly measures the relation between a formal measure and an expert

interest. The drawback of this approach is the cost and diversity of datasets: for every

dataset it is necessary to hire several experts which is costly. In [9], the authors evaluate

measures by their performance in the classification task in a supervised setting, e.g. how

confident is a rule concluding on a given class. In such case, the aim of an expert is ex-

pressed by labeling of a training set. This is in contrast with our approach which follows

a semi-supervised setting, i.e. measures do not depend on labelling.

Another group of interestingness measures consists of measures created for itemset

ranking. It is a less studied group. Several measures can be found in [3]. Some of them

are related to the distribution of partitions induced by every attribute from the considered

pattern. Others are related to measures of association rule mining. Another approach

introduces the measure of leverage that corresponds to the difference between frequency

of an itemset and the maximal expected frequency based on subsets of the itemset [4].

Finally, some measures can be found in the domain of formal concept analysis [10,11,

12]. Stability measure is one of the most interesting among them, because it is often used

in domain specific areas where experts are often involved. Moreover, in contrast to all

above mentioned measures for itemsets, stability is computed on object side making it

possible to apply it for ranking any types of patterns, e.g. sequential patterns [13].

One comparison of interestingness measures of itemsets can be found in [3] where

the authors introduce a Quest Generator, i.e. a tool generating a dataset from a given set

of “goal” itemsets in the presence of possible noise. Then, the interestingness measures

can be evaluated w.r.t. their ability for finding the “goal” itemsets. For all artificial tests

there is always a question about the degree to which generated datasets reflect real data.

Thus, in this paper we provide an alternative approach for evaluating interestingness

measures of itemsets on real datasets without involving experts. In the next sections we

consider and compare these measures in details.

4. Itemset Interestingness Measures

For comparison the stability and leverage measures are selected as the most recent and

promising measures. Support is also included into the comparison as a baseline measure,

since it is widely used in itemset mining.

Definition 6 ([11]). Given a context (G,M, I), the stability of an itemset Y ∈ 2M is given
by the following formula:

Stab(Y) =
|{X ⊆ ψ(Y) | φ(X) = Y}|

2Supp(Y)
. (1)

The intuition behind stability is the following [11]. Stability gives an idea of how

much a closed itemset depends on an object in its image, i.e. if we remove an object

does the closed itemset exists anymore? In other words, given a dataset of objects and an

itemset, stability measures the probability that the same itemset can be found in a dataset

built as a subset of the objects. Consider for example itemset {e, f} for the dataset in

Table 1. The image of this set is {g1,g2,g3,g4} when G = {g1,g2,g3,g4,g5}. There are

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets74

16 possible subsets of this image. The descriptions of the /0, {g1},{g2},{g3},{g4}, and

{g5} are different from {e, f}. Then, stability of {e, f} is Stab({e, f}) = 16−5
16 = 0.69.

Similarly the stability of {d,e, f} is 0.5. According to the definition, stability of a non-

closed itemset is always 0.

Although, stability is a measure that is hard to compute [10], it can be efficiently

estimated [6]: Stab(Y) ≤ 1− 2−(Supp(Y)−Supp(X)), for all X ⊃ Y . Thus, stability allows

us to introduce the related measure of “minimal positive difference in support” between

itemset Y and itemsets including Y :

Diff(Y) = min
X⊃Y, Supp(X)�=Supp(Y)

(Supp(Y)−Supp(X)). (2)

Difference can be computed efficiently and the experiments show the interestingness of

this measure. For example, difference of itemset {e, f} is 3, because support of {e, f} is

4 and any superset of {e, f} has support at most 1. Similarly difference of {d,e, f} is 1.

For non-closed itemsets, difference is always zero.

The next measure that we evaluate is leverage for itemsets. For defining leverage

we recall that a 2-partition of a set Y is a partition of Y in two subsets V and W and is

denoted by Part2(Y) = (V |W). For example, the pair ({a,b,c},{e, f}) is a 2-partition

of the set {a,b,c,e, f}. Now we can define what the leverage of an itemset is.

Definition 7 ([4]). The leverage of an itemset Y ∈ 2M is the difference between σ(Y) and
the maximal frequency that would be expected under assumption of independence of any
subset of Y :

Lev(Y) = σ(Y)− argmax
(V |W)=Part2(Y)

σ(V) ·σ(W), (3)

where Part2(Y) is a 2-partition of Y .

According to the definition, leverage of an itemset can be applied to any itemset.

If an itemset is non-closed then the leverage value is not zero and the next proposition

holds.

Proposition 1. The leverage of an itemset is not larger than the leverage of its closure,
Lev(Y)≤ Lev(φ(ψ(Y))).

Proof. Frequency can only decrease with addition of an attribute, i.e. (∀X ⊆ Y)σ(X) ≥
σ(Y). Frequencies of an itemset and its closure are equal, σ(Y) = σ(φ(ψ(Y))). Given

itemset X , a 2-partition of its closure Part2(φ(ψ(X))) = (V |W) induces the 2-partition

of X , i.e. (V ∩X |W ∩X) is a 2-partition of X . Then,

Lev(φ(ψ(Y))) = σ(φ(ψ(Y)))− argmax
(V |W)=Part2(φ(ψ(Y)))

σ(V) ·σ(W) =

= σ(Y)− argmax
(V |W) = Part2(Y)
(P|Q) =
Part2(φ(ψ(Y))\Y)

σ(V ∪P) ·σ(W ∪Q)≥

≥ σ(Y)− argmax
(V |W)=Part2(Y)

σ(V) ·σ(W) = Lev(Y).

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets 75

Thus, leverage maximizes its value on closed itemsets, and, consequently, we can com-

pute it only for closed itemsets.

Let us consider an example. In order to compute leverage of itemset {e, f} we

need to find all its 2-partitions. There is only one 2-partition ({e}|{ f}). The frequen-

cies are σ({e, f}) = 0.8, σ({e}) = 0.8, σ({ f}) = 0.8. Thus, Lev({e, f}) = 0.8−0.82 =
0.16. For itemset {d,e, f} we have three 2-partitions: ({e}|{d, f}), ({d}|{e, f}) and

({ f}|{e,d}). The frequencies are σ({d,e, f}) = 0.2, σ({e}) ·σ({d, f}) = 0.8 · 0.2 =
0.16, σ({d}) ·σ({e, f}) = 0.2 ·0.8 = 0.16, σ({ f}) ·σ({d, f}) = 0.8 ·0.2 = 0.16. Thus,

Lev({d,e, f}) = 0.2−0.16 = 0.04.

The leverage of an itemset is based on the notion of leverage of a rule. Hereafter, we

use leverage of a rule in our comparison as a base line and, thus, we need to provide its

definition.

Definition 8. The leverage of a rule is defined as follows

Lev(X → Y) = σ(X ∪Y)−σ(X) ·σ(Y) (4)

In this work rule leverage is applied to rules of the form X → {C }, where C is a

class label in classification. Let us consider Table 1, where the target class is given by

column “class”. In order to define rule leverage of {e, f}→ {+}, first, we should find the

frequencies: σ({e, f ,+}) = 0.6, σ({e, f}) = 0.8, σ({+}) = 0.6. Thus, Lev({e, f} →
{+}) = 0.6−0.8 ·0.6 = 0.12.

We are now ready to introduce our methodology.

5. Evaluation Methodology

In this work the classification task is used to estimate the interestingness of measures for

itemset selection w.r.t. expert interest, by measuring the precision and recall of classifiers

built with these measures.

The intuition behind the usage of classification for evaluating measures is the follow-

ing. If an itemset is of high interest for an expert, then it should reflect basic dependen-

cies in a domain. Thus, the performance of this itemset in classification should be better

than an arbitrary itemset. Consequently, systematic good performances may mean that

a measure is more suitable to find itemsets of high interest. Accordingly, the evaluation

methodology consists of the following steps:

1. A dataset D is selected.

2. The dataset D is divided into training and test sets by random sampling 100

times. A training set contains 90% of the objects with class labels (but at most

1000 objects which is a limit of Magnum Opus demo [14] that is used for leverage

computation). The test set contains the rest of the objects.

3. One target class label C is selected.

4. One target measure M is selected.

5. A training set built at step 2 is used to find itemsets and rank them w.r.t. the

measure M . However, during the search, class labels for objects are ignored.

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets76

6. Among the whole set of itemsets, the emerging patterns for class C are selected

from the training set [15]. An emerging pattern is an itemset that is a character-

istic of one class, i.e. it covers objects mostly labelled with the same class, w.r.t.

a threshold θ . These emerging patterns are assumed to be good for classification

purposes. The idea of emerging patterns is borrowed from [16], where emerging

patterns are called hypotheses. Let say that there are N emerging patterns.

7. From these N emerging patterns we form N classifiers based on the first k patterns

(with k ≤ N). Each classifier works in the following way. Given a set of patterns

{p1, · · · , pk}, the classifier attaches the label C to any object whose description

contains pi for i ∈ [1,k].
8. We compute precision and recall for these N classifiers in the test set. Then we

interpolate 21 points of the form (p,r) where p stands for precision and r stands

for recall, where r ∈ {0,0.05, · · · ,0.95}. These 21 points yield a curve.

9. Steps 6–8 are repeated for every pair of training and test sets. An average curve

is computed for all the curves based on the pairs of training and test sets.

10. The area under this averaged curve is computed providing a numerical quality of

the measure M in dataset D w.r.t. class C .

11. We repeat steps 3–10 for all classes in D and all measures.

12. We repeat steps 1–11 for all available datasets.

Thus, each measure is evaluated for every class label and for any division of a

dataset. The precision and recall in step 8 are computed in a standard way, i.e. in terms

of true/false positives/negatives where the precision is Pr = TP
TP+FP

and the recall is

R= TP
TP+FN

.

But how can one select the threshold θ? This is a tricky question. On the one hand,

it is necessary to take the high θ in order to force a measure to select itemsets relevant for

the classification. Thus, datasets where there are no patterns with high θ are not adapted

for the methodology. On the other hand, it is necessary to have a sufficient number of

emerging patterns to capture differences between measures. Here, we posed θ = 90%,

i.e. at least 90% of objects in the image of a pattern are in the same class. However, the

selection of an ideal θ is still an open question.

In [9] measures rely on class labeling and thus they are biased for classification task.

In contrast in our work measures evaluate itemsets and after that a labeling is introduced.

Thus, our approach appears to be closer to the expert interest.

Let us consider this methodology on the example in Table 1. We have a dataset con-

taining 8 objects (step 1). This dataset is divided into training set, Tr = {g1,g2,g3,g4,g5},

and test set T = {g6,g7,g8} (step 2). The target class label is C =+ (step 3). The target

measure is difference (step 4). In this example we consider an itemset to be an emerging

pattern if 50% of objects in its image are labeled with the target class. Thus, we have

five closed emerging patterns: {e, f}, {c, f}, {a,e, f}, {c,e, f} and {b,c, f} (step 6). The

corresponding differences are 3, 1, 1, 1, 1. Thus, they are well sorted and we are ready

to construct classifiers (step 7) and evaluate their performance (steps 8 and 9).

The first one is only based on {e, f}. This itemset is only included in the description

of g6, consequently only g6 should be classified positively. The precision and recall of

this classifier are 1 and 0.5. The next classifier is based on {e, f} and {c, f}. The de-

scription of g6 includes {e, f} and, thus, it should be classified positively with the sec-

ond classifier. The descriptions of g7 and g8 include {c, f} and, thus, they should be also

classified positively. The precision and recall of the second classifier is 2
3 and 1. After

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets 77

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8
1

.0
0

Recall

P
re

c
is

io
n

● ● ● ● ●

●
● ●

●
●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ● ●

●

●
●

●

(a) Eatable mushrooms

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Recall

P
re

c
is

io
n

● ● ● ● ●

●
●

●
●

●
●

●
●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

●

●

Support

Difference

Stability

Leverage

Rule leverage

(b) Poisonous mushrooms

Figure 1. Precision and Recall for mushroom dataset for classifiers built with different interestingness mea-

sures.

repeating this with all emerging patterns we can interpolate the value of precision for

every recall of the form 0.05 ·K, where K ∈ {1,2, · · · ,20}. Doing this several time for ev-

ery division of the dataset we can obtain the averaged precisions corresponding to these

recalls. Finally, we can compute the area under the average curves providing a numerical

quality of the measure on this dataset.

Finally, any emerging pattern X for class C can be written as an association rule

X → {C }. Thus, it is also possible to introduce the interestingness measures for rules

in this framework as a baseline for evaluating interestingness measures of itemsets. We

decided to add the leverage interestingness measure for rules, see Eq. (4). The results for

rule leverage measure are provided only as a baseline because it uses the target class in

the computation procedure and, thus, can be better adapted for classification purposes.

6. Experiment

The experiments are carried out with public available datasets from UCI [17]: Mushroom2,

Congressional Voting Records3, Nursery4 datasets. All datasets contain emerging

patterns and thus we can apply our methodology. In the experiments we have compared

4 interestingness measures for itemset ranking, i.e. support, stability (1), difference (2)

and leverage (3), as well as a measure for association rule ranking, i.e. rule leverage (4).

Comparison of the computational efficiency is not the goal of this paper. Thus, we only

mention that computations take less than a minute per experiment in every case.

Let us consider one dataset deeper. Figure 1 shows the results of two experiments

on Mushroom dataset. Figure 1a shows precision and recall for predicting the class of

edible mushrooms, while Figure 1b corresponds to poisonous mushrooms. Every line in

2http://archive.ics.uci.edu/ml/datasets/Mushroom
3http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
4http://archive.ics.uci.edu/ml/datasets/Nursery

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets78

Table 2. The surface under the ROC-diagram for different datasets different target classes and different mea-

sures. The best measure in a row is bolded.

Dataset Class Support Difference Stability Itemset Lev. Rule Lev.

Mushroom Poisonous 0.890658 0.945881 0.945665 0.956895 0.919898

Mushroom Eatable 0.927239 0.953793 0.953941 0.946683 0.938007

Vote Democrat 0.865279 0.862507 0.8645 0.904433 0.953708
Vote Republican 0.883406 0.921093 0.921004 0.884818 0.883406

Nursery Not Recommended 0.975 0.975 0.975 0.975 0.975
Nursery Priority 0.78503 0.743039 0.725221 0.605405 0.525

Nursery Special Priority 0.875556 0.850174 0.851127 0.699788 0.639793

this figure corresponds to a measure. Every point corresponds to a precision-recall pair

at the end of step 9 of the proposed methodology.

In this figure we can see that stability and difference have nearly the same behaviour.

It is the case for every tested dataset. The second point is that the support measure is not

the best one for pattern selection, which is not surprising. The unexpected result here is

that the rule leverage does not perform well. Logically it should be the best one because

it is the only tested measure that can access the label information in the dataset. One

explanation can be that the statistical significance (at least of the rule leverage type) is

not directly related to the relevancy of an itemset to real patterns.

In Table 2 the numerical qualities for every dataset and every class label is given.

Every column corresponds to a measure and every line corresponds to a combination

of a dataset and a class label. First, the difference and stability measures have a similar

behaviour, and the numerical quality has nearly the same value in every experiment.

Second, although there is no evident winner between stability and itemset leverage and

they often have a comparable result, but on Nursery dataset stability has a significantly

better result.

7. Conclusion

In this paper we have proposed a methodology for evaluating interestingness measures

for closed itemset selection. The proposed methodology has been applied to compare

leverage, stability and difference measure. Although stability has a slightly better be-

haviour than leverage we cannot conclude that one is better than the other. It is also shown

that stability and difference have very similar behaviours, but difference is computed

faster.

It should be noticed that stability and difference have an important property that they

can be applied to any kind of datasets as soon as support can be computed, e.g. datasets

of sequences or graphs. This is not, for example, the case for leverage. Since difference

is faster to compute, we should conclude that difference is the most convenient measure

providing the same quality as stability and leverage.

There are several directions for future research. First, other measures and other

datasets should be involved into comparison for more reliable results. Second, the corre-

lation of ranking w.r.t. different measures should be studied. Finally, since stability and

leverage have the best performances on different datasets, it can be an important task to

develop a powerful measure based on both approaches.

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets 79

Acknowledgements

This research received funding from the Basic Research Program at the National Re-

search University Higher School of Economics (Moscow; Russia) and from the BioIn-

telligence project (France).

References

[1] Geoffrey I Webb and Songmao Zhang. K-Optimal Rule Discovery. Data Min. Knowl. Discov., 10(1):39–

79, 2005.

[2] Deborah R. Carvalho, Alex A. Freitas, and Nelson Ebecken. Evaluating the Correlation Between Objec-

tive Rule Interestingness Measures and Real Human Interest. In Alı́pio Mário Jorge, Luı́s Torgo, Pavel

Brazdil, Rui Camacho, and João Gama, editors, Knowl. Discov. Databases PKDD 2005, volume 3721

of Lecture Notes in Computer Science, pages 453–461. Springer Berlin Heidelberg, 2005.

[3] Albrecht Zimmermann. Objectively evaluating interestingness measures for frequent itemset mining. In

Emerg. Trends Knowl. Discov. Data Mining-PAKDD 2013 Int. Work., 2013.

[4] Geoffrey I. Webb. Self-sufficient itemsets. ACM Trans. Knowl. Discov. Data, 4(1):1–20, January 2010.

[5] Sergei O. Kuznetsov. On stability of a formal concept. Ann. Math. Artif. Intell., 49(1-4):101–115, 2007.

[6] Aleksey Buzmakov, Sergei O Kuznetsov, and Amedeo Napoli. Scalable Estimates of Concept Stability.

In Christian Sacarea, Cynthia Vera Glodeanu, and Kaytoue Mehdi, editors, Form. Concept Anal., volume

8478 of Lecture Notes in Computer Science, pages 161–176. Springer Berlin Heidelberg, 2014.

[7] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations. Springer, 1st

edition, 1999.

[8] Adnan Masood and Stephen Soong. Measuring Interestingness – Perspectives on Anomaly Detection.

Comput. Eng. Intell. Syst., 4(1):29–40, 2013.

[9] Paulo J. Azevedo and Alı́pio M. Jorge. Comparing Rule Measures for Predictive Association Rules. In

Joost N. Kok, Jacek Koronacki, Ramon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej

Skowron, editors, Mach. Learn. ECML 2007, volume 4701 of Lecture Notes in Computer Science, pages

510–517. Springer Berlin Heidelberg, 2007.

[10] Sergei O. Kuznetsov. Stability as an Estimate of the Degree of Substantiation of Hypotheses on the

Basis of Operational Similarity. Autom. Doc. Math. Linguist. (Nauch. Tekh. Inf. Ser. 2), 24(6):62–75,

1990.

[11] Camille Roth, Sergei Obiedkov, and Derrick G Kourie. On succinct representation of knowledge com-

munity taxonomies with formal concept analysis A Formal Concept Analysis Approach in Applied

Epistemology. Int. J. Found. Comput. Sci., 19(02):383–404, April 2008.

[12] Radim Belohlavek and Martin Trnecka. Basic Level in Formal Concept Analysis: Interesting Concepts

and Psychological Ramifications. In Proc. Twenty-Third Int. Jt. Conf. Artif. Intell., IJCAI’13, pages

1233–1239. AAAI Press, August 2013.

[13] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Data Eng. 1995. Proc. Elev.
Int. Conf., pages 3–14, March 1995.

[14] Geoffrey I. Webb. Discovering Significant Patterns. Mach. Learn., 68(1):1–33, 2007.

[15] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discovering trends and differences.

In Proc. fifth ACM SIGKDD Int. Conf. Knowl. Discov. data Min., KDD ’99, pages 43–52, New York,

1999. ACM.

[16] Sergei O. Kuznetsov. Mathematical aspects of concept analysis. J. Math. Sci., 80(2):1654–1698, 1996.

[17] A. Frank and A. Asuncion. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Univer-

sity of California, Irvine, School of Information and Computer Sciences, 2010.

A. Buzmakov et al. / On Evaluating Interestingness Measures of Closed Itemsets80

Learning Probabilistic CP-nets from

Observations of Optimal Items

Damien BIGOT a, Jérôme MENGIN a and Bruno ZANUTTINI b

a IRIT, Université Paul Sabatier, Toulouse, France
b GREYC, Université de Caen Basse-Normandie, France

Abstract. Modelling preferences has been an active research topic in Artificial In-

telligence for more than fifteen years. Existing formalisms are rich and flexible

enough to capture the behaviour of complex decision rules. However, for being in-

teresting in practice, it is interesting to learn not a single model, but a probabilistic

model that can compactly represent the preferences of a group of users – this model

can then be finely tuned to fit one particular user. Even in contexts where a user is

not anonymous, her preferences can depend on the value of a non controllable state

variable. In such contexts, we would like to be able to answer questions like “What

is the probability that o is preferred to o′ by some (unknown) agent?”, or “Which

item is most likely to be the preferred one, given some constraints?”

We study in this paper how Probabilistic Conditional Preference networks can

be learnt, both in off-line and on-line settings.

Keywords. PCP-net, Learning, preference, recommandation

1. Introduction

The development of recommender systems and other interactive systems for supporting

decision-making has highlighted the need for models capable of using a user’s prefer-

ences to guide her choices. Modelling preferences has been an active research topic in

Artificial Intelligence for more than fifteen years. In recent years, several formalisms

have been proposed that are rich enough to describe in a compact way complex prefer-

ences of a user over combinatorial domains. When the user’s preferences are qualitative,

and have a “simple” structure, conditional preference networks (CP-nets, [5]) and their

variants [4,6] are popular representation frameworks. In particular, CP-nets come with

efficient algorithms for finding most preferred items (item optimisation problem).

Existing formalisms are rich and flexible enough to capture the behaviour of com-

plex decision rules. However, for being interesting in practice, these formalisms must

also permit fast elicitation of a user’s preferences, involving a reasonable amount of in-

teraction only. Anonymous recommendation systems, preference-based search [17], or

configuration of combinatorial products in business-to-customer problems [15] are good

examples of decision problems in which the user’s preferences are not known a priori.
In such applications, a single interaction with the user must typically last at most 0.25 s,

and the whole session must typically last at most 20 minutes, even if the item to be

recommended to the user is searched for in a combinatorial set.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-81

81

Recently there have been several interesting proposals for learning preferences,

many of them where presented in [11]. The approaches range from learning numer-

ical ranking functions [12,18,1] to learning qualitative, structured preference rules

[13,10,14,2]. These works assume that a set of rankings or pairwise comparisons is given

or elicitated, in order to build a model that generalises these rankings or comparisons.

However, in several settings, it is interesting to learn not a single model, but a proba-

bilistic model that can compactly represent the preferences of a group of users. In a next

step, this model can then be finely tuned to fit one particular user. Even in contexts where

a user is not anonymous, her preferences are usually ill-known, because they can depend

on the value of a non controllable state variable. In such contexts, we would like to be

able to answer questions like “What is the probability that o is preferred to o′ by some

(unknown) agent?”, or “Which item is most likely to be the preferred one, given some

constraints?”

Probabilistic Conditional Preference networks (or PCP-nets for short) [9,8] enable

the user to compactly represent a probability distribution over some partial orderings and

answer such queries. Specifcially, a PCP-net specifies a probability distribution over a

family of CP-nets. There is a close connection between CP-nets and Bayesian networks:

[7] proves that the problem of finding the most probable optimal item is similar to an

optimisation problem in a Bayesian network. However, a PCP-net encodes a probability

distribution over partial orders, not just on a list of items.

We study in this paper how PCP-nets can be learnt, both in off-line and on-line set-

tings. Appart from the probabilistic approach, one difference with the works mentioned

above is that we do not assume that we have, or elicitate, a set of rankings or pairwise

comparisons. Instead, we suppose that we have a list of items which, it is assumed, are

or have been optimal for some user or in some context. Such a list can be, for instance,

a list of items that have been sold. We prove that such information is sufficient to learn a

partial order over the set of possible items, when these have a combinatorial structure.

The elicitation of probabilistic CP-nets is discussed by [16]. However, the authors

did not give a precise semantics to their CP-nets.

The next section sums up the main properties of CP-nets and PCP-nets. We then

describe how it is possible to learn PCP-nets, off-line and on-line. Finally, we show the

results of some experiments that simulate an on-line learning setting.

2. Background on probabilistic CP-nets

We consider combinatorial objects defined over a set of n variables V . Variables are

denoted by uppercase letters A,B,X ,Y, In this paper, we suppose that variables are

Boolean; we consistently write x and x for the two values in the domain X of X .

For a set of variables U ⊆V , U denotes the Cartesian product of their domains.

Elements of V are called items, denoted by o,o′, Elements of U for some U ⊆V are

denoted by u,u′, Given two sets of variables U,V ⊆V and v∈V , we write v[U] for the

restriction of v to the variables in U ∩V .

Preferences are encoded in CP-nets using rules of the form X ,u :>, where X ∈V , u
is an instantiation of variables in a set U ⊆V that does not contain X , and > is a total

strict order over the domain of X : either x>x or x>x. Informally, the rule X ,u :x>x can

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items82

be read:“Whenever u is the case, then x is preferred to x, ceteris paribus (all other things

being equal).”

A rule X ,u :>, with u∈U , indicates that the preference over the values of X depends

on the values of the variables in U . Associated to every CP-net is a directed graph G
over V : there is an edge (Y,X) whenever the preference over the values of X depends

on the values of Y ; G is called the structure of the CP-net. We write pa(X) for the set

of variables on which the order over X depends, called the parents of X : pa(X)={Y ∈
V |(Y,X)∈G}. It is generally assumed that a CP net contains a rule (X ,u :>) for every

X ∈V and every u∈pa(X); the set of the rules that order the domain of X is called the

conditional preference table, or CPT, for X . When X is clear from the context, we write

u :> instead of (X ,u :>) A CP-net specifies a partial ordering $ over the set of items:

$ is the transitive closure of the set of the pairs of items (o,o′) such that there is a rule

(X ,u :>) with o[X]>o′[X] and o[U]=o′[U] and o[Y]=o′[Y] for every Y /∈(U ∪ {X}).
When needed, we will distinguish the partial ordering associated with a particular CP-net

N using a subscript: $N .

CP-nets are most interesting when there is no cyclic preferential dependency be-

tween the variables, that is, when the graph G does not contain any (directed) cycle. In

this case, [5] proved that the relation $ is a (partial) strict order.

Example 1 An example of an acyclic CP-net over 4 binary variables A,B,C,D is:

A

a>a

B

a :b>b
a :b>b

C

ab :c>c
other :c>c

D

c :d>d
c :d>d

The rule ab :c>c implies that abcd$abcd. We also have that abcd$abcd because of
the rule c :d>d, thus, by transitivity, abcd$abcd.

Optimization can be done in time linear in the size of an acyclic CP-net: choose an

ordering X1, . . . ,Xn of the variables in V that is compatible with the dependency graph

(if Xi∈pa(Xj) then i< j), and assign in turn to every Xj its most preferred value, given

the values that have already been chosen for its parents. The resulting item is the unique

optimal (undominated) item of the ordering specified by the CP-net. For instance, the

order represented by the CP-net above has exactly one optimal item, which is abcd (ie

there is no object which is preferred to abcd).

The forward sweep procedure above can also be used to find an item that is optimal

among those that satisfy a given conjunction of constraints of the form Yk =yk – one

only has to find, for each Xi, the optimal admissible value given the value of its parents.

For instance, the most optimal item, among those that have b as value for B, is abcd.

Conversely, if we know the structure of a CP-net and the optimal item o, then we can

immediately induce some of the rules of the CP-net: for every X ∈V , the CP-net contains

the rule (X ,o[pa(X)] :o[X]>o[X]).
Note that the dominance problem, that is deciding, given a CP-net and two items o

and o′, if o$o′, is an NP-hard problem, even for acyclic CP-nets. Yet, a weaker ordering
query can be answered in time linear in the number of variables as follows: given an

acyclic CP-net and two items o and o′, choose again an ordering X1, . . . ,Xn that is com-

patible with G, and consider the variables one after the other as long as o[Xi]=o′[Xi]; let

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 83

now i be the first i such that o[Xi] �=o′[Xi]: if o[Xi]>o′[Xi] (resp. o[Xi]<o′[Xi]) given the

values of the parents of Xi in o and o′, then o′ �$o (resp. o �$o′).

2.1. Probabilistic CP-nets

Uncertainty about the ordering over the items can be represented by associating prob-

abilities to a given preference structure G [9,8]: for each pair (X ,u), with X ∈V and

u∈pa(U) a probability distribution is defined over the set of possible orderings over

X ; in the case of boolean variables, this distribution is entirely defined by the probabil-

ity that the ordering is x>x. In the sequel, we write p(X ,u :x>x) for this probability. A

probabilistic CP-net, or PCP-net for short, is entirely defined by its structure G and the

probabilities p(X ,u :x>x).

Example 2 A probabilistic CP-net with the same structure as the CP-net of Example 1:

A

a>a,0.3

B

a :b>b,0.1
a :b>b,1

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7
c :d>d,0.3

Suppose that a PCP-net is given, with structure G. Assuming that the orderings

over the domains of the variables are probabilistically independent from one another, the

probability that a given CP-net N, with the same structure G, occurs, can be defined as:

P(N)= ∏
(X ,u)

p(X ,u :>N
X ,u)

where the product is taken over all variables X ∈V and assignments u∈pa(X), and where

>N
X ,u denotes the ordering over X that occurs in N when u is the case.

So, a PCP-net N is not intended to represent a preference relation. Rather, it repre-

sents a probability distribution over a set of CP-nets, namely, those which have the same

structure as N : we say that they are compatible with the PCP-net. We will write N ∝N
to indicate that the CP-net N has the same structure as N .

Note that, in a PCP-net, the probabilities of the rules are independent from one an-

other. So, for instance, it would not be possible to represent with a PCP-net a probability

distribution over CP-nets with the structure of Example 2 if the rules over B and C were

dependent; if the preferred values for B and C were always b and c together, or b and c.

An important topic for further research is to generalize the approach to allow for such

dependencies.

Given a PCP-net N , which represents a probability distribution on a set of deter-

ministic CP-nets, reasoning tasks consist in computing probabilities associated with in-

teresting events.

2.1.1. Probabilistic optimization

Let, for any item o, “opt=o” denote the set of compatible CP-nets that have o as unique

optimal item. Then P(opt=o) is, by definition, the sum of the probabilities P(N) of the

CP-nets N that are compatible with N and such that o is optimal for N.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items84

Interestingly, considering acyclic CP-nets, we mentioned earlier that an item o is

optimal in N if and only if for every variable X , N contains the rule o[pa(X)] :o[X]>o[X],
therefore

P(opt=o)= ∏
X∈V

p(X ,o[pa(X)] :o[X]>o[X]).

This formula indicates that the probabilities of optimality can be encoded in a Bayesian

Network associated to N [8]: let BN(N) denote this network, it structure is the same

oriented graph as that of N , and, for every binary variable X and assignment u∈pa(X),
the conditional probability table for X contains p(x |u)= p(X ,u :x>x). (For non binary

variables, p(x |u) would be the sum of the probabilities of the local orderings that have x
at the top.) For instance, the probabilities of optimality of the PCP-net of Example 2 are

encoded in the following Bayesian network:

A

p(a)=0.3

B

p(b |a)=0.1
p(b |a)=1

C

p(c |ab)=0.5
p(c |other)=0.4

D

p(d |c)=0.7
p(d |c)=0.3

In particular, computing the item that has the highest probability of being optimal is

a #P-hard problem; If G is a tree, this item can be computed in linear time by using a

bottom-up procedure [9].

Also, we can express the probability that a given value x for one variable X ∈V
appears in the optimal item as follows:

P(opt[X]=x)= ∑
u∈U

p(X ,u :x>x)×P(opt[U]=u)

where opt[U]=u denotes the event that the optimal item has values u for the variables

in U . More generally, the probability that a partial assignment is optimal in terms of the

probabilities of the rules of the PCP-net is:

P(opt[U]=u)= ∑
a∈asc(U)

a[U]=u

∏
Y∈asc(U)

p(Y,a[pa(Y)] :a[Y]>a[Y])

where asc(U) denotes the set of ascendants of the variables in U , including U . (More

precisely, asc(U) is the smallest set that contains U and all the parents of each of its

elements.) This equation does not give a practical mean of computing P(opt[U]=u)
unless the number of parents and the height of the PCP-nets are bounded, since the size

of asc(U) is exponential in the size of asc(U).

2.1.2. Probability of dominance

Let, for any two items o,o′, “o$o′” denote the set of compatible CP-nets N such that

o$N o′. Then P(o$o′) is, by definition, the sum of the probabilities P(N) of the CP-

nets N that are compatible with N and such that o$N o′. [9] show that computing this

probability is #P-complete, even when considering acyclic PCP-nets or polytrees.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 85

3. Learning a PCP-net from probabilities of optimality

In many settings, like a recommender system, the system can record a list of items that

can be assumed to have been optimal for some user at some point. It can be, for instance,

a list of sold / rented items. Let L denote this list. Assuming that the users’ preferences

correspond to some PCP-net N , the frequencies of the items in this list correspond to the

probabilities of optimality of items in the corresponding Bayesian network. This suggests

that this PCP-net can be induced from this list of sold items.

3.1. Off-line learning

Learning the parameters Let us assume that we know the structure of the hidden PCP-

net, and that we want to estimate the probabilities in the tables. When the variables are

binary, these probabilities are exactly the probabilities that appear in the tables of the

Bayesian network that encodes the probabilities of optimality.

In particular, observing the probabilities of optimality can be sufficient to estimate

the probabilities of the rules: for any binary variable X ∈V , for every u∈pa(X), we have:

p(X ,u :x>x)=P(opt[X]=x |opt[U]=u)∼|{o∈L ,o[UX]=ux}|/|{o∈L ,o[U]=u}|

when {o∈L ,o[U]=u} is not empty, that is, when P(opt[U]=u) �=0 in the hidden PCP-

net.

More generally, we can use methods that have been used for Bayesian networks to

learn these probabilities.

If P(opt[U]=u)=0, we may still be able to estimate p(X ,u :x>x) from the proba-

bilities of sub-optimal items, if we have a list of items that have been chosen by some

users under some constraint, for instance a list of items sold during a period of a time

where some options were not available. Assuming that the preferences of the user remain

the same, the only effect of such constraint is to restrict the domain of some variables,

but does not change the probabilities of other variables for the remaining combinations

of values of the parents. Let LV=v be a list of items optimal under the constraint V =v
for some V ⊆asc(U) and v∈V such that v[U]=u[V], and let “optV=v[U]=u” denote the

event that the item that is optimal among those that have values v for the variables in V ,

has values u for the variables in U , then

p(X ,u :x>x)=P(optV=v[X]=x |optV=v[U]=u)
∼|{o∈LV=v,o[UX]=ux}|/|{o∈LV=v,o[U]=u}|

For instance, consider a PCP-net that has the same structure as the PCP-net of Ex-

ample 2. The probability of the rule D,c :d>d can be estimated as follows:

1. if P(opt[C]=c) �=0:

p(D,c :d>d)∼|{o∈L ,o[CD]=cd}|/|{o∈L ,o[C]=c}|;
2. if P(opt[C]=c)=0, which is the case for instance if p(a>a)= p(b>b)=1 and

p(ab :c>c)=0:

p(D,c :d>d)∼|{o∈LC=c,o[D]=d}|/|LC=c|;
3. or, still if P(opt[C]=c)=0, but p(ab :c>c) �=0:

p(D,c :d>d)∼|{o∈LA=a,o[CD]=cd}|/|{o∈LA=a,o[C]=c}|;

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items86

Equation 2 and 3 above give two different ways of computing p(D,c :d>d) when the

probability of having C=c in a optimal item is zero, corresponding to two different

observations: 2. corresponds to the observation of optimal items when C=c is forced,

and 3. to the observation of optimal items when A=a is forced.

Learning the structure Here again, methods used to learn Bayesian networks can be

used. A major hurdle, however, is that several PCP-nets with different structures may

give rise to the same probabilities of optimality: this is linked to the fact that the prefer-

ential dependencies encoded in PCP-net are oriented, whereas, in a Bayesian network,

probabilistic dependencies are symetric. Consider for instance the Bayesian network that

encodes the probabilities of optimality for the PCP-net of Example 2: it also encodes

the probabilities of optimality of the PCP below, obtained from that of Example 2 by

reversing the edge between A and B.

A

b :a>a,0.041

b :a>a,1

B

b>b,0.73

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7
c :d>d,0.3

Therefore, methods for learning Bayesian networks will not completely identify a

hidden PCP-net. However, quite a lot of information is obtained in this way. If a topo-

logical ordering of the otherwise unknown PCP-net is known, then the correct direction

of each edge can be inferred, and the parameters of the hidden PCP net can be computed

from the Bayesian network. Observe that there are natural situations in which such a

general, total order might be known in advance. In particular, it is the case of interactive

configuration, if the order of the variables to be configured is fixed (the system asks to

choose a value for X1, then one for X2, etc.), then one can assume that the preferences will

be expressed wrt this order, or at least, it makes sense to approximate these preferences

on this order. Otherwise, the correct direction of the edges can be elicited, as described

in the next section.

3.2. On-line learning

Structure elicitation Assuming that a Bayesian network encoding the probabilities of

optimality has been computed, in an active learning setting some queries can lead to a

quick identification of the correct orientation of the edges of the PCP-net. Assume for

instance that the Bayesian network has an edge between variables X and Y : either the

preferences over the domain of X depend on the value of Y , or the vise versa (but not

both, since we assume an acyclic PCP net). In order to determine the orientation of the

edge, one can submit to users the queries x :y?y and x :y?y, if the frequencies of the

two possible answers to these queries converge to a common value over time, then y is

preferentially independent of X . Otherwise, the preferences over the values of Y depend

on the value of X , and X must be preferentially independent of Y .

Parameters update Finally, assume that a system has a current PCP net (maybe learnt

from a list of past optimal items), and can now observe some users and their optimal

items: it may be sensible to update the parameters (probabilities) of the PCP net accord-

ing to what is being observed.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 87

For instance, if the current PCP net corresponds to a group of past users, and a new

user connects to the system, her preferences may not be exactly that of the group, and we

may want to modify the parameters of the PCP net so that it incorporates the preferences

of this particular user. Or it may be the case that the PCP net represents probabilities of

preferences at a given time, or in a given location, and that these probabilities need to be

updated in a new context.

Since the probabilities that we want to update directly correspond to the probabil-

ities of some items being optimal, the observations made by the system must be about

optimality. Every time our system is presented an optimal item o, it will update its pa-

rameters, that is, the probabilities of its current PCP-net N as follows:

For every observed optimal item o do: for every X ∈V do:

1. let u=o[pa(U)];
2. let Xo=1 if o[X]=x, 0 otherwise;

3. p(X ,u :x>x) += ηt(Xo − p(X ,u :x>x)).

Note that we only update the probabilities of some of the rules (step 1.): the rules that

make the given item optimal. The update rule is common in such a stochastic learning

setting (see e.g. [3]). The parameter ηt is the learning rate, it may vary over time, gener-

ally decrease in order to ensure convergence: convergence is guaranteed if ∑t ηt =∞ and

∑t η2
t <∞. In our experiments we took ηt =1/k(t,X ,u) where k(t,X ,u) is the number of

times the rule corresponding to (X ,u) has been updated so far (making the learning rate

a function of the pair (X ,u)). In this case, at any time, p(X ,u :x>x) is just the frequency

with which optimal items o with o[U]=u and o[X]=x have been encountered so far.

4. Experiments

We ran some experiments to evaluate the update rule that we proposed for an on-line

learning setting. We assume a given acyclic structure over a given set of n variables. We

have some hidden PCP-net N ∗ with this structure, and start from an initial PCP-net with

the same structure, where the probabilities of all rules are 1/2. At each step, we update

some rules of the current PCP-net N .

We observed how the distance between the target PCP-net N ∗ and the current one

N evolved. As measures of distances we used:

• the sum of the squared differences of the parameters

d2(N ,N ∗)= ∑
(X ,u)

(pN (X ,u :x>x)− pN ∗(X ,u :x>x))2;

• the Kullback-Leibler divergence, or relative entropy, of the two probability distribu-

tions of optimality defined by N and N ∗:

dKL(N ‖N ∗)= ∑
o∈V

log(PN (opt=o)/PN ∗(opt=o))×PN (opt=o).

In fact, we computed an estimate of this distance by sampling the set of items, assum-

ing a uniform distribution.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items88

0 100 200

10−1

10−0.5
15 vars.
10 vars.
5 vars.

First protocol:Sum of

squared diff. of param.

0 500 1,000

10−2

10−1 15 vars.
10 vars.
5 vars.

Second protocol:Sum of

squared diff. of param.

0 500 1,000

10−2

100

102

Second protocol – KL divergence

Figure 1. Plots showing the evolution, as the number of observations of optimal outcomes grows (x-axis), of

a measure of the distance between the target PCP-net and the learnt one (y-axis)

We have experimented with two protocols to generate optimal items at each time

step.

First protocol The idea is to simulate an interactive setting, in which, for some pair of

items o1 and o2, we observe for a while which is most frequently optimal, and update

our current PCP-net if it does not give the same result. More precisely, for each new

period we generate two items as follows: we generate two CP-nets N1 and N2 accord-

ing to the distribution defined by our current hypothesis N (this is achieved by choos-

ing, for each combination (X ,u), the rule X ,u :x>x) according to the current probability

p(X ,u :x>x); let o1 and o2 be the respective optimal items of N1 and N2. Generating the

two items in this manner will favor rules that are more probable so far. We can com-

pute the probabilities that o1 and o2 are optimal according to our current PCP-net N :

let pi=PN (opt=oi). We then “observe” which of o1 and o2 is most frequently optimal

according to the hidden PCP-net N ∗: in fact, we compute p∗i =PN ∗(opt=oi). Eventu-

ally, if p1>p2 whereas p∗2>p∗1, we update N so as to increase the probability that o2 is

optimal: we use the update algorithm above with o=o2.

Second protocol Here we just simulate the update of our PCP-net after each newly ob-

served chosen item, assuming that it is optimal for some user: we increase the probabili-

ties of the rules that make this item optimal. Therefore, at each time step, we generate a

“user” / PCP-net N according to the target distribution represented by the target PCP-net

N ∗, compute its optimal item o, and run the update algorithm with o.

Results We have run 500 trials with random target PCP-nets with 5, 10 and 15 variables.

For each trial, we generated a target PCP-net, ran our experimental protocol and learning

algorithm, and measured the distance between the learnt PCP-net and the target one,

every 10 observations of an optimal item. The plots in Figure 1 depict the evolution of

this distance: each point is an average over the 500 trials for each number of variables.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items 89

As can be noticed, a good approximation of the target PCP-net is reached after

around 70 observations.

5. Conclusion

We have described in this paper how it is possible to learn a probabilistic representation

of the preferences of a group of users over a combinatorial domain, or how we can fine-

tune such preferences to fit more precisely one particular user. Since CP-nets in general

are good at finding most preferred items, our learning method supposes that the learner

can be supplied with a list of past most preferred items: we showed how a probabilistic

CP-net can be learnt from such information.

References

[1] D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Using and learning gai-decompositions for represent-

ing ordinal rankings. In Proc. ECAI workshop on Preference Learning, pages 5–10, 2012.

[2] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, and C. Sombattheera. Learning conditionally lexicographic

preference relations. In Proc. ECAI 2010.

[3] L. Bottou. Stochastic learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced
Lectures on Machine Learning, LNCS 3176, pages 146–168. Springer, 2004.

[4] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-networks: A directed graphical representation of

conditional utilities. In Proc. UAI 2001, pages 56–64. Morgan Kaufmann.

[5] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: a tool for representing

and reasoning with conditional ceteris paribus preference statements. J. Artificial Intelligence Research,

21:135–191, 2004.

[6] R. I. Brafman and C. Domshlak. Introducing variable importance tradeoffs into CP-nets. In Proc UAI
2002, pages 69–76.

[7] C. Cornelio. Dynamic and probabilistic cp-nets. Master’s thesis, University of Padua, 2012.

[8] C. Cornelio, J. Goldsmith, N. Mattei, F. Rossi, and K. B. Venable. Updates and uncertainty in CP-

nets. In Proc. Australasian Joint Conf. on Advances in Art. Intell. 2013, LNCS 8272 , pages 301–312.

Springer.

[9] D. D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Probabilistic conditional preference networks. In

A. Nicholson and P. Smyth, editors, Proc. UAI 2013.
[10] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus preference elicitation with predictive

guarantees. In Proc. IJCAI 2009.

[11] J. Fürnkranz and H. Hüllermeier, editors. Preference learning. Springer, 2011.

[12] T. Joachims. Optimizing search engines using clickthrough data. In Proc. KDD 2002, pages 133–142..

[13] F. Koriche and B. Zanuttini. Learning conditional preference networks with queries. In Proc. IJCAI
2009.

[14] J. Lang and J. Mengin. The complexity of learning separable ceteris paribus preferences. In Proc. IJCAI
2009.

[15] D. Mailharro. A classification and constraint-based framework for configuration. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 12(4):383–397, 1998.

[16] S. S. de Amo, M. Bueno, G. Alves, and N. Silva. CPrefMiner: An algorithm for mining user contextual

preferences based on bayesian networks. In Proc. ICTAI 2012, vol. 1, pages 114–121.

[17] P. Viappiani, B. Faltings, and P. Pu. Preference-based search using example-critiquing with suggestions.

J. Artificial Intelligence Research, 27:465–503, 2006.

[18] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In W. Kraaij, A. P. de Vries,

C. L. A. Clarke, N. Fuhr, and N. Kando, editors, Proc. 30th ACM SIGIR Conf. on Information Retrieval
2007, pages 391–398.

D. Bigot et al. / Learning Probabilistic CP-Nets from Observations of Optimal Items90

A Logic of Part and Whole

for Buffered Geometries

Heshan DU a and Natasha ALECHINA a

a University of Nottingham, UK

Abstract. We propose a new qualitative spatial logic for reasoning about part-

whole relations between geometries (sets of points) represented in different geospa-

tial datasets, in particular crowd-sourced datasets. Since geometries in crowd-

sourced data can be less inaccurate or precise, we buffer geometries by a margin

of error or level of tolerance σ , and define part-whole relation for buffered ge-

ometries. The relations between geometries considered in the logic are: buffered

part of (BPT), Near and Far. We provide a sound and complete axiomatisation of

the logic with respect to metric models and show that its satisfiability problem is

NP-complete.

1. MOTIVATION

This work is motivated by our previous work [3] on integrating authoritative geospatial

information and crowd-sourced or volunteered geospatial information. Geometry repre-

sentations of the same location or place in different datasets are usually not exactly the

same. Objects are also sometimes represented at different levels of granularity. For ex-

ample, consider geometries of objects in Nottingham city centre given by the Ordnance

Survey of Great Britain (OSGB) [7] and by the OpenStreetMap (OSM) [6] in Figure 1.

The position and shape of the Prezzo Ristorante are represented differently in OSGB

(dotted) and OSM (solid) (Figure 1.a). The Victoria Shopping Centre is represented as a

whole in OSM (Figure 1.b), and as several shops in OSGB (Figure 1.c).

In order to integrate the datasets, we need to determine which objects are the same

and sometimes (as in the example of Victoria Shopping Centre) which objects in one

dataset are parts of objects in another. One way to produce such matches is to use loca-

tions and geometries of objects, although of course we also use any lexical labels associ-

Figure 1. a. Prezzo Ristorante; b. Victoria Shopping Centre in OSM; c. Victoria Shopping Centre in OSGB

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-91

91

Figure 2. a. a buffer; b. three dashed circles are buffered part of (BPT) the solid circle; c. NEAR; d. FAR

ated with the objects, such as names of restaurants etc. The generated matches are seen

as assumptions, and are retractable if found incorrect. We check correctness of matches

by checking their logical consistency. Some of the checks use ontology reasoning (if an

object is classified as a restaurant in one dataset and as a bank in another, together with an

axiom stating that the concepts of Restaurant and Bank are disjoint, a contradiction can

be derived). Other checks are performed using spatial reasoning. In [4], we proposed a

spatial logic LNF that contains relations of being buffered equal (BEQ), Near and Far to

validate ‘sameAs’ matches of objects: if it is conjectured that a1 is ‘sameAs’ b1 and that

a2 is ‘sameAs’ b2, then a contradiction can be derived if NEAR(a1,a2) and FAR(b1,b2).
However, LNF is not appropriate for verifying ‘partOf’ matches. In this paper, we are

proposing a logic where we can formalise for example the following argument: if b and c
are near, c is part of d, then b cannot be part of a which is far from d. The main concepts

of this logic, which we call a Logic of ParT and whole for Buffered geometries (LBPT),

are explained in the next section. We also compare it to existing spatial logics.

2. BPT, NEAR, FAR

For the application described in the previous section, we found it difficult to use for-

malisms such as RCC and other topology or mereology theories [1], since they presup-

pose accurate geometries or regions with sharp boundaries. Unlike existing models for

spatial relations between indeterminate regions or objects with broad boundaries based

on rough set theory [8], such as [2] and [9], we could not define a certain inner region,

because the same location can be represented using two disconnected polygons from

authoritative and crowd-sourced geospatial datasets respectively, which requires that the

whole region within the buffer [5] of a geometry is uncertain. We did not adopt proba-

bilistic or fuzzy approaches, such as [12] and [10], because we did not have a good way

to define a proper probability function or a membership function for a fuzzy set. The first

logic we designed for debugging geometry matches, LNF [4], has the ‘buffered equal’

relation as a basic relation, which turns out to be less useful when the data is represented

at different levels of abstraction (such as a shopping centre in one set and a collection

of shops in another). In [4], we gave a complete and sound axiomatisation for LNF, but

only with respect to geometries consisting of a single point. In this paper, we start with

the ‘buffered part of’ (BPT) relation as the basic relation, and interpret geometries as sets

of points.

As shown in Figure 2.a, by buffering the solid circle c by σ , where σ indicates the

margin of error or level of tolerance, we obtain a larger circle, denoted as buffer(c,σ),
where every point is within σ distance from c. For a geometry c which is possibly repre-

sented inaccurately within the margin of error σ , the actual accurate representation is as-

sumed to be somewhere within buffer(c,σ). A geometry g is buffered part of a geometry

h, if g is within buffer(h,σ) (Figure 2.b).

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries92

We also have NEAR and FAR relations in the logic LBPT. They formalise concepts

of being ‘possibly connected’ (given a possible displacement by σ) and ‘definitely dis-

connected’ (even if displaced by σ) respectively. Two geometries are possibly connected

iff their σ buffers are connected. Figure 2.c and Figure 2.d show the boundary case of

being NEAR, where distance(g,h) = 2σ (their buffers are externally connected) and the

case where two geometries are far apart and cannot possibly correspond to connected

objects respectively.

3. SYNTAX, SEMANTICS AND AXIOMS OF LBPT

The language L(LBPT) contains a set of individual names, three binary predicates

NEAR, FAR and BPT , and logical connectives, ¬,∧,∨,→.

Applying predicate letters to individual names yields atomic formulas, e.g. BPT (a,b).
Every atomic formula is a well-formed formulas (wffs). If α and β are wffs, then ¬α ,

α ∧β , α ∨β , α → β are wffs.

We interpret the logic over models which are based on a metric space (similar to

other spatial logics, such as [13] and [1], and also similar to [11] but for a different logical

language).

Definition 1 (Metric Space) A metric space is a pair (Δ,d), where Δ is a set and d is a
metric on Δ, i.e., a function d : Δ×Δ −→ R≥0 such that for any x,y,z ∈ Δ, the following
holds:

1. d(x,y) = 0 iff x = y;
2. d(x,y) = d(y,x);
3. d(x,z)≤ d(x,y)+d(y,z).

Definition 2 (Metric Model) A metric model M is a tuple (Δ,d, I,σ), where (Δ,d) is
a metric space, I is an interpretation function which maps each constant to a set of
elements in Δ, and σ ∈ R>0 is the margin of error. The notion of M |= φ (φ is true in
model M) is defined as follows:

M |= BPT (a,b) iff ∀pa ∈ I(a)∃pb ∈ I(b) : d(pa,pb) ∈ [0,σ];
M |= NEAR(a,b) iff ∃pa ∈ I(a)∃pb ∈ I(b) : d(pa,pb) ∈ [0,2σ];
M |= FAR(a,b) iff ∀pa ∈ I(a)∀pb ∈ I(b) : d(pa,pb) ∈ (4σ ,+∞);
M |= ¬α iff M �|= α; M |= α ∧β iff M |= α and M |= β ;
M |= α ∨β iff M |= α or M |= β ; M |= α → β iff M �|= α or M |= β

where a,b are individual names, α,β are wffs.

A formula α is valid (|= α) if for every metric model M, M |= α . The logic LBPT

is the set of all valid formulas of L(LBPT).
The following calculus (that we will also refer to as LBPT) will be shown sound and

complete for LBPT:

Axiom 0 All tautologies of classical propositional logic;

Axiom 1 BPT(a,a);
Axiom 2 NEAR(a,b)→ NEAR(b,a);

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries 93

Axiom 3 FAR(a,b)→ FAR(b,a);
Axiom 4 BPT(a,b)∧BPT(b,c)→ NEAR(c,a);
Axiom 5 BPT(b,a)∧BPT(b,c)→ NEAR(c,a);
Axiom 6 BPT(b,a)∧NEAR(b,c)∧BPT(c,d)→¬FAR(d,a);
Axiom 7 NEAR(a,b)∧BPT(b,c)∧BPT(c,d)→¬FAR(d,a);
MP Modus ponens: φ , φ → ψ � ψ .

The notion of derivability Γ� φ in LBPT is standard. A formula φ is LBPT-derivable

if � φ . A set Γ is (LBPT) inconsistent if for some formula φ it derives both φ and ¬φ .

4. SOUNDNESS AND COMPLETENESS OF LBPT

In this section we prove that LBPT is sound and complete with respect to metric models,

namely that � φ ⇔ |= φ . Proofs of some lemmas are omitted due to lack of space.

Detailed proofs can be found here: www.cs.nott.ac.uk/~hxd/report/lbpt.pdf.

Theorem 1 (Soundness) Every LBPT derivable formula is valid: � φ ⇒ |= φ .

Proof. The proof is by an easy induction on the length of the derivation of φ . Axioms 1-7

are valid (by the truth definition of BPT , NEAR and FAR) and modus ponens preserves

validity. QED.

In the rest of this section, we prove completeness. We will actually prove that given

a finite consistent set of formulas, we can build a satisfying model for it. This shows that

�� φ ⇒�|= φ and by contraposition we get completeness. The completeness proof is more

involved than that for LNF with respect to point geometries [4].

Definition 3 (MCS) A set of formulas Γ in the language L(LBPT) is maximal consistent,
if Γ is consistent, and any set of LBPT formulas over the same set of individual names
properly containing Γ is inconsistent. If Γ is a maximal consistent set of formulas, then
we call it an MCS.

Lemma 1 (Lindenbaum’s Lemma) If Σ is a consistent set of formulas in the language
L(LBPT), then there is an MCS Σ+ over the same set of individual names such that
Σ ⊆ Σ+.

Let φ0,φ1,φ2, ... be an enumeration of LBPT formulas over the same set of individual

names as that in Σ. Σ+ can be defined as follows:

• Σ0 = Σ;

• Σn+1 = Σn ∪{φn}, if it is consistent, otherwise, Σn+1 = Σn ∪{¬φn};

• Σ+ =
⋃

n≥0 Σn.

Given a consistent set of formulas Σ, we construct a metric model satisfying a max-

imal consistent set Σ+ containing Σ, following the steps below.

Step 1 We equivalently transform Σ+ to B(Σ+), a set of basic quantified formulas.

Step 2 We construct a set of distance constraints D(Σ+) from B(Σ+), such that any met-

ric space satisfying D(Σ+) can be extended to a model of B(Σ+).

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries94

Step 3 We show that if D(Σ+) is path-consistent, then there is a metric space (Δ,d)
satisfying D(Σ+).

Step 4 We show that D(Σ+) is path-consistent, if Σ+ is consistent.

Since Σ+ is consistent, then there is a metric space that can be extended to a metric model

satisfying B(Σ+), thus, Σ+, thus, Σ.

In Step 1, we equivalently transform Σ+ to a set of basic quantified formulas defined

as follows.

Definition 4 (Basic Quantified Formula) Observe that atomic LBPT formulas are
equi-satisfiable with first order quantified formulas corresponding to their truth condi-
tions in Definition 2:

• BPT (a,b) and the formula ∀pa ∈ a∃pb ∈ b : d(pa,pb) ∈ [0,σ] are equi-satisfiable;
• NEAR(a,b) and the formula ∃pa ∈ a∃pb ∈ b : d(pa,pb) ∈ [0,2σ] are equi-satisfiable;
• FAR(a,b) and the formula ∀pa ∈ a∀pb ∈ b : d(pa,pb) ∈ (4σ ,∞) are equi-satisfiable.

We refer to these first order quantified formulas as basic quantified formulas, and use the
following abbreviations for them, where g is a non-negative interval.

• ∀(a,b,g)≡ (∀pa ∈ a∀pb ∈ b : d(pa,pb) ∈ g);
• ∃(a,b,g)≡ (∃pa ∈ a∃pb ∈ b : d(pa,pb) ∈ g);
• χ(a,b,g)≡ (∀pa ∈ a∃pb ∈ b : d(pa,pb) ∈ g);
• ξ (a,b,g)≡ (∃pa ∈ a∀pb ∈ b : d(pa,pb) ∈ g).

Lemma 2 For any MCS Σ+ and any pair of individual names a,b occurring in Σ, exactly
one of the following cases holds:

C1 BPT (a,b)∧BPT (b,a) ∈ Σ+;
C2 BPT (a,b)∧¬BPT (b,a) ∈ Σ+;
C3 ¬BPT (a,b)∧BPT (b,a) ∈ Σ+;
C4 ¬BPT (a,b)∧¬BPT (b,a)∧NEAR(a,b) ∈ Σ+;
C5 ¬NEAR(a,b)∧¬FAR(a,b) ∈ Σ+;
C6 FAR(a,b) ∈ Σ+.

Definition 5 (B(Σ+)) Given an MCS Σ+, a corresponding set of basic quantified formu-
las B(Σ+) is constructed as follows. For every pair of individual names a,b, we translate
the LBPT formulas to basic quantified formulas:

• translate(BPT(a,b)∧BPT(b,a)) ={χ(a,b, [0,σ]),χ(b,a, [0,σ])};
• translate(BPT(a,b)∧¬BPT(b,a)) ={χ(a,b, [0,σ]),ξ (b,a,(σ ,∞))};
• translate(¬BPT(a,b)∧BPT(b,a)) ={ξ (a,b,(σ ,∞)),χ(b,a, [0,σ])};
• translate(¬BPT(a,b)∧¬BPT(b,a)∧NEAR(a,b)) =

{ξ (a,b,(σ ,∞)),ξ (b,a,(σ ,∞)),∃(a,b, [0,2σ]),∃(b,a, [0,2σ])};
• translate(¬NEAR(a,b)∧¬FAR(a,b)) =

{∀(a,b,(2σ ,∞)),∀(b,a,(2σ ,∞)),∃(a,b, [0,4σ]),∃(b,a, [0,4σ])};
• translate(FAR(a,b)) = {∀(a,b,(4σ ,∞)),∀(b,a,(4σ ,∞))}.

Let names(Σ) be the set of individual names occurring in Σ. Then,

B(Σ+) =
⋃

a∈names(Σ),b∈names(Σ) translate(case(a,b))

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries 95

where case(a,b) returns the LBPT formula in the case of a,b specified in Lemma 2.

By the construction above, B(Σ+) contains the same set of individual names as Σ,

and any metric model satisfying B(Σ+) satisfies Σ+.

In Step 2, for a set of basic quantified formulas B(Σ+), we construct a set of distance

constraints D(Σ+), and then show that if there is a metric space satisfying D(Σ+), then it

can be extended to a model of B(Σ+) (hence Σ+).

Next we turn to producing enough ‘points’ to populate geometries corresponding to

individual names. The next definition specifies the cardinality of the set points(a) (points

assigned to an individual name a).

Definition 6 (numB(Σ+)(a)) Let names(Σ) be the set of individual names occurring in Σ,
B(Σ+) is a corresponding set of basic quantified formulas of Σ+, an MCS of Σ. For any
individual name a ∈ names(Σ),

numB(Σ+)(∃a) = |{b ∈ names(Σ) | ∃g : ∃(a,b,g) ∈ B(Σ+)}|
numB(Σ+)(ξ a) = |{b ∈ names(Σ) | ∃g : ξ (a,b,g) ∈ B(Σ+)}|
numB(Σ+)(χa) = |{b ∈ names(Σ) | ∃g : χ(b,a,g) ∈ B(Σ+)}|

Then numB(Σ+)(a) = max(1,numB(Σ+)(∃a)+numB(Σ+)(ξ a)+ numB(Σ+)(χa)).

We omit subscript B(Σ+) for readability when it is clear from context.

Definition 7 (Witness for a formula) A witness for a formula ∃(a,b,g) is a pair of con-
stants pa ∈ a, pb ∈ b such that d(pa, pb) ∈ g. A witness for a formula ξ (a,b,g) or
χ(b,a,g) is a constant pa ∈ a, such that d(pa, pb)∈ g, for any constant pb ∈ b. A constant
is clean for a formula, if it is not a witness for any other formula.

Definition 8 (D(Σ+)) Let B(Σ+) be the set of basic quantified formulas of an MCS Σ+.
To every individual name a in Σ, we assign a fixed set of new constants, points(a) =
{p1

a, . . . , pn
a}, where n = num(a). We construct a set of distance constraints D(Σ+) as

follows, by iterating through basic quantified formulas in B(Σ+) and eliminating quanti-
fiers on new constants. Initially, D(Σ+) = {}. For every individual name a in Σ, for every
constant pa ∈ points(a), we add d(pa, pa) ∈ {0} to D(Σ+). Then χ(a,a,{0}) always
holds. For every pair of different individual names a,b, if

• ∃(a,b,g) ∈ B(Σ+), then we take clean constants pa ∈ points(a), pb ∈ points(b),
and add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+) (pa, pb become the witness for
∃(a,b,g));

• ξ (a,b,g) ∈ B(Σ+), then we take a clean constant pa ∈ points(a), for every
pb ∈ points(b), we add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+);

• ξ (b,a,g) ∈ B(Σ+), then we take a clean constant pb ∈ points(b), for every
pa ∈ points(a), we add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+);

• χ(a,b,g) ∈ B(Σ+), then we take a clean constant pb ∈ points(b), for every
pa ∈ points(a), we add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+);

• χ(b,a,g) ∈ B(Σ+), then we take a clean constant pa ∈ points(a), for every
pb ∈ points(b), we add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+);

• ∀(a,b,g)∈B(Σ+), then for every pair of constants pa ∈ points(a), pb ∈ points(b),
we add d(pa,pb) = d(pb,pa) ∈ g to D(Σ+).

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries96

For every pair of different constants p,q involved in D(Σ+), we add d(p,q)= d(q,p) ∈
[0,∞) to D(Σ+),then repeatedly replace d(p,q)= d(q,p)∈ g1 and d(p,q) = d(q,p) ∈ g2
with d(p,q) = d(q,p) ∈ (g1 ∩g2), until there is one distance range for each pair of p,q.

Lemma 3 Any metric space satisfying D(Σ+) can be extended to a model of B(Σ+).

Proof.(sketch) Suppose S is a metric space satisfying D(Σ+). We extend S to a model M
by interpreting every a occurring in Σ as points(a), as specified in Definition 8. We can

prove that for any individual name a, points(a) covers all the clean constants needed for

constructing D(Σ+). Then by Definition 8, every basic quantified formula has a witness.

Therefore M is a model of B(Σ+). QED.

D(Σ+) and B(Σ+) are not equi-satisfiable because of the way we assign witnesses

for χ formulas, but we will show that if B(Σ+) is consistent then D(Σ+) can be satisfied

in a metric space. The following definitions are essential for Step 3 and Step 4.

Definition 9 (Composition) For non-negative numbers d1,d2, the composition {d1} ◦
{d2} = [|d1 − d2|,d1 + d2]

1. For non-negative intervals g1,g2, their composition
g1 ◦g2 =

⋃
d1∈g1,d2∈g2

{d1}◦{d2}.

Definition 10 (Path Consistency) Given a set of distance constraints D, for every pair
of constants a,b, their distance range is strengthened by enforcing path-consistency as
follows until a fixed point is reached:

∀c : g(a,b)← g(a,b)∩ (g(a,c)◦g(c,b))

where c is a constant different from a,b, g(a,b) denotes the distance range for a,b (i.e.
d(a,b) ∈ g(a,b)). If at the fixed point, for every pair of constants a,b, there exists a valid
value for their distance, this is, g(a,b) �= /0, then D is path-consistent.

Definition 11 (Primitive, Composite, Definable Intervals) Let h be a non-negative in-
terval. h is primitive, if h is one of [0,σ], (σ ,∞), [0,2σ], (2σ ,∞), (2σ ,4σ], (4σ ,∞),
[0,∞). h is composite, if it can be composed using at least two primitive intervals. h is
definable, if it is primitive or composite.

It is easy to show that if an interval occurs in D(Σ+), then it is an identity interval

({0}) or a primitive interval.

Definition 12 (DS(Σ+)) We define the set of distance constraints which appear in the
process of enforcing path-consistency on D(Σ+), denoted as DS(Σ+), as follows:

• Any distance constraint in D(Σ+) is in DS(Σ+);
• If distance constraints d(a,b) ∈ h and d(b,c) ∈ g are in DS(Σ+), then d(a,c) ∈

h◦g is in DS(Σ+);
• If distance constraints d(a,b) ∈ h and d(a,b) ∈ g are in DS(Σ+), then d(a,b) ∈

h∩g is in DS(Σ+)

where a,b,c are constants in D(Σ+).

1Based on d(x,z)≤ d(x,y)+d(y,z) (Property 3 of Definition 1).

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries 97

For a distance constraint d(a,b) ∈ h in DS(Σ+), we proved that h is a non-negative

interval; h is either right-infinite or right-closed; if lower(h) �= 0, then h is left-open.

We are now going to characterise all possible distance constraints occurring in

DS(Σ+). Eventually, we will show that all those distance constraints are left and right

definable in the sense given below. For an interval h of the form (l,u), [l,u), (l,u] or [l,u],
we call l the lower bound of h, represented as lower(h), and u the upper bound of h,

represented as upper(h). We allow lower(h) or upper(h) to be ∞. For the lower or upper

bound of an interval h, we use − or + to denote that h is open or closed respectively.

Definition 13 (Left-Definable) A distance constraint d(c1,cn) ∈ h (n > 1) is left-
definable, iff there exists a sequence of distance constraints d(ci,ci+1) ∈ hi (0 < i < n)
in D(Σ+), such that, for h′ = h1 ◦ ...◦hn−1, the following holds:

1. If h is left-open, then h′ is left-open, h ⊆ h′, and lower−(h′) = lower−(h);
2. If h is left-closed, then h′ is left-closed, h ⊆ h′, and lower+(h′) = lower+(h).

Definition 14 (Right-Definable) A distance constraint d(c1,cn) ∈ h (n > 1) is right-
definable, iff there exists a sequence of distance constraints d(ci,ci+1) ∈ hi (0 < i < n)
in D(Σ+), such that, for h′ = h1 ◦ ...◦hn−1, the following holds:

1. If h is right-open, then h′ is right-open, h ⊆ h′, and upper−(h′) = upper−(h);
2. If h is right-closed, then h′ is right-closed, h ⊆ h′, and upper+(h′) = upper+(h).

Lemma 4 If a distance constraint d(a,b) ∈ h is in DS(Σ+), then it is left-definable and
right-definable.

Lemma 4 can be proved by an induction on the number of operations (intersection or

composition) applied, to obtain d(a,b) ∈ h from D(Σ+).
In Step 3, following the same way as described in [4], we can construct a metric

space satisfying all the constraints in D(Σ+). The main lemmas proved are stated below.

Lemma 5 Let t be the number of constants in D(Σ+). Enforcing path-consistency on
D(Σ+), a fixed point can be reached in O(t3).

For any interval h occurring in D(Σ+), h ⊆ [0,∞). In the worst case, [0,∞) can be

strengthened at most 4t times (first strengthen it to [0,u], u ≤ 4σ(t −1), then strengthen

it by σ each time). For t constants, there are O(t2) distance constraints in D(Σ+). There-

fore, the total time of strengthening all the distance constraints is O(t3).

Lemma 6 Let t be the number of constants in D(Σ+), D f (Σ+) be a fixed point of enforc-
ing path consistency on D(Σ+). If D(Σ+) is path-consistent, Ds(Σ+) is obtained from
D f (Σ+) by replacing every right-infinite interval with {5tσ}, every right-closed interval
h with {upper(h)}, then Ds(Σ+)is path-consistent.

Any interval referred in D f (Σ+) is either right-infinite or right-closed.

Lemma 7 Let Σ+ be an MCS. If D(Σ+) is path-consistent, then there is a metric space
(Δ,d) such that all the constraints in D(Σ+) are satisfied by d.

In Step 4, we will prove D(Σ+) is path-consistent by contradiction.

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries98

Lemma 8 Let Σ+ be an MCS. Then its set of distance constraints D(Σ+) is path-
consistent.

Proof.(sketch) Suppose D(Σ+) is not path-consistent. By Definitions 10 and 12, d(p,q)∈
/0 is in DS(Σ+), for some constants p,q. It is easy to show that for any distance range g
occurring in D(Σ+), g �= /0. By Definitions 12, 9, and intersection rules, the last operation

to obtain the first /0 interval is intersection. By Definition 12, there exist d(p,q) ∈ h
and d(p,q) ∈ g in DS(Σ+), h �= /0, g �= /0, and h∩ g = /0. h,g are non-negative intervals.

Without loss of generality, let us suppose upper(h)≤ lower(g).
By Lemma 4, d(p,q) ∈ h and d(p,q) ∈ g are left-definable and right-definable.

Since d(p,q) ∈ h is right-definable, then by Definition 14, there exists an h′ such that

upper+(h) = upper+(h′) and h ⊆ h′. Since d(p,q) ∈ g is left-definable, then by Def-

inition 13, there exists an g′ such that lower−(g) = lower−(g′) and g ⊆ g′. Then h′

and g′ are identity or definable intervals. By properties of identity or definable intervals,

lower(g′)≤ 4σ , thus, upper(h′)≤ 4σ . By properties of intervals in DS(Σ+), h is right-

closed; g is left-open, if lower(g) �= 0. Then all the possible cases where h∩ g = /0 are

listed below:

• upper(h) = 0, lower(g) ∈ {σ ,2σ ,3σ ,4σ} or lower−(g) = 0;

• upper(h) = σ , lower(g) ∈ {σ ,2σ ,3σ ,4σ};

• upper(h) = 2σ , lower(g) ∈ {2σ ,3σ ,4σ};

• upper(h) = 3σ , lower(g) ∈ {3σ ,4σ};

• upper(h) = 4σ , lower(g) = 4σ .

We can show that given an upper bound or a lower bound of a definable interval,

there is a limited number of possibilities of it. For example, if upper(h′) = 2σ , then

h′ = [0,2σ] or h′ = [0,σ] ◦ [0,σ]. Thus, there are finitely many possibilities for the cor-

responding sequences of d(p,q) ∈ h and d(p,q) ∈ g. By Definitions 13 and 14, every

distance constraint in the sequences is in D(Σ+). By Definitions 5 and 8, we can know

which LBPT formulas in Σ+ they come from. For example, if d(p,q) ∈ [0,2σ] is in

D(Σ+) and p ∈ points(a), q ∈ points(b), then NEAR(a,b) ∈ Σ+. In each case, we can

show ⊥ is derivable using axioms, which contradicts the assumption that Σ+ is consis-

tent. Therefore, D(Σ+) is path-consistent. QED.

Theorem 2 If a finite set of formulas Σ is LBPT-consistent, there exists a metric model
satisfying it.

Proof. Given Σ, by Lemma 1, we can construct an MCS Σ+ containing it. If Σ is LBPT-

consistent, so is Σ+, and hence by Lemma 8 and Lemma 7 there is a metric space (Δ,d)
such that all constraints in D(Σ+) are satisfied by d. By Lemma 3, the metric space can

be extended to a model M of B(Σ+), thus, of Σ+ (Definition 5). By properties of maximal

consistent sets, for every φ ∈ Σ+, φ ∈ Σ+ ⇔ M |= φ . Hence, since Σ ⊆ Σ+, M satisfies

all formulas in Σ. QED.

5. DECIDABILITY AND COMPLEXITY OF LBPT

From the bound on the size of the satisfying model, we also have the following theorem:

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries 99

Theorem 3 The LBPT satisfiability problem is NP-complete.

Proof.(sketch) NP-hardness of the LBPT satisfiability problem follows from NP-

hardness of the satisfiability problem for propositional logic, which is included in LBPT.

To prove that the LBPT satisfiability problem is in NP, we show that given a finite

satisfiable set of LBPT formulas Γ, we can guess a model for Γ and verify that this model

satisfies Γ, both in time polynomial in the combined size of formulas occurring in Γ.

The completeness proof shows that, if Γ is consistent, it is satisfiable in a metric

model M whose size is polynomially bounded by the number of constants in Γ, and dis-

tance function has a fixed finite range. We guess a model like this. To check whether it is

a proper model, we need to check whether it is a metric space by Definition 1. This can

be done in time which is polynomial in the size of M. To check whether M satisfies Γ, we

need to check this for each formula in Γ. This can be done in time which is polynomial

in the combined size of formulas in Γ and in the size of M. QED.

6. CONCLUSION

We presented a logic LBPT which formalizes the concepts of being ‘possibly part of’

(BPT), ‘possibly connected’ (NEAR) and ‘definitely disconnected’ (FAR). We provided

a sound and complete axiomatistion of it with respect to metric models and showed

that its satisfiability problem is NP-complete. An LBPT reasoner is under development

and testing, for validating ‘sameAs’ and ‘partOf’ matches between spatial objects from

authoritative and crowd-sourced geospatial datasets.

References

[1] M. Aiello, I. Pratt-Hartmann, and J. Benthem. Handbook of Spatial Logics. Springer, 2007.

[2] E. Clementini and P. D. Felice. Approximate Topological Relations. International Journal of Approxi-
mate Reasoning, 16(2):173–204, 1997.

[3] H. Du, N. Alechina, M.J. Jackson, and G. Hart. Matching Formal and Informal Geospatial Ontolo-

gies. In Geographic Information Science at the Heart of Europe, Lecture Notes in Geoinformation and

Cartography, pages 155–171. Springer, 2013.

[4] H. Du, N. Alechina, K. Stock, and M.J. Jackson. The Logic of NEAR and FAR. In Conference On
Spatial Information Theory, COSIT 2013, volume 8116 of LNCS, pages 475–494. Springer, 2013.

[5] ISO Technical Committe 211. ISO 19107:2003 Geographic information – Spatial schema. Technical

report, International Organization for Standardization (TC 211), 2003.

[6] OpenStreetMap. The Free Wiki World Map. http://www.openstreetmap.org, 2012.

[7] Ordnance Survey. Ordnance Survey. http://www.ordnancesurvey.co.uk/oswebsite, 2012.

[8] Z. Pawlak, L. Polkowski, and A. Skowron. Rough Set Theory. In Wiley Encyclopedia of Computer
Science and Engineering. 2008.

[9] A.J. Roy and J.G. Stell. Spatial Relations between Indeterminate Regions. International Journal of
Approximate Reasoning, 27(3):205 – 234, 2001.

[10] S. Schockaert, M. D. Cock, C. Cornelis, and E. E. Kerre. Fuzzy region connection calculus: Representing

vague topological information. International Journal of Approximate Reasoning, 48(1):314–331, 2008.

[11] T. Williamson. Vagueness. Routledge, 1996.

[12] S. Winter. Uncertain topological relations between imprecise regions. International Journal of Geo-
graphical Information Science, 14(5):411–430, 2000.

[13] F. Wolter and M. Zakharyaschev. Reasoning about Distances. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-03), pages 1275–1282, 2003.

H. Du and N. Alechina / A Logic of Part and Whole for Buffered Geometries100

Computing Optimal Policies for Attack

Graphs with Action Failures and Costs

Karel DURKOTA and Viliam LISY

Agent Technology Center, Department of Computer Science, Faculty of Electrical
Engineering, Czech Technical University in Prague

{karel.durkota, viliam.lisy}@agents.fel.cvut.cz

Abstract. An attack graph represents all known sequences of actions that compro-

mise a system in form of an and-or graph. We assume that each action in the attack

graph has a specified cost and probability of success and propose an algorithm for

computing an action selection policy minimizing the expected cost of performing

an attack. We model the problem as a finite horizon MDP and use forward search

with transposition tables and various pruning techniques based on the structure of

the attack graph. We experimentally compare the proposed algorithm to a generic

MDP solver and a solver transforming the problem to an Unconstrained Influence

Diagram showing a substantial runtime improvement.

Keywords. optimal policy, attack graph, markov decision process, and-or graph

Introduction

Attack graphs (AG) are a popular tool for analysing and improving security of computer

networks, but they can be used in any domain, where attacks consist of multiple inter-

dependent attack actions. Attack graphs capture all the known sequences of actions that

may lead to compromising a system, and they can contain additional information, such

as the cost of individual actions and the probability that the actions will be successfully

executed. AGs can be used to evaluate risks and design appropriate countermeasures.

In analysis of attack graphs, it is often of interest to identify the optimal strategy of

the attacker (i.e., which actions to execute in what situation) and its expected cost. For

example, comparing the expected cost of the attack to the expected reward of successfully

compromising the target indicates if a rational attacker would attack the system at all [3].

In penetration testing, following the optimal attack strategy can save a lot of valuable

time [7]. Computing the optimal strategy for the attacker is also a building block in

solving various game-theoretic models of interaction between the attacker and defender

of a system. Furthermore, a problem of computing the optimal attack strategy can also be

seen as a complex variant of the generic problem of probabilistic and-or tree resolution

analysed in AI research [4].

In this paper, we propose an algorithm for computing the optimal attack strategy

for an attack graph with action costs and failure probabilities. Unlike previous works

assuming that the attack graph is a tree (e.g, [7]) and/or computing only a bound on

the actual value (e.g., [3]), we compute the exact optimum and we do not impose any

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-101

101

restriction on the structure of the attack graph. Specifically, our approach allows the

attack graph to contain (even oriented) cycles and to have actions with probabilities and

costs as inner nodes of the attack graph.

The drawback of our approach is that even a simplified variant of this problem has

been shown to be NP-hard in [4]. As a result, we solve it by a highly optimized search

algorithm and experimentally evaluate its scalability limitations. We show that the prob-

lem can be mapped to solving a finite horizon Markov decision process (MDP) and how

the information about the structure of the attack graph can be used do substantially prune

the search space in solving the MDP. We compare the proposed approach to recently

published method for solving this problem [6] and to a recent version of a generic MDP

solver from the International Planning Competition 2011 [5], showing that the proposed

method scales orders of magnitude better.

1. Background and Definition

1.1. Attack Graph

AG is a directed graph consisting of two types of nodes: (i) fact nodes, that represent

facts that can be either true or false, and (ii) action nodes, that represent actions that

the attacker can perform. Each action has preconditions – a set of facts that must be

true before action is performed and effects – a set of facts that becomes true if action is

successfully performed. Moreover, every action has associated probability p ∈ (0,1] –

which denotes the probability that action succeeds and its effects become true, and with

probability 1− p action fails and attacker cannot repeat this action anymore. We assume

that attacker cannot repeat actions for couple of reasons: (i) if actions are correlated and

have static dependencies (installed software version, open port, etc.), another attempts to

use the same action would result alike, and (ii) if we allow infinitely many repetitions,

optimal attack policy (explained further) would collapse into a linear plan with attempt-

ing for each action until action succeeds[3]. Finally, each action has associated cost c; if

attacker decides to perform action a, he will pay the cost c, regardless whether the action

is successful or not.

Definition Let Attack Graph be a 5-tuple AG = 〈F,A,g,p,c〉, where:

• F is a finite set of facts

• A is a finite set of actions, where action a : pre → eff, where pre ⊆ F is called

preconditions (we refer to them as pre(a)) and eff ⊆ F is called effects we refer to
them as eff(a)

• g ∈ F is the goal

• p : A → (0,1] is the probability of action to succeed (we use notation pa for

probability of action a to succeed, and with pā = 1− pa the probability of action

to fail)

• c : A → R
+ is cost of the action (we use notation ca for cost of the action a).

We use the following terminology: we say that fact f depends on action a if f ∈ eff(a),
and similarly, action a depends on f if f ∈ pre(a)

Example of such Attack Graph is in Fig. 1. Diamonds are the inner fact-nodes, that

are initially false, but can be activated performing any action on which the facts depend

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs102

Access DB

Remote Exploit
(0.45,5.0)

Pwd Brute Force
(0.21,9.0)

Database
Vulnerable Net Access Dictionary

Exploit Firewall
(0.27,5.0)

Send MW Email
(0.23,2.0)

Create Dictionary
(1.0,11.0)

Firewall
Vulnerable

Firewall
Access

Address
Available

Personal
Data

Figure 1. Simple attack graph which shows possible ways how to achieve access to the database (fact node

”Access DB”). Diamonds are the inner fact-nodes (initially false) that can be turned true, while rectangles

are the leaf fact nodes, which are always true. Ellipses depict actions that attacker can perform with success

probability p and cost c.

upon. Rectangles represent leaf fact-nodes, that are initially true. Ellipses are the actions

that attacker can perform with probability of success p and cost c. In our example we

represent action with its name and the couple (p,c). Attacker’s goal is to activate fact

”Access DB” (obtain an access to DB).

The probabilities and costs of the actions can be obtained using Common Vulnera-

bility Scoring System (CVSS)1 from, i.e., National Vulnerability Database, which scores

different properties of vulnerabilities. Probabilities could be computed for example from

the access complexities, exploitabilities or availability impacts of the vulnerabilities,

whereas costs could be computed from number of required authentication in order to a

vulnerability, etc.

1.2. Attack Policy

Solving the AG means to find a policy, that describes what action should attacker perform

in every possible evolution of the attack procedure. Fig. 2 depicts optimal policy ξopt
for the problem from Fig. 1, where attacker first attempts to perform action ”Send MW

Email”; if action is successful, he follows the right (sub)policy (solid arc), thus perform-

ing action ”Remote Exploit”, otherwise the left (sub)policy (dashed arc), thus action

”Exploit Firewall”, and so on.

Definition An attack policy is an oriented binary tree ξ for evaluating attack graph AG.

Nodes of ξ are actions, arcs are labeled + or solid line (if parent action was successful)

and − or dashed line (if parent action was unsuccessful), and whose leaf-nodes are either

� resp. � representing successful reps. unsuccessful attack.

1www.first.org/cvss

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs 103

-

Exploit Firewall

1.0E9

Remote Exploit

4.3450001600000006E8

-

Create Dictionary

1.0E9

Pwd Brute Force

7.90000009E8

-

1.0E9

+

0

7.9000002E8

+

0

Send MW Email

8.4731500932E8

Remote Exploit

4.3450001600000006E8

-

Create Dictionary

1.0E9

Pwd Brute Force

7.90000009E8

-

1.0E9

+

0

7.9000002E8

+

0

Start

7.523675628564001E8

Figure 2. Optimal policy for a simple attack graph from Fig. 1. Attacker should follow solid arcs if previous

action was successful, otherwise follow dashed line. Values at arcs represent the expected costs for attacker.

Definition The expected cost of an attack policy ξ is a cost over all possible evolutions

of the policy. Let φχ be (sub)tree of ξ rooted at a node χ labeled with an action a, then

expected cost of φχ can be computed recursively as follows:

E (φχ) = ca + pa ×E (φχ+)+ pā ×E (φχ−)

where φχ+ (φχ−) is the subtree rooted at χ’s + branch (− branch) and in the leaf-nodes of

the policy is a penalty if attack is unsuccessful E (�) = penalty and reward if successful

E (�) = reward.

When we decide which of the two policies, either φχ rooted at χ labeled with an action

a or φψ rooted at ψ labeled with action b have lower expected cost, we assume that after

performing action a, resp. b, attacker follows an optimal policy. In this case, we override

our notation of E (φχ) resp. E (φψ) to simply E (a) resp. E (b).
We assume that our attacker is a motivated attacker, that is they continue in attack as

long as there are actions that may lead to the goal, regardless of the cost of the attacks.

Motivated attacker ceases the attack only when there is no sequence of actions that could

result in achieving the goal. Having assumed this type of attacker and the fact that attacks

are monotonic, meaning that consequence of attack preserves once is achieved [1] (once

the fact becomes true, it cannot become false again), it can be shown that every policy,

regardless on the order of the action, will have equally the same probability of achieving

the goal. Note, that the expected cost of the policy consist of two parts: the probability

of achieving the reward or the penalty and the expected cost of the action costs. The

probability of successful attack is always the same, thus every policy will have the same

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs104

expected cost of the penalty/reward. Thus, it essentially makes no difference whether we

choose to reward the attacker for successful attack or penalize for an unsuccessful attack.

In fact, distinct policies have different expected costs only because of the different action

ordering which imposes different sequences of their costs.

Definition A policy ξopt is optimal if it has the minimal expected cost among all possible

policies, thus ∀ξ ∈ Ξ : E (ξopt)≤ E (ξ), where Ξ is a set of all policies.

Proposition 1.1 In the optimal policy ξopt for every (sub)policy φχ rooted at a node χ
labeled with an action a following is true: E (φχ)≤ E (φχ−).

We will prove it by contradiction. Assume that E (φχ)> E (φχ−) is true. Then due to the

monotonicity property the attacker could have followed the (sub)policy φχ− even before

performing action a, which would have saved him the cost of the action ca. But then this

new policy would have had lower expected cost than the policy φχ , which violates our

assumption that φχ is an optimal policy.

Proposition 1.2 In the optimal policy ξopt for every (sub)policy φχ rooted at a node χ
labeled with an action a following is true: E (φχ−)≥ E (φχ+).

E (φχ) =ca + pa ∗E (φχ+)+ pā ∗E (φχ−) (1)

E (φχ−)≥ca + pa ∗E (φχ+)+ pā ∗E (φχ−) (2)

E (φχ−)≥ca + pa ∗E (φχ+)+ ca/pa (3)

1.3. Markov Decision Process

We solve this problem by modeling it as Markov Decision Processes (MDP) [2] which

is defined as 4-tuple 〈S,A,P·(·, ·),R·(·, ·)〉, where:

• S is a finite set states, in our case state is a set of performed actions and label

whether the action a was successful (a) or not (ā);

• A is a set of actions, which is equal to the set of actions in the attack graph

• Pa(s,s′) is a probability that action a, performed in state s, will lead to state s′; in

our case, if action a, with probability pa is successful, then state s′ = s∪{a}; if

action a is unsuccessful, then state s′ = s∪{ā}
• Ca(s,s′) is an immediate cost payed after transition to state s′ from state s; in

our case Ca(s,s′) = ca in all transitions, except when s′ is a terminal state, then

Ca(s,s′) = ca−reward if goal is achieved in s′ and Ca(s,s′) = ca+ penalty if goal

is not achieved in s′.

Optimal solution is such a policy of MDP, that minimizes an overall expected cost.

2. Algorithm

2.1. Basic Approach

Basic approach is to use MDP with finite horizon, e.g. exhaust every possible ac-

tion at every decision point and select action having minimal expected cost. In fact,

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs 105

we use this approach with several pruning techniques which speed up this computa-

tion. In Fig. 3 is an example of MDP search of our running example from Fig 1.

The root of the MDP is a decision point where we need to decide which of the ac-

tion among "Exploit Firewall", "Send MW Email" and "Create Dictionary"

is the best to perform. In a naive approach we explore every possible scenario and

compute their expected costs E ("Exploit Firewall"),E ("SendMW Email") and

E ("Create Dictionary"). We choose the action with the minimal expected cost.

Explit Firewall

EF+

+

EF-

-

Send MW Email

SMWE+

+

SMWE-

-

Create Dictionary

CD+

+

CD-

-

...

Figure 3. In naive approach we explore every possibility and select action having minimal expected cost.

For performance enhancement, we make use of transposition tables, that is: we

cache states for which we have computed expected cost and an optimal (sub)policy and

reuse these results in future, should we encounter the same state again.

2.2. Sibling-Class Theorem

In [4] authors deal with ”probabilistic and-or tree resolution” (PAOTR) problem, mainly

for and-or trees with independent tests without preconditions, for which they constructed

and proved the Sibling-Class Theorem. Independently, authors in [3] show the same the-

orem. The Sibling-Class Theorem states, that the leaf-node actions can be grouped into

the sibling-classes within which actions’ ordering can be determined by simply sorting

their R-ratios; hence, no state-search exploration is necessary within sibling-class, only

between the sibling classes. Two actions belong to the same sibling class if they have

common parent in the and-or tree. As they consider inner nodes to be either AND or OR

node, naturally there are two types of sibling classes: the AND-sibling classes and the

OR-sibling classes. R-ratios of an action is computed as follows:

R(a) =
pa

ca
if action a is in OR-sibling class (4)

R(a) =
pā

ca
if action a is in AND-sibling class (5)

Conjecture 2.1 Sibling-Class Theorem for and-or trees without preconditions can be
applied to an and-or graph with precondition using following rules for creating OR-
Sibling Classes:

• actions a and b belong to the same OR-Sibling class iff: pre(a) = pre(b) ∧
|pre(a)|= |pre(b)|= 1.

and following rules for AND-Sibling Class:

• action a and b belong to the same AND-Sibling class iff: pre(a) �= pre(b) ∧
|pre(a)|= |pre(b)|= 1∧ (∃c ∈ A : pre(a) ∈ eff(c)∧pre(b) ∈ eff(c)).

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs106

Action a∈A cannot be pruned iff: |pre(a)|> 1∨(∃c1,c2 ∈A : c1 �= c2∧ pre(a)∈ eff(c1)∧
pre(a) ∈ eff(c2)).

The Sibling Theorem is proved only for and/or trees, while we empirically checked and

use it for and/or graphs.

Example Assume we have the same problem as in Fig. 3 and we come to the same

decision point as previously. But now we computed R("Exploit Firewall") = 0.27
5.0 =

0.054, R("Send MW Email") = 0.23
2.0 = 0.115 and R("Create Dictionary") = 1.0

11.0 =
0.091 and we know that actions "Exploit Firewall" and "Send MW Email" have

the same parent node "Net Access", thus belong to the same OR-sibling class, while

action "Create Dictionary" belongs to a separate sibling class. Now we explore only

actions that have maximum R-ratios in each sibling class, thus only actions "Send MW

Email" and "Create Dictionary", and action "Exploit Firewall" surely will not

be the first action in the optimal policy. Fig. 4 depicts nodes that must be explored (white

nodes), and nodes that are pruned (grey nodes).

same class same class

Explit Firewall

EF+

+

EF-

-

Send MW Email

SMWE+

+

SMWE-

-

Create Dictionary

CD+

+

CD-

-

...

Figure 4. This figure presents nodes that are explored (white) and nodes that can be pruned (grey) in the MDP

search if we know that actions "Exploit Firewall" and "Send MW Email" are in the same sibling class

and action R-ratios.

2.3. Branch and Bounds

As another pruning technique we use branch and bounds. For this technique we reuse

previously computed expected costs of the subtrees of the MDP to prune future subtrees

if know that an optimal solution cannot exist there. Specifically, when we face the deci-

sion either utilize (sub)policy φa – starting with an action a – or (sub)policy φb – starting

with action b – we choose policy φb only if E (φb)< E (φa), implying:

E (φb)< E (φa) (6)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb−)< E (φa) (7)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb+)< E (φa) (8)

cb +E (φb+)< E (φa) (9)

E (φb+)< E (φa)− cb (10)

where from (8) to (9) we used property of the optimal policy that E (φb+)≤ E (φb−), and

then fact that pb + pb̄ = 1. Thus, E (φa)− cb is an upper-bounds for E (φb+). If anytime

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs 107

during the computation it exceeds this bound, we can immediately stop the computation

of the b+ branch.

Similarly, having computed the E (φb), we can bound again the branch E (φb−) as

follows

E (φb)< E (φa) (11)

cb + pb ∗E (φb+)+ pb̄ ∗E (φb−)< E (φa) (12)

pb̄ ∗E (φb−)< E (φa)− cb − pb ∗E (φb) (13)

E (φb−)< (E (φa)− cb − pb ∗E (φb))/pb̄ (14)

Example Assume different example, where we face the problem of choosing the best

(sub)policy φa, φb, φc and φd . Branches E (φa+) and E (φa−) we must compute to obtain

E (φa). Next, we compute expected cost E (φb+) and assume that it turns out to be higher

than E (φa), hence, we can prune the computation of the branch b−, as action b will never

have less expected cost then action a. Next, let’s say E (φc+) in the branch c+ turned out to

be lower than E (φa). It means that we can upper bound the E (φc−) by
E (φa)−cc−pc∗E (φc)

pc̄
.

Let’s say that E (φc−) obeyed the bound, thus, action c is the best action that attacker can

perform so far. Note, that it is unnecessary to compute total expected cost of E (φc) to

determine that it is lower then E (φa), it is direct implication from the fact that it satisfied

both bound conditions. Finally, during the computation of branch d+ it turned out to

violate new upper bound E (φc)−cd , thus its computation was terminated and branch d−

was pruned as well.

a

a+

a+

a-

a-

b

b+

b+

b-

b-

c

c+

c+

c-

c-

d

d+

d+

d-

d-

...

Figure 5. This figure presents nodes that are explored (white) and nodes that can be pruned (grey) due to the

branch and bound technique.

2.4. Heuristics

Finally, we designed heuristic approach to compute the lower bound of the expected

cost of an attack graph by setting costs of the actions to zero and taking into account

only the actions’ probabilities. This relaxation gives us freedom in action ordering as

any (valid) ordering will produce exactly the same probability of success of the policy

and thus the overall expected cost. We use this heuristics in two ways: (i) if computed

heuristics exceeds the given upper bound, this branch of computation can be pruned, and

(ii) according the heuristics we order the action in which we compute remaining actions’

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs108

expected costs. If we start with the most promising action, more of the future branches

might get pruned.

Nevertheless, we came across an issue in this approach due to the fact that our attack

representation is not a tree but a directed cyclic graph. Which means that performing an

action can be beneficial in several possible branches at once if action has more then one

root-node paths in the attack graph, which results, that the probability of the action will

be count multiple times into the overall probability of success is increased. This causes

expected cost, computed as (1− probability) ∗ penalty to decrease. Since we minimize

the expected cost this issue keeps the heuristics still admissible.

3. Experiments

We experimentally compared our algorithm with two other approaches, namely Uncon-

strained Influence Diagrams, and using probabilistic planner from International Planning

Competition.

3.1. Guido approach

This approach, described in [6], converts an attack graph into an Unconstrained Influence

Diagrams (UID) — a graphical representation of a decision situations using probabilistic

interference — upon which existing solvers can be run. We ran a Guido solver as de-

scribed in the article. This approach showed to be insufficiently scalable for the problems

with large (>20 actions) attack graphs.

3.2. Probabilistic planning

As an other approach, we decided to use a domain independent probabilistic planner

SPUDD that competed in International Plannign Competition (IPC) in 2011. SPUDD

is based on iterative value computation of MDP and uses own specification language.

Since it computes MDP, it needs to have set either discount factor γ = [0,1), or γ = 1

and the horizon set to an integer. For our purposes, discount factor γ must be set to 1,

hence horizon had to be chosen appropriately. To ensure that SPUDD finds an optimal

solution, we chose to set the horizon to number of actions in the attack graph.

3.3. Experiment settings

We experimentally ran and compared our algorithm DynProg, Guido and SPUDD ap-

proaches on the three different realNetwork frameworks with different configurations.

We ran experiments on Intel 3.5GHz with memory resource up to 10GB. In DynProg

we set the penalty = 109 and reward = 0. In Tab. 1 we present running times of each

approach.

4. Conclusion and Future Works

Our algorithm showed to outperform other two approaches in time complexity and scal-

ability. Unfortunately, it ofter runs out of the memory due to the transposition tables and

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs 109

Problem DynProg [ms] Guido [ms] SPUDD [ms]

Local+2 51 85 1000

Local+3 155 546 11000

Local+4 443 76327 70000

Local+5 5389 (OoM) 656000

Local+6 (OoM) (OoM) 6152000

Cross2 4 408 1000

Cross3 38 23796 9000

Cross4 504 (OoM) 287000

Cross5 3587 (OoM) 8373000

Cross6 60351 (OoM) (OoT)

LocalChain3-3 0 9 0
LocalChain4-4 0 70 1000

LocalChain5-5 0 1169 3000

LocalChain6-6 0 17133 23000

Table 1. Time comparison of DynProg, Guido and SPUDD approaches over three types of problems with

different complexities. Shortcuts: (OoM) - Out of Memory, (OoT) - Out of Time (> 107ms).

very large search state-space anyway. Other optimizations can be proposed, as better rep-

resentation of a state or more accurate heuristics for better pruning. This algorithm can

be used in game theoretic manner in couple of ways. Here we present two directions: (i)

determine what honeypot configurations maximize the probability that an attacker would

be detected during their attacks on the realNetwork and (ii) for security hardening de-

termining which subset of vulnerabilities should administrator fix in order to secure the

realNetwork, that is, that for the attacker it is not worth to attack to begin with.

Acknowledgement

This research was supported by the Office of Naval Research Global (grant no. N62909-13-1-N256) and Czech

Ministry of Interior grant number VG20122014079.

References

[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based realnetwork vulnerability

analysis. In Proceedings of the 9th ACM Conference on Computer and Communications Security, pages

217–224. ACM, 2002.

[2] Richard Bellman. Dynamic programming and lagrange multipliers. Proceedings of the National Academy
of Sciences of the United States of America, 42(10):767, 1956.

[3] Ahto Buldas and Roman Stepanenko. Upper bounds for adversaries utility in attack trees. In Jens

Grossklags and Jean Walrand, editors, Decision and Game Theory for Security, volume 7638 of Lecture
Notes in Computer Science, pages 98–117. Springer Berlin Heidelberg, 2012.

[4] Russell Greiner, Ryan Hayward, Magdalena Jankowska, and Michael Molloy. Finding optimal satisficing

strategies for and-or trees. Artificial Intelligence, 170(1):19–58, 2006.

[5] Jesse Hoey, Robert St-Aubin, Alan J Hu, and Craig Boutilier. Spudd: Stochastic planning using decision

diagrams, 1999.

[6] Viliam Lisý and Radek Pı́bil. Computing optimal attack strategies using unconstrained influence dia-

grams. In Intelligence and Security Informatics, pages 38–46. Springer, 2013.

[7] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. An algorithm to find optimal attack paths

in nondeterministic scenarios. In Proceedings of the 4th ACM workshop on Security and artificial intel-
ligence, AISec ’11, pages 71–80, New York, NY, USA, 2011. ACM.

K. Durkota and V. Lisy / Computing Optimal Policies for AG with Action Failures and Costs110

Semantifying Triples from Open

Information Extraction Systems

Arnab DUTTA 1, Christian MEILICKE and Heiner STUCKENSCHMIDT

Data and Web Science Research Group, University of Mannheim, Germany

Abstract. The last few years have witnessed some remarkable success of the state-

of-the art unsupervised knowledge extraction systems like NELL and REVERB.

These systems are gifted with typically web-scale coverage but are often plagued

with ambiguity due to lack of proper schema or unique identifiers for the instances.

This classifies them apart from extraction systems like DBPEDIA, YAGO or FREE-

BASE which have precise information content but have smaller coverage. In this

work we bring together the former to enrich the later with high precision novel

facts and present a statistical approach to discover new knowledge. In particular,

we semantify NELL triples using DBPEDIA.

Keywords. open information extraction, information integration, knowledge

generation, statistical modeling.

1. Introduction

With the growing popularity of unsupervised techniques of knowledge extraction from

text, web corpora, there is an advent of a new genre of extraction systems commonly

know as open information extraction (OIE) systems. ”Open” in the sense, they are

not limited to Wikipedia or any specific resource but the whole of web. Systems like

NELL [5], REVERB [11] have gained a quick prominence marked by their web scale cov-

erage and huge fact base. However, such systems often lack a schema and hence, is diffi-

cult to correctly disambiguate entities from the OIE fact base. On the other hand, knowl-

edge bases (KBs) like DBPEDIA [1], YAGO [19], FREEBASE [2] mark another class of

extraction systems which are of higher quality, precise and maintain a well-structured

schema but at the expense of a poor coverage (often restricted only to Wikipedia).

There is considerable potential in exploiting the data maintained by OIE for ana-

lyzing, reasoning about, and discovering novel facts and generation of web search en-

gines [9]. In this work we integrate these two broad domains in a symbiotic fashion;

OIE systems exploit the clean ontological structure of closed IE systems, thereby im-

parting uniqueness to its entities; and the closed IE systems enrich themselves from the

broader coverage of the OIE. We present a methodology to automatically find new DB-

PEDIA triples by exploiting the information content in NELL. To achieve this, we need a

synergistic integration of solving the three major sub tasks:

1Corresponding Author: Arnab Dutta, University of Mannheim, 68159 Mannheim, Germany; E-mail:

arnab@informatik.uni-mannheim.de

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-111

111

1. how to precisely find the references of the instances within an OIE triple, to

a closed KB instance (DBPEDIA in our case). This resembles with the task of

entity linking where a term in a text is linked to a KB entry. But the lack of any

context for OIE triples sets the scenario different for us and deters us to use any

of-the-shelf entity linking tool.

2. assuming we have correctly deciphered the references, how can we map the rela-

tionship within an OIE triple to an analogous closed domain property.

3. how can the instance and property matching interplay to enrich a closed KB.

Let us consider a NELL triple of the form stadiumlocatedincity(riverfest, little rock),

where two entities are in a semantic relationship defined by stadiumlocatedincity. Even

though we might have an intuitive understanding of the property, it is difficult to interpret

the exact real world entities the terms are referring to; little rock can refer to a range of

cities in USA or a person or even a US naval ship. The problem gets more complicated

since, unlike the well defined properties in DBPEDIA or YAGO, the OIE properties often

lack strict domain and range definitions. This makes it difficult to determine what fits in

as a subject and object. Note, NELL has its own schema but in an attempt to propose a

general solution, we keep our approach agnostic to this information.

We propose a learn-and-fill approach to use the ambiguous triples in order to

generate new facts. First, we map the NELL instances to DBPEDIA instances (Sec-

tion 2.1) using a probabilistic approach. This is not the core contribution of this pa-

per and has been already addressed before [7]. Second, we use the mappings to look

for a semantic relationship (clean infobox properties with ”/ontology” namespace) in

DBPEDIA (Section 2.2) and use it as a likely predictor for the NELL property. For

instance, we learn from other NELL triples with same property, like stadiumlocated-
incity(meyerson symphony center, dallas) and many more that location can be a likely

mapping. The final piece of the solution lies in integrating these two mapping solu-

tions to generate new facts (Section 2.3). We can now fill in the original NELL triple

with the learnt property location to generate a new facts like location(Cincinnati-

Bell/WEBN Riverfest, Little Rock, Arkansas). We apply statistical techniques

for the purpose and show its impact in generating high quality facts (Section 3).

2. Methodology

2.1. Mapping Instances

We map the individual subject and object occurring within a NELL triple to DBPEDIA

instances. In this regard, we explore two different methods. The first and a naive approach

is to look for the most frequent sense of the terms occurring in NELL triples by exploring

intra-Wikipedia page links connecting anchor texts to their respective pages. A detailed

analysis of this approach can be found in [8]. It is a simple approach, without exploiting

any contextual information to improve the mappings.

As an improvement, we incorporate the type information of the mapped DBPEDIA

instances. We initiate with the most frequent instance mappings from NELL to DBPEDIA

and let them to determine the possible types of DBPEDIA instances allowable in the con-

text of the given NELL property. Subsequently, the type information guides the mapping

selection process again. These bootstrapped approach of selecting-and-refining is solved

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems112

using Markov Logic Networks [17] and leads to better results [7] than the naive way. We

employ this technique to generate a refined set of hypotheses where every NELL instance

eventually has atmost one mapping to a DBPEDIA instance.

2.2. Mapping Properties

This section presents our approach for mapping an OIE property to an analogous DBPE-

DIA property. For every NELL triple of the form np(ns, no) we map the subject (ns) and

object (no) individually to DBPEDIA instances ds and do respectively (refined instance

mappings from the probabilistic framework [7]). Using a DBPEDIA SPARQL endpoint,

we query2 for a possible property dp involved in some triple of the form dp(ds, do). If

such a triple exists, then dp can be considered as a likely DBPEDIA mapping of np. We

apply this technique over all the NELL properties. Furthermore, we also consider inverse

property mappings. We denote dinv
p to be an inverse mapping for np, if the triple dinv

p (do,

ds) exists in DBPEDIA. The methodology proposed in this work is applicable for both

the two cases and we use dp as a general notation for DBPEDIA property.

Likelihood Estimate: We want to estimate the likelihood of every possible mapping of

np to one or more dp. A naive frequency count of the mappings can give us a likeli-

hood estimate. For instance, if NELL property bookwriter is mapped to author in k out

of n cases and to writer in (n-k) out of n cases, then the likelihood of the mapping

bookwriter to author is k
n , and to writer is

(n−k)
n . Finally, selecting candidates above

a threshold score, could be a simple solution. However, this approach suffers from two

major drawbacks: first, any conceptually similar property (as in this case) might be elim-

inated out due to lack of sufficient evidence (low likelihood score); second, finding a

correct threshold. An improved approach could be to incorporate the type information of

the mapped DBPEDIA instances as well.

Formally, we define a set Tnp consisting of NELL triples with property np. For each

such triple, we collect the type of the mapped DBPEDIA subject and object, denoted by

dom(ds) and ran(do) respectively. Now, querying for triples like dp(ds, do) can have the

following possibilities:

1. returns an empty set, indicating absence of any dp. This can happen if there is no

such triple in DBPEDIA or the mapped instances are wrong at the first place.

2. returns a single possible value for dp (e.g. airportincity(helsinki vantaa airport,
helsinki) maps to city(Helsinki Airport, Helsinki))

3. returns multiple values for dp. (e.g. airportincity(vnukovo, moscow) maps to

city (Vnukovo International Airport, Moscow) and location(Vnukovo-

International Airport, Moscow))

Case (2) and Case (3) are given an unified representation by framing discrete associa-

tions as, {np, dp, dom(ds)} and ran(ds) (refer to Table 1). Hence, the example in Case

(3) translates to {airportincity, city, Airport, Place} and {airportincity, location,

Airport, Place}. Case (1) is not translated. All the associations for np thus formed is

denoted as Anp . It is important to note that, |Tnp | ≤ |Anp |; ∀np ∈ Tnp . A blank value (’-’) is

attributed to a missing instance type in DBPEDIA or non-mappabiliy of np due to reasons

mentioned in Case (1) above.

2select ?dp where {ds ?dp do}

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems 113

Table 1. A snippet of the actual associations presenting a positive example with airportincity and a negative

example with agentcreated. Missing value is marked with ”-”.

Anp np Knp i di
p dom(di

s) ran(di
o) τ i

np τ̂
<
..
.A

ai
rp

or
ti

nc
it

y
··
·>

ai
rp

or
ti

nc
it

y
1 location MilitaryStructure - 150 1.21

2 location Airport - 0.86 1.21

55% 3 isPartOf Settlement Settlement 150 1.21

4 isPartOf Settlement - 37.5 1.21

5 city Airport - 0.86 1.21

.

<
..
.A

ag
en

tc
re

at
ed
··
·>

ag
en

tc
re

at
ed

1 notableWork Writer Play 496.6 3.12

2 notableWork Writer TelevisionShow 3973 3.12

9% 3 occupation Person Book 12.7 3.12

4 occupation Settlement - 37.5 3.12

5 knownFor Scientist Book 3973 3.12

.

Now, we introduce Knp , the mapping factor determining the degree to which a par-

ticular NELL property can be mapped, as

Knp =

|Tnp |
∑
j=1

C(j)

|Tnp |
; where C(j) =

{
1; atleast one property mapping for np in T j

np

0; otherwise

Assuming, we have only ten triples for airportincity, eight have been mapped (mix-

ture of Case (2) and (3) above), two have been not (Case (1) above), then Kairportincity =
8
10 . Here, under the column Knp we present the actual value which is 0.55. Then we apply

an association rule [14] of the form {np ⇒ dom(di
s),ran(di

o)}, on Anp . This means, if the

NELL property is np then the type of the mapped DBPEDIA subject instance is dom(di
s)

and type of the object instance is ran(di
o). We compute the confidence, denoted as con f ,

for each such rule, and which denotes the frequency of co-occurrence of dom(di
s) and

ran(di
o), whenever np occurred. Hence, the confidence for the ith association for a prop-

erty is denoted as con f i
np , and defined as,

con f (np ⇒ (dom(di
s),ran(di

o))) = con f i
np = count(np,dom(di

s),ran(di
o))

/
|Anp |

Referring to Table 1, con f 3
agentcreated = count(agentcreated,Person,Book)/|Aagentcreated |.

Note the count function is not just the frequency count of the joint occurrence of a partic-

ular np and its associated DBPEDIA domain and range values, but, also the sub-classes of

each of the domain and range. The rational is, if we observe an association like agentcre-
ated ⇒ (Person, Book) then any other association like agentcreated ⇒ (Scientist,

Book) should also be considered as an evidence for the former association. Scientist

being a sub-class of Person in the DBPEDIA ontology, is not a different association but

a more particular case. Finally, each association, is awarded with a confidence of con f i
np .

We combine Knp and con f i
np to define the second factor called τ (tau) defined as,

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems114

τ i
np =

(1−Knp)

con f i
np

; ∀i ∈ Anp

This quantifies the badness of a particular association for a particular np with mapping

factor Knp . A low confident association with low Knp will give a high τ i
np (τ3

airportincity in

Table 1) while, a more confident association with high Knp minimizes the ratio, hence

less bad (τ5
airportincity in Table 1). We are primarily interested in the later ones. We employ,

τ i
np as our unit of measurement and define a minimum threshold, τmin

np which occurs

when con f i
np attains the maximum confidence (follows directly from the definition of tau

above). Intuitively, τmin
np defines the upper bound for the best score possible.

Threshold Learning: In this section we devise a technique to learn a correct threshold

for τ i
np . Our objective is to solve the problem with least number of parameters possible.

There can be three broad association patterns possible:

• a single high con f i
np association, among many others

• multiple closely spaced possible DBPEDIA properties with almost same con f i
np

• No clear winner, but multiple candidates with low con f i
np

We aim at modeling these different scenarios which would select the first two cases

but not the third one. The rational is, any association rule with a low confidence is not

an apt predictor for np. In this regard, we observed that the underlying data set had

a distribution pattern over Knp (detailed figures in Section 3). We use it to manually

determine a threshold for Knp , denoted as Kthres. Hence, we select data points having

Knp atleast Kthres. This gives us a set of co-ordinates, D given as {. . . ,(Knp ,τmin
np), . . .}.

We fit a linear regression model on set D, motivated by the fact that τ shows a linear

dependence on Knp (our initial analysis had revealed that introducing con f as another

variable had minimal effect on τ , hence we use it as a constant). With such a linear

predictive analysis method, we can have an estimate of τ , defined as τ̂ for every Knp . Note

that, we trained our model using the data points attained using the maximum confidence

(analogously τmin
np), hence, the linear model is an automatically learnt threshold on τnp .

We use τ̂ to compare with every τ i
np , ∀ i ∈ Anp . Some scores fall below the prediction (the

likely associations) and some are way above it (less likely ones) (refer to Table 1, correct

association values are marked in bold). The likely associations allow us to select the final

DBPEDIA property driven by the rule (dom(di
s),ran(di

o))⇒ di
p. Note that, in determining

the property match we exploited the class information and remained un-informed of the

actual DBPEDIA property involved. Analyzing the patterns now,

• Multiple associations but a single one with a high con f i
np . This makes τ i

np ' τ̂
• Multiple closely placed associations with almost same con f i

np , making τ i
np ' τ j

np

' τ̂; i �= j. (refer Table 1, τ2
airportincity and τ5

airportincity)

• No clear winner, but multiple candidates with low con f i
np making τ i

np ≫ τ̂ (refer

Table 1, τ1
agentcreated , τ5

agentcreated)

2.3. Knowledge Generation

As a final module, we combine our two solutions in an attempt to generate new facts

missing in DBPEDIA. Reiterating, we have a set of NELL triples, for which we could

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems 115

Table 2. Precision of knowledge generated, for the properties predicted by our approach. * denotes inverse

property mappings. Best results marked in bold

np dp pinst pprop p f act

headquarteredin headquarter 0.96 1.0 0.93
visualartistartform movement 0.99 0.06 0.057

field 0.99 0.95 0.93
personhasresidenceincountry nationality 1.0 0.33 0.33

airportincity city 0.63 1.0 0.3
location 0.50 1.0 0.17

stadiumlocatedincity location 0.95 1.0 0.91
televisionstationincity locationCity 0.98 1.0 0.96

location 0.38 1.0 0.0

televisionstationaffiliatedwith broadcastNetwork 0.99 1.0 0.98

formerBroadcastNetwork 0.995 1.0 0.99
radiostationincity broadcastArea 1.0 1.0 0.90

city 0.50 1.0 0.0

personhasethnicity deathPlace 0.70 0.0 0.0

birthPlace 0.70 0.60 0.20
haswife partner 0.96 1.0 0.92

spouse 0.96 1.0 0.92

musicianinmusicartist* bandMember 0.98 1.0 0.96
associatedMusicalArtist 0.50 1.0 0.0

agentcreated* author 1.0 0.80 0.80
citycapitalofcountry* largestCity 1.0 0.91 0.91

capital 1.0 1.0 1.0
automakerproducesmodel* manufacturer 0.75 1.0 0.50

Macro-average - 0.97 0.96 0.77

map its instances to DBPEDIA and its properties to analogous DBPEDIA properties. This

provides strong evidence for the portion of NELL triples for which the property could

not be mapped. This fraction is given by 1−Knp . Having np successfully mapped to dp,

we can use dp to fill-in the missing relationships between the DBPEDIA instances for

these non-mapped triples. Hence, the fraction of non-mapped triples for a NELL property

defines an upper bound on the scope for new facts generation. This is a strict upper

bound, since, a NELL triple can be non-mapped due to either:

1. a missing semantic relation between two correctly mapped DBPEDIA instances

2. a missing semantic relation between incorrectly mapped DBPEDIA instances

3. there is no mapping of instance possible at the first place

Clearly, points (1) and (2) are the ones which can lead to knowledge generation. As a

matter of fact, Case (2) will generate wrong facts (further details in Section 3.1) and Case

(3) cannot be dealt with our approach. In this respect, it is interesting to note a dilemma:

if a property is nearly 100% mappable, we are more confident with its evidences but it

gives us lesser scope of knowledge generation and vice versa.

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems116

3. Empirical Results

We use the NELL data set, having approximately 1.9Mi triples, for our experiments, but

without the triples with property generalizations since it is analogous to rdf:type which

expresses class instantiation. In this paper, we are focusing on the more complex task of

finding the correct mapping for a potentially ambiguous property from NELL instead of

generating facts like isA(london, city). Note that mapping the instances, simultaneously

solves the problem of determining the class of those instances since most of them are

already typed in DBPEDIA.

3.1. Performance

Next we compute the precision of the newly generated triples. Since, a gold standard is

not available, we resort to manual annotation scheme. Three annotators were provided

samples of 300 NELL triples each. Annotators marked every mapping of the subject,

property and object as ”Correct” or ”Incorrect” and also marked the original NELL triple

to be ”Correct”, ”Incorrect” or ”Ambiguous”. The later annotation was important since,

even if the mapping of instances and properties are accurate, a wrong NELL triple in

the first place will still lead to a wrong fact generated. Based on this agreement, only

the triples with correct instance and property matches were considered as true positives.

Even if one of the instances or the property match was incorrect, the triple was marked

as a false positive. In Table 2 we present the precision scores for instance mappings

(pinst), property mappings (pprop) and generated facts (p f act). Note that, inaccurate in-

stance mappings often lead to lower fact precision even if property mapping was pre-

cise (exactly the Case (2) mentioned in Section 2.3). This happens with {airportincity,

location}. Also, the other way round, lower pprop minimises p f act inspite of a high

pinst as seen with {visualartistform, movement}. Hence, a highly accurate pinst and pprop
together contributes to a high p f act . The NELL properties with an asterisk (*) denote

the inverse properties learnt and likewise present the precision of new triples. Observe

that for some properties, we have dual choices of dp, visualartistartform for instance.

When mapped to field the precision of new triples were better than when mapped to

movement, even though the later fitted the domain/range restrictions but when used in

fact generation, led to senseless triples. Hence annotators marked it as a false positive.

The line of reasoning is similar for personhasethnicity which had birthplace as the

mapped property. On the other hand, largestCity was accepted as a mapped property

for citycapitalofcountry since the triples generated as a whole were correct. Overall, we

had a precision of 0.97 for instance mappings, 0.96 for property mappings, giving us

0.77 as macro-averaged precision for the generated facts.

3.2. Regression Analysis

In Figure 1(a, c) we present the distribution of τmin
np over Knp (defined in Section 2.2), both

for the direct and inverse property mappings respectively. We observe a similar trend in

both the figures in the sense that higher values are attained for poorly mapped properties

and properties with higher Knp tend to have lower values for τmin
np . This allows us to select

the points on and beyond a particular threshold (in our case, Kthres = 35%). In Figure 1(b,

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems 117

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

(a) tau Distribution for direct mappings

Direct Property Mapped (%)

ta
u
 m

in

0 20 40 60 80 100

0
1

2
3

4
5

6

(b) Regressing on atleast 35% mappable properties

Direct Property Mapped (%)

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

(c) tau Distribution for inverse mappings

Inverse Property Mapped (%)

ta
u
 m

in

0 20 40 60 80 100

0
1

2
3

4
5

(d) Regressing on atleast 35% inversely mappable properties

Inverse Property Mapped (%)

Figure 1. Regression analysis of direct and inverse property mappings.

d), we zoom in the data points beyond 35%, where we observe a linear variation. These

points comprise of the set D (defined in 2.2). Likewise, we use these as training points

to fit a linear predictive model having a single independent variable Knp . This is shown

with the line fitting the points such that the squared error loss is minimized. The linear

dependence relation between Knp and τ allows for this design choice. The regression line

sets a self adjusting threshold varying across properties.

Furthermore, in Table 3 we present few examples which shows an interesting aspect

of our method. The column labeled np denotes the NELL property and dp the analogous

DBPEDIA property learnt. The data is interpreted as follows: when the NELL property

headquarteredin was mapped to headquarter, 39.4% of the mapped subjects were of

type Airline, 16.6% were Monarch and analogously for the range values. The interest-

ing aspect of the approach is that we are able to conserve the fine grained information

latent in the facts and not just broadly classify them with some top level concepts.

4. Related Work

Matching Candidates: Seminal work include contributions by Bunescu and Paşca [4]

and Cucerzan [6] who focused on the usage of Wikipedia categories and global contexts,

respectively. The Silk framework [20] discovers missing links between entities across

linked data sources by employing similarity metrics between pairs of instances. In con-

trast to these approaches, our method employs the most frequent sense of a term from

Wikipedia. We combine this information together with the type-information from DB-

PEDIA in order to automatically refine the entity references [7].

Matching Properties: Much work has been done in the area of aligning ontologies

of which PARIS [18] requires special mention which performs probabilistic alignment

of relations, instances and schema across ontologies.

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems118

Table 3. Domain and Range distribution of mapped NELL properties for the set of new facts generated.

Domain (%) np dp Range (%)

Company(33.33) newspaperincity headquarter City(50)

Administrative-

Region(33.33)

Airline(39.4) headquarteredin headquarter City(46.1)

Company(36.6) Settlement(37.6)

BroadcastNetwork(5.6)
Administrative-

Region(11.3)

OfficeHolder(50) personhasethnicity birthPlace Country(100)

Person(33.3)

Monarch(16.6)

OfficeHolder(40)
personhas-

residenceincountry
nationality Country(100)

SoccerManager(30)

Model(10)

Television-

Station(73.8)

televisionstation-
affiliatedwith

broadcastNetwork
Broadcast-

Network(100)

RadioStation(26.2)
formerBroadcast-

Network

Artist(98.8) visualartistartform field -

Writer(1.2)

Automated Knowledge Base Creation: The linking and filling approach is the most

popular way of knowledge generation [13]. The last few years have witnessed some of

the major works in automated information extraction systems and thereby targeting at

large scale knowledge base constructions with minimal amount of human supervision.

To this end, much work has explored unsupervised bootstrapping for a variety of tasks,

including the acquisition of binary relations [3], facts [10], and instances [15]. OIE fur-

ther focused on approaches that do not need any manually-labeled data [12]. Pujara et.

al. [16] have used probabilistic soft logic to detect inconsistencies in knowledge graphs

by exploiting dependencies within the graph. Furthermore, some pioneering works have

been done by Wang et. al. [21] using statistical inference mechanisms (MCMC). How-

ever, our approach is different from these methods since, it exploits the open KBs to

discover novel facts on a structured KB.

Future Work and Conclusion

In this work, we present a statistical approach to find accurate analogous properties

across NELL and DBPEDIA . In the process we combine our probabilistic instance align-

ment method with this to generate set of facts. Our approach avoids tweaking of multiple

parameters. We exploit the data set to train a simplistic model and use the model to learn

threshold value across various NELL properties. Our approach generates highly accurate

set of new DBPEDIA facts previously not extracted from the Wikipedia info-boxes. This

can serve as an additional set of facts to DBPEDIA and thereby proving essential for any

LOD based question-answering system.

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems 119

We were able to generate approximately 1.6K new facts with direct mapping and

approximately 0.5K with inverse mapping. These numbers are low given the fact that

we started with 96K NELL triples. However, we hope to generate more triples with RE-

VERB since its fact base is approximately 14Mi. Working with REVERB brings on the

additional task of clustering similar properties (e.g. is wife of, was married to, is spouse
of). Furthermore, our approach suffers from the manual selection of Kthres. We want to

devise an automated technique to overcome this selection.

References

[1] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. {DBpedia} –

{A} Crystallization Point for the Web of Data. Journal of Web Semantics, 7(3), 2009.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph

database for structuring human knowledge. In Proc. of the 2008 ACM SIGMOD international conference
on Management of data, 2008.

[3] S. Brin. Extracting patterns and relations from the World Wide Web. In Proc. of WebDB Workshop at
EDBT-98, 1998.

[4] R. Bunescu and M. Paşca. Using encyclopedic knowledge for named entity disambiguation. In Proc. of
EACL-06, 2006.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell. Toward an architec-

ture for never-ending language learning. In Proc. of AAAI, 2010.

[6] S. Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In Proc. of EMNLP-
CoNLL-07, 2007.

[7] A. Dutta, C. Meilicke, and S. P. Ponzetto. A probabilistic approach for integrating heterogeneous knowl-

edge sources. In ESWC, volume 8465 of LNCS, pages 286–301. Springer, 2014.

[8] A. Dutta, M. Niepert, C. Meilicke, and S. P. Ponzetto. Integrating open and closed information extraction

: Challenges and first steps. In Proc. of the ISWC-13 NLP and DBpedia workshop, 2013.

[9] O. Etzioni. Search needs a shake-up. Nature, 476:25–26, 2011.

[10] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and

A. Yates. Web-scale information extraction in KnowItAll (Preliminary results). In WWW, 2004.

[11] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction. In Proc.
of EMNLP-11, 2011.

[12] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction. In Proc.
of EMNLP-11, 2011.

[13] H. Ji and R. Grishman. Knowledge base population: Successful approaches and challenges. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, HLT ’11, pages 1148–1158, Stroudsburg, PA, USA, 2011. Association for

Computational Linguistics.

[14] K. Lai and N. Cerpa. Support vs confidence in association rule algorithms. In OPTIMA, 2001.

[15] M. Paşca and B. Van Durme. Weakly-supervised acquisition of open-domain classes and class attributes

from Web documents and query logs. In Proc. of ACL-08, 2008.

[16] J. Pujara, H. Miao, L. Getoor, and W. Cohen. Large-scale knowledge graph identification using psl. In

AAAI Fall Symposium on Semantics for Big Data, 2013.

[17] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2), 2006.

[18] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic Alignment of Relations, Instances,

and Schema. PVLDB, 5(3):157–168, 2011.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge. In Proceedings
of the 16th International Conference on World Wide Web, WWW ’07, pages 697–706, New York, NY,

USA, 2007. ACM.

[20] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk - A Link Discovery Framework for the Web of

Data. In Proc. of LDOW ’09, 2009.

[21] D. Z. Wang, Y. Chen, S. Goldberg, C. Grant, and K. Li. Automatic knowledge base construction using

probabilistic extraction, deductive reasoning, and human feedback. In Proceedings of the Joint Workshop
on, AKBC-WEKEX ’12, pages 106–110, 2012.

A. Dutta et al. / Semantifying Triples from Open Information Extraction Systems120

Towards the Usage of Advanced

Behavioral Simulations for Simultaneous

Tracking and Activity Recognition

Arsène Fansi T. a,b and Vincent Thomas a and Olivier Buffet a and Fabien Flacher b and

Alain Dutech a,1

a INRIA / Université de Lorraine, Nancy, France
b Thales Services, Vélizy, France

Abstract. Tracking and understanding moving pedestrian behaviors is of major

concern for a growing number of applications. Classical approaches either consider

the two problems separately or treat them simultaneously while relying on limited

context-based graphical models. In this paper, we present an approach to tackle

both the problems conjointly based on richer contextual information issued from

agent-based behavioral simulators which aim to realistically reproduce human be-

haviors within complex environments. We focus on the special case of a single tar-

get and experimentally show that the proposed approach manages to track a single

pedestrian with complex behavior even in case of long periods of occlusion.

1. Introduction

The ability of using sensor networks to track and understand the behavior of moving

human beings is of great importance for a wide range of applications such as surveillance

[1] and smart homes [2]. When sensors are cameras, this implies retrieving behavioral

information from image analysis. This is not a trivial task to perform, even for humans,

and interpretation errors are common. Moreover, when the considered environment is

not fully under sensory coverage, one problem of interest is to determine what is the

behavior of the tracked targets while being in a non-covered area.

Understanding a pedestrian’s behavior is intimately coupled with tracking its lo-

cation. Moving pedestrians are usually driven by an inner motivation in relation to the

activity they are performing in the environment. Therefore, location and motivation are

contextually dependent, and the knowledge of one may help estimate the other. However,

there are different levels of granularity one can refer to when seeking to understand peo-

ple’s behavior. Imagine people walking through a given ticket machine for withdrawing

cash, we may distinguish, in a hierarchical order, atomic actions (e.g., walking), inter-
action (e.g., approaching, queuing, avoiding) and activities (e.g., withdrawing cash) 2.

1Contact Information: {arsene.fansi-tchango, vincent.thomas, olivier.buffet, alain.dutech}@loria.fr,

fabien.flacher@thalesgroup.com
2In the literature, the term “activities” is often used ambiguously to refer to atomic actions or interactions.

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-121

121

These different levels are clearly not independent and, the higher the level, the more the

scene’s context has to be taken into account.

Most of the existing works, when not considering the problem of tracking and ac-

tivity recognition separately, rely on limited context-based graphical models for improv-

ing trajectory estimation from the estimated activity and vice-versa. We approve the idea

of taking advantage of the scene information by performing both operations simultane-

ously. Moreover, we argue that considering tools providing richer contextual information

is an asset to deal with high-level activity recognition even in more complex scenarios, a

feature of particular interest for monitoring systems.

Nowadays, the use of simulators to generate contextual-based realistic human be-

haviors in indoor environments has become very popular in a wide range of application

domains[3,4]. These simulators usually encapsulate a model of the considered building

(together with the objects therein); and a description of authorized activities is provided,

reflecting the prior knowledge about the context of the environment. Works from the sit-

uated artificial intelligence field have focused on designing reactive virtual agent con-

trol architectures based on sensorimotor loops [5,6] whose purpose is to define, at any

time, the behavior a virtual agent will have according to his internal state and current

environment context.

In this paper, we are interested in developing a system capable of inferring the ac-

tivity of pedestrians in indoor non-crowded scenes based on their trajectory, even when

they are not under sensor coverage. The proposed approach leverages richer contextual

information from such a simulator, which in turn, is integrated within a particle filter for

the analysis of people’s behavior.

The remainder of this paper is structured as follows. Section 2 provides an overview

of related work. Section 3 briefly introduces mathematical background of particle filters

while Section 4 describes the implementation details of our system. Section 5 is dedi-

cated to the experimental evaluation of the approach. Finally, Section 6 identifies some

important research lines induced by the described work.

2. Related Work

Tracking pedestrians has been of major concern during the last decades. In complex

scenes, occlusions often occur and interrupt tracks identified so far. Maintaining relevant

information in such situations is of crucial importance in order to assemble complete

tracks or understand the behavior of the concerned targets. Works in the literature [7,8,9]

have focused on defining mathematical models based on a set of attractive and repulsive

fields representing human motion features. Based on these models, methods [10,11,12]

have been developed for better handling short occlusions in human motion prediction.

However, they do not attempt to understand the behavior of the different individuals.

On the other hand, methods [13,14] have been recently proposed in the literature for

action recognition in which authors mainly rely on image feature extraction and feature

classification. However, these works do not benefit from advantages available in consid-

ering tracking people’s trajectories.

Dealing conjointly with location tracking and behavior understanding presents an

advantage as it is possible to exploit the relationship between location and behavior.

In [15], Bruce et al. represent the state of the pedestrian by his final goal (in terms of

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations122

destination point) together with his location and then use a particle filter for inferring

the pedestrian goal with the help of a path planner. A limit of their method is that peo-

ple’s behaviors are assimilated to the environment physical points. Moreover, there is no

causality modeling between these points.

Wilson et al. [16] formally introduced the simultaneous tracking and activity recog-

nition (STAR) problem and consider the use of dynamic Bayesian networks (DBNs) to

represent causal influences and causality through time among different variables repre-

senting their system state. However, the granularity of the modeled activities is limited

to whether or not a target is moving. In [17], the authors investigate the use of relational

DBNs to represent relationships among interacting targets in the STAR problem. They

probabilistically model the dynamics of relations between different targets and formal-

ize a dynamic model that takes into account such relationships. While result improve-

ments are noticeable, the graphical model used fails to encapsulate relevant information

regarding target-object interactions.

In this paper, we also address conjointly the problem of tracking and activity recog-

nition. However, unlike previous approaches, we take into account richer contextual in-

formation. By contextual information, we refer to environmental information perceived

by a pedestrian that may affect his behavior. In order to do this, we rely on process-

oriented behavioral models for autonomous agents. The purpose of such advanced be-

havioral models is to determine, for each agent, the action he should undertake in the

environment based on his internal state and current perceptions. Such models, as de-

scribed in [4], are not only characterized by physical attributes (e.g., position, velocity),

but integrate, within themselves, action selector mechanisms often coupled with cogni-

tive control architectures [18,19,5,6] responsible for creating and executing navigational

plans which may involve interactions with objects in the environment. The description

of the different objects together with the interactions they can offer are provided to the

simulator in order to easily match agent’s current action into corresponding interactions

in the scene. We then integrate such a simulator, as a predictive block, within a particle

filter for people’s behavior estimation and analysis.

The main contribution of this paper is two-fold: (i) by integrating advanced agent-

based behavioral simulations, we add significant contextual information that may be use-

ful in understanding target behavior from image sequences; (ii) as the results will show,

considering richer contextual data makes it possible to handle long periods of occlusions,

times during which the tracked agent is likely to perform several activities.

In the following sections, we will briefly introduce relevant background regarding

particle filters and describe how we leverage autonomous agent based behavioral models

for pedestrian behavior tracking. For the latter, we focus on the special case of a single

target.

3. Particle Filtering

In the field of state estimation, the Bayesian filtering framework [20] provides a recursive

way of computing the belief Belt(xt) regarding the state xt of a dynamical system at

time t given the (potentially noisy) partial observation zt. It is assumed the availability

of the prior belief Bel0 about the system’s initial state. A particle filter (PF) [21] is an

approximation of the Bayesian filter in which the belief Belt(xt) at time t is represented

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations 123

by a set of Ns weighted particles St = {xi
t, w

i
t}Ns

i=1 where xi
t and wi

t are respectively the

state and the weight of the ith particle. The particle set St is typically constructed from

the previous set St−1 and the current observation zt as follows [21]:

• prediction: a sample xi
t|t−1 is generated from each sample xi

t−1 of the set

St−1 using a proposal density function q(xt|xt−1, zt). Usually, q(xt|xt−1, zt) is

equals to p(xt|xt−1), the system’s dynamics.

• weight assignment: each predicted sample xi
t|t−1 is assigned an importance

weight wi
t computed based on the the observation model p(zt|xt) of the system

as wk
t = wk

t−1.
p(zt|xi

t|t−1).p(x
i
t|t−1|xi

t−1)

q(xi
t|t−1

|xi
t−1,zt)

. Once computed, the importance weights

are normalized.

• resampling: it consists in deleting or duplicating particles according to their

weights. This is usually done by generating a new set of particles {xj
t}Ns

j=1 from

an approximate discrete representation of p(xt|z1:t) given by

p(xt|z1:t) ≈
Ns∑
i=1

wi
tδ(xt,x

i
t|t−1) (1)

so that p(xj
t = xi

t|t−1) = wi
t. δ(., .) is the Dirac delta function. At the end, each

resulting particle xj
t is assigned a weight wj

t = 1/Ns.

Usually, in order to encourage the state space exploration, the resampling phase is

not performed at every time step, but only when the effective size N̂eff = 1
∑Ns

i=1(w
i
t)

2
of

the filter goes below a given threshold NT . For more details about PFs, see [21].

4. Agent Based Behavior Tracking

The solution we proposed can be represented by Fig. 1. The simulator is assumed to han-

dle virtual-agent microscopic navigational features and object-agent interactions (e.g.,

escalators, cash dispensers). It is then used within the prediction step of a particle fil-

tering process to estimate the belief regarding both the aimed location and the activity

of the pedestrian. Then, the noisy observation (location of the detected targets obtained

after an image analysis process) received from the sensor network is used during the

correction step of the filtering. We assume to be aware of areas covered by the sensors.

Furthermore, for preserving coherence between the real world and the simulated one, the

simulator is fed with changes occurring in the real world such as object states modifica-

tion (e.g., escalator failures) or exogenous events (e.g., fire alerts). We assumed that the

video analysis is performed upstream and it is not part of the discussion in this paper.

In what follows, we describe the different models as required by the Bayesian filter

and discuss their implementation. Also, we assume that, although a target may interact

with objects within the environment, he can not modify their internal state.

4.1. System Dynamics

Given a behavioral model, a state xt of an agent contains attributes that are taken into

account within his action-selector mechanism, that is all attributes that may play a role

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations124

Figure 1. The process overview

in the selection of the actions to be performed by the agent. These attributes can be re-

grouped into two categories. The first category regroups spatial attributes (e.g., position,

velocity) while the second one contains internal attributes representing for example moti-

vations such as psychological and physiological traits (e.g., the thirst level) and resources

(e.g., ticket, money) owned. Furthermore, a virtual agent is able to sense his surroundings

and builds his proper knowledge of its world (e.g., the object states). This knowledge,

combined with its internal variables, represent richer contextual information on which

the behavioral model relies for defining self-explanatory agent trajectories; e.g., inter-

rupting his initial plan for getting some drink when thirsty. Therefore, internal attributes

may naturally evolve even when the individual is static according to his perceptions.

As the environment state Et (including objects) is known and because, as assumed,

an agent cannot modify the object states, we only need to consider the agent’s dynamics.

Since the simulator is in charge of navigational features, the agent’s dynamics is fully

encoded therein and may be represented as follows:

xt+1 ∼ f(xt,Et),

where f is the simulator’s implemented stochastic function taking as input both the state

xt of the agent with the environment state Et and modifying the agent’s inner attributes.

4.2. Observation Model

The observation data zt received from the sensors depends on whether the agent is within

a covered area or not. However, assuming Gaussian noise with a covariance matrix Qv ,

the agent may still be undetected even within covered areas, especially when he is close

to the boundaries of both areas. The probability ϕ of such an event can be approximated

as the portion of the Gaussian (represented by a circle of radius rh) belonging to the

non-covered areas (Fig. 2). That is

ϕ̂ =

∑
prob. of region’s cells in non-covered area∑

prob. of all region’s cells
. (2)

Finally, we have

p(zt|xt) =

⎧⎨⎩
1 if zt = ∅ and unc(xt),
ϕ̂ if zt = ∅ and ¬unc(xt),
N0;Qv

(ut) if not,

where ut = zt−h(xt), h is a function extracting the location data from xt, and unc(xt)
indicates that the agent (xt) is within a non-covered area. ∅ means no-detected agent.

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations 125

Figure 2. Approximation of ϕ: P is the

agent position. The ratio is computed with

respect to all cells in the considered circle.

Covered Area

non-covered Area

rh Prhh PP

Estimated Gaussian
Volume

Portion of the circle
in the non-covered Area

4.3. Implementation in SE-Star

The simulator used is SE-Star, a Thales proprietary engine capable of modeling adap-

tive behaviors, navigations and interactions with objects. Each agent is characterized by

a motivational tree based on a free flow hierarchy approach [22] containing a set of at-

tributes on which the action selector mechanism relies for computing his current action.

However, SE-Star is a simulator with less random effects in behavior model dynam-

ics and, running several simulations with a given agent state will lead to identical re-

sults in terms of behaviors exhibited. Such processes with little noise are not appropriate

within a particle filter because of the sample impoverishment phenomenon [21].

Regularized particle filters (RPFs) have been introduced in [23] for preventing this

phenomenon. The RPF’s idea is to re-sample from a continuous approximation of the

probability density function (pdf) p(xt|z1:t) instead of its discrete approximation (see

Equation 1), hence producing a new particle set with Ns different particles. The contin-

uous approximation of the posterior pdf is computed as follows (see Fig. 3):

p(xt|z1:t) ≈ p̂λ(xt|z1:t) =
Ns∑
i=1

wi
t.Kλ(xt − xi

t),

where Kλ(x) = 1
λnx K(xλ) is the rescaled kernel density, K(.) is a kernel function,

λ is the bandwidth and nx is the dimension of the state space. We use the Gaussian

kernel and, according to [24], the corresponding optimal bandwidth is given by λopt =(
4

(nx+2)Ns

) 1
nx+4

. Also, when the pdf is multi-modal, it is suggested [24] to have λ =

λopt/2.

w1

w2

w3
w4
w5

Sample

Weight

(a)

Kernel

Density Estimate

(b)

Figure 3. Regularization Process: (a) - Weighted empirical measure; (b) - Regularized measure

2Thales Group is a French multinational company that designs and builds electrical systems and provides

services for the aerospace, defence, transportation and security markets.

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations126

Figure 4. Scenario 1 (left) and 2 (right). Green squares represent areas covered by sensors.

5. Experimental Evaluation

We conducted experiments in a virtual environment representing a two-storey subway

station (Fig. 4). The station contains an escalator, a train door, an ATM (in light green),

a ticket machine (yellow), a beverage dispenser (brown), ticket barriers (white) and exit

barriers (red) and an agent may interact with any of these objects in order to fulfill its

objectives. Also, the station is equipped with a camera network set up to not completely

cover the environment and configured to report noisy passenger location data.

We consider two scenarios. In the first one, the cameras are set to cover areas occu-

pied by the ATM, the ticket machine and the beverage dispenser. In the second one, these

objects are no longer covered by the sensors (Fig. 4) in order to assess the robustness of

our approach. A passenger may initially own a certain amount of money and/or a valid

ticket and, during his lifetime, may be motivated by three goals or actions: taking a train,

drinking or leaving.

Tracking in such an environment is challenging since, depending on the resources

owned, which are unknown, a passenger may undertake a sequence of interactions (sub-

goals) with objects in the scene based on his current motivation, thus affecting his tra-

jectory. For example, a passenger willing to take a train may first buy a ticket if he does

not have a valid one. However, buying a ticket will require, if he does not own enough

money, to get some cash from the ATM. Furthermore, in non-covered areas, nothing pre-

vents the passenger to switch between motivations and perform several interactions. It is

our task to infer, solely from the observed trajectory, the corresponding behavior.

Such a passenger model has been designed in SE-Star in which the three motiva-

tions are represented by numerical attributes taking values in [0, 2] and the simulator is

in charge of their evolution. Also, the model includes two attributes representing respec-

tively the amount of money and the number of tickets owned.

We run our algorithm with 2000 particles and set rh to be 0.5m. The noise standard

deviation is set to 0.8, 0.8 and 0.05m for the x, y and z coordinates respectively. Initially,

a passenger has 30% chances to own a number of tickets (an amount of money) chosen

uniformly in the interval [1, 3] ([1, 5]) and nothing otherwise. For other attributes, we

assume a Gaussian distribution N (0.75; 0.5).
Next, we refer to behavior inferred from the filter the one exhibited by the majority

of the particles within the filter in terms of goal (or subgoal). We consider the similarity
indicator defined below as a criterion to evaluate the exactness between the passenger

real behavior and the inferred one:

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations 127

Table 1. Results: Similarity, Robustness and Mean Square Errors

% Non Goal Goal Subgoal Subgoal General Goal SubGoal

Cov. Sim.(%) Rob.(%) Sim.(%) Rob.(%) MSE MSE MSE

Sc. 1 32.7
94.31 99.17 83.26 95.02 3.08 2.35 2.27

(± 6.76) (± 0.72) (± 7.82) (± 6.62) (± 2.04) (± 1.46) (± 1.48)

Sc. 2 67.7
90.25 99.46 72.41 92.20 4.29 4.78 4.49

(± 12.27) (± 0.26) (± 12.23) (± 9.42) (± 3.48) (± 3.45) (± 3.74)

Similarity =

∑T
t=0 D(g(t), g′(t))

T
,

where g(t) and g′(t) are the real and the inferred behavior (goal or subgoal) respectively;

D(., .) returns 1 when the two parameters are equal and 0 otherwise.

Another criterion we consider is the robustness which corresponds to the ratio of

time the filter contains a valid hypothesis regarding the passenger behavior:

Robustness =

∑T
t=0 P (g(t))

T
,

where P (g) is an indicator of the behavior g’s presence in the filter.

Moreover, we compute the mean squared error (MSE) of the location data estimated

from the filter with respect to the the position of the passenger. This error is computed

according to three such location estimates: general estimate (weighted mean of the lo-

cation of all the particles), goal-based and subgoal-based estimates (weighted mean of

the location of particles whose behavior — goal or subgoal — corresponds to the one

exhibited by the filter). Finally, each experimentation has been carried out 10 times and

results (mean of all the runs) are reported in Table 1.

For scenario 1, in which the passenger spends 1/3 of the time in non-covered areas,

the algorithm has relatively high average scores with low standard deviations, regardless

of the criterion. It appears that the filter goal-based similarity and robustness are respec-

tively 94.3% and 99.17%. When focusing on passenger subgoal, these values are respec-

tively 83.26% and 95.02%. This decrease with respect to goal-based values is explained

by the fact that, given a motivation, there exists a variety of sequence of interactions,

according to the agent internal attributes, for fulfilling it. Moreover, paths in the envi-

ronment do not help discriminate between possible interactions (e.g., ATM and ticket

machine as they are close to each other).

In scenario 2, a degradation of performance can be observed. This is due to the

fact the passenger is undetected most of the time. However, despite these significant

occlusions (2/3 of the time), the approach is still efficient and keeps good estimates of

the target’s behavior; the goal and subgoal based similarities being respectively 90.25

and 72.41. An example of the result for the subgoal estimation is depicted in Fig 5.

In both scenarios, the robustness criterion is high. This is of particular interest in case

of long occlusions for subsequently recovering the target’s behavior when re-observed.

6. Discussion and Future work

In this paper, we address the problem of pedestrian tracking and behavior understanding

simultaneously. Unlike previous works in the literature, we take advantage from richer

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations128

Figure 5. Estimation of the passenger’s behavior over a discretized time slot (scenario 2): each bar represents

the belief over subgoals (modeled as slices on the bar) by the filter. The black point on each bar represents

the actual behavior of the tracked target. The line on top of the bars represents time frames during which the

target were either observed or not. We can see that maintaining a valid hypothesis regarding the exact behavior

(timesteps 75–105) helps recovering the target’s behavior as soon as he is observed again (timestep 110).

contextual information by relying on advanced agent-based behavioral models designed

in the field of situated artificial intelligence and corresponding simulators. We integrate

within a particle filter such a virtual agent simulator as a predictive block for behavior

tracking purposes. We focus on the single target case and evaluate our approach on a

virtual environment.

The idea behind evaluating in virtual environments was to perform “witness” exper-

iments in which the behavioral model of real humans is assimilated to a clearly circum-

scribed model that we perfectly master in such a way to avoid inexplicable phenomena.

Indeed, the same behavioral model is used for the real world simulation and within the

particle filter in order to verify that, in this extreme case, we actually get a very good

prediction. The results detailed in Section 5 show encouraging filtering performances

in terms of both behavior (goal/subgoal) and location estimations even in cases of long

periods of occlusion.

It would be interesting, in a future work, to confront our system on real scenarios

and evaluate the impact of approximating the mechanism of internal decision-making of

real humans, which is unknown, by an artificially designed behavioral model. However,

when considering the real context, the first step to undertake is the calibration of the real

sensor network with the simulator used in the filter. Secondly, we may face the problem

of characterizing the duration of real human-object interactions as it may differ from one

individual to another given the same object. One solution consists in defining within the

simulator, for a given object, a unique duration time representing the average of different

interaction durations observed in the real world. Another solution is to include within

the artificial behavioral model, an attribute representing the duration of the interaction a

given agent is about to perform. The third issue is the realism of the behavioral model

with respect to what is generally observed; hence the necessity to work together with ex-

perts in behavior analysis for capturing the essence of people’s behavior and trajectories

within the considered environment. As a very short term objective, we plan to deploy the

solution in a Thales office buildings.

The proposed approach presents several advantages. Firstly, by relying on agent-

based behavioral models, we clearly emphasize the fact that each individual has its own

specificity in terms of reasoning capabilities and strategies. Usually, people do tracking

based on simple and stereotyped behaviors (e.g., flow of trajectories). We instead con-

sider finer individual behavior that makes it possible to explain outliers impossible to

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations 129

explain with stereotyped behaviors. A second advantage is the ability to handle, with-

out any supplementary effort, exogenous events or changes that may occur within the

environment (e.g., escalator failure, fire alerts). Indeed, such events, as soon as they are

perceived by an individual, are automatically taken into account during the decision pro-

cess of his behavioral model therefore adapting its behavior accordingly and updating

the particles in consequence. Finally, there is no need to build any graphical models (e.g.,

DBNs) representing relationships between variables of the system state.

As a medium-term objective, we will investigate the multi-target case. This is a very

challenging problem as, because of the camera network, the data association problem is

added on top of the tracking problem. The data association problem consists in deter-

mining from which target a received observation comes. Furthermore, the interactions

between targets add another layer of complexity.

References

[1] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance of people and their activities,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, pp. 809–830, 2000.

[2] J. Krumm, “Multi-camera multi-person tracking for easyliving,” pp. 3–10, 2000.

[3] S. Stylianou, M. M. Fyrillas, and Y. Chrysanthou, “Scalable pedestrian simulation for virtual cities,” in

Proc. of the Symposium on Virtual Reality Software and Technology, pp. 65–72, 2004.

[4] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graph. Models, vol. 69, pp. 246–274, 2007.

[5] P. Maes, “Modeling adaptive autonomous agents,” Artificial Life, vol. 1, pp. 135–162, 1994.

[6] J.-A. Meyer, “From natural to artificial life: Biomimetic mechanisms in animat designs,” Robotics and
Autonomous Systems, vol. 22, pp. 3–21, 1997.

[7] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol. 51, pp. 4282–

4286, may 1995.

[8] R. C. Arkin, Behavior-based Robotics. Cambridge, MA, USA: MIT Press, 1st ed., 1998.

[9] C. Reynolds, “Steering Behaviors for Autonomous Characters,” in Game Developers Conference 1999,

pp. 763–782, 1999.

[10] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling social behavior

for multi-target tracking,” in Proc. IEEE 12th Int. Conf. on Computer Vision, pp. 261–268, 2009.

[11] M. Luber, J. Stork, G. Tipaldi, and K. Arras, “People tracking with human motion predictions from

social forces,” in proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 464–469, 2010.

[12] B. Tastan and G. Sukthankar, “Leveraging human behavior models to predict paths in indoor environ-

ments,” Pervasive Mobile Computing, vol. 7, pp. 319–330, jun 2011.

[13] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition via sparse spatio-temporal

features,” in Proc. of ICCCN ’05, pp. 65–72, 2005.

[14] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos “in the wild”,” 2009.

[15] A. Bruce and G. Gordon, “Better motion prediction for people-tracking,” in Proceedings of ICRA, 2004.

[16] D. H. Wilson and C. Atkeson, “Simultaneous Tracking and Activity Recognition using many anony-

mous, binary sensors,” in Proc. of the 3rd Int. conf. on Pervasive Computing, pp. 62–79, 2005.

[17] C. Manfredotti, D. J. Fleet, H. J. Hamilton, and S. Zilles, “Simultaneous tracking and activity recogni-

tion,” in Proc. of ICTAI’11, (Washington, DC, USA), pp. 189–196, 2011.

[18] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception, behavior,” in Proc. of
SIGGRAPH, pp. 43–50, 1994.

[19] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive modeling: Knowledge, reasoning and planning for

intelligent characters,” in Proc. of SIGGRAPH, pp. 29–38, 1999.

[20] S. Sarkka, Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

[21] M. S. Arulampalam, S. Maskell, and N. Gordon, “A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking,” IEEE Trans. on Sig. Processing, vol. 50, pp. 174–188, 2002.

[22] T. Tyrell, “Defining the action selection problem,” 1993.

[23] C. Musso, N. Oudjane, and F. L. Gland, “Improving Regularized Particle Filters,” 2001.

[24] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

A. Fansi T. et al. / Towards the Usage of Advanced Behavioral Simulations130

Human Speech Processing for Pedestrian

Assistance: Towards Cognitive Error

Handling in Spoken Dialogue Systems

Martin HACKER a

a Interdisciplinary Center for Embedded Systems (ESI),
Department of Computer Science, University of Erlangen-Nuremberg, Germany

Abstract. Current spoken dialogue systems (SDS) often behave inappropriately as

they do not feature the same capabilities to detect speech recognition errors and

handle them adequately as is achieved in human conversation. Adopting human

abilities to identify perception problems and strategies to recover from them would

enable SDS to show more constructive and naturalistic behavior.

We investigated human error detection and error handling strategies within the

context of a SDS for pedestrian assistance. The human behavior serves as a model

for future algorithms that could yield reduced error rates in speech processing.

The results contribute to a better understanding which knowledge humans employ

to build up interpretations from perceived words and establish their confidence in

perception and interpretation. The findings provide useful input for SDS developers

and enable researchers to estimate the potential benefit of future research avenues.

1. Introduction

Current spoken dialogue systems (SDS) often behave inappropriately when user utter-

ances are incorrectly recognized by automatic speech recognition (ASR). This seems less

to be a shortcoming of the acoustic processing but rather a consequence of the fact that

SDS fail to detect and overcome these problems. In contrast, humans are able to employ

a variety of different knowledge sources to estimate the reliability of hypotheses, inter-

pret partially unreliable fragments and clarify missing or doubtful information during

the subsequent course of the dialogue. Thus, to handle errors in the way that humans do

would require SDS to implement the following functionalities [1]:

• FUNC1: establish the reliability of an ASR hypothesis and its constituents,

• FUNC2: build possible interpretations based on reliable parts of the hypothesis,

• FUNC3: choose an appropriate dialogue strategy to foster correct understanding,

such as the accept, ignore, clarify, reject actions suggested in [2].

We believe that the challenge to achieve FUNC3 cannot be overcome without finding a

solution for FUNC1/FUNC2. In particular, for the clarify strategy it is unclear what part

of the transcript should be clarified and how the clarification request should be realized.

The knowledge sources employed by humans for reliability estimation (FUNC1) and

interpretation (FUNC2) extend from phonetic and linguistic to situational [3] and com-

mon sense knowledge. To replicate human behavior in SDS, it is necessary to understand

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-131

131

which information is utilized by humans in detail, and how this information is integrated

during the interpretation process. These issues are subject to research in the fields of

neuro- and psycholinguistics. On the other hand, we need to know how this information

can be linked back and formalized for a particular SDS domain and whether it can in fact

be beneficial for the performance of a SDS.

In this paper, we bridge this gap by considering a given dialogue system for pedes-

trian assistance and real user utterances collected with this system. By presenting ASR

hypotheses in various forms to human subjects, we can activate cognitive processes and

investigate human error handling behavior for these utterances. The study design is based

on an experimental framework that overcomes methodological difficulties and provides

experimental control over a variety of variables (cf. [1]).

The study aims at investigating the following research questions:

1. How well are humans doing in estimating the reliability of ASR hypotheses,

depending on the type and amount of information provided by the experimenter?

This investigation aims at evaluating which kind of information could contribute

to improve error handling in SDS. By investigating the impact individual kinds

of features have on the performance in human speech processing (HSP), we can

estimate the potential benefit that incorporating such features in ASR may bring

and establish if these are promising research avenues to explore.

2. Which criteria are applied to successfully estimate the reliability of hypotheses?

How can such criteria be operationalized to improve confidence measures?

3. What strategies are applied by the subjects to interpret utterances that are be-

lieved to contain recognition errors? Which constituents and linguistic properties

of erroneous transcripts are considered as reliable enough to use them as anchors

for an interpretation? The insights are intended to inspire researchers to design

novel formalisms for interpreting incomplete syntactical representations, and to

be used to inform existing error-corrective mechanisms such as [4].

4. How confident are humans in their interpretations and how does this influence

their choice of dialogue strategies? Such insights would help to establish a gold

standard for naturalistic clarification strategies.

5. How can the human strategies be replicated algorithmically?

In this paper, we describe the study design and start to tackle some of these research

questions. The paper is structured as follows: After summarizing related work and reca-

pitulating the experimental framework, we introduce the dialogue system and the speech

corpus the study is based on. Then we describe the experimental setting. We report and

discuss the results of our analyses of reliability estimation performance as well as relia-

bility criteria and interpretation strategies and conclude with an outlook on future work.

2. Related Work

Human error handling with respect to perception problems in SDS has been subject to

several investigations before. Schlangen and Fernandez [5] simulated perception prob-

lems by introducing a noisy channel into human-human conversation. Single words in

the audio signal were substituted by noise. The authors investigated which clarification

requests were used by the subjects to retrieve the missing information. The results are

valuable with regard to how naturalistic clarification requests can be generated. It though

M. Hacker / Human Speech Processing for Pedestrian Assistance132

remains unclear, when explicit clarification should be preferred against other dialogue

strategies. The choice of the dialogue strategy depends on the subject’s interpretation

of the corrupted utterance and his/her confidence therein – two variables that were not

evaluated in the study. The experimental setting is targeted on non-perception instead of

misperceptions that are prevalent in ASR. Applying the observed clarification strategies

would require SDS to solve the tasks of FUNC1 and FUNC2 before in order to decide

which words should be ignored and on which words the interpretation should be based

on. A shortcoming of the use of the auditory channel is that experimenters loose con-

trol over the perception of the remaining words since it is unknown whether these words

were correctly recognized by the subjects.

Skantze [6] applied a different method that resolves this shortcoming by substituting

the noisy channel by an ASR module and visually presenting its output to the subjects

that took on the role of the SDS operator. However, the study aimed at evaluating which

dialogue stategies facilitated dialogue success after complete non-understanding.

Recent statistical approaches use POMDPs to optimize dialogue policies that allow

to recover from misunderstanding [7]. The lack of understanding about why humans ap-

plied a particular strategy in the training corpus, however, still causes unnatural behavior.

Skantze and Edlund [8] ran a different experiment to establish a gold standard for

ASR word error detection. The subjects were asked to correct ASR hypotheses that were

shown together with varying extra information from the recognizer and the dialogue his-

tory. The human error detection performance was evaluated in terms of edit operations

of correct and incorrect words. The results indicate that humans benefit from both con-

textual information and information provided by n-best recognition alternatives. As the

study includes no qualitative analysis to establish why subjects decided to remove cer-

tain words from the transcripts, it remains unclear how the utilized information can be

operationalized for their integration into SDS.

3. Study Design

3.1. Framework

For the study, we used the experimental framework described in [1]. The framework pro-

vides a method to control and evaluate the influence of different types of information on

human speech processing and error handling. It overcomes a methodological difficulty

that arises when trying to control the problem source of erroneous ASR transcripts, i.e.

incorrect word recognition. Human word recognition is part of the more complex sub-

conscious speech perception and understanding process that experimenters need to split

up when trying to gain experimental control at the word recognition stage.

The framework proposes to preassign the results of word recognition by visually pre-

senting ASR hypotheses to the subjects. In order to activate cognitive speech processing,

the subjects are instructed to vocalize the given transcript in the head by subvocalization

to envision the sound of the utterance without being biased by a concrete acoustic real-

ization. Individual cognitive processes on different levels of perception can be activated

and controlled separately by restraining the flow of information of other types:

• Word recognition can be controlled by presenting visual stimuli, consisting of sin-

gle or competing word chains to vary the level of detail for phonetic information.

• Pragmatic embedding can be controlled by the amount of contextual information

provided to the subjects.

M. Hacker / Human Speech Processing for Pedestrian Assistance 133

• The search process underlying the interpretation of erroneous hypotheses can be

controlled by introducing gaps to preassign the results of reliability estimation.

3.2. Dialogue Data

3.2.1. A Dialogue System for Pedestrian Assistance

We used a variant of the pedestrian assistance system ROSE [9] which offers a mixed-

initiative spoken language interface. The systems provides the following functionalities:

• calculating routes with public transport connections,

• providing time-table information and live data about delays and cancelations,

• displaying outdoor as well as indoor maps for public transport station buildings,

• giving navigation instructions for pedestrian and public transport routes,

• recommending points of interest (POI) such as shops, cafes or ATMs.

3.2.2. Pedestrian Assistance Corpus (PAC)

For the experiments, we used a subset of a dialogue corpus collected with a Wizard-of-

Oz variant of the above described system. The corpus contains utterances of 20 native

German speakers (8f / 12m, age 16-68) with some of them speaking strong dialect. The

participants were given up to 11 different tasks, resulting in 89 dialogues with an overall

number of 544 on-talk user moves having an average length of 5.8 tokens (49% are

of length 5 or longer). The tasks are ranging from information retrieval tasks such as

public transport live timetable questions to more complex problem solving issues such

as navigational assistance, re-planning or recommendation of nearby POI and activities.

The language is characterized by a large amount of named entities denoting public

transport stations, line numbers and POI. The domain vocabulary extends to 7351 words

542 of which were actually used in the recordings.

Linguistic Annotation The recordings from the PAC were manually transcribed and

annotated. Among other things, colloquial words, clitics, abortions, self-corrections and

slips of the tongue were marked and spelling variants were collected. This enables us to

ensure a very high quality of our algorithms for alignment and ASR performance evalu-

ation. For example, the phrase “wie viel Minuten sind es bis zu der U-Bahn-Haltestell’ ”

and the ASR result “wieviel minuten sinds bis zur u bahn haltestelle” can be matched as

identical, whereas standard evaluation algorithms would assign up to 8 word errors.

Speech Recognition and Evaluation For speech recognition we used Google Speech

API [10] with open vocabulary and standard language model and, for comparison, Sym-

palog’s1 recognition engine SymRec [11] with a bigram language model on the domain

vocabulary of 7351 words. The language model was configured with classes for situation-

dependent entities such as numbers, stations or POIs. By doing this, we ensured that the

language model does not adapt to the concrete tasks used for building up the corpus.

Subset Selection The subset of the corpus that was selected for the study contains 25

utterances for which the ASR transcript contains recognition errors. For 15 of these ut-

terances, we used the output of the Google recognizer, while using the SymRec output

for the 10 remaining. The utterances were selected randomly but balanced with respect to

length, speaker, underlying task, word error rate (WER) and position within the dialogue.

1http://www.sympalog.de

M. Hacker / Human Speech Processing for Pedestrian Assistance134

Information about the caller:

Current
location:

Nuremberg, Metro Station Opernhaus (station
platform)

Nearby POIs: Bocksbeutelstuben, Café Arte, Staatstheater
Nürnberg, Transport Museum, Germanisches
Nationalmuseum, Museum of Communication

Nearest
stations/stops

and
connections:

 Opernhaus

Metro U2 - towards Airport
Metro U2 - towards Röthenbach
Metro U3 - towards Friedrich-Ebert-Platz
Metro U3 - towards Gustav-Adolf-Straße

It's 11:19am.

Previous conversation:

You: How may I help you?

Caller: How do I get to the museum?

You: The Transport Museum is located at Lessingstraße 6

Caller: No I'm looking for the Germanische Nationalmuseum.

Caller: How do I get to the Germanische Nationalmuseum?

You:
The Germanische Nationalmuseum is located at
Kartäusergasse 1

Caller: Can you show me the route on a map?

You: The map is displayed on your mobile phone.

Figure 1. Situational knowledge as provided to the subjects

Context Representation Besides the dialogue history that is implicit in the corpus, the

recordings are aligned with the following information representing situational context:

• logical location of the user (i. e. name instead of geographic coordinates),

• nearby points of interest,

• nearby stations and public transport connections therefrom,

• current date and time,

• recommended route if the system did provide one in a previous dialogue step.

Figure 1 shows a sample context representation as has been shown to the subjects.

3.3. Experimental Setting

We decribe the experimental setting of a web-based study based on the above described

framework (sec. 3.1) and data (sec. 3.2). The setting has been tested before in a pilot

study with 5 participants and accounts for some feedback given by these test participants.

3.3.1. Preparing the Subjects

The participants are instructed to imagine that they work as an operator of a phone hot-

line, assisting pedestrian customers that call from their mobile phone which makes it

sometimes hard to understand what they say. This imaginary context is equivalent to the

SDS application described above and is intended to help the subjects understand their

task without being required to put themselves into a spoken dialogue system.

Before showing the questionnaires, the subjects are introduced into the information

the hotline is intended for (cf. the functionalities of the SDS in section 3.2.1), followed

by a thorough instruction about the course of the study and the information that will be

provided in the questionnaires. To ensure that the subjects understand the instructions,

an example task from another domain is shown (without a given solution to avoid bias).

3.3.2. Tasks

Each task to be done by the participants corresponds to one imaginary phone call and

consists of two steps: In a first step, the subject imagines the given context by viewing a

representation of the situation (cf. Figure 1) given as one of the variants in Table 1A.

In the second step, a stimulus is presented to the subject. The stimulus consists of

a textual or acoustic variant of the ASR hypothesis. The variants used in the study are

explained in Table 1B. The user has been instructed before to subvocalize the textual

stimuli as proposed in the framework.

M. Hacker / Human Speech Processing for Pedestrian Assistance 135

Table 1. Possible configurations of the tasks. A: context variants, B: stimulus variants.

A: Context variant Contextual information provided to the subject
Full Context complete context as depicted in Figure 1
Full Discourse only discourse history
Last Discourse only the last utterance from the discourse history
Full Caller only the situational information about the caller
Reduced Caller reduced situational information about the caller
No Context no contextual information
Misleading incorrect caller and discourse information

B: Stimulus Channel Provided information
SINGLE visual 1-best ASR hyothesis
NBEST visual 5-best ASR list
GAPS visual 1-best ASR list with misrecognized words substituted by gaps ()
AUDIO auditive original audio recording with misrecognized words substituted by noise
REFTRANS visual transcript without ASR errors
PSEUDO visual random word chain generated with the SymRec bigram language model

The presentation of the stimulus is followed by a questionnaire as depicted in Fig. 2.

The user is asked to spontaneously interpret the stimulus, to estimate the reliability of

the stimulus as perceived and to specify her confidence in the interpretation. The last

question aims at evaluating the dialogue strategy the subject would choose as a response.

3.3.3. Participants and Configurations

The experiments were conducted with 36 human subjects (11w, 22m, 3 n/a) with age

19-69, mainly from the academic environment (students and university staff), each per-

forming an individual subset of 9 tasks.

The subset of task configurations and underlying utterances per subject was balanced

and rotated among the subjects in order to satisfy empirical standards. In particular, the

following conditions are satisfied:

• The intentions of the speakers and the underlying situations (as well as the speak-

ers themselves) are different for all tasks given to a subject.

• For every subject, the set of tasks is balanced with respect to sentence length and

word error rate (WER) of the presented hypothesis.

2Translation of the German hypothesis: which opera yard exit oneself take. The original utterance was:

Welchen U-Bahnhof-Ausgang muss ich nehmen? (Which metro station exit should I take?)

What you have heard is:

 welchen opern hof ausgang sich nehmen

a) What did the other person say?
Note: Please enter only one interpretation. You might use

 underscores ___ for completely unintelligible parts.

welchen opern hof ausgang sich nehmen
Clear

b) How good was your initial perception of the utterance?
 +3 (Precisely perceived)
 +2 (Fairly perceived)
 +1 (Reasonably perceived)
 -1 (Rather misperceived)
 -2 (Misperceived)
 -3 (Completely misperceived)

c) How confident are you in your interpretation specified in question a) ?
 +3 (Absolutely confident)
 +2 (Quite confident)
 +1 (Rather confident)
 -1 (Rather unsure)
 -2 (Unsure)
 -3 (Pure speculation)

d) How would you react?
 I reply directly to the utterance as I have understood it.
 I reply directly, but at great length to make clear what I've understood.
 Sorry, I didn't understand. / Could you please repeat? / (or similarly)
 Other clarification request (please write down the exact wording

 of your spontaneous reaction):

Clear

Figure 2. Example questionnaire for a misrecognized2 utterance corresponding to the situation in Figure 1.

M. Hacker / Human Speech Processing for Pedestrian Assistance136

Figure 3. Correlation of the actual WER with human reliability estimation and ASR confidence values.

• For every subject, the task configurations (cf. Table 1) are balanced. Every subject

is given 2 of each SINGLE/NBEST/GAPS/AUDIO tasks with 3 Full Context and

3 No Context variants and 2 of the partial context variants, and one additional

task with one of the control configurations REFTRANS, PSEUDO or Misleading.

• The task ordering is rotated in order to avoid ordering bias.

3.3.4. Qualitative Analyses

At the end of the study, a separate questionnaire is shown where the participants are

asked to reflect their answers. The tasks and answered questionnaires are shown again

in read-only mode. The subjects are asked to describe what influenced their reliability

estimation and what made them choose the specified interpretation.

The participants provided qualitative answers for 212 of the 287 completed tasks.

These answers have proven to be extremely valuable during our analyses.

4. Results

4.1. Reliability Estimation

We investigated how well the subjects performed in estimating the correctness of the

hypotheses. We excluded the auditory tasks, the tasks with misrecognitions marked

(AUDIO/GAPS) and the tasks with misleading context from this analysis.

The estimated correctness can be calculated by normalizing the values the subjects

used to indicate how well they perceived the utterance. Though the qualitative free text

answers where subjects reflected and explained their decisions suggest that many sub-

jects quantified the correctness of an hypothesis rather in terms of interpretability than

in terms of word errors. With these observations in mind, we used the word-level edit

distance of the subject’s interpretation from the original utterance as alternative indica-

tion. From the mentioned edit distance, we can calculate a normalized score in a way

analogous to word error rate (WER) calculation.

Figure 3 shows the mean correctness estimation for these two alternatives depending

on the actual WER. The visualization suggests that the correlation for both alternatives is

even higher as for the ASR confidence scores and the language model score that are also

included in the figure. It should be mentioned that the human subjects – in contrast to

M. Hacker / Human Speech Processing for Pedestrian Assistance 137

the speech recognizers – had no access to acoustic information. Hence it can be assumed

that the human subjects would perform even better if they could regard such information

for their estimation – an assumption that is corroborated by the work of Skantze, who

found out that human subjects benefit from ASR confidence information [8].

The human estimations in Figure 3 seem to oscillate compared to the computational

measures. This is due to the fact that the latter were computed on the whole PAC corpus

which contains about 20 times as many utterances as the subset used for the study3.

The figure indicates that humans perform better in distinguishing completely correct

hypotheses from those containing few errors. In the WER regions above 0.6, humans

slightly underestimate the error rate, presumably because they start to be more creative

in finding an interpretation.

To summarize, we can state that it is possible to reliably estimate the correctness of

speech recognition output without auditory information only on the basis of linguistic

and pragmatic knowledge.

4.2. Utilized Information

We used the qualitative answers (see section 3.3.4) to build up a grounded theory of the

information utilized for reliability estimation. The resulting classes represent the most

important knowledge sources and are listed in Table 2.

With the exception of L1 and partially L2, which can be covered by the language

model to some degree, as well as A2, which can be replicated by ASR confidence, the

classes refer to knowledge sources that are either not covered by existing computational

confidence measures or are considered by separate modules on higher levels of speech

understanding without linking the information back to the recognition level. The hu-

3In contrast, the computational measures seem to be unreliable for word error rates above 1.0. This can be

explained by the fact that there are only 6 utterances with such WER in the corpus while the study subset

contained extra tasks of the type PSEUDO that show such high WER.
4The counts denote the number of cases where a corresponding influence has been mentioned as the most

important reason, or has been mentioned at the first place.

Table 2. Classes of information used for reliability estimation.

ID Description Count4

P Pragmatic knowledge:
P1 – Situational, domain and common sense knowledge 41
P2 – Empathy, knowledge of or personal experience with the presumed speaker intention 9

I Interpretability:
I1 – Interpretability based on important words 42
I2 – Number of possible interpretations (nonambiguous; 11

too many interpretations; missing contextual information to disambiguate) 11

C Completeness:
C1 – Proportion of unreliable or unintelligible (gap tasks) words 15
C2 – Missing important words 10

L Linguistic Knowledge:
L1 – Grammar and syntax 23
L2 – Combination of syntax and semantics 22
L3 – Semantic coherence 15

A Auditory Information:
A1 – Identification of unreliable words with high phonetic similarity to presumed target words 12
A2 – Acoustic perceivability (listening tasks); phonetically confusable words (visual tasks) 12

M. Hacker / Human Speech Processing for Pedestrian Assistance138

man strategies reported below can inspire researchers to implement a tighter coupling of

recognition and understanding modules, as can be found in human speech perception.

It would be of interest to quantify the benefit of the individual knowledge sources.

The study design includes variables that enable us to control these sources (cf. Table 1).

Our efforts to analyze the data in such a way have revealed that it would be beneficial to

collect more data in order to allow for significant findings. We are currently planning to

extend the study by recruiting additional subjects and using another subset of the corpus.

4.3. Interpretation Strategies

We analyzed the qualitative answers in which the subjects explained their interpretations.

There seems to be a general behavior pattern for which we can find evidence in a large

majority of the cases. This pattern can be outlined as the following 10-step strategy:

1. Identify reliable and important key words.

2. Try to capture the basic syntactic structure of the utterance.

3. Build possible interpretations based on these words, guided by situational and

empathic expectations (P1, P2) or associations with the key words.

4. Try to assign missing information that is necessary to complete the interpretation.

5. If step 4 fails, specify the missing information in terms of syntactic and semantic

categories.

6. Identify unreliable words (mainly by employing P, L3, A2).

7. Try to replace these words by phonetically similar words, augmented by
• the syntactic and semantic categories of the missing information,

• the identified syntactic structure,

• domain- and situation-specific vocabulary,

• semantic coherence (associations with or logical relations to reliable words).
8. Delete unreliable words that cannot be substituted.

9. Try to verify the resulting hypothesis by
• trying to form a complete sentence with further substitutions or insertions of

function words,

• re-assessing the plausibility of the utterance considering all details,
10. Establish the confidence in the interpretation by regarding its plausibility and the

number of alternative plausible interpretations.

Step 1 and step 4 are related to two basic spoken language understanding technologies

used in many SDS: keyword/keyphrase spotting and slot filling. Although these mech-

anisms are often regarded as ”unintelligent”, they seem to be cognitively adequate in

some respects, particularly when they are combined with rich confidence estimation. Un-

like SDS, humans supplement these strategies with several verification and grounding

steps in which information is passed back to the lower levels of processing. Instead of

simply ignoring the segments not covered by key phrases, humans still try to recognize

the correct words augmented by the information gained in the higher levels. Only if this

grounding is successful, the interpretation is considered as highly reliable.

We should be aware that human speech processing is a highly interactive process

where information is exchanged in any direction at any time. This complex process can-

not be reduced to a plain script as outlined above. Our analyses though suggest that the

script might reflect the most important flow of information with respect to speech pro-

cessing in a limited domain with comparatively simple user statements.

M. Hacker / Human Speech Processing for Pedestrian Assistance 139

5. Summary

We presented a study that aimed at investigating human speech processing of incorrectly

recognized utterances as a model for error handling in spoken dialogue systems. In this

paper, we reported our analyses how well the subjects performed in estimating the cor-

rectness of the given speech recognition hypotheses, what kind of information their esti-

mations rely on and what strategies they apply in order to interpret the utterances.

We state that it is possible for humans to reliably estimate the correctness of speech

recognition output only by utilizing non-acoustic information. The analyses of reliability

criteria can be a first step towards developing confidence measures that integrate rich

information from various knowledge sources and levels of processing.

The strategies humans applied to interpret the corrupted hypotheses disclose a way

how future automatic speech understanding technologies might be designed. A cogni-

tively adequate approach would combine the typical keyphrase spotting strategy with a

kind of “grounded slot filling”.

There is a number of open research questions that need to be investigated before the

human behavior can be replicated in dialogue systems. As a next step, we will evaluate

how well the subjects performed in correcting the hypotheses. Further effort will be put

into the investigation of the dialogue and clarification strategies used by the subjects in

response to the interpretation task.

Acknowledgements We would like to thank the Embedded Systems Initiative (ESI, http://www.esi-

anwendungszentrum.de) for funding and David Elsweiler for his valuable advice in various empirical issues.

References

[1] Martin Hacker, David Elsweiler, and Bernd Ludwig. Investigating human speech processing as a model

for spoken dialogue systems: An experimental framework. In Proceedings of the 19th European Con-
ference on Artificial Intelligence (ECAI 2010), pages 1137–1138. IOS Press, 2010.

[2] Malte Gabsdil and Oliver Lemon. Combining acoustic and pragmatic features to predict recognition

performance in spoken dialogue systems. In Proceedings of 42nd Annual Meeting of the Association for
Computational Linguistics (ACL 2004), pages 344–351. ACL, 2004.

[3] Martin Hacker. Context-aware speech recognition in a robot navigation scenario. In Proc. of 2nd
Workshop on Context Aware Intelligent Assistance (CAIA 2011), pages 4–17. CEUR-WS.org, 2011.

[4] Bernd Ludwig and Martin Hacker. Why is this wrong? – Diagnosing erroneous speech recognizer output

with a two phase parser. In Proceedings of ECAI 2008, pages 323–327. IOS Press, 2008.

[5] D. Schlangen and R. Fernández. Speaking through a noisy channel: experiments on inducing clarifica-

tion behaviour in human-human dialogue. In Proc. Interspeech 2007, pages 1266–1269. ISCA, 2007.

[6] Gabriel Skantze. Exploring human error recovery strategies: Implications for spoken dialogue systems.

Speech Communication, 45(3):325–341, 2005.

[7] Jason D. Williams and Steve Young. Partially observable markov decision processes for spoken dialog

systems. Computer Speech & Language, 21(2):393–422, 2007.

[8] Gabriel Skantze and Jens Edlund. Early error detection on word level. In COST278 and ISCA Tutorial
and Research Workshop (ITRW) on Robustness Issues in Conversational Interaction, 2004.

[9] Bernd Ludwig, Bjørn Zenker, and Jan Schrader. Recommendation of personalized routes with public

transport connections. Intell. Interactive Assistance and Mobile Multimedia Comp., pages 97–107, 2009.

[10] Mike Schuster. Speech recognition for mobile devices at Google. In Proceedings of the 11th Pacific Rim
International Conference on Trends in Artificial Intelligence, PRICAI’10, pages 8–10. Springer, 2010.

[11] Elmar Nöth, Axel Horndasch, Florian Gallwitz, and Jürgen Haas. Experiences with commercial

telephone-based dialogue systems. it–Information Technology, 46(6/2004):315–321, 2004.

M. Hacker / Human Speech Processing for Pedestrian Assistance140

A! – A Cooperative Heuristic

Search Algorithm

Antti HALME 1

Aalto University, Finland

Abstract. We propose a new parallel search algorithm – A! – based on cooperating

A∗ search agents, concurrency and a secondary tiebreaking heuristic. The search

agents in A! share information asynchronously and trade some of their indepen-

dence for additional search focus and a more global view of the search task. A! is

inherently nondeterministic due to the implicit randomness of instruction schedul-

ing, but given a consistent primary heuristic, it still finds optimal solutions for the

single-source shortest path problem (SSSP). A! combines into a single coopera-

tive search algorithm the breadth available in parallel execution and the depth-first

orientation of both locally and globally informed search.

We experimentally show that A! outperforms both vanilla A∗ and an explicitly

randomized, noncooperative parallel A∗ variant. We present an empirical study on

cooperation benefits and scalability in the classic 15-puzzle context. The results

imply that cooperation and concurrency can successfully be harnessed in algorithm

design, inviting further inquiry into algorithms of this kind.

Keywords. A*, heuristic search, parallel algorithm, cooperation, nondeterminism

1. Introduction

Search features in numerous real world applications from pathfinding to resource opti-

mization. Application of heuristic information can improve searching performance by

providing focus for search space exploration. While heuristics distinguish promising ar-

eas of the search space from those less likely to lead to progress, there still remains plenty

of searching to do, as there typically exist multiple equally good directions to pursue.

For the single-source shortest path problem (SSSP) the standard heuristic search

method is the A∗ algorithm [1]. A∗ follows a best-first strategy that considers both known

distance from the start node and an estimate for the remaining distance to a goal node.

As a graph-based algorithm, A∗ is fundamentally hard to parallelize: best search direc-

tions depend on overall search progress. Nonetheless, there has been some success in

parallelizing best-first search both locally and in a distributed fashion, mostly through

insightful search space partitioning and redundancy elimination [2–6].

In this work we explore parallel heuristic search that is based on cooperation and

dependence rather than on work division and independent execution. We focus on the

cooperation of multiple distinct worker components, algorithmic agents, executing con-

1Address: Antti Halme, Aalto University, Dept. of Information and Comp. Sci., PO Box 15400, FI-00076

Aalto, Finland; E-mail: antti.halme@aalto.fi; Web: http://users.ics.aalto.fi/ahalme/coop/ .

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-141

141

http://users.ics.aalto.fi/ahalme/coop/

currently and communicating asynchronously. Our main hypothesis is that cooperating

agents searching together can be more effective than agents searching in isolation. We

test our hypothesis in a series of computational experiments and look for some general

trends. This paper summarizes the research presented in full as a master’s thesis [7].

The contribution of this paper is a new kind of cooperative heuristic search algo-

rithm, a parallel variant of A∗, dubbed A!. A! features cooperating search agents that

share information and collectively maintain a secondary tiebreaking heuristic. Agents in

A! explore the search space in an implicitly random fashion, directed by this dynamic

ranking heuristic. Indeed, we view cooperation simply as another layer of heuristic focus,

a depth-first orienting sense of global search progress.

We empirically evaluate A! by solving instances of the standard 15-puzzle bench-

mark problem. The performance of A! is compared with vanilla A∗ and a randomized

non-cooperative parallel A∗ variant. We show that A! outperforms both methods. The im-

plementation is not as such competitive against state-of-the-art parallel 15-puzzle solvers,

but rather a first step in applying cooperation as a secondary heuristic.

We begin with a discussion on cooperative search in the next section and then de-

scribe the A! algorithm. Results from computational experiments on 15-puzzles are dis-

cussed in Section 4. Related work is discussed briefly before the conclusion in Section 5.

2. Constructing cooperative search

Kishimoto et al. [4] note that combining heuristic search and parallel processing is chal-

lenging because of three kinds of overheads. Search overhead occurs when the parallel

version expands more nodes than the sequential one, typically as a result of non-disjoint

search space division between search agents. Synchronization overhead refers to the idle

time wasted at synchronization points, such as locks on shared data. Finally, communi-
cation overhead occurs whenever information is exchanged.

Parallel search is usually based on search space division, the goal being the removal

of search overhead [4]. This renders synchronization and communication the bottlenecks.

The parallelism in heuristic search algorithms is therefore typically very simple, with

search agents mostly working independently. While this approach is common in general

parallel computing as well, it does not fully leverage the parallel potential of modern

multi-core shared-memory systems.

In this work we focus on removing the synchronization overhead and also give

up precise communication patterns. Instead of maintaining a clear separation between

search agents, we emphasize their close cooperation. Specifically, we make use of asyn-

chronous message passing and nondeterministic instruction scheduling, and build a co-

operation mechanism that is powered by the indeterminacy inherent in concurrency. We

explore computation that is implicitly random as opposed to being explicitly randomized.

The idea in cooperative search is to direct and focus the search by sharing informa-

tion among concurrently operating search workers [8, 9]. The goal is to search faster as

a collective, with each agent utilizing the information they obtain. The hypothesis under-

lying this work is that cooperating agents outperform agents in isolation: search agents

make good use of shared information and the overall effort benefits from cooperation.

Fundamentally, cooperation is communication: cooperating agents consume and

contribute messages, whereas isolated agents keep to themselves. Parallel search is by

A. Halme / A! – A Cooperative Heuristic Search Algorithm142

default concurrent when the cooperation between the agents is unconstrained and asyn-

chronous. Instead of enforcing determinism and working against the natural disorder of

concurrency, in this work we embrace it and try to use it to our advantage.

We wish to have a cooperation mechanism that enables information sharing among

concurrently operating search workers and is both effective and lightweight enough for

this extra effort to be worth it. We wish to augment heuristic search in an unobtrusive

way with a basic cooperation mechanism and set the stage for concurrent phenomena.

Instead of a rigid master-slave approach, we want the overall global search to be

managed collegially by several processes. We do away with superfluous synchronization

and rather embrace asynchronous interaction. A∗ is point-initialized by nature, so having

a portfolio of different approaches would make sense, but to study cooperation specifi-

cally, we stick to a uniform strategy. In the terminology of Crainic and Toulouse [8], our

full cooperation policy can then be classified as pC/C/SPSS.

3. The A! algorithm

3.1. Overview

The A! (a-bang) algorithm is a parallel best-first heuristic search that employs asyn-

chronously communicating software agents as concurrently cooperating search workers.

Given a graph, a start node, a goal predicate and two heuristic functions – a primary and

secondary one, denoted h(u) and ĥ(u,v), for all u and v in the graph – A! finds a single

pair shortest path from the start node to a goal node.

A! consists of N agents that each run a distinct upgraded version of A∗ search. Each

agent performs a heuristic search starting from the start node, but also participates in the

cooperation effort: the agents share information about their progress with their fellow

agents. An additional message broker entity can be used to streamline communications.

The primary heuristic is the one used in an A∗-like graph search itself, while the

secondary heuristic serves as a tiebreaker between equally good next-to-open candidate

nodes. Vanilla A∗ simply maintains an estimated value priority queue, but A! workers

aim to discern differences between nodes valued equally interesting in the queue.

This is the crux of A!: where vanilla A∗ always selects the head of the estimated

value priority queue, A! agents choose among up to k most promising nodes of equal

value based on information they individually acquire during the search.

As information is diffused asynchronously, A! workers have varying notions of

search progress. When the priority queues and candidate sets have some differences, the

agents diverge, but directed by the heuristics, they also meander close together again.

A! generates diversity from concurrency, but also maintains cohesion through heuristics.

For the information to share, best encountered nodes are a simple, effective choice.

This directly implies a distance-to-best-based secondary heuristic, where each worker is

directed towards the areas of the search space that have been fruitful in the past. More

elaborate information sharing and utilization schemes are well worth exploring in appli-

cations, but lie outside the main focus of this work.

Note that the degenerate case of a single A! agent is not necessarily vanilla A∗. With

only a single agent passing progress information to the secondary heuristic function, the

search turns into a momentum-based eager search, where candidates close to recently

A. Halme / A! – A Cooperative Heuristic Search Algorithm 143

opened ones are ranked high among nodes that are equal with respect to the primary

heuristic. This momentum effect is visible later on in the experiments.

Finally, A! retains the optimality of A∗ in the sense that the solution paths are the

shortest possible, if the primary heuristic is consistent. The secondary heuristic only se-

lects the order in which areas of the search space get explored. The primary and sec-

ondary heuristics can be the same distance measure, but this is not necessary in general.

3.2. Algorithm details

Next we present the entire A! algorithm as a collection of pseudocode snippets. We

begin with Algorithm 1, which serves as the main body of the algorithm. In short, we

simply launch a collection of search workers and wait for one of them to finish. We

encapsulate the cooperation communication into a message broker entity that takes care

of the communication scheme following a publish-subscribe pattern.

Given the problem instance, including the two heuristic functions, the algorithm re-

turns a path from the start node to the found goal node, if one is reached. The path is de-

rived from a path map of successor nodes by the first worker to find a goal. Solution dis-

covery triggers main program termination and solution path retrieval via getPath(..).

The workers run A!Solver, outlined in Algorithm 2, which has four parts inside a

loop that is repeated until program termination. The first part, lines 6–7, is the node visit,

where we check whether the current node is a goal based on the isGoal predicate. If it

is, we derive the solution path and terminate, if not, we mark the node visited.

The second part, lines 8–14, is the A∗ expansion. We use the primary heuristic func-

tion to estimate remaining distances for the legal neighbors of the current state and up-

date the data structures as we discover new nodes. The priority queue openHeap main-

tains the unopened node queue ordered by estimated total cost. The pathMap maps nodes

to one another, establishing the successor relation used in solution path derivation.

The third part, lines 15–16, is a cursory peek into the up-to-date openHeap. In

A! we examine some interesting nodes and select among them according to the sec-

ondary heuristic, whereas in vanilla A∗ we simply draw one node from the top. The peek

is a bounded traversal of the priority queue, where we build a list – the peekList – of

nodes with a cost equal to the top node. If there are no nodes left, the search terminates.

The final part, lines 17–18, contains the selection routine, which for A! is given as

Algorithm 3. After one of the nodes has been selected – in one way or another – it is

removed from openHeap and turned into current. Removing nodes is a relatively fast

operation for some priority queue implementations, including the Fibonacci heap.

Algorithm 1 : A!Search

Require: N > 0, NODE start, PREDICATE isGoal, HEURISTIC h, ĥ
Ensure: path from start to nearest node satisfying isGoal is shortest possible

1: mb ← MsgBroker()
2: for i = 0 to N do
3: workers[i]← A!Solver(mb.portOut,mb.portIn,s, isGoal,h, ĥ)
4: end for
5: for each worker in workers in parallel worker.launch() end for
6: wait for termination

7: return path ← getPath(workers)

A. Halme / A! – A Cooperative Heuristic Search Algorithm144

Algorithm 2 : A!Solver

Require: PORT portIn, portOut, NODE start, PREDICATE isGoal, HEURISTIC h, ĥ
1: openHeap ← FibonacciHeap〈INTEGER,NODE〉
2: closedSet ← Set〈NODE〉
3: pathMap ← Map〈NODE,NODE〉
4: current ← start
5: repeat
6: if isGoal(current) then terminate(current,start, pathMap) end if
7: closedSet.add(current)
8: for each n in current.getNeighbors() do
9: if closedSet.contains(n) then continue end if

10: g ← current.g+dist(current,n)
11: f ← g+h(n)
12: improved ← openHeap.update(n, f)
13: if improved then pathMap.update(n,current) end if
14: end for
15: peekList ← openHeap.getPeekList()
16: if isEmpty(peekList) then terminate() end if
17: current ← A!Select(peekList, portIn, portOut,h, ĥ)
18: openHeap.remove(current)
19: until termination

The selection routine A!Select is the real core of the A! algorithm: it contains the

cooperation functionality and the application of the secondary heuristic. In the first part,

lines 1–2, the cooperation routine asyncRecv brings new information into the agent.

The read is asynchronous and nonblocking in that if there is nothing to receive, the

algorithm proceeds without any delay. The routine in Algorithm 3 gives a version with

best-information being shared, but other schemes can naturally be constructed here.

The second part features the inclusion of the new information, lines 3–8, as encap-

sulated into the secondary heuristic function, ĥ. The peekList is sorted on ĥ and the

highest ranking node is selected. The third part, lines 9–12, mirrors the first part: new

data is sent for others to process. The listing shows a small communication overhead

optimization, where the agent only informs others, if it believes that it has made progress.

Alternative selection policies to A!Select include the random (A?) and vanilla (A∗)

selection routines. The former selects nodes at random from the peeklist, while the latter

simply takes the head of the list. We proceed with an evaluation of these selection policies

in a series of computational experiments.

4. Solving 15-puzzles with A!

In this section we describe experiments based on repeated executions of three versions of

heuristic search, all based on a single implementation: vanilla A∗, a randomized parallel

variant A?, and the cooperative A!. We focus on two dimensions that are especially

interesting from a cooperative search point of view: the overall benefit from cooperation

and the extent to which the methods are scalable. We first describe the experimental

setting and then present the computational results. More results can be found in [7].

A. Halme / A! – A Cooperative Heuristic Search Algorithm 145

Algorithm 3 : A!Select

Require: LIST peekList, PORT portIn, portOut, HEURISTIC h, ĥ
Ensure: select is the most promising node in peekList according to ĥ on best

1: update, updateH ← asyncRecv(portIn)
2: if updateH < bestH then best,bestH ← update,updateH end if
3: select ← peekList.pop()
4: selectD ← ĥ(select,best)
5: for each node in peekList do
6: d ← ĥ(node,best)
7: if d < selectD then select,selectD ← node,d end if
8: end for
9: if h(select)< bestH then

10: best,bestH ← select,selectH
11: asyncSend(portOut,{best,bestH})
12: end if
13: return select

4.1. Experimental setting

The implementation used in the experiments is based on an A∗ for n-puzzles implementa-

tion by Brian Borowski2 (BBI). The Java program features an A∗ solver as well as a ver-

sion of IDA∗, of which the former was extended to a cooperative version in this work. All

tests were executed on a cluster comprising a mixture of blade servers featuring 2.6GHz

Opteron 2435, 2.67GHz Xeon X5650, and 2.8GHz Xeon E5 2680 v2 processors.

Two standard heuristics were used in the experiments: Manhattan distance with lin-

ear collisions (LC) [10], and a 6-6-3-partitioned static disjoint pattern database for the

15-puzzle (PDB) [11]. PDB was chosen as the primary heuristic and LC-to-best as the

secondary heuristic: we use the database to focus on the right areas of the search space

and break ties between equal valued nodes by LC-distance to the best observed node.

The test suite is a randomly generated collection of 15-puzzle instances. Instances

were solved with BBI and grouped by the length of the optimal solution path, the shortest

sequence of moves from the start position to the goal position. Randomly generated

impossible instances – off-parity with respect to the target goal state – were discarded.

The instances within a given optimal length group proved to differ greatly in their

difficulty: the average number of nodes examined during the search for instances in any

group covers a range of several orders of magnitude. Further, as the methods under evalu-

ation have stochastic and nondeterministic properties, runs on a given instance are them-

selves subject to nontrivial variation. The grouping is still justified, as with enough in-

stance in each group, some general trends become apparent.

The experiments focused on the number of nodes opened by the winning agent,
which was found to be a reasonably good metric. The goal in this work was not to build

a competitive 15-puzzle solver, but to study cooperation effects in A!, so runtime is not

considered here. Still, the winning agent measure reflects both the total work done by

all agents – including repetition – and, to some extent, the total runtime as well. This

follows from agents exploring states at roughly the same rate given a core per agent.

2http://www.brian-borowski.com/Software/Puzzle/

A. Halme / A! – A Cooperative Heuristic Search Algorithm146

http://www.brian-borowski.com/Software/Puzzle/

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Visited vertices for winning agent, vanilla A* search

V
is

ite
d

ve
rt

ic
es

 fo
r

w
in

ni
ng

 a
ge

nt
, c

oo
pe

ra
tiv

e
A

! s
ea

rc
h

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.

1 agent
2 agents
4 agents
6 agents
8 agents
Par
1 A lin. reg.
2 A lin. reg.
4 A lin. reg.
6 A lin. reg.
8 A lin. reg.

Figure 1. Relative performance of A∗ (x-axis) and A! (y-axis). The solid line is par, so data points below it

represent instances for which A! performs better than A∗. Agent count is evaluated in five batches – 1, 2, 4,

6, and 8 agents – with the respective trend lines showing how the configurations compare. With trend lines

approaching 1
2 , the winning agents in multi-agent A! open roughly half the states of a vanilla A∗ run.

4.2. Computational results

The experiments give an overview of the performance of A! in comparison with vanilla

A∗ and a non-cooperative random selection variant A?. We first show that A!, featuring

cooperation and the secondary heuristic based ranking, overcomes both vanilla A∗ and

A?. Second, we show that while the returns are diminishing, having more agents im-

proves the overall performance of both A? and A!, but that A! clearly outperforms A?,

making a preliminary case in favor of cooperation.

To see how A! fares against the competition, we set the algorithms to solve a suite

of instances and observed how many search graph vertices the winning agents open.

Figure 1 shows 100 15-puzzles from each of the 40–59 optimal path length groups run

on A∗ and A! in five agent configurations: 1, 2, 4, 6, and 8 agents. We use the median

of five runs: this was found to be a reasonable compromise between result quality and

available computing resources.

We see the majority of the points falling under the solid par-line, indicating that

search using A∗ is more sluggish than with A!: more states get visited before the optimal

solution path is found. Some instances above the par-line – especially for the one agent

case – show the vanilla algorithm outperforming A!, likely due to the secondary heuristic

being misinformed about the best direction. This is the cost from going depth-first over

breadth: all heuristics can be fooled. The trend lines still validate A!. With eight agents,

the slope approaches 1
2 , indicating that on average A! needs to see only half the states as

vanilla A∗. Similar results for A! vs. A? are found in [7].

Searching efficiently in parallel requires a scalable algorithm. Figure 2 shows that

A! outperforms A∗ and A?, and that adding new agents to A! increases its performance.

The figure shows runs in optimal length groups, with means of the 100 instances in each

group forming a trend line for each of the agent configurations. The group trends are

normalized with respect to vanilla A∗ performance. Finally, the trend lines themselves

A. Halme / A! – A Cooperative Heuristic Search Algorithm 147

0

0.5

1

1.5

2

A*

A*

1A? 2A? 4A? 6A? 8A?

40

1A! 2A! 4A! 6A! 8A!

40

41

41

42

42

43

43

44

44

45

45

46

46

47

47

48

48

49

49

50

50

51

51

52

52

53

53

54

54

55

55

56

56

57

57

58

58

59

59

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.

V
is

ite
d

ve
rt

ic
es

 fo
r

w
in

ni
ng

 a
ge

nt
, m

ea
ns

 b
y

gr
ou

p,
 n

or
m

al
iz

ed
 to

 A
*

A*
A? normalized group mean, 1−−8A
A! normalized group mean, 1−−8A
A? mean of norm. group means, 1−−8A
A! mean of norm. group means, 1−−8A

Figure 2. A∗-normalized length group means demonstrating scaling benefit from adding more agents. Each

line represents a set of instances run over several configurations and repeats, for each method and with the

performance scaled to the vanilla A∗ case. We can see the relative benefit of adding more agents, but also

diminishing returns for each expansion. The trend lines overlap to a moderate extent – further illustrated by the

mean – suggesting rudimentary asymptotic bounds for the approaches.

are averaged over for a pair of thick mean-of-means curves that summarize over the

thousands of data points drawn evenly from the 40−59 optimal path length range.

We see that A?, perhaps in the spirit of random restarting (repeated local search),

initially performs worse than A∗, as the random selection policy is inferior to a system-

atic approach, but then with more agents the probabilities turn in its favor. In contrast,

A! already starts off well, due to the momentum effect, and gains more power as more

agents begin to cooperate.

For some of the groups in Figure 2, A! gets close to the 1
2 threshold in A∗-relative

expansion, which also appears to be a plateau for general scalability with regards to

A. Halme / A! – A Cooperative Heuristic Search Algorithm148

this implementation if not the approach itself. While individual groups exhibit erratic

behavior, the overall trend is quite clear: A! outperforms A∗ and A?, and scales to at least

a few agents, but with diminishing returns.

5. Related work

Cooperation has been an theme in AI research for years [12, 13]. The taxonomy work of

Crainic and Toulouse [8, 14] is a good place to start exploring the literature on coopera-

tive search. Alba et al. [15] offer extensive surveys on a closely related field of parallel

metaheuristics. A! is perhaps best categorized as distributed search [5], but the approach

is motivated by a multi-agent system view of algorithmic cooperation [7].

Barbucha [16] and Ouelhadj and Petrovic [9] present ideas that are similar to A!, but

feature cooperation more in terms of traditional parallelism. In A! we propose viewing

cooperation as a dynamic heuristic, and present unconstrained concurrency and close

interaction as a source of search diversity and performance.

Classical planning tasks make good benchmarks and are often featured in parallel

A∗ papers to give the methods credibility beyond puzzles [2, 4]. However, in these con-

texts, cooperation effects are rarely studied directly. Information exchange, mostly con-

sidered from a search space partitioning and distributed load balancing angle, appears

to not have been considered from the heuristic point of view taken in this work. Most

A∗ parallelizations are deterministic and the rest explicitly randomized.

Without search space partitioning, parallelism can be achieved in search through

parallelizing node processing in a heavy graph, as in the chess machine Deep Blue [17].

Algorithm portfolios and hybrids are another easy way to exploit parallelism, an exam-

ple being the ManySAT solver [18]. Machine learning methods have also been success-

fully applied to the discovery of parallel configurations for search [19]. Load balancing

through duplicate detection [2], hashing [3, 4], or transposition tables [5] might well be

useful in improving exploration diversity also in A!.

6. Conclusion

The 15-puzzle experiments show that the cooperative A! algorithm outperforms both

vanilla A∗ and the non-cooperative random parallel variant A? in this context. Adding

more agents to A! clearly improves performance, but the returns are diminishing. Search

overhead – the lack of explored path diversity – appears to be a limiting factor in A! per-

formance and an issue worth addressing in future work.

A∗ expands the search broadly in all directions and in an orderly fashion, in a

sense being forgetful about search history. A!, in contrast, prefers depth and emphasizes

progress and search momentum. A? is forgetful as well, but through explicit randomiza-

tion, the agents can stumble on the right path faster than in systematic browsing – given

enough agents. A! embraces concurrency and implicit randomization: the parallel agents

cooperate in a nondeterministic way in focusing the search effort in areas that have been

found promising. The secondary heuristic serves as a global compass that augments the

search when the primary heuristic fails to disambiguate between candidates.

A! combines into a single approach multiple unfinished algorithmic ideas: con-

current execution, asynchronous interaction, implicit randomization, globally informed

A. Halme / A! – A Cooperative Heuristic Search Algorithm 149

depth-first orientation, and the use of a secondary heuristic. A far more detailed study is

needed for explicating the exact contribution of each of these factors in A! performance.

The approach should also be validated in other contexts.

Still, the experiments indicate that nondeterministic cooperation emerging from

asynchronous message exchange can be beneficial in heuristic search. Next steps could

also include combining A! and cooperation ideas with other parallel A∗ techniques.

Acknowledgements

I am very grateful to Pekka Orponen for supporting and funding this work. I also thank

the reviewers for insightful comments. The computational experiments in this work were

performed using the computer resources provided by the Aalto University School of

Science Science-IT project.

References

[1] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.
[2] Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Best-First Heuristic Search for Multicore

Machines. Journal of Artificial Intelligence Research, 39:689–743, 2010.
[3] Matthew Evett, James Hendler, Ambuj Mahanti, and Dana Nau. PRA*: Massively Parallel Heuristic

Search. Journal of Parallel and Distributed Computing, 25(2):133–143, 1995.
[4] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Evaluation of a Simple, Scalable, Parallel Best-First

Search Strategy. Artificial Intelligence, 195(0):222–248, February 2013.
[5] John W. Romein, Aske Plaat, Henri E. Bal, and Jonathan Schaeffer. Transposition Table Driven Work

Scheduling in Distributed Search. In Proc. of the 15th Nat. Conf. A. I. (AAAI ’99), pages 725–731, 1999.
[6] Rong Zhou and Eric A. Hansen. Structured Duplicate Detection in External-Memory Graph Search. In

Proc. of the 19th National Conference on Artificial Intelligence (AAAI ’04), pages 683–688, 2004.
[7] Antti Halme. Cooperative Heuristic Search with Software Agents. Master’s thesis, Aalto University,

2014.
[8] Teodor G. Crainic and Michel Toulouse. Explicit and Emergent Cooperation Schemes for Search Algo-

rithms. In Proc. of the 2nd Intl. Conf. on Learning and Intel. Optim. (LION ’07), pages 95–109, 2008.
[9] Djamila Ouelhadj and Sanja Petrovic. A Cooperative Hyper-Heuristic Search Framework. Journal of

Heuristics, 16(6):835–857, December 2009.
[10] Othar Hansson, Andrew Mayer, and Moti Yung. Criticizing Solutions to Relaxed Models Yields Powerful

Admissible Heuristics. Information Sciences, 63(3):207–227, September 1992.
[11] Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive Pattern Database Heuristics. Journal of Artificial

Intelligence Research, 22:279–318, 2004.
[12] Tad Hogg and Bernardo A. Huberman. Better Than the Best: The Power of Cooperation. In 1992 Lectures

in Complex Systems, volume V, pages 165–184. Addison-Wesley, 1993.
[13] William A. Kornfeld. The Use of Parallelism to Implement a Heuristic Search. In Proc. of the 7th Intl.

Joint Conference on Artificial Intelligence (IJCAI ’81), volume 1, pages 575–580, 1981.
[14] Teodor G. Crainic and Michel Toulouse. Parallel Meta-heuristics. In Handbook of Metaheuristics, chap-

ter 17, pages 497–541. Springer, 2010.
[15] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel Metaheuristics: Recent Advances and

New Trends. International Transactions in Operational Research, 20(1):1–48, 2013.
[16] Dariusz Barbucha. Search Modes for the Cooperative Multi-agent System Solving the Vehicle Routing

Problem. Neurocomputing, 88:13–23, July 2012.
[17] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. Deep Blue. Artificial Intelligence, 134

(1-2):57–83, January 2002.
[18] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. ManySAT: A Parallel SAT Solver. Journal on Satisfi-

ability, Boolean Modeling and Computation, 6(4):245–262, 2009.
[19] Diane J. Cook and R. Craig Varnell. Adaptive Parallel Iterative Deepening Search. Journal of Artificial

Intelligence Research, 9(1):139–166, August 1998.

A. Halme / A! – A Cooperative Heuristic Search Algorithm150

Run-time Plan Repair for AUV Missions

Catherine HARRIS a and Richard DEARDEN a 1

a University of Birmingham, UK

Abstract. Autonomous underwater vehicle (AUV) missions are challenging due to

limited or no communication with the vehicle and uncertainty about what may be

encountered during the mission. The vehicle has limited battery power and memory

to store datasets and does not know how much of these resources its actions will

consume. Managing the uncertainty by building contingency plans (as in previous

work) is infeasible owing to the large number of contingencies. Purely online plan-

ning is also difficult because of restricted computation. We propose a mixture of

off-line planning and on-line plan repair, presenting an approach for deleting parts

of a plan when resources are tight, or stitching new plan fragments into an existing

plan when additional resources are available. We discuss this novel approach using

a simulated AUV mission domain.

1. Introduction

In recent years autonomous underwater vehicles (AUVs) have become increasingly pop-

ular for a wide variety of applications. As the cost of deploying a vehicle and the risk

of loss or damage are often high, AUV missions typically consist of simple pre-scripted

behaviours. Although designed to minimise risk to the vehicle and its scientific cargo,

these behaviours are inevitably overly-conservative, reserving a significant proportion of

battery as a contingency. Remedying this problem is difficult owing to our lack of knowl-

edge about conditions at the ocean bottom. This makes it very hard to predict how much

power a particular activity will use or how much memory datasets will consume. As

improvements in battery technology allow much longer deployments, these pre-scripted

missions are proving increasingly limiting. Finding ways to adapt the mission during

execution has the potential to significantly improve the capabilities of these vehicles.

We consider AUV science missions, in which the vehicle collects a number of

datasets from locations of interest. The AUV has limited battery power, which is required

for all actions and cannot be recharged during a mission. The vehicle also has limited

memory for storing data, although this can be reused if a dataset is transmitted mid-

mission. A key challenge of the problem is that the resources used by each action are

uncertain, so a good initial plan can fail if actions take more resource than expected, or

waste resources if usage was lower than expected.

Similar problems have been discussed in the past (see Section 2). Contingency plan-

ning has been examined in multiple papers [7,13,8,2], but owing to the high uncertainty

in the problem we prefer a replanning approach. However, since battery used for com-

1E-mail: C.A.Harris.1@cs.bham.ac.uk, richard.dearden@gmail.com

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-151

151

putation is no longer available for action, we aim to minimise online computation, using

plan repair to efficiently update the existing plan rather than computing a new full plan.

The approach we take is to continually monitor the resource usage during execution

to determine if and when updating the plan may be beneficial. Prior to execution, at key

points in the plan we generate individual sub-plans for each goal in the problem, both

those included in the current plan and those which may be added. These sub-plans pro-

vide an estimate of the resource cost and reward of each goal, whether adding or remov-

ing it from the plan, which we use as a heuristic to aid online plan modification. During

execution, if resource usage deviates significantly from expected, the heuristic informs

the selection of goals for addition or removal by representing the trade-off between re-

source cost and reward. Goal removal is achieved by removing all actions that only con-

tribute to that single goal. Adding a goal involves combining the pre-generated sub-plan

for the chosen goal with the existing plan, interleaving the two sets of actions until the

causal structure of the resultant plan is valid. Should additional actions be required to

achieve this, the system generates new plan fragments to join the two plans together. To

minimise online computation, we use a classical deterministic representation for plan

generation, treating resource usage as discrete (using the mean of the distribution) and

then evaluate the resulting plan in the probabilistic model.

2. Related Work

The planning literature contains many examples of work with similar motivations to our

own [5,6,17]. Representing a simplified version of the Mars rover domain as a Markov

decision process (MDP) with continuous energy usage and time, Bresina et al. [2] com-

pute the optimal value function for all contingencies within a branching plan. This rep-

resents the expected utility of each branch for all combinations of energy and time and

can be used as a policy, dictating the optimal branch to take at run-time, given resource

availability. In a follow-up paper, Feng et al. [9] use an approximate MDP approach, but

this is restricted to very small problems as a value function over all continuous variables

must be computed for each discrete state. Due to the high number of possible contingen-

cies and the size of the state space in both the AUV and Mars rover domains, the use of

a MDP solver is computationally infeasible for realistically-sized problems.

Solutions based on the construction and execution of branching plans are popular

for domains with resource uncertainty [7,13,8,2]. Bresina and Washington [3] present a

flexible on-board executive which monitors and reacts to changes in the expected utility

of the rover’s plan. An initial contingent schedule is constructed offline by mission op-

erators. Contingent branches are added to define the actions to take should a predictable

action failure occur during execution. Whilst our approach also augments an initial plan

with alternative options prior to execution, the combination of continuous resource un-

certainty and a large oversubscribed goal set in our AUV domain would require many

plan branches to be generated and considered at each step in the plan. We instead de-

lay the decision, of which goals to add or remove from the problem at each point in the

plan, until run-time when the resource usage may be observed. We reduce the number

of goal combinations to consider (and consequently plan branches to generate) by only

considering those which are applicable given the observed resource availability.

Bidot et al. [1] present a scheduling framework capable of managing uncertainty and

potential failures. An initial partial schedule is generated over a short-time horizon, based

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions152

Figure 1. (a) Schematic of our approach. Execution monitoring uses the precomputed heuristic and observed

resource usage to trigger plan repair. (b) Heuristic for triggering plan repair, plot shows the mean resource usage

of the current plan and plan fragments: If the current resources are at A, the unused resource is sufficient to add

in goal g(3), increasing the expected reward. If current resources are at B (i.e. below the mean requirement of

the current plan), removing g(2) reduces the resource requirement and increases the expected reward.

on the most probable observations. If the duration uncertainty causes the expected value

of the cost function to increase significantly, another schedule is generated online with

additional ordering constraints to reduce computation. If a choice of activity is based on

an observation, they delay the decision until the observation has been made, generating

a new schedule for the chosen activity.

In plan repair van der Krogt and de Weerdt [19] use ideas from refinement planning

[16,15], but propose an additional strategy, unrefinement planning, which allows the re-

moval of constraints or actions which prevented goals from being met. If the current

plan is no longer a solution, they create candidates for refinement by first unrefining the

current plan, removing actions which depend on either the initial or goal state.

Fox et al. [10] describe plan repair as “adapting an existing plan to a new context

whilst perturbing the original plan as little as possible”. They define a ‘plan stability’

metric to measure the difference between the original and repaired plans, and adapt the

local-search based planner LPG [12] to use this metric when evaluating partial plans for

refinement. They compare their plan repair strategy to that of replanning and find that

repair produces plans more efficiently and with much greater stability than replanning.

Nebel and Koehler [18] show that in theory, the costs of modifying an existing so-

lution to suit a new problem are higher than generating an entirely new plan. As the

AUV domain has many constraining factors—limited computational resources, a large

state space— we expect online plan repair to be a more effective solution in practice,

outweighing the theoretical inadequacies of plan modification.

3. Algorithm

The general structure of our approach is shown in Figure 1 (a). Offline, a plan is gener-

ated along with estimates of the expected reward as a function of resources and a heuris-

tic to aid online plan modification. During plan execution, the actual resource usage is

monitored and if there is a significant deviation, plan repair is invoked to either add or

delete goals. Each step is described below. For ease of exposition, we treat a plan as a

sequence of actions or interchangeably as the sequence of states that occur if the plan is

executed from the initial state.

Initial Plan Generation: We assume that the initial plan is generated prior to the

deployment of the vehicle when resources are plentiful. As the AUV domain is oversub-

scribed, the initial goals must also be selected. For each promising non-mutex combina-

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions 153

tion of goals a plan is generated using an external planner. Metric-FF [14] was chosen

because it is capable of generating satisficing plans for the classical deterministic repre-

sentation of the AUV domain (i.e. where uncertain costs are represented using the mean

of the distribution). The expected reward of each plan is then computed using Monte

Carlo simulation. The plan with the highest expected reward is selected for execution.

The causal links in the plan are also computed so they are available during plan repair.

Computing the Heuristic: We gain the most information about the probability of a

plan completing successfully, and thus its expected reward, after performing actions with

the largest resource usage uncertainty. Consequently, it is at these points that consider-

ing plan modifications is most beneficial. To aid online plan modification, we compute a

heuristic prior to execution by generating a sub-plan to complete each goal in the over-

subscribed problem individually. We use the expected state following the most uncertain

actions as the initial state for each sub-plan, as shown in Figure 1 (a). The ratio of the

estimated resource cost vs reward of adding or removing each goal at these points is used

to inform the decision of which modifications to make and when.

Plan Execution Monitoring: After each action is executed the current resources are

observed and used to update the expected reward of the remaining plan. If the usage was

higher than expected, there may be insufficient resources to complete the plan causing

the success probability and expected reward to decrease. Significant gains in expected

reward can be made by removing an existing goal, thus increasing the probability of

achieving the remaining goals and finishing the mission successfully. If current resources

are at point B in Figure 1 (b), they are below the mean required to complete the plan

(indicated by the sudden drop in expected reward) and consequently the expected reward

of this plan is now very low. By removing the goal g(2) from the current problem, we de-

crease the expected resource usage of the resulting plan (as indicated by the line labelled

current− g(2)) whilst increasing its expected reward. If resource usage was lower than

expected, the success probability (and consequently expected reward) of the remaining

plan increases. This situation is illustrated by point A in Figure 1 (b), where the heuristic

suggests that given the current resource levels, there are sufficient resources to accom-

modate the new goal g(3) and still complete the existing plan. By combining the plan

fragment for g(3) with the existing plan (as indicated by the line labelled current+g(3))
the expected reward and expected resource usage of the resulting plan both increase.

Goal Removal: In removing a goal from the planning problem, we can also remove

any actions which were only present to achieve that goal. Given a goal g to remove, we

construct the set Dg of actions to remove by first setting Dg = {ag}, where ag is a

dummy action with the precondition g. We then repeatedly add to Dg any action a such

that all causal links from a lead to actions in Dg . All actions in Dg only contribute to the

goal we wish to delete, so can be removed from the plan without impacting other goals.

Since finding Dg is fast, we select the goal to delete by computing Dg for each goal g
which the heuristic suggests is plausible, starting with the goal whose sub-plan minimises

the ratio of expected value to mean battery usage, to find the goal which maximises

the expected value of the plan once Dg is removed. To approximate expected value, we

first estimate the success probability of the remaining plan by combining the cumulative

density functions (CDF) representing the resource usage of each action into a single

distribution. The combined CDF represents the probability of the vehicle completing

the plan given the current resources. The expected reward of a plan is the sum of the

probability of achieving each goal multiplied by the reward gained. While battery and

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions154

Algorithm 1 Merging a plan fragment with an existing plan.

Input: pf—plan fragment, p—existing plan, Z—

list of valid merges, initially ∅, filled during re-

cursion.

1: function MERGEPLANS(Z, pf, p)

2: valid ← false
3: if p contains all goals then
4: Z ← Z + p, return true � p is a solution

5: else if pf = ∅ then return false � backtrack

6: else
7: a ← first action in pf ,

8: pf ← pf − a
9: X ← all states in s that meet preconditions

of a

10: for all x ∈ X do

11: if inserting a at x causes no threats then
12: merge ← p with a inserted at x
13: Update s, c for new action

14: valid ← mergeP lans(Z, pf,merge)
15: end if
16: end for
17: if valid = false AND a achieves no goals

then
18: pf ← pf − a � skip a
19: valid ← mergeP lans(Z, pf,merge)
20: else, return valid

21: end if
22: end if
23: end function

memory are not strictly independent (as battery may be used to transmit data in order to

increase available memory), we assume independence for ease and speed of calculation.

Adding Goals: The system attempts to merge the plan fragment pf associated with

the chosen goal and current state into the current plan p, interleaving actions to create a

valid solution for the combined goal set. To create a valid merged solution, the recursive

algorithm, shown in Algorithm 1, takes the first action from the new plan fragment and

compares its preconditions with each state in the original plan, producing a list of can-

didate merge points—states which meet the preconditions of the action. The algorithm

then checks whether causal links in the current plan are threatened by inserting the ac-

tion at each merge point. If merging an action causes a threat, e.g. to the preconditions

of another action, the algorithm searches the plan fragment for an action whose effect

restores the threatened link and checks whether this effect is then maintained until the

end of the plan fragment. If this is the case, the threat is marked as resolvable. If no links

are threatened or all threats are resolvable, we add the action to the plan at the current

merge point, update the plan’s causal links and call the function again to insert the next

action in the fragment. This continues until all valid merge points for each action in the

plan fragment have been considered. Each complete merged plan is then returned for

evaluation. If a threat is not resolvable, provided the action does not achieve a goal, we

skip the action as it may not be required when the two plans are combined.

If no valid plan orderings are found, a ‘stitching plan’ is generated which uses the

goal state of the sub-plan as its initial state and the unsatisfied preconditions of the re-

mainder of the existing plan as the goal. By returning the state to this point, the stitching

plan resolves all threats caused by the sub-plan. After generating the stitching plan, the

two plans are again passed to Algorithm 1 to interleave them into the original plan.

4. Analysis

We designed an experiment to compare the cost of the plan modification component of

our system (i.e. adding or removing a single goal, without execution monitoring trigger-

ing plan modification) to that of total replanning. For replanning, Metric-FF [14] was

used in the same configuration as when generating the initial plan, sub-plans and stitch-

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions 155

Figure 2. Connectivity of locations and datasets. Circles represent data-collection goals in the initial problem.

Triangles represent goals added during runs of the experiment. The crossed L2 indicates the removal of this

goal during the experiment.

ing plans for the plan modification algorithm, i.e. optimising for plan length. Owing to

the size of the AUV domain and the inclusion of the renewable memory resource, opti-

mising for minimal battery usage (which would produce better quality plans for this do-

main) was not feasible as Metric-FF does not return within a significant amount of time.

We measured the time taken to construct the new PDDL [11] problem file and return ei-

ther a valid solution or report a failure. We divided the experiment into two distinct tasks:

firstly, to add an additional goal to the problem; and secondly, to remove an existing goal.

In both cases the same initial problem (20 locations with 16 data-collection goals, shown

in Figure 2) and the same initial plan (with 66 steps) were used. All updates to the goal

set were made at the same point, fixed as the start of the initial plan.

As plan modifications are triggered by a change in observed resource usage, we

varied the amount of battery and memory available at the point of replanning/plan-repair.

When adding a goal, battery was increased from the mean usage of the existing plan, μb,

to two standard deviations above the mean, μb + 2σb. When removing a goal, battery

was decreased from μb to μb − 2σb. In both cases, memory ranges from the minimum

required to complete the existing plan (501.0 units, the mean size of the largest dataset)

to one standard deviation above this (501.0 +σm). Each data point represents the mean

of 15 trials. We specified a timeout of two minutes of CPU time for each trial. A laptop

with a 2.40GHz Intel Core 2 Duo CPU and 3GB of RAM was used for all runs.

Adding a goal: Both approaches were tasked with producing a valid solution when

the current problem was updated to include a new data-collection goal. The first addi-

tional goal consists of collecting and delivering (either via transmission or during vehicle

recovery) a dataset (D19 from location L19, see Figure 2) which is already on the route

taken by the existing plan, thus requiring minimal plan modification. The second addi-

tional goal, to collect and deliver Dx from location Lx, is off the route of the existing

plan, requiring much greater modification. By evaluating the performance using these

two extremes, we attempted to ensure a fair representation of both approaches.

When adding the en-route data-collection goal, for D19, the plan modification al-

gorithm performed well, finding a solution in 84.6% of trials, compared to replanning

which found a solution in 62.1%. Replanning from scratch was, on average, 48.8 seconds

slower than adding this goal using our plan modification algorithm. The modification

algorithm’s performance was very consistent, with a standard deviation of only 0.01 sec-

onds, compared to 56.45 when replanning. This large difference is caused by replanning

failing to return within the two-minute time-out period (as shown by the large plateau

area, labelled a and b in Figure 3 (a)) and would be even greater had the timeout not been

imposed. As the plan modification algorithm is not performing a full search, it is quick

to report when a solution cannot be found (see areas c and b). However, as it does not

consider the wider search space, plan modification may miss solutions which replanning

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions156

Figure 3. (a) Time difference between the two approaches as a function of available resources when adding

the en-route data-collection goal D19. (b) Time difference when adding the off-route data-collection goal Dx.

In both cases, the area labelled b represents cases where both Metric-FF and the modification algorithm failed

to find a valid solution; c, cases where only plan modification failed; a, where only Metric-FF failed; and d,

cases where both were successful.

was able to find (see area c). When available resources are plentiful (towards the bottom

left corner of area d), replanning is very quick, out-performing the plan modification

algorithm by up to 0.63 seconds. However, when both approaches found a solution, re-

planning was, on average, 5.98 seconds slower. We believe this difference in plan gener-

ation time is due to whether Metric-FF is able to replan using enforced-hill-climbing (as

when resources are plentiful and do not significantly restrict the search) or has to resort

to slower best-first search [14].

When adding the goal to deliver Dx which required the vehicle to deviate from

its previous route, the performance of the plan modification algorithm was predictably

worse than when adding an en-route goal, as a ‘stitching’ plan was required to join the

plan fragment to the existing plan. Replanning returned a solution in 98.2% of cases,

whereas the plan modification algorithm found a valid plan in 61.5% of cases. Plan mod-

ification was, on average, 2.83 seconds faster than replanning; however, when only con-

sidering successful runs, replanning was an average of 0.95 seconds faster. The extra

time required by the plan modification algorithm in this case, compared to when adding

an en-route goal is due to the generation of the stitching plan, which requires the con-

struction of a new PDDL [11] problem file and additional actions using Metric-FF. The

modification algorithm’s performance was again highly consistent across all runs, with a

standard deviation of only 0.02 seconds, compared to 34.38 for replanning.

Discussion: The reason stitching is required when adding the off-route goal is il-

lustrated in Figure 5 (b), which shows a subset of the existing plan, the new plan frag-

ment pf and the plan resulting from the merge. The only state which meets the logical

preconditions of the first action in pf is state 0. However, merging this action at state 0

threatens the causal links which require the vehicle to be at L1 to be able to collect D1
and move from L1 to L2. This threat is not resolved by the remaining actions in pf and

so, as move(L0, L1) does not achieve any goals, we skip move(L0, L2) and consider

move(L2, Lx). The preconditions of move(L2, Lx) are met by states 3 and 4, but merg-

ing the action at either state threatens the causal link requiring the vehicle to be at L2
to execute move(L2, L3). The algorithm skips move(L2, Lx) but is then unable to add

collect(Dx) as its preconditions are not met by any state. Actions in pf continue to be

skipped until transmit(Dx) is reached. This action may not be skipped as it achieves

a goal. Instead, the algorithm generates a stitching plan by calling Metric-FF using the

state at the end of pf as the initial state and the unsatisfied preconditions of the exist-

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions 157

Figure 4. Time difference between the two approaches as a function of available resources when removing

the goal to deliver D2. Area b represents cases where both Metric-FF and the modification algorithm failed to

find a valid solution; c, cases where only plan modification failed; and d, cases where both were successful.

ing plan as the goal state. Actions added to the resulting plan from the stitching plan

are shaded in Figure 5 (b). It may seem obvious to the reader that a more efficient plan

would result if the vehicle was able to travel directly from L2 to L1, without having to

travel via L0, as these are neighbours (see Figure 2). This is indeed a short-coming of the

current stitching approach; however, correctly updating the variable bindings of existing

actions to resolve such inefficiencies would be non-trivial as it is challenging to identify

the optimal action to update without resorting to domain-specific criteria. When the full

system operates as a whole, it is unlikely that the goal to return Dx would be added at

this point during plan execution. The ratio of expected resource cost to expected reward

is likely to be better later in the plan when the vehicle is already at L2, as in states 3 and

4. Consequently the decision to include this goal would be delayed until then.

When adding the en-route goal to deliver D19, a stitching plan is not required. In-

stead, the plan modification algorithm efficiently adapted the existing plan to meet the

new goal by making minimal changes, as shown in Figure 5 (c). There are no states in

the existing plan where the first six move actions may be included without introducing

threats. Since these actions do not achieve any goals, they are skipped by the merging

algorithm, Algorithm 1. The preconditions of collect(D19) are met by state 60 in the

existing plan and, as no threats are introduced, collect(D19) is added at this point. The

surface action causes threats and is skipped, but the goal-achieving transmit(D19)
action may be merged at states 62, 63 or 64, resulting in a valid plan.

Removing a goal: When removing the goal to deliver D2 to the scientists, replan-

ning found a valid plan in 85.2% of cases compared to our plan modification algorithm

which found a plan in 46.2% of cases (as shown in Figure 4). However, replanning from

scratch was, on average, 18.31 seconds slower than modifying the plan to remove the

goal (owing to replanning reaching the timeout, represented by the peaks in area b of

Figure 4) and 0.13 seconds slower when comparing only successful runs. The plan mod-

ification algorithm was faster than replanning in all cases, when either finding a solution

or reporting a failure. Again, the standard deviation of the plan modification algorithm

(0.003 seconds) was considerably lower than for replanning (43.59 seconds).

Discussion: The reason why replanning finds more solutions than the plan modi-

fication algorithm when removing the goal to deliver D2 is illustrated in Figure 5 (a),

which shows the subset of the existing plan concerning the completion of the goal and

the resulting plan following goal removal. When removing the goal, the algorithm first

removes the transmit(D2) action as it was only present to complete this goal and is

no longer required. The collect(D2) action is also removed in this way. Note the re-

dundancy in the resulting plan between the move(L1, L2) and move(L2, L3) actions,

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions158

Figure 5. Plans used when: (a) removing the goal to deliver D2, removed actions are shaded; (b) adding the

goal to deliver Dx, actions from the stitching plan are shaded; (c) adding the goal to deliver D19, skipped

actions are shaded.

as it is possible for the vehicle to move directly from L1 to L3. As the vehicle is no

longer required to collect D2, we theoretically have no reason to visit L2. However,

the subsequent move(L2, L3) action has a precondition that the vehicle is at L2 and so

the move(L1, L2) action is still required and may not be removed. Replanning avoids

this redundancy as it is not constrained by the causal structure of the initial plan. When

battery is low and memory is high, replanning may produce a plan which collects more

datasets before needing to surface and transmit. This allows it to produce valid plans

requiring less battery than the initial plan, causing it to succeed in a greater number of

cases than plan modification. However, when operating under realistic conditions, it is

unlikely that this situation would occur to the same degree. This is because the current

available memory would never exceed the amount available when generating the initial

plan, so replanning would be unable to capitalise by trading excess memory for savings

in battery power.

5. Conclusions

We have presented a novel approach which uses a mixture of offline planning and online

plan repair to produce solutions for oversubscribed domains with significant resource

uncertainty. We analysed the plan modification algorithm, showing its greater speed and

consistency in comparison to replanning. Minimising the time and battery required for

onboard computation is important because resources used for planning are then unavail-

able for completing goals. As the modification algorithm is constrained by the causal

structure of the initial plan, preventing large changes to the overall mission, it was unable

to find solutions for some resource and goal combinations where replanning was suc-

cessful. However, Fox et al. [10] argue that plan repairs should make minimal changes to

the existing plan, which we consider especially true for high-risk domains such as AUV

and Mars rover missions. Investigating why the AUV community has yet to widely adopt

adaptive mission planning, Brito et al. [4] found uncertain vehicle behaviours to be the

largest concern (39.7%) of expert AUV operators, which our approach addresses.

Our analysis of the plan modification algorithm shows promise for use within the

AUV domain. Further analysis of the overall system based on complete mission runs

is needed to establish the effectiveness of the full approach. As the system is domain

independent, we also plan to investigate the performance of both the plan modification

algorithm and the system as a whole on other oversubscribed domains, such as logistics

problems.

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions 159

References

[1] Julien Bidot, Thierry Vidal, Philippe Laborie, and J. Christopher Beck, ‘A theoretic and practical frame-

work for scheduling in a stochastic environment’, Journal of Scheduling, 12(3), 315–344, (2009).

[2] John Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David Smith, and Rich Wash-

ington, ‘Planning under continuous time and resource uncertainty: A challenge for AI’, in Proceed-
ings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 77–84, Alberta, Canada,

(2002). Morgan Kaufmann.

[3] John L Bresina and Richard Washington, ‘Robustness via run-time adaptation of contingent plans’, in

Proceedings of the AAAI-2001 Spring Syposium: Robust Autonomy, Stanford, CA, (2001).

[4] M.P. Brito, N. Bose, R. Lewis, P. Alexander, G. Griffiths, and J. Ferguson, ‘The role of adaptive mis-

sion planning and control in persistent autonomous underwater vehicles presence’, in Proceedings of
IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, (September 2012). IEEE.

[5] Rebecca Castano, Tara Estlin, Robert C. Anderson, Daniel M. Gaines, Andres Castano, Benjamin Born-

stein, Caroline Chouinard, and Michele Judd, ‘Oasis: Onboard autonomous science investigation system

for opportunistic rover science’, Journal Field Robotics, 24, 379–397, (May 2007).

[6] Steve A. Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau, ‘Using iterative

repair to improve the responsiveness of planning and scheduling’, in Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and Scheduling Systems, pp. 300–307, Brecken-

ridge, Colorado, (April 2000).

[7] A. J. Coles, ‘Opportunistic branched plans to maximise utility in the presence of resource uncertainty.’,

in Proceedings of the Twentieth European Conference on Artificial Intelligence, Montpellier, France,

(August 2012). IOS Press.

[8] Patrick R. Conrad, Julie A. Shah, and Brian C. Williams, ‘Flexible execution of plans with choice’,

in Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling,

Thessaloniki, Greece, (September 2009). AAAI.

[9] Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington, ‘Dynamic programming

for structured continuous Markov decision problems’, in Proceedings of the 20th Conference on Uncer-
tainty in Artificial Intelligence, pp. 154–161, Banff, Canada, (2004). AUAI Press.

[10] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina, ‘Plan stability: Replanning versus plan re-

pair’, in Proceedings of the Sixteenth International Conference on Automated Planning and Scheduling,

pp. 212–221. AAAI, (June 2006).

[11] Maria Fox and Derek Long, ‘PDDL2.1: An extension to PDDL for expressing temporal planning do-

mains’, Journal of AI Research, 20(1), 61–124, (December 2003).

[12] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina, ‘Planning through stochastic local search and

temporal action graphs in LPG’, Journal of AI Research, 20, 239–290, (2003).

[13] Jonathan Gough, Maria Fox, and Derek Long, ‘Plan execution under resource consumption uncertainty’,

in Proceedings of the Workshop on Connecting Planning Theory with Practice at ICAPS’04, Whistler,

Canada, (June 2004). AAAI.

[14] Jörg Hoffmann, ‘The Metric-FF planning system: Translating “Ignoring delete lists” to numeric state

variables’, Journal of AI Research, 20, 291–341, (2003).

[15] Subbarao Kambhampati, ‘Refinement planning as a unifying framework for plan synthesis’, AI Maga-
zine, 18(2), 67–97, (1997).

[16] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang, ‘Planning as refinement search: a unified

framework for evaluating design tradeoffs in partial-order planning’, Artificial Intelligence, 76(1-2),

167–238, (1995).

[17] D. Long, M. Woods, A. Shaw, D. Pullan, D. Barnes, and D. Price, ‘On-board plan modification for

opportunistic science’, in Proceedings of the IJCAI-09 Workshop on Artificial Intelligence in Space,

Pasadena, California, (July 2009). AAAI.

[18] Bernhard Nebel and Jana Koehler, ‘Plan reuse versus plan generation: a theoretical and empirical anal-

ysis’, Artificial Intelligence, 76(1-2), 427–454, (1995).

[19] Roman van der Krogt and Mathijs de Weerdt, ‘Plan repair as an extension of planning’, in Proceedings
of the 15th International Conference on Automated Planning and Scheduling, pp. 161–170, Monterey,

California, (June 2005). AAAI.

C. Harris and R. Dearden / Run-Time Plan Repair for AUV Missions160

Embed ng a Card Game Language into a

General Game Playing Language

Jakub KOWALSKI a,
a Institute of Computer Science, University of Wrocław, Poland

Abstract. We make a link between a specialized context free language express-

ing the rules of variety of card games, called CGDL, and the most known general-

purpose game description language GDL-II. We present a systematic translation

from CGDL to GDL-II, prove that the translation is correct, and analyze the com-

plexity of resulting code in both theoretical and empirical way.

Keywords. General Game Playing, knowledge representation, Game Description

Language, Card Game Description Language

1. Introduction

Artificial intelligence was always using games as test problems and demonstration of its

advancement. Defeating human supremacy in popular games such as chess (Deep Blue),

checkers (Chinook) or Jeopardy (Watson) were great achievements of AI. However, to

meet the basic purpose of AI – solving general problems, a different approach should be

taken. Instead of improving specialized programs which are able to play only one game,

the general approach to game playing consists of developing programs which can play

every game from some wide game class defined by a formal description language.

The most popular approaches in this field are related to General Game Playing
(GGP) competition [5] and a special first order logic language based on KIF called Game
Description Language (GDL) [10]. It has enough power do describe all turn-based, fi-

nite and deterministic n-player games with full information. Playing a game given by

such a description requires not only developing a move choosing algorithm, but also im-

plementing a reasoning approach to understand the game rules in the sense of comput-

ing legal moves, computing the state update function, and computing the goal function.

Many approaches were created in this field including implementations of game playing

mechanisms [2,6,7] and improving effectiveness of reasoning engines [1,8,9]. Recently,

an extension of GDL called GDL-II (from GDL with Incomplete-Information) was pro-

posed [15]. This language removes some restrictions of GDL and allows to describe also

nondeterministic games with hidden information, but requires developing new playing

techniques [13].

A card game description language developed recently in [3,4], which we call for

brevity CGDL, has a unique feature – it allows one to use genetic programming to evolve

game rules and so, to create new games. CGDL is a high level language with a lot of

domain specific commands, to describe n-player, standard deck card games with possi-

bility of bets (like in poker). In this paper we define a direct translation from CGDL lan-

di

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-161

161

guage into GDL-II. Then, we compare both languages as representatives of two different

approaches to game description: very general one, but with difficult semantic influencing

efficiency of playing algorithms, and narrow one with compact and flexible description.

As GDL-II was compared with other game classes to ensure it has enough expressive

power [11,12,16], no translation between other game description languages focused on

practical gaming aspects is presented. We implement our translation and compare the

complexity of CGDL and GDL-II both theoretically and empirically. We also distinguish

features, which can possibly be transferred from CGDL into GDL/GDL-II to improve

this, currently the most widely used, general game description language.

2. Preliminaries

2.1. GDL-II

GDL-II [15] is, as its predecessor GDL, strictly declarative language using logic

programming-like syntax very similar to Prolog. It can describe any finite, synchronous,

turn-based, n-player game. Every game description contains the declaration of players

roles, the initial game state, the legal moves, the state transition function with players’

percepts, the terminating conditions, and the declaration of goal function.

Language does not provide any predefined functions including arithmetic expres-

sions or game-domain specific structures such as a board or a card deck. Every function

and declaration must be defined explicitly from scratch, and the only keywords used to

define game are (symbols beginning with ? are variables):

(role ?r) ?r is a player

random random player (Nature, casino, . . .)

(init ?f) fact ?f is true in the initial state

(true ?f) fact ?f is true in the current state

(legal ?r ?a) in the current state ?r can perform action ?a

(does ?r ?a) ?r performed action ?a in the previous state

(next ?f) ?f will be true in the next state

(sees ?r ?p) player ?r will perceive ?p in the next state

terminal current state is terminal

(goal ?r ?n) player ?r score is ?n

To be considered as valid, a GDL-II game specification must be stratified and al-
lowed. This, and other syntactic restrictions ensures that the game have a unique standard

model with only a finite number of true positive instances, so all deductions in Definition

1 are finite and decidable. For details we must refer to [10].

Let G be a valid GDL-II game description. It contains a finite number of function

symbols and constants, which determines the set of possible ground terms Σ. Although

Σ can be infinite, syntactic restrictions ensure that all sets needed to compute game

flow (roles, legal moves, reachable states, etc.) are finite subsets of Σ [10]. Let S =
{f1, . . . , fk} be a state of the game, denoted as the set of predicates which are true in the

current position. Then we define a base state as Strue
def
= {(true f1), . . . , (true fk)}.

Let us also denote the joint move Adoes def
= {(does r1 a1), . . . , (does rn an)} if play-

ers r1, . . . , rn took actions a1, . . . , an. We can now introduce

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language162

Definition 1 [15] The semantics of a valid GDL-II n player game specification G with
a set of ground terms Σ is given by a state transition system composed as follows.

• R = {r ∈ Σ : G |= (role r)} (player names);
• s0 = {f ∈ Σ : G |= (init f)} (initial state);
• t = {S ∈ 2Σ : G ∪ Strue |= terminal} (terminal states);
• l = {(r, a, S) : G ∪ Strue |= (legal r a)}, for all r ∈ R, a ∈ Σ and S ∈ 2Σ;
• u(A,S) = {f : G∪Adoes ∪Strue |= (next f)}, for all joint moves A : (R)→

Σ) and states S ∈ 2Σ (state update);
• I = {(r, A, S, p) : G∪Adoes∪Strue |= (sees r p)}, for all r ∈ R\{random},

A : (R)→ Σ), S ∈ 2Σ and p ∈ Σ (players’ percepts);
• g = {(r, n, S) : G ∪ Strue |= (goal r n)}, r ∈ R, n ∈ {0, . . . , 100}, S ∈ 2Σ.

The execution model works as follows. Starting from the initial state s0, in every state S
every player r ∈ R selects one legal action a such that (r, a, S) ∈ l. The random player

choose his moves randomly with uniform probability. The joint move is applied to the

state update function u(A,S) to obtain a new state S′. In S′, every role r ∈ R\{random}
perceives every p that satisfies (r, A, S, p) ∈ I. If the current state is terminal, i.e. S ∈ t,
then every player obtains a score by relation (r, n, S) ∈ g and the game ends.

The partial GDL-II game description is set as an example in Listing 2. For a more

detailed language specification and full games examples we refer to [15,16].

2.2. CGDL

CGDL introduced in [4] is a context free language designed to define a rich subset of

possible card games and allow to perform genetic operations to create new or evolve ex-

isting games [3]. The language domain is narrowed to n player, standard deck card games

with a possibility of coin bets. All language constructions are strictly domain-dependent

and use concepts of a card, number, suit, token, etc. These concepts, same as arithmetic

and boolean operators, are defined a priori and used without explicit declaration.

A valid CGDL game is defined as follows. P is the number of players. Every player

i has his private hand location (named Hi) and two areas for placing coins: private Ki0
with player’s coins, and public Ki1 for placing bets. T is the number of virtual table

locations, where cards can be placed face up. The set of game rules is organized into

sequentially ordered stages, containing rules. Every stage is played in a round-robin order

until all players are out of the game or decide to end the current stage (status set to done).

Every rule has a form of modifier if condition then action. The current player can

perform any action from the set of current stage rules only if the rule condition is satisfied

and the modifier limitations are met. Possible rule modifiers are: computer – must be

played by the computer at the beginning of a stage, mandatory – must be played by a

player at the beginning of a stage (after computer rules applied), once – can be applied

only once, optional – no restrictions. A partial list of possible conditions contains

• λ – no condition to satisfy, always true;

• sum,LA,R,LB – sums values of cards in both locations LA and LB, evaluates to

true if the restriction R ∈ {<,>,=,≤,≥, λ} is satisfied;

• tokens,KA,R,KB – compares number of tokens in KA and KB using R;

• have,C – check if the player’s hand contains given card combination C, e.g. the

king of hearts, three diamonds and one heart, etc.

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language 163

Set of available actions is a superset of

• pifr,LA,A,F – draw a given amount A of cards from a location LA to player’s

hand, cards are openly visible if face F is up;

• bet,R,KA – bet an amount of tokens which, when compared to the number of

tokens in the location KA, satisfies the restriction R;

• done / out – the player status is set to done/out;
• win – the player instantly wins the game;

• give,P,A – computer only, give A tokens to the set of players P ;

• deal,P,A – computer, deal A cards from the deck to players P .

Additional special abbreviations are: HA – hands of all players, KA bets of all players,

HX the hand of the current player, KX bets of the current player, <allplayers> rule is

multiplied for all players. Rules can also define a value mapping for every card and some

combination of cards (called plays). Game is over when all players are out, some player

performs win action or the last stage is over. Player’s score is calculated by points for ev-

ery possessed token (t), card (c) and ”not out” bonus (s). If player ends by choosing win

action he got 100 and other 0. As an example, rules in Listing 1 describe a codification

of game Blackjack. For more detailed language specification we must refer to [3,4].

3. Translation

In this section we present details of our translation. We constructed the function F which

takes a CGDL game description G and returns the same game encoded in GDL-II. As

the CGDL language is created by a context-free grammar, the construction is grammar

based. For every game description subtree, we compute all GDL rules necessary to en-

code that subtree. Afterwards we remove duplicate definitions of the predicates.

The specification of the translation is provided in as much detail as we can in such

limited space. As an example we translate CGDL codification of the game Blackjack
from Listing 1 to equivalent GDL-II rules partially presented in Listing 2. References to

line numbers (if not stated otherwise) refers to Listing 2.

Listing 1: CGDL codification of the game Blackjack.

1 [SETTINGS] P=3, T=0
2 [STAGES]
3 Stage 0
4 COMPUTER deal, <allplayers>, 2
5 COMPUTER give, <allplayers>, 99
6 Stage 1
7 MANDATORY if λ then bet, λ , λ
8 Stage 2
9 OPTIONAL if λ then pifr, D, 1, up

10 OPTIONAL if λ then done
11 Stage 3
12 MANDATORY if sum, HX, >, 21 then out
13 MANDATORY if sum, HX, <=, 21 then done
14 Stage 4
15 MANDATORY if sum, HX, >, HA then gain, KA
16 [RANKING] 2:2, ..., King:10, Ace:11, Ace:1
17 [POINTS] t=1, c=0, s=0

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language164

Listing 2: Partial GDL-II code of the translated CGDL game Blackjack (in infix notation).

1(role random) (role player1) . . . (role player3)
. . .
26(init (Stage ShuffleDeck COMPUTER))
27(init (Shuffled Top))
28((init (UnShuffled ?c)) ⇐ (card ?c ?num ?suit))
29(init (ActionAvailable 0 s0a0 random COMPUTER)). . .
. . .

161((next (Token ?l2 ?n3))
162 ⇐ (true (Token ?l2 ?n1)) ∧ (movecoin ?n2 ?l1 ?l2) ∧ (asum ?n1 ?n2 ?n3))
163((next (Token ?l1 ?n3))
164 ⇐ (true (Token ?l1 ?n1)) ∧ (movecoin ?n2 ?l1 ?l2) (asub ?n1 ?n2 ?n3))
165((next (ActionAvailable ?stage ?id1 ?p ?type))
166 ⇐ (true (ActionAvailable ?stage ?id1 ?p ?type))
167 ∧ (does ?player (action ?id2 ?vis ?cond ?act)) ∧ (distinct ?id1 ?id2))
. . .

314((legal ?player ?act) ⇐ (tmplegal ?player ?act))
315((tmplegal ?player (action s4a0 visible (sum HX gt HA) (gain KA)))
316 ⇐ (true (Stage 4 MANDATORY)) ∧ (true (CurrentPlayer ?player))
317 ∧ (true (ActionAvailable 4 s4a0 ?player MANDATORY))
318 ∧ (not (true (PlayerStatus ?player aDONE)))
319 ∧ (not (true (PlayerStatus ?player aOUT)))
320 ∧ (handlocation ?player ?hand) ∧ (rsum ?hand ?n) ∧ (handlocation ?p1 ?h1)
321 ∧ (rsum ?h1 ?n1) ∧ (handlocation ?p2 ?h2) ∧ (rsum ?h2 ?n2)
322 ∧ (distinct ?p1 ?player) ∧ (distinct ?p2 ?player) ∧ (distinct ?p2 ?p1)
323 ∧ (or (bgt ?n ?n1) (true (PlayerStatus ?p1 aOUT)))
324 ∧ (or (bgt ?n ?n2) (true (PlayerStatus ?p2 aOUT))))
. . .

432((movecoin ?n ?bloc1 ?hloc) ⇐ (betlocation ?player ?hloc ?bloc)
433 ∧ (does ?player (action ?id ?vi ?cond (gain KA)))
434 ∧ (betlocation ?p ?hloc1 ?bloc1) (rKA ?n))
. . .

471((sees ?player (deltacoins ?n ?loc1 ?loc2)) ⇐ (movecoin ?n ?loc1 ?loc2))
472 ∧ (does ?p (action ?id visible ?cond ?action))
. . .

487(terminal ⇐ endstage ∧ (true (Stage ?n ?t))
488 ∧ (_stagesorder (Stage ?n ?t) ∧ (Stage EndGame none)))
489((goal ?player 100) ⇐ (true (Won ?player)))
490((goal ?player 0) ⇐ (true (Won ?p))∧(role ?player)∧(not(true (Won ?player))))
. . .

557((rKA ?s3) ⇐ (true (Token K11 ?n1)) ∧ (true (Token K21 ?n2))
558 ∧ (true (Token K31 ?n3)) ∧(asum ?n1 ?n2 ?s2) ∧ (asum ?s2 ?n3 ?s3))
559((rsum ?loc ?s12) ⇐ (location ?loc) ∧ (numberofcards ?loc 2)
560 ∧ (hold2cards ?loc ?c1 ?c2) ∧ (card ?c1 ?num1 ?suit1)
561 ∧ (value ?num1 ?val1) ∧ (card ?c2 ?num2 ?suit2)
562 ∧ (value ?num2 ?val2) ∧ (asum 0 ?val1 ?s1) ∧ (asum ?s1 ?val2 ?s12))
. . .

694(location D) . . . (location H3)
695(handlocation player1 H1) . . . (handlocation player3 H3)
696(betlocation player1 K10 K11) . . . (betlocation player3 K30 K31)
697(card 2OfHearts 2 Hearts) . . . (card AceOfSpades Ace Spades)
698(value 2 2) . . . (value Ace 11) (value Ace 1)
699(stagesorder (Stage ShuffleDeck COMPUTER) (Stage 0 COMPUTER)) . . .
700 (stagesorder (Stage 4 MANDATORY) (Stage EndGame none))
. . .

819(aplus1 0 1) . . . (aplus1 100 101)
820((asum ?n 0 ?n) ⇐ (aplus1 ?n ?m))
821((asum ?n1 ?n3 ?n5) ⇐ (aplus1 ?n2 ?n3)
822 ∧ (aplus1 ?n4 ?n5) ∧ (asum ?n1 ?n2 ?n4))
823((bleq ?n ?n) ⇐ (aplus1 ?n ?m))
824((bleq ?n1 ?n3) ⇐ (aplus1 ?n1 ?n2) ∧ (bleq ?n2 ?n3))

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language 165

Constants define relations which hold throughout the entire game (line 1 and 694).

Predicate role ?role declares set of players player1, . . . playerP , random; location

?loc defines set of possible card locations: D for the deck, H1, . . . , HP for players’ hands

and T0, . . . , T(T−1) for table locations; handlocation ?player ?hand maps playeri to

his hand location Hi. Predicate tokenlocation ?loc defines all token locations K10, . . . ,

KP0, K11, . . . , KP1 and betlocation ?player ?privloc ?betloc maps these locations

from player playeri to private token location Ki0 and bet location Ki1. List of all cards

is stored in card ?card ?number ?suit. The card value mapping is stored in predicate

value ?card ?n. Round-robin ordering of P players is simply defined as playersorder

?prev ?next relation. Predicate stagesorder ?prev ?next is constructed based on or-

dering detected in CGDL game codification.

Definition 2 The game state is the minimal set of data necessary to distinguish that two
game positions are different. CGDL game state consists of: the contents of the deck and
all table and token locations; the number of current stage and player; the status of every
player and the information about available computer/mandatory/once actions.

A game state is covered by a constant number of GDL-II predicates forming Strue sets

and storing information necessary to encode the CGDL state according to Definition 2.

• Stage ?id ?type – identifier of the current stage and a type of the sub-stage

containing information about the allowed actions type (computer, mandatory, op-
tional); one such predicate is true at the time;

• ActionAvailable ?stagenumber ?actionID ?player ?type – stores all ac-

tions which can be performed by the players, if a non-optional action was made

it is removed from this set and cannot be used again;

• Token ?location ?amount – for every tokenlocation stores the number of to-

kens in this location;

• Table ?location ?card – for every tablelocation except the deck stores the

cards in this location;

• Deck ?nextcard ?prevcard – contains cards in the deck arranged in an order

(special constant Top marks top of the deck);

• CurrentPlayer ?player – identifies the current player if it is not the dealer’s

turn, maximum one such predicate is true at the time;

• PlayerStatus ?player ?status – for every player remembers his status if nec-

essary; status can be aDONE if the player decided to end the current stage, aOUT if

he is out of the game or mDONE if he has no mandatory moves but is not done;

• Won ?player – true if some player performed the win action;

• UnShuffled ?card – a special predicate used at the beginning of the game to

remember cards which are not yet shuffled into the deck;

• Shuffled ?card – a special game-beginning predicate to remember the last card

chosen by the dealer to be placed at the bottom of the deck.

Definition 3 A state is called technical in one of the following cases: the predicate Stage
ShuffleDeck COMPUTER is true – which means that the virtual dealer prepares random
ordering of cards in the deck; or the CurrentPlayer status is ”out”, ”done” or he has
no actions with fulfilled conditions but it is his turn in round-robin ordering – then every
player makes the NOOP move and the CurrentPlayer shifts to the next player in order
(which may lead to a next technical state).

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language166

The initial F(G) game state s0 (line 26) is technical, because of necessity to random-

ize the card deck. Every game begins with (Stage ShuffleDeck COMPUTER) ∈ Strue

and all cards identifiers marked as UnShuffled. For the next 52 turns the random player

choose every still UnShuffled card with the uniform probability and put on the bottom

of the actual deck. After this, Stage changes to the first stage from the original G game.

Also possible players’ actions are put into the AvailableAction predicate.

Managing legal actions can be divided into several cases. When CurrentPlayer is

set and there is some non-COMPUTER Stage, the player can choose legal action from ex-

isting tmplegal ?player (action ?id ?visibility ?condition ?action) relations.

Such relation corresponds to exactly one rule from G. Variables ?condition and ?action

matches CGDL rule condition and action; ?id is an artificial identifier matching the id

from AvailableActions relation, and ?visibility serves to determine I function.

In our example, the rule from CGDL codification line 15 is translated into the

tmplegal rule in GDL-II code line 315. Initial queries are checking stage, action avail-

ability and player’s status. Then queries matching condition are set. In our example these

are restricting sum of values of player’s cards against the values of all other players cards.

Another case occurs when no tmplegal relation is true, due to not fulfilled condi-

tions or exhaustion of AvailableActions. Then player can make only special NOOP move

which does not change the game state. This move is also used in the following cases: for

player which as not marked as CurrentPlayers; for player who is marked as current but

he is actually done or out and for all players when there is a COMPUTER type stage.

For managing changes in cards and tokens possession two special predicates were

introduced: movecard and movecoin. They are filling the gap between performed actions

Adoes and state update function u. As the main idea between both predicates is similar

we present here only a movecoin example (line 432). If relation movecoin ?n ?from

?to holds, this means that ?n coins are added to ?to coin location and subtracted from

?from location. Multiple such relations can hold at the same time, but then their ?n and

?to arguments are the same. CGDL limitations implies that moving coins from multiple

locations forces them to be empty, so in such cases ?n is always set to sum of tokens in

all ?from locations. It is safe due to natural number arithmetic (subtracting from 0 is 0).

Updating the current state given players’ moves, i.e. defining u function is the most

complex part of the translation which, due to the limited space, we cannot describe in

details (partial next code is shown in line 161). Every base predicate has its own set

of updating rules, mostly using additional helper predicates. Sketch of the mechanics

looks as follows. End of a stage occurs when all players have adequate statuses (aOUT,

aDONE or mDONE), there is no player with any ActionAvailable left for the stage, or this

is last turn of ShuffleDeck stage. If endstage holds, stage changes to the next stage in

stagesorder. Similarly CurrentPlayer changes when endplayer holds. This depends

on the player’s actions performed, status and availability of the current stage actions.

Content of Table, Deck and Token is updated based on movecard and movecoin se-

mantics. This requires several cases to examine, especially concerning taking cards from

the deck without destroying its structure. If in the last turn, the player performed non-

OPTIONAL action with some identifier, it is removed from the ActionAvailable set. Up-

dating Shuffled and UnShuffled predicates takes place during the ShuffleDeck stage.

If does random (?shuffle ?card) holds, then ?card is subtracted from UnShuffled set

and remembered as last Shuffled card. The predicate Won becomes true when the win

action was performed.

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language 167

Simulating CGDL requires natural number arithmetic for the numbers not greater

then 100 (upper bound for a goal value). If some card value or play value extends that

number, we can use the optional translation parameter to increase this maximum. Ev-

ery created GDL-II description contains the following arithmetic and boolean functions:

aplus1, asum, asub, amult, blt, bgt, bleq, bgeq, beq, bneq (line 819).

Rules defining tmplegal contain queries to helper predicates encoding CGDL re-

strictions and conditions. For example rKA ?n holds if ?n is the cumulative bet of all play-

ers (line 557) and rsum ?loc ?n holds if values of cards in ?loc sum up to ?n. The func-

tion rsum is particularly complex and requires other helper predicates: numberofcards

?loc ?n which holds if in ?loc there exactly ?n cards, holdcards arity ?loc ?n sat-

isfied when ?loc contains at least ?n cards, and the predicate family holdncards ?loc

?card1 ... ?cardn which hold if there are n different cards in ?loc. The complexity

of the solution rises from a need of reasoning about the number of satisfied predicates.

Example of rsum rule for n = 2 is shown in line 559.

The predicate sees ?player ?percept defines I relation, i.e. predicates percepti-

ble by given player. Every player has a full knowledge about his hand, his private coin

location, the current stage, current player and all players’ statuses. Table locations, bet

locations and last performed action identifier are visible to all players. Details of the ac-

tion (e.g. what cards player took from the deck) are perceived only by the player who

made the action or by everyone if action visibility is set to visible (line 471).

Definition of the terminal relation depends on several rules checking if: all players

are out, some player made win action or Stage EndGame none is reached (line 487).

Computing the g function is divided into two cases. If player won using the win action,

he got 100 and all other players (including random) got 0. Otherwise the player’s score is

computed according to the CGDL game specification using t, c, s values.

4. Translation Properties

We state the main properties of the translation, concerning its correctness and complexity.

Definition 4 Let S be a state of CGDL game G. Then a state S′ of game F(G) is called
corresponding, i.e. S .

= S′ if: both states have the same content and ordering of deck
and every hand location, table location and token location; the actual number and type
of stage; the current player; player’s statuses and the set of available actions.

Theorem 1 For every CGDL game G presented translation F satisfies the following.

1. The game F(G) meet all syntactic requirements of valid GDL-II description.
2. The irst non-technical state of F(G) is corresponding to the first state of G as-

suming identical deck ordering.
3. For every non-technical game states S

.
= S′ there is an isomorphism between

joint legal actions from both states.
4. For every non-technical game states S .

= S′ and joint actions A .
= A′, for all se-

quences of joint moves 〈A′, A′2, . . . , A′k〉 such that Si = u(A′i, . . . u(A
′, S′) . . .)

and Sk is non-technical but for all i < k, Si is technical, Sk is corresponding to
state S after applying actions A. Such sequence always exists.

5. If S .
= S′, S is terminal iff. S′ ∈ t, goal values match for corresponding players.

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language168

Table 1. Results of example games transformation. Visualize dependence between complexity of CGDL de-

scription (number of players, table locations, stages and rules) and resulting GDL-II code. As measurement

we took number of rules and predicates used to express the game. The number of predicates and rules for base

predicates are shown separately.

Game

CGDL code GDL-II code

predicates rules

P T stages rules base all base all

Uno 2 1 2 7 10 61 38 245

Uno 3 1 2 8 10 61 39 254

Uno 3 2 2 8 10 61 39 256

Blackjack 3 0 5 12 10 63 43 361

Blackjack 3 1 5 12 10 63 43 363

Poker 3 2 13 30 10 68 61 426

Poker 4 2 13 32 10 68 63 437

Proofs of theorems are omitted due to space reasons.

We implemented a program which applies the translation function for given CGDL game

description. To measure practical complexity of resulting code we provided a series of

experiments using Poker, Blackjack and Uno games from [4] (with slightly different

changes).The result of the experiments are shown in Table 1. Sizes of translated games

gives a picture of complexity of their rules, which affects speed of computing GDL game

states. The data also show that a number of predicates is independent on the number

of players and table locations, a number of base predicates rules depends linear on the

number of players and both these values have influence on overall number of rules. We

state that theoretical complexity of a translated game is described by

Theorem 2 Let G be a P player CGDL game description of the length N (where length
is the sum of the number of stages, rules, and card/plays value mapping entries) with T
table locations. Then the number of rules in the GDL-II game F(G) is O(P + T + N)
and the number of predicates can be bounded by a constant.

5. Summary

The quality of solutions for General Game Playing problems heavily depends on a lan-

guage which describes a game. Although the target should be to describe as many games

as possible, very general languages causes two major problems. First is that providing

a good playing algorithm is much harder if the type of a game is unknown. Second,

that understanding and maintaining the game description is also far more complicated.

Other extreme case is a language which can describe only certain types of strictly de-

clared games, but it is high level and uses domain-dependent constructions. In this case

maintaining a game description and implementing better playing algorithms is simpler.

In this paper we studied the relation between both of these approaches. On the one

hand we took the most popular and the most general first order logic GDL-II language,

which can describe any finite, turn-based, n-player game. On the other hand we took

recently developed Card Game Description Language which is a high level language to

describe card games with bets and allows a genetic manipulation on the game structure.

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language 169

We constructed a translation from CGDL language into GDL-II, described details

of this translation, proved its correctness and checked its complexity both theoretically

and empirically. Although the size of translated game description is linear (in the sense

of game rules), a complexity of simulating the game basing on pure GDL engine without

compilation [9] or calling external code [14] can be computationally too hard to be per-

formed in reasonable time, due to complicated form of queries. Our translation can be

used as a benchmark tool for improving GDL players by comparison with CGDL playing

algorithms. If some successful solutions could be transferred to more general approach

it would be a step to reduce the gap between GDL-based and game-specific reasoners.

An interesting feature is a possibility of performing genetic operations on CGDL

game code. Although CGDL was designed specifically for this case, we think it is also

possible to develop this feature to GDL. GDL is a complicated language in terms of

validity and semantics, but syntax rules are simple enough to make it feasible. In fact,

artificially evolved GDL games could have interesting influence on creating GGP agents.

They should from now on be able to play really any game, even codified in strange style

and without common sense, not only well behaved adaptations of human games.

References

[1] Y. Björnsson and S. Schiffel. Comparison of GDL Reasoners. In Proceedings of the IJCAI-13 Workshop
on General Game Playing (GIGA’13), 2013.

[2] H. Finnsson and Y. Bjornsson. Simulation-based Approach to General Game Playing. In AAAI. AAAI

Press, 2008.

[3] J. Font, T. Mahlmann, D. Manrique, and J. Togelius. Towards the automatic generation of card games

through grammar-guided genetic programming. In International Conference on the Foundations of
Digital Games (FDG 2013), pages 360–363, 2013.

[4] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius. A Card Game Description Language. In

Applications of Evolutionary Computation, volume 7835 of LNCS, pages 254–263. Springer, 2013.

[5] M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI competition. AI
Magazine, 26:62–72, 2005.

[6] S. Haufe, D. Michulke, S. Schiffel, and M. Thielscher. Knowledge-Based General Game Playing. KI,
25(1):25–33, 2011.

[7] P. Kissmann and S. Edelkamp. Symbolic Classification of General Multi-Player Games. In European
Conference on Artificial Intelligence (ECAI), volume 178 of FAIA, pages 905–906. IOS Press, 2008.

[8] P. Kissmann and S. Edelkamp. Instantiating General Games Using Prolog or Dependency Graphs. In

KI 2010: Advances in Artificial Intelligence, volume 6359 of LNCS, pages 255–262. Springer, 2010.

[9] J. Kowalski and M. Szykuła. Game Description Language Compiler Construction. In AI 2013: Advances
in Artificial Intelligence, volume 8272 of LNCS, pages 234–245. Springer, 2013.

[10] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General Game Playing: Game De-

scription Language Specification. Technical report, Stanford Logic Group, 2008.

[11] J. Ruan and M. Thielscher. On the Comparative Expressiveness of Epistemic Models and GDL-II. In

Proceedings of the IJCAI-11 Workshop on General Game Playing (GIGA’11), 2011.

[12] S. Schiffel and M. Thielscher. Representing and Reasoning About the Rules of General Games With

Imperfect Information. Journal of Artificial Intelligence Research, 49:171–206, 2014.

[13] M. Schofield, T. Cerexhe, and M. Thielscher. HyperPlay: A Solution to General Game Playing with

Imperfect Information. In AAAI Conference on Artificial Intelligence. AAAI Press, 2012.

[14] X. Sheng and D. Thuente. Extending the General Game Playing Framework to Other Languages. In

Proceedings of the IJCAI-11 Workshop on General Game Playing (GIGA’11), 2011.

[15] M. Thielscher. A General Game Description Language for Incomplete Information Games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 994–999. AAAI Press, 2010.

[16] M. Thielscher. The General Game Playing Description Language is Universal. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 1107–1112. AAAI Press, 2011.

J. Kowalski / Embedding a Card Game Language into a General Game Playing Language170

Effective and Efficient Identification of

Persistent-state Hidden (semi-) Markov

Models

Tingting LIU a,1, and Jan LEMEIRE a,b

a Vrije Universiteit Brussel, ETRO Dept., Pleinlaan 2, B-1050 Brussels, Belgium
b iMinds, Dept. of Multimedia Technologies (MMT), Gaston Crommenlaan 8 (Box 102),

B-9050 Ghent, Belgium

Abstract. The predominant learning strategy for H(S)MMs is local search heuris-

tics, of which the Baum-Welch/ expectation maximization (EM) algorithm is

mostly used. It is an iterative learning procedure starting with a predefined topol-

ogy and randomly-chosen initial parameters. However, state-of-the-art approaches

based on arbitrarily defined state numbers and parameters can cause the risk of

falling into a local optima and a low convergence speed with enormous num-

ber of iterations in learning which is computationally expensive. For models with

persistent states, i.e. states with high self-transition probabilities, we propose a

segmentation-based identification approach used as a pre-identification step to ap-

proximately estimate parameters based on segmentation and clustering techniques.

The identified parameters serve as input of the Baum-Welch algorithm. Moreover,

the proposed approach identifies automatically the state numbers. Experimental re-

sults conducted on both synthetic and real data show that the segmentation-based

identification approach can identify H(S)MMs more accurately and faster than the

current Baum-Welch algorithm.

Keywords. hidden Markov models (HMMs), hidden semi-Markov models (HSMMs),

Baum-Welch, local optima, model identification

1. Introduction

Hidden Markov Models (HMMs) [1] and its extension hidden semi-Markov Models

(HSMMs) [2] are one of the statistical modeling tools with great success and widely used

in a vast range of application fields such as audio-visual speech processing [3], machine

maintenance [4], acoustics [5], biosciences [6], handwriting and text recognition [7] and

image processing [8].

Classical iterative approaches (e.g., the Baum-Welch algorithm [9,10] and the gradi-

ent descent algorithm[11]) are the most commonly used methods when one wants to es-

timate H(S)MM parameters. However, they require a predefined number of states, which

does not necessarily match the real life cases. In spite of this limitation, classical iterative

approaches are still widely used to estimate H(S)MM parameters, for lack of alternatives.

1Corresponding Author: Tingting Liu, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; E-

mail: tliu@etro.vub.ac.be

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-171

171

The careless adoption of a previously known model state numbers may give misleading

results. In order to solve this problem, state-of-the-art approaches decide an optimal state

number either using specific criteria (e.g., the Akaike information criterion (AIC) [12],

the Bayesian Information Criterion (BIC) [13]), or by structure evolving methods (e.g.,

the state splitting/ merging approach [14], the genetic approach [15]). However, learning

H(S)MMs iteratively using the heuristic approaches above is computationally hard and

often produces local optima issues. With respect to this problem, Hsu et al. [16] introduce

a spectral-based algorithm for learning HMMs, which employs only a singular value de-

composition and matrix multiplications, nonetheless, makes restrictive and problematic

assumptions that the transition and emission matrices are full rank and the initial state

vector is positive in all coordinates.

In this paper, we address the problem of model initializations and focus on models

with persistent states (i.e., “sticky transitions”). Fox et al. [17] propose a sticky HDP-

HMM which is a non-parametric, infinite-state model that automatically learns the size of

state spaces and the smoothly varying dynamics robustly. However, this approach is com-

putationally prohibitive when data sets are very large [18]. In this paper, a segmentation-

based identification approach is proposed for models with persistent states, based on the

segmentation of the observed data. Specifically, a pre-estimation step is conducted to de-

cide the number of states and the initial model parameters approximately. This approx-

imate estimation is served as an effective starting point of the Baum-Welch algorithm

which refines the initial parameters. Consequently, both the number of iterations needed

and the chance of falling into a local optimum are reduced. The improvements in ef-

fectiveness and efficiency of the proposed approach are confirmed experimentally using

both simulated and real data.

The remainder of the paper is organized as follows: in Section 2, the preliminaries

about HMMs and HSMMs are briefly reviewed, followed by the classifications of hidden

states. Section 3 discusses the methodology of the proposed method. Experiments con-

ducted on both synthetic and real data are described and discussed in Section 4. Finally,

conclusions are given in Section 5.

2. Preliminaries

An HMM [1] is a doubly stochastic process where the underlying process is charac-

terized by a Markov chain and unobservable (hidden) but can be observed through an-

other stochastic process which emits the sequence of observations. Let N denote the

number of states and M the number of observation symbols. Let S = {s1,s2, . . . ,sN} and

O = {v1,v2, . . . ,vM} denote the set of states and the set of observations, respectively.

Using qt to represent the state and ot the observation at time t, an HMM model can be

characterized as below with the notation in [1]: the state transition probability matrix is

A = {ai j}, where

ai j = P(qt+1 = s j|qt = si),1 ≤ i, j ≤ N (1)

The observation probability matrix is B = {b j(k)}, where

b j(k) = P(ot = vk|qt = s j),1 ≤ j ≤ N,1 ≤ k ≤ M (2)

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs172

The initial state probability distribution

πi = P(q1 = si),1 ≤ i ≤ N (3)

where si ∈ S. An HMM can be expressed with the abbreviation λ = (π,A,B). An exam-

ple is shown in Figure 1a.

(a) An HMM (b) An HSMM

Figure 1. Example of an HMM and an HSMM

Hidden semi-Markov model (HSMMs) [2] is an extension of the HMMs, of which

the underlying stochastic process is a semi-Markov chain instead of a Markov chain

as in the HMMs. Each state has an explicit state duration variable d, which is associ-

ated the number of observations being emitted while in the state [2]. Let D denote the

maximum allowed duration in a state and the state duration set as D = {1,2, . . . ,D}.

For each observation sequence o1:T , the corresponding state sequence is denoted as

s[1:d1] = i1,s[d1+1:d1+d2] = i2, . . . ,s[d1+···+dn−1+1:d1+···+dn] = in and the state transitions are

(im,dm) → (im+1,dm+1), for m = 1, . . . ,n − 1, where ∑n
m=1 dm = T, i1, . . . , in ∈ S and

d1, . . . ,dn ∈ D. The state transition probability is defined as

a(i,d′)(j,d) = P(s[t+1:t+d] = j|s[t−d′+1:t] = i) (4)

subject to ∑ j∈S\{i} ∑d∈D a(i,d′)(j,d) = 1 with zero self-transition probabilities a(i,d′)(j,d) =
0, where i, j ∈ S and d,d′ ∈ D. The observation probability of d observations ot+1:t+d
being emitted in state j can be written as

b j,d(ot+1:t+d) = P(o[t+1:t+d]|s[t+1:t+d] = j) (5)

The initial state probability is denoted by

π j,d = P(s[t−d+1:t] = j), t ≤ 0,d ∈ D. (6)

An HSMM can be abbreviated by λ = (a(i,d′)(j,d),b j,d(vk1:kd),πi,d), where i, j ∈ S,d,d′ ∈
D, and vk1:kd represents vk1

, . . . ,vkd ∈ O×·· ·×O. An example is shown in Figure 1b.

A persistent state is a state with a high self-transition probability, i.e. the rate of

remaining at the same state is high while the rates of going to other states are low. A

transient state, on the other hand, is very likely to move to other states instead of staying

at the same state. Hence the self-transition probability aii of state i,1 ≤ i ≤ N is used as

an indicator to distinguish between persistent and transient state, i.e. if aii > 1/N, it is

persistent, otherwise transient. This paper focuses on H(S)MMs with persistent states.

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs 173

Segmentation-based process

Signal Step 2: Combination of states Baum-Welch
Learning

X

Step 1: Identification of persistent states

Step 3: Estimation of state numbers

Step 4: Calculation of initial parameters

Figure 2. Scheme of the proposed approach

3. Methodology of model identification

The application we will consider is industrial machinery system maintenance which is

suitable of being modeled with persistent-state H(S)MMs. As stated in [19], the reason

of using H(S)MMs in machine maintenance and decision making is that machine oper-

ation condition can be classified into a number of meaningful states, such as “Good”,

“OK”, “Minor defects only”, “Maintenance required”, “Unserviceable”, so that the state

definition is closer to what is used in industry and thus easy to interpret. As states deter-

mine the behavior of a system, persistence of states implies that the system will exhibit

the same behavior for a certain period. Such period is called a regime, i.e., a time period

in which the state of the system does not change, meaning the observation probabilities

are constant. The assumption of state persistence is reasonable in industrial machinery

systems since machine condition opt to stay in a stable and persistent state for a certain

period before jumping to another state if nothing goes wrong. For instance, a machine in

a “Good” condition at the current time is more likely to remain “Good” at the next time

step instead of going into an “OK” condition unless the machine already degrades over

a certain time period (i.e., a regime). Our algorithm is based on identifying the regimes

of a state through segmentation and clustering.

The segmentation-based identification approach contains four steps: firstly, signals

are split into different regimes based on different signal behaviors. Secondly, the ‘sim-

ilar’ regimes of signal are grouped together by clustering techniques according to their

similarities. The achieved labeled regimes are assumed to correspond to hidden states.

Thirdly, a clustering validation index is employed to determine the number of states.

Finally, H(S)MM parameters are estimated by calculating statistical occurrences of the

observed signal and the estimated hidden states, then used as initial input of the standard

Baum-Welch algorithm. The scheme of the methodology is shown in Fig. 2.

3.1. Step 1: Identification of persistent states by segmentation

Data sequences emitted by persistent states can be segmented into sub-sequences with

constant behavior (observations are drawn from a stationary distribution). The transition

from one state to another can be identified by detecting a difference in signal behavior.

This is called a change-point. In this paper, we propose a sliding window-based Bayesian

segmentation for splitting discrete signals by employing the test of [20]. The test calcu-

lates the Bayesian probability that two sequences have been generated by the same or

by a different multinomial model. The first sequence always starts from the last change

point (the first point if at the beginning) and ends at the current time point; the second

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs174

sequence is a fixed-length sliding-window starting from the next time point. If the test

indicates that it is very likely (with a confidence level, for example 90%) that the two

sequences are from a different model, the current time point is marked as a change point.

The procedure repeats until the end of the signal. An example is shown in Figure 3.

Time0

Last change-point

Seq 1 Seq 2

…

Sliding window

…

Current time

time = t
time = t+1
time = t+2

…

Figure 3. Sliding-window based segmentation

3.2. Step 2: Combination of states by clustering

Regimes corresponding to the same states will recur over time. Assuming there is a finite

number of states, segments with the same states are detected and clustered together. In

this study, the classical k-means clustering approach [21,22] is used to combine and label

each segment, described as below: 1) feature points are obtained by averaging the data in

each segment; 2) the feature points are divided into k subsequences with equal length; 3)

the median values of each subsequence are used as initial starting centroids for k means

clustering. Notably, 2) and 3) are the preliminary steps designed to avoid the problem of

randomness in initializations of k-means clustering.

3.3. Step 3: Estimation of state numbers by cluster validity

In order to select the optimal number of clusters, a robust index, called Davies-Bouldin

index (DBI) [23], is applied in this paper.

Suppose dataset X is partitioned into K disjoint non-empty clusters Ci and let

{C1,C2, . . . ,CK} denote the obtained partitions, such that Ci ∩Cj = Ø (empty set),

i �= j,Ci �= Ø and X =
⋃K

i=1 Ci. The Davies-Bouldin index [23] is defined as:

DBI =
1

K

K

∑
i=1

max
i�= j

{diam(Ci)+diam(Cj)

dist(Ci,Cj)
} (7)

where diam(Ci) = max
xm,xn∈Ci

{d(xm,xn)} and dist(Ci,Cj) = min
xm∈Ci,xn∈Cj ,i�= j

{d(xm,xn)} de-

note the intra-cluster diameter and the inter-cluster distance, respectively. Apparently, the

partition with the minimum Davies-Bouldin index is considered as the optimal choice.

3.4. Step 4: Estimation of initial parameters

The underlying assumption of our method is that segmentation of the observed signal

allows us to identify quite accurately the regimes of the true model. If the regimes be-

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs 175

longing to the same state are grouped correctly, these regimes offer us good insight into

the behavior of the states, i.e. the observation and transition probabilities as well as the

duration distribution. The probabilities are estimated based on the observed frequencies.

Parameters of an HMM (i.e., probability matrices) can be calculated by simple

counting the occurrence of the observed signal and the hidden states (i.e., labels retrieved

from clustering), which are computed as below [1,9,10]:

π̄i = frequency in state si at time t = 1 (8)

āi j =
of trans. from si to s j

of trans. from si
(9)

b̄ j(k) =
of times in s j observing vk

of times in s j
(10)

where trans. is the abbreviation for transition. Note that Baum-Welch uses the same

equations in (re)-estimating model parameters. Similarly, the parameters of an HSMM

can be computed as below:

π̄i,d = frequency in state si at time t = 1, with dur. d (11)

ā(i,d′)(j,d) =
of trans. from si with dur. d′ to s j with dur. d

of trans. from si with dur. d′ (12)

b̄ j,d(ot+1:t+d) =
of times ot+1:t+d emitted in s j

of times in s j
(13)

where dur. is the abbreviation for duration. The distribution of the duration d for each

state can be calculated by the kernel density estimation (KDE) based on a normal kernel

function [24,25]:

f̄h(d) =
1

γh

γ

∑
i=1

KN(
d −di

h
) (14)

where (d1,d2, . . . ,dγ) is a duration sample drawn from a distribution with density f , KN
represents a normal kernel and h is bandwidth for the smoothing purpose, which is set as

the optimal for normal densities.

4. Experimental Validation

Experiments on both synthetic and real case datasets are performed to evaluate the accu-

racy and efficiency of the proposed method.

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs176

4.1. Synthetic datasets

Simulated datasets are generated by 50 randomly created persistent-state HMMs with

number of states Q (from 2 to 6), number of observations O (from 2 to 6), each combi-

nation of Q and O is repeated 2 times. Each HMM is served as a reference model and

then used to generate a dataset with 4000 samples (20× 200, number of observation

sequences × length of sequence). The first 4/5 observation sequences are selected as

training samples and the remaining 1/5 are used as test samples. Similar parameters are

set for HSMMs with a maximum duration of D = 30 and datasets are generated with

T = 1000 time steps. To identify each reference model, we train the model with both

the proposed method and the standard Baum-Welch approach for comparisons. The state

numbers are selected from a state pool of [2,2Q] by the Baum-Welch with the AIC crite-

rion [12], and the proposed method with DBI cluster validation, respectively. As a result,

2Q−1 times of the BW learning is required for each learning task. On the contrary, the

proposed method starts with a pre-learned initial parameters, hence requires only 1 time.

In the segmentation step of the proposed method, the window size and the confidence

level can be adjusted according to different applications, which here are set to 20 and 0.9

empirically.

The comparisons are conducted on two aspects: learning accuracy and speed. The

accuracy in model identification is evaluated by comparing the log-likelihoods (LL) dif-

ference with the reference model on test samples. The LL of the observation o1:T given

the model λ measures how well the model fits the data (log(P(o1:T |λ)) . If the difference

between the likelihoods is below a certain threshold (5% in this paper), the model is con-

sidered as correctly learned; otherwise the learned model is assumed to be trapped in a

local optimum. The learning speed is compared on the total time of learning (measured

in seconds) and the number of iterations to converge.

Table 1. Performance on synthetic data for standard Baum-Welch algorithm and proposed method

Models HMM HSMM

Criteria
Random

BW + AIC

Proposed

method

Random

BW + AIC

Proposed

method

Accuracy
Test-set LL difference (%) 18.7 2.6 46.27 39.37

Test-set local optima (%) 39.4 14.0 90.20 72.00

Speed

Average learning time (sec-

onds)
13.32 2.62 2.44 1.55

Average number of iterations

(#)
25.94 8.70 4.32 5.56

Experiment results in Table 1 show an obvious improvement of the proposed method

compared to the Baum-Welch algorithm for HMMs: the model distance with the refer-

ence model and the number of local optima are lowered and with a faster learning speed

and fewer number of iterations to converge. For the HSMMs, improvements can be seen

marginally.

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs 177

4.2. Bearing dataset

The proposed method is applied to a bearing dataset for machine maintenance provided

by the POM project2. The set-up consists of steel cord production machines located in

the production plant in China. These machines were continuously monitored for bearing

degradation using accelerometers and temperature sensors. The temperature are logged

regularly by the temperature sensors on both sides, i.e., ‘input’ and ‘output’ side. A

temperature overshoot protection is implemented in the machine’s controllers in order

to avoid catastrophic failures of bearings. When temperature exceeds the temperature

threshold for more than predefined observation time, the machine stops and restarts when

the temperature decreases below the temperature threshold.

The temperature evolution is predicted by one of the POM project partners in a

run-by-run way, on which regression is applied taking context feature into account by

Dynamic Time Warping. However, each run is learned separately without considering the

run-dependence. To address this issue, we use the H(S)MM models to study the dynamic

nature and correct the prediction errors of the regression method by the inferred model.

In the experiment, the dataset is the prediction errors of the ‘input’ temperature signal

from one of the machines at the end of each run, which contains 3160 data points. The

state number selection of the BW and the proposed methods is conducted on a state pool

of [2, 8] via the AIC criterion and the DBI index, respectively. To lower the side affect

of the randomness in the BW initialization, the learning is repeated 5 times for the BW

and the averaged performance is used to compare with the proposed method.

Figure 4a shows the learning results of the proposed method: segmentation via

change-point detection (above) and the labeled hidden states by the K-means cluster-

ing (below). The clustering validation by the DBI index is shown in Figure 4b of which

the one with 8 clusters (states) with the minimum DBI value is selected as an optimal

choice. Results suggest the feasibility of combining the states with ‘similar’ behaviors

by clustering. Performances of both approaches are shown in Table 2. The averaged log-

(a) (b)

Figure 4. Pre-estimation results of the proposed method. (a) Segmentation via change-point detection and

labeling via clustering. (b) The DBI indexes.

likelihood values of the Baum-Welch method are lower and the speed is dramatically

2www.pom-sbo.org

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs178

Table 2. Comparisons of the average learning performance over repetitions on the bearing data

Models HMM HSMM

Criteria
Random BW

+ AIC

Proposed

method

Random BW

+ AIC

Proposed

method

Number of states 8 8 7 8

Average log-likelihood -2.0284 -2.0175 -2.0523 -2.0149

Average learning time

(seconds)
205.3406 9.0711 163.6585 7.1672

slowed down compared to the proposed method. The reasons for the speed gain are ex-

plicit: both methods select the state numbers from a state pool from 2 to 8. However, the

proposed method uses a clustering validation index with only one run of Baum-Welch

learning, instead of 7 runs for the traditional BW method; moreover, even the average

duration of runs in traditional BW, is still much longer than proposed method, because a

rather ‘accurate’ initialization of the proposed method requires not only fewer iterations,

but also less time to converge.

5. Conclusions

This paper introduces an extension to the current algorithm for H(S)MMs identification

based on segmentation and clustering techniques. Both state number selection and pa-

rameters initialization are addressed. Enhancement in the accuracy of H(S)MMs iden-

tification and the learning converge speed are achieved through the development of a

pre-estimation step which avoids the local optimal problem. The effectiveness and effi-

ciency of the proposed method are confirmed through experiments on both synthetic and

real signals. Future work will improve the proposed method and extend it to more types

of models (e.g., the ones with non-persistent states), as well as consider an application

difference for a better quantification of the model parameters estimation.

References

[1] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” in

Proceedings of the IEEE, pp. 257–286, 1989.

[2] S. zheng Yu, “Hidden semi-markov models,” Artificial Intelligence, 2010.

[3] A. Verma, N. Rajput, and L. Subramaniam, “Using viseme based acoustic models for speech driven lip

synthesis,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE
International Conference on, vol. 5, pp. V–720, IEEE, 2003.

[4] J. bo Yu, “Health condition monitoring of machines based on hidden markov model and contribution

analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 2200 – 2211, 2012.

[5] B. Logan and P. Moreno, “Factorial hmms for acoustic modeling,” in International Conference on
Acoustics, Speech, and Signal Processing, vol. 2, 1998.

[6] R. J. Boys, D. A. Henderson, and D. J. Wilkinson, “Detecting Homogeneous Segments in DNA Se-

quences by Using Hidden Markov Models,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 49, no. 2, pp. 269–285, 2000.

[7] A. Fischer, K. Riesen, and H. Bunke, “Graph similarity features for hmm-based handwriting recognition

in historical documents,” in 2010 12th International Conference on Frontiers in Handwriting Recogni-
tion, vol. 0, pp. 253–258, IEEE, Nov. 2010.

[8] J. Li, A. Najmi, and R. M. Gray, “Image classification by a two dimensional hidden markov model,”

IEEE Transactions on Signal Processing, vol. 48, 2000.

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs 179

[9] L. E. Baum and T. Petrie, “Statistical Inference for Probabilistic Functions of Finite State Markov

Chains,” The Annals of Mathematical Statistics, vol. 37, pp. 1554–1563, 1966.

[10] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Technique Occurring in the Statistical

Analysis of Probabilistic Functions of Markov Chains,” The Annals of Mathematical Statistics, vol. 41,

pp. 164–171, 1970.

[11] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the application of the theory of

probabilistic functions of a markov proces to automatic speech recognition,” 1983.

[12] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in Second Inter-
national Symposium on Information Theory (B. N. Petrov and F. Csaki, eds.), pp. 267–281, Akadémiai

Kiado, 1973.

[13] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2, pp. 461–464,

1978.

[14] M. Ostendorf and H. Singer, “HMM topology design using maximum likelihood successive state split-

ting,” Computer Speech and Language, vol. 11, pp. 17–41, 1997.

[15] J. Goh, L. Tang, and L. A. turk, “Evolving the structure of Hidden Markov models for micro aneurysms

detection,” in UK Workshop on Computational Intelligence, 2010.

[16] D. Hsu, S. M. Kakade, and T. Zhang, “A Spectral Algorithm for Learning Hidden Markov Models,”

Computing Research Repository, vol. abs/0811.4, 2008.

[17] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “An hdp-hmm for systems with state per-

sistence,” in Proceedings of the 25th International Conference on Machine Learning, ICML ’08, (New

York, NY, USA), pp. 312–319, ACM, 2008.

[18] L. Du, M. Chen, J. Lucas, and L. Carin, “Sticky hidden markov modeling of comparative genomic

hybridization,” Signal Processing, IEEE Transactions on, vol. 58, pp. 5353–5368, Oct 2010.

[19] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation - A review on the sta-

tistical data driven approaches,” European Journal of Operational Research, vol. 213, pp. 1–14, August

2011.

[20] M. Johansson and T. Olofsson, “Bayesian Model Selection for Markov, Hidden Markov, and Multino-

mial Models,” IEEE Signal Processing Letters, vol. 14, pp. 129–132, 2007.

[21] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. Fifth
Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297, Univ. of Calif. Press, 1967.

[22] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability of classifications,”

Biometrics, vol. 21, pp. 768–769, 1965.

[23] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 224–227, 1979.

[24] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” The Annals of
Mathematical Statistics, vol. 27, pp. 832–837, Sept. 1956.

[25] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals of Mathematical
Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs180

Supervised Separation of Speech from

Background Piano Music using a

Nonnegative Matrix Factorization

Approach

A. MARTINEZ-COLÓN a,1, F. J. CANADAS-QUESADA a and

P. VERA-CANDEAS a and N. RUIZ-REYES a and F. MORENO-FUENTES a

a Telecommunication Engineering Department, University of Jaén, Spain

Abstract. This paper presents a supervised algorithm for separating speech from

background non-stationary noise (piano music) in single-channel recordings. The

proposed algorithm, based on a nonnegative matrix factorization (NMF) approach,

is able to extract speech sounds from isolated or chords piano sounds learning the

set of spectral patterns generated by independent syllables and piano notes. Mo-

roever, a sparsity constraint is used to improve the quality of the separated signals.

Our proposal was tested using several audio mixtures composed of real-world piano

recordings and Spanish speech showing promising results.

Keywords. Sound separation, Non-negative matrix factorization, training, supervised,

sparse, interference

1. INTRODUCTION

Separation of a target source (speech) from background non-stationary noise (piano) is

still a challenging problem in artificial intelligence, signal processing and music research.

The speech refers to vocal sounds used in a human communication whereas the piano

sound refers to the sounds generated by a piano instrument.

Several approaches to separate speech and background non-stationary noise have

been proposed in the last years [1] [2] [3]. Schmidt et.al [1] presented a method, based

on non-negative sparse coding, for reducing wind noise in recordings of speech based on

a pre-estimated source model only for the noise. In [2], a sparse latent variable model is

proposed which can be employed for the decomposition of time/frequency distributions

to perform separation of sources from single-channel recordings. In [3], speech is mod-

eled using a non-negative hidden Markov model, which uses multiple non-negative dic-

tionaries and a Markov chain to jointly model spectral structure and temporal dynamics

of speech.

Non-negative matrix factorization (NMF) has been successfully applied in the field

of speech and music processing in recent years [4] [5] [6] [7] [8] [9]. Lee and Seung

1Corresponding Author: A. Martinez-Colón, Telecommunication Engineering Department, University of

Jaén, Spain ; E-mail: fcanadas@ujaen.es

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-181

181

[10] [11] developed standard NMF, a technique for multivariate data analysis in which an

input magnitude spectrogram, represented by a matrix X , is decomposed into the product

of two non-negative matrices W and H,

X ≈WH (1)

where each column of the basis matrix W represents a spectral pattern from an active

sound source. Each row of the gains matrix H represents the time-varying activations

of a spectral pattern factorized in the basis matrix. In general, NMF approaches can be

classified into three categories [12]

Supervised: all spectral patterns both the target and non-target source are trained previ-

ously to the separation stage.

Semisupervised: only spectral patterns from the target source or non-target source are

trained previously to the separation stage.

Unsupervised: no training stage is used. Instead, the factorization process is performed

using different type of constraints.

In this work, we propose a supervised NMF approach to separate speech and poly-

phonic piano music in single-channel recordings. Our proposal is composed of two

stages: training and separation. In the training stage, the system learn the spectral pat-

terns from sounds related to syllables of Spanish speech and sounds from musical iso-

lated piano notes. Using the previous patterns, our proposed algorithm is able to decom-

pose a monaural audio mixture into speech and piano signals. As it will be explained

later, we have used a sparsity constraint in order to improve the quality of the speech and

minimizing the interference of the piano and vice versa.

This paper is organized as follows. In section 2, the proposed method is depicted in

detail. In section 3, test data, experimental setup and metrics are explained. In section 4,

experimental results are shown. Finally, the conclusions and future work are presented

in section 5.

2. PROPOSED METHOD

The scheme of the proposed method is shown in Figure 1. Because of our proposed

method is based on a supervised NMF approach, it needs a two training stages. The first

one is related to factorize the spectral patterns of the syllables of the speech. The second

one is related to factorize the spectral patterns of the piano notes. The most used cost

functions are the Euclidean (EUC) distance, the generalised Kullback-Leibler (KL) and

the Itakura-Saito (IS) divergences. However, in this work, the KL and IS divergences

have been analyzed because they have provided the best results in the separation stage.

2.1. Speech training stage

To obtain the spectral patterns Ws of the speech, a speech database Ds was generated

recording, using a portable recorder Zoom H4n [13], a set of different syllables of the

Spanish language. Specifically, the speech database is composed of 420 syllables: 5 syl-

lables of one letter, 118 syllables of two letters, 291 syllables of three letters and 6 sylla-

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music182

Figure 1. Overview of the proposed supervised NMF approach

bles of four letters. The selection of the syllables was made taking into account the most

likely syllables to be spoken in the Spanish language. In the factorization process, we

have considered Ks spectral patterns to model each syllable.

In order to estimate the speech basis Ws or gains Hs matrices, the iterative algorithm

proposed in [11] [12] can be applied,

• Kullback-Leibler divergence

Ws =Ws *

(
Xsy * (Ws ·Hs)

−1
)
·HT

s

1 ·HT
s

(2)

Hs = Hs *
W T

s · (Xsy * (Ws ·Hs)
−1)

W T
s ·1 (3)

• Itakura-Saito divergence

Ws =Ws *

(
Xsy * (Ws ·Hs)

−2
)
·HT

s

(Ws ·Hs)
−1 ·HT

s
(4)

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music 183

Hs = Hs *
W T

s ·
(

Xsy * (Ws ·Hs)
−2
)

W T
s · (Ws ·Hs)

−1
(5)

where * is the element-wise product operator, T is the transpose operator, Xsy is the

magnitude spectrogram of each syllable and 1 is an all-one elements matrix. The speech

training procedure is summarized in Algorithm 1

Algorithm 1 Training of Speech Spectral Patterns

1 for each syllable do
2 Compute the speech magnitude spectrogram Xsy from a syllable of the database Ds.

3 Initialise all rows of the gain matrix Hs with random positive values.

4 Initialise all columns of the basis matrix Ws with random positive values.

5 Update bases Ws using eq. (2) or (4)

6 Update gains Hs using eq. (3) or (5)

7 Repeat steps 5-6 until the algorithm converges (or the maximum number of iterations

MaxIter is reached).

8 end for

2.2. Piano training stage

To obtain each spectral patterns Wp of a piano instrument, the piano database Dp was

generated using samples of notes from a piano instrument [14]. Specifically, the piano

database is composed of 88 sounds of isolated piano notes played on a normal intensity.

In the factorization process, we have considered Kp spectral patterns to model each piano

note.

The piano update rules to compute Wp and Hp are similar to speech ones (see eq.

(2-5)) replacing Xsy for the magnitude spectrogram Xpi of each musical note from a

piano instrument and replacing Ws to Wp and Hs to Hp. The piano training procedure is

summarized in Algorithm 2

Algorithm 2 Training of Piano Spectral Patterns

1 for each note do
2 Compute the piano magnitude spectrogram Xpi from a piano note of the database Dp.

3 Initialise all rows of the gain matrix Hp with random positive values.

4 Initialise all columns of the basis matrix Wp with random positive values.

5 Update bases Wp using eq. (2) or (4)

6 Update gains Hp using eq. (3) or (5)

7 Repeat steps 5-6 until the algorithm converges (or the maximum number of iterations

MaxIter is reached).

8 end for

As a consequence of using a supervised NMF approach, Ws and Wp are pre-

computed and known in the training stages and held fixed during the factorization process

in the separation stage.

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music184

2.3. Separation stage

The magnitude spectrogram X of a mixture signal x(t) can be performed by the Short-

Time Fourier Transform (STFT) using a N samples Hamming window and J samples

time shift. The mixture spectrogram X is composed of a speech Xs and a piano Xp spec-

trograms,

X = Xs +Xp (6)

, where each spectrogram Xs or Xp represents the specific spectral features exhibited

by the speech and piano instrument. In this manner, our factorization model is defined

X̂ ≈ X̂s + X̂p ≈ (Ws ∗Hs)+(Wp ∗Hp) (7)

being X̂ , X̂s, X̂p, Ws, Wp, Hs and Hp the estimated mixture spectrogram, the estimated

speech spectrogram, the estimated piano spectrogram, the speech and piano spectral pat-

terns and the speech and piano gains.

The speech Hs and piano Hp gains update rules are shown using the Kullback-Liebler
divergence (eq. (8) and (9)) and Itakura-Saito divergence (eq. (10) and (11)) [12] with a

sparsity (speech λs or piano λp) constraint [4]

Hs = Hs *
W T

s · (X * ((Ws ·Hs)+(Wp ·Hp))
−1)

W T
s ·1+λs

(8)

Hp = Hp *
W T

p · (X * ((Ws ·Hs)+(Wp ·Hp))
−1)

W T
p ·1+λp

(9)

Hs = Hs *
W T

s · (X * ((Ws ·Hs)+(Wp ·Hp))
−2)

W T
s · ((Ws ·Hs)+(Wp ·Hp))−1 +λs

(10)

Hp = Hp *
W T

p · (X * ((Ws ·Hs)+(Wp ·Hp))
−2)

W T
p · ((Ws ·Hs)+(Wp ·Hp))−1 +λp

(11)

where * is the element-wise product operator and the T is the transpose operator .

Once the update rules have been performed, the estimated spectrograms X̂s and X̂p
are used to compute soft masking Ms (speech) and Mp (piano) (Wiener masking) since it

provides less artifacts in the resynthesis but increases the amount of interference between

speech and piano.

Ms =
X̂s

X̂s + X̂p
(12)

Mp =
X̂p

X̂s + X̂p
(13)

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music 185

The phase information related to the speech is computed by multiplying the mask

Ms with the complex spectrogram related to the mixture signal x(t). The inverse trans-

form is then applied to obtain an estimation of the speech signal xs(t). The computa-

tion of xp(t) is performed in a similar procedure taking into account Mp. In algorithmic

approximation, the separation procedure is detailed in Algorithm 3.

Algorithm 3 Speech and Piano Separation

1 Compute the magnitude spectrogram X of the mixture signal.

2 Initialise Hs and Hp with random nonnegative values.

3 Initialise Ws and Wp from the training stage.

4 Update Hs using eq. (8) or eq. (10)

5 Update Hp using eq. (9) or eq. (11)

6 Repeat steps 4-5 until the algorithm converges (or the maximum number of iterations MaxIter
is reached).

7 Reconstruction of the estimated speech signal xs(t)
8 Reconstruction of the estimated piano signal xp(t)

3. EVALUATION

3.1. Test data

To evaluate the performance of the proposed method, we have created a test database D
composed of 10 mixtures signals. Each mixture signal is composed of a 20 seconds du-

ration speech and polyphonic piano excerpt. Each piano excerpt has been randomly ex-

tracted from the MAPS database [15]. Each speech excerpt has been randomly extracted

from a set of 44 sentences spoken by a Spanish speaker. From these sentences, we have

selected 10 excerpts of 20 seconds duration. Highlight that the set of syllables and piano

notes used in the training are not the same used in the test in order to validate the results.

To evaluate different acoustic scenarios, the test database D has been mixed using

-5, 0 and 5 dB of signal-to-noise ratio (see Table 1).

Table 1. Acoustic scenarios in the evaluation process.

Name SNR(dB)

D−5 -5

D0 0

D5 5

3.2. Experimental setup

The proposed method has been tested using different configurations of parameters:

N = (4096,2048,1024), J = (2048,1024), maxIter = (100,200,300,500). However, we

have used N = 4096(93ms), J = 1024(23ms) and maxIter = 100 because a preliminary

study showed that that configuration showed better results and lower computational cost.

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music186

Assuming the previous configuration (N, J and maxIter), separation results will be an-

alyzed taking into account the type of divergence (KL or IS), the number of spectral

patterns Ks −Kp = (1− 1,3− 1,3− 3,5− 1,5− 5,10− 1) and the sparsity parameters

λs − λp = (0 − 0,0 − 1,0.3 − 0.7,0.5 − 0.5,0.5 − 0.7,0.5 − 1,0.7 − 0.3,0.7 − 0.5,1 −
0,1−0.5,1−1).

3.3. Metrics

Three metrics [16] are used to measure the performance of the proposed method: source-

to-distortion ratio (SDR), which reports about the overall quality of the separation pro-

cess; source-to-interferences ratio (SIR), which provides a measure of the presence of

piano sounds in the speech signal and vice versa; and source-to-artifacts ratio (SAR),

which reports about the artifacts in the separated signal due to separation and/or resyn-

thesis.

4. EXPERIMENTAL RESULTS

The proposed method was evaluated using all the possible combinations (type of diver-

gence, number of spectral patterns and sparsity parameters) explained in section 3.2. Ex-

perimental results indicated that the best results were obtained using the optimal config-

urations shown in Table 2.

Table 2. Optimal configurations for speech-piano separation

Name Divergence Ks Kp λs λp

C1 IS 5 5 1 1

C2 KL 5 5 1 0.5

The optimal configurations C1 and C2 use a number Ks −Kp = 5 speech and piano

spectral patterns because this is the minimum number of patterns to model the spectral

diversity exhibited by speech and piano (in a less proportion). Moreover, both config-

urations show the sparsity constraint active to improve the quality of the speech. As a

consequence of the monophonic feature of speech, the speech sparsity parameter λs is

higher that piano sparsity λp because speech is more sparse than piano instrument. As

a example, a 6-seconds mixture spectrogram (Figure 2) and the output of the proposed

method (Figure 3) using the configuration C2 are shown. It can be observed how our pro-

posal has successfully extracted the main features of the speech sounds in the estimated

spectrogram.

Separation results are shown in Figure 4 in which the standard NMF (λs = λp =

0), the optimal configurations C1, C2 and the ideal case are compared. The ideal case

shows the best SDR, SIR and SAR since in this case, the estimated speech is composed

of the speech used in the mixing process to create the test database. It can be seen how

all metrics (SDR, SIR and SAR) increase to evaluate a more ideal acoustic scenario.

This fact is because our system performs better separation when the speech exhibits a

higher power compared to the piano signal. In the three acoustic scenarios we can observe

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music 187

Figure 2. Time-frequency representation of a mixture composed of speech and piano sounds

Figure 3. Time-frequency representation of the estimated speech using the configuration C2

the configuration C1 achieves the best SDR-SAR results considering the quality of the

estimated speech but the speech contains a higher interference from piano. However, the

configuration C2 provides worse results taking into account the quality of the estimated

speech (the speech is still clearly intelligible) but a lower interference from piano. Under

our opinion, both configurations C1 and C2 can be selected as the best one because the

fundamental criterion depends on the subjective quality provided by the highest SDR-

SAR or SIR to each listener.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a system for separating speech from background non-

stacionary noise (polyphonic piano music) in single-channel recordings. Our system,

based on a supervised NMF approach, is able to learn most of spectral patterns of the

syllables of the Spanish speech and the spectral patterns of the piano notes. Moreover, a

sparsity constraint has been modeled to improve the separation results. An advantage of

our system is its flexibility to analyze another type of non-stationary noise replacing the

spectral patterns of piano by the spectral patterns of the specific non-stationary noise.

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music188

Figure 4. SDR-SIR-SAR results comparing: (a) the standard NMF (λs = λp = 0), (b) Configuration C1, c)

Configuration C2 and (d) Ideal case. Test database D−5 (top); Test database D0 (middle); c) Test database D5

(bottom)

Results show that a small number of speech and piano spectral patterns is needed

to model the spectral diversity exhibited by speech. The optimal configurations use the

sparsity constraint to improve the quality of the speech. The configuration C1 is the best

considering the quality of the estimated speech but the configuration C2 is the best one

taking into account the minimum interference from piano.

Our future work will be focused on two topics. Firstly, developing a semi-supervised

approach in order to allow the system to learn the unknown patterns active in the mixture.

Secondly, a study of the influence of the speech spectral patterns in the performance of

the separation taking into account different voices of different vocal characteristics.

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music 189

ACKNOWLEDGEMENTS

This work was supported by the Andalusian Business, Science and Innovation Council

under project P2010- TIC-6762 and (FEDER) the Spanish Ministry of Economy and

Competitiveness under Project TEC2012-38142-C04-03.

References

[1] M. N. Schmidt, Jan Larsen and Fu-Tien Hsiao. Wind Noise Reduction Using Non-Negative Sparse

Coding, Conference: IEEE Workshop on Machine Learning for SignalProcessing-MLSP ,2007.

[2] P. Smaragdis, B. Raj and M. Shashanka. Supervised and Semi-Supervised Separation of Sounds from

Single-Channel Mixtures. Mitsubishi Electric Research Laboratories Cambridge MA, USA. Department

of Cognitive and Neural Systems Boston University, Boston MA, USA. 2007.

[3] G. Mysore and P. Smaragdis. A non-negative approach to semi-supervised separation of speech from

noise with the use of temporal dynamics. In Proceedings Interntational Conference on Acoustics, Speech

and Signal Processing (ICASSP). Prague, Czech Republic, May, 2011

[4] M. Schmidt and R. Olsson. Single-channel speech separation using sparse non-negative matrix factor-

ization, in Spoken Language Proceesing, ISCA International Conference on (INTERSPEECH), 2006.

[5] T. Virtanen. ’Monaural Sound Source Separation by Non-Negative Matrix Factorization with Temporal

Continuity and Sparseness Criteria”, IEEE Transactions on Audio, Speech, and Language Processing,

no.3, vol 15, March 2007.

[6] K. W. Wilson, B. Raj and P. Smaragdis, 2008. Regularized Non-Negative Matrix Factorization with

Temporal Dependencies for Speech Denoising. In proceedings of Interspeech 2008, Brisbane, Australia,

September 2008

[7] J. So-Young, K. Kyuhong, J. Jae-Hoon and C. Kwang. Semi-blind disjoint non-negative matrix factor-

ization for extracting target source from single channel noisy mixture, IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, 2009

[8] E. Grais, H. Erdogan. Single Channel Speech Music Separation Using Nonnegative Matrix Factorization

with Sliding Windows and Spectral Masks. INTERSPEECH, 2011

[9] J. Parras-Moral, J., F. Canadas-Quesada, P. Vera-Candeas and N. Ruiz-Reyes. ’Audio restoration of solo

guitar excerpts using a excitation-filter instrument model, Stockholm Music Acoustics Conference jointly
with Sound And Music Computing Conference, Stockholm, Sweden, 2013

[10] D. Lee and S. Seung. Learning the parts of objects by nonnegative matrix factorization, Nature, vol. 401,

no 21, pp. 788-791, 1999

[11] D. Lee and H. Seung. Algorithms for Non-negative Matrix Factorization, in Ad- vances in NIPS, pp.

556-562, 2000.

[12] C. Fevotte, N. Bertin and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito diver-

gence. With application to music analysis. Neural Computation. 2009.

[13] http://www.zoom.co.jp

[14] Masataka Goto. Development of the RWC Music Database, Proceedings of the 18th International

Congress on Acoustics (ICA 2004), pp.I-553-556, April 2004. (Invited Paper)

[15] V. Emiya, N. Bertin, B. David and R. Badeau. A piano database for multipitch estimation and automatic

transcription of music. 2010.

[16] E. Vincent, R. Gribonval, and C. Fevotte. Performance measurement in blind audio source separation.

IEEE Transactions on Audio, Speech and Language Processing, 14(4):1462-1469, 2006.

A. Martinez-Colón et al. / Supervised Separation of Speech from Background Piano Music190

Practical Defeasible Reasoning for
Description Logics

Kody Moodley, Thomas Meyer and Uli Sattler

University of Manchester, United Kingdom and
UKZN/CSIR Meraka Centre for Artificial Intelligence Research, South Africa

moodleyk@cs.man.ac.uk;tmeyer@csir.co.za;sattler@cs.man.ac.uk

Abstract. The preferential approach to nonmonotonic reasoning was con-
solidated in depth by Krause, Lehmann and Magidor (KLM) for propo-
sitional logic in the early 90’s. In recent years, there have been efforts to
extend their framework to Description Logics (DLs) and a solid (though
preliminary) theoretical foundation has already been established to-
wards this aim. Despite this foundation, the generalisation of the propo-
sitional framework to DLs is not yet complete and there are multiple
proposals for entailment in this context with no formal system for de-
ciding between these. In addition, there are virtually no existing pref-
erential reasoning implementations to speak of for DL-based ontologies.
The goals of this PhD are: to place the preferential approach in context
w.r.t. the alternative nonmonotonic reasoning proposals, to provide a
complete generalisation of the preferential framework of KLM to the
DL ALC, provide a formal understanding of the relationships between
the multiple proposals for entailment in this context, and finally, to de-
velop an accompanying defeasible reasoning system for DL-based on-
tologies with performance that is suitable for use in existing ontology
development settings.

Keywords. Defeasible reasoning, Description Logics, Nonmonotonic
reasoning, Preferential reasoning, OWL, Protege, Exceptions

1. Introduction

The so-called Preferential or KLM approach [21] to nonmonotonic reasoning was
introduced in the early 90’s for propositional logic. In recent years, it has been
shown that many of the desirable aspects of this approach can be generalised to
certain fragments of first order logic such as the Description Logic (DL)ALC [15,8,
14]. This preferential generalisation toALC has some attractive attributes. Firstly,
it was shown to facilitate an intuitive representation of defeasible statements
(defaults) [14,8]. It also allows one to draw desirable defeasible conclusions [9,
Section 3] which are as satisfactory as (if not superior to) the more well-known
circumscriptive approaches [6,16]. But the most attractive properties, yet, of this
logic are that it has a reasoning procedure which is composed purely of classical
DL decision steps [9]; the worst case computational complexity stays the same

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-191

191

as classical ALC ([15], [10, Corollary 2]) and preliminary experiments show that
the performance in practice is promising [9].

Despite this progress, the generalisation of preferential reasoning to the case
of ALC (let alone more expressive DLs) is not complete. There are still vari-
ous theoretical results that have not been adapted or proven for this case and
thus prevents a deeper understanding of the ranked model [21] semantics of pref-
erential reasoning. The results we are interested in are those that lead to sim-
pler reductions of preferential reasoning to classical decision steps and those that
lead to gains in reasoning performance. Our hopes are that this investigation will
also help to develop a deeper understanding of the relationship between defea-
sible KBs [8] ({C1

�∼D1, C2
�∼D2, ..., Cn

�∼Dn}) and their classical counterparts
({C1 � D1, C2 � D2, ..., Cn � Dn}) which in turn would help in building defeasi-
ble reasoning systems and related tools that are intuitive and efficient to use for
ontology development.

In terms of entailment, in the context of KLM preferential reasoning there
are already several proposals. The consensus is that each of these proposals are
suitable in different contexts. One of the aims of this PhD is to determine the
relationships between these proposals and to develop an understanding of which
applications each proposal is most suitable for. Of course, another important
aim of this PhD is to compare our approach with other nonmonotonic reasoning
proposals which are concerned with the same representation and reasoning issues.

We first give a preliminary introduction to preferential reasoning in DLs in
Section 2. Thereafter, we mention some gaps in the theoretical understanding of
preferential reasoning for DLs and the resulting barriers to developing simple and
efficient algorithms thereof. The main contributions of this PhD are to address
these specific issues: (i) to compare the preferential approach to related non-
monotonic reasoning proposals, (ii) to give a complete model-theoretic account of
KLM-style preferential reasoning for ALC, (iii) to determine the relationships be-
tween the different entailment proposals (hopefully discovering novel alternatives
that are useful as well) and (iv) to apply the theoretical foundation in developing
efficient algorithms for computing preferential inference on-demand.

2. Preferential Reasoning

In classical DLs [1], the semantics is built upon first order interpretations. These
interpretations vary on the elements which appear in the interpretation domain
(ΔI) and the manner in which we assign terms (defined by an interpretation
function (·I)) to these elements. In the preferential context, we introduce an ad-
ditional component on which the interpretations can vary. This component rep-
resents the manner in which we order the elements of the domain, using a partial
ordering (≺I). Interpretations with this additional component are known as pref-
erential interpretations. In order to be able to rank the elements of our domain,
we need to specify that the partial order be modular [8, Definition 1]. This is so
that we are able to assign suitable ranks to elements that are incomparable in the
partial order. Hence, preferential interpretations whose orderings are modular are
known as ranked interpretations. The ordering component of a ranked interpre-

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics192

tation allows one to interpret so-called defeasible subsumption statements of the
form C �∼D (see Figure 1).

ΔI

c,d ¬c,d c,d

c,¬d ¬c,¬d

c,d ¬c,d c,¬d

(Typicality)≺I

〈ΔI , ·I ,≺I〉 � C �∼D

Figure 1. Satisfaction of a defeasible subsumption by a ranked interpretation.

In contrast to standard DL subsumption (C � D), which we read as “all C’s
are D’s”, the corresponding defeasible subsumption (C �∼D) is read as “the most
typical C’s are D’s”. It is the ordering on the elements in a ranked interpretation
that allows us to identify or specify these typical elements under consideration.
The semantic paradigm which this approach captures is very intuitive because it
is one which we as humans often employ (albeit in an implicit way). Consider the
following example:

Example 1 Suppose that Bob and John are mechanics. If we don’t have any other
information then as humans we may implicitly regard Bob and John as typical
mechanics and assign to them properties that a typical mechanic may possess. For
example we may conclude that Bob and John both work in a workshop. However,
we may later discover that, while Bob works from a workshop, John is actually a
mobile mechanic and only repairs machinery at the clients premises - which means
he does not work from a workshop. One may say that Bob is more typical than
John w.r.t. the property of possessing a workshop. Conversely, what this means is
that John is more exceptional than Bob w.r.t. the same property. But what if we
consider a different property of a typical mechanic? We may consider a typical
mechanic to have one or more types of machinery that they specialise in. If we
find that John indeed has a specialisation in motorboats but that Bob does not
have a specialisation in any specific equipment types then we implicitly consider
John to be more typical than Bob in this context.

Example 1 demonstrates the need to consider all typicality orderings possible
when constructing ranked interpretations of the knowledge we are reasoning
about. We argue that in previous presentations of the preferential approach for
DLs, there has not been enough clarity on how the approach deals with or com-
bines multiple typicality orderings (as in Example 1). In Example 1 if we only have
the constraint that typical mechanics work in a workshop then John has to be
considered more exceptional than Bob in any ranked model thereof. Conversely, if
we only have the constraint that typical mechanics have a specialisation then Bob
is more exceptional than John. But what if we have to satisfy both constraints?
Suppose our background knowledge is that typical mechanics work in workshops
and that typical mechanics have at least one specialisation. Consider three of the
ranked models of this knowledge in Figure 2.

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics 193

ΔI(a)

x Andyspecialises

zworksIn

worksIn

Bob

yJohn
specialises

ΔI
′(b)

Andy x

worksIn

specialises

specialises

Johnz

yBob

worksIn

ΔI
′′(c)

Andy x

worksIn
specialises

Bob

Johny
worksIn

specialises

z

Figure 2. Combining typicality orderings using ranked interpretations.

It is clear that if our background knowledge about mechanics is correct, then
there must exist at least one typical mechanic out there who satisfies both our
constraints. If there isn’t then we obviously have to revise or retract our state-
ments. Since Example 1 makes mention only of Bob and John, and both these
individuals are missing one of the required properties, we have to conclude that
there must be a third individual. We call him Andy and he is a very typical me-
chanic i.e. he possesses both required properties by working in a workshop and
specialising in automobiles. Both Bob and John can then be seen as exceptional
w.r.t. the prototypical mechanic Andy. But how do we decide who is more excep-
tional between Bob and John? The answer is that we don’t have to because Andy
satisfies our knowledge; Bob and John are exceptional to Andy so the exception-
ality distinction between them does not matter ((a), (b) and (c) in Figure 2 are
all valid models of our knowledge).

A strong advantage of preferential logics is the behaviour represented in Fig-
ures 1 and 2 where the ranked interpretations satisfy that the most typical C’s
(lowest in the ordering) are also D’s, but still allows some C’s that are not as
typical (higher up in the ordering) to not be D’s. This is the ability to gracefully
cope with exceptions - which is something that standard DLs cannot. We find in
many fields such as biology and medicine that it is very common to encounter in-
formation which holds in general but is fallible under exceptional circumstances.
Given this setting, biologists and medical professionals still have to draw con-
clusions and make decisions based upon this information. Preferential DLs are
developed for applications of this kind.

The state of the art within this framework of ranked interpretations is that
we are able to reason with the terminological part of a defeasible KB [9] i.e. not
yet with ABoxes. A defeasible KB is composed of a classical ALC TBox T and
an ALC DBox D (set of defeasible inclusions of the form C �∼D).

Given a defeasible KB 〈T ,D〉, the obvious first proposal for entailment of a
defeasible inclusion C �∼D would be to check in every ranked interpretation that
satisfies every axiom in T andD and verify if C �∼D is also satisfied there (a similar
approach is used for entailment in standard DLs). However, it turns out that this
proposal induces an entailment relation which is monotonic [7, Section 4] and
defeats the purpose of our logic, which is supposed to enable the representation
of potentially fallible statements that can be refuted upon the discovery of new
information.

But, even though the proposal to consider all ranked models fails as men-
tioned above, it is still possible to narrow our view to a subset of these. The prob-

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics194

lem is that deciding which subset to focus on may be perceived as a subjective
choice. Fortunately, in the context of propositional logic, KLM have argued exten-
sively that it is not entirely subjective [21,19]. They delineated a series of logical
properties that any nonmonotonic consequence relation should satisfy at bare-
minimum [21, Section 2.2]. They also pinpointed the smallest relation satisfying
these properties coined the Rational Closure (RC) [21, Section 5].

A model-theoretic account of RC was also given by them which corresponds
to considering the minimal ranked models [21, Section 5.7] as the base proposal
for entailment. Minimal ranked models are defined by placing a partial ordering
on the ranked models of the KB - this is in addition to the partial ordering on
the elements of the domain (see Figure 3 for an example).

〈T ,D〉 = 〈∅, {C �∼D}〉

I: c,d¬c,d ≺ J :
c,d

¬c,d

I is a minimal ranked model for 〈T ,D〉

Figure 3. Ordering ranked models in pursuit of the minimal ones.

The minimal ranked models in the partial order are those in which there is
no element of the domain that can be moved to a more typical level in the strata
(i.e. if it can be moved, then it is not possible without violating at least one axiom
in the KB).

The logical properties that any nonmonotonic consequence relation should
satisfy were shown to generalise well to the DL case ([7, Definition 4] and [8, Def-
inition 2]). Several DL generalisations of RC have also been proposed [10,14,8,7].
Giordano et al. [14] gave the first generalisation of RC which corresponds in a
natural way to the minimal ranked model semantics of KLM [21]. Our character-
isation [7] was also shown to correspond to theirs.

The first attempt at a procedure for computing RC in the DL case was the
effort of Casini and Straccia [10] for ALC. This syntactic procedure was composed
entirely of classical DL decision steps. A tableau calculus was presented for a
preferential extension ofALC by Giordano et al. [15]. Notwithstanding, all existing
procedures in the literature that are based on classical DL decision steps are
variants of the syntactic procedure by Casini and Straccia [10].

The full technical details of our procedure including pseudocode has been
presented [9]. We conclude our brief survey of preferential reasoning in DLs with
an example illustrating the kinds of inferences we can draw with RC, the limi-
tations of RC (the inferences that we would like to draw but cannot), and the
additional inferences we can draw from recent extensions of RC such as the Lex-
icographic [20,11] and Relevant closures (submitted work).

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics 195

Example 2 Consider the following defeasible KB:

T =

⎧⎪⎪⎨⎪⎪⎩
1. MRBCell � ECell,
2. HRBCell �MRBCell,
3. CamelRBCell �MRBCell,
4. ∃hasShape.Circle � ¬∃hasShape.Oval

⎫⎪⎪⎬⎪⎪⎭

D =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1. ECell �∼ ∃hasNucleus.,
2. MRBCell �∼ ¬∃hasNucleus.,
3. MRBCell �∼ ∃hasShape.Circle,
4. HRBCell
 ∃hasCondition.EMH �∼ ∃hasNucleus.,
5. CamelRBCell �∼ ∃hasShape.Oval

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The KB consisting of T and D above represents biological information de-

scribing that: eukaryotic cells (ECell) usually have a nucleus, mammalian red blood
cells (MRBCell) are types of eukaryotic cells that usually don’t possess a nucleus,
human red blood cells (HRBCell) are also mammalian red blood cells but if they are
affected by the extramedullary hematopoiesis [25] (EMH) medical condition then
they usually contain a nucleus. In addition to the properties pertaining to nuclei,
we also represent that mammalian red blood cells generally have a circular shape
but the red blood cells of a camel (CamelRBCell), which are also mammalian, do
not inherit this property (they are distinctly oval shaped) [22].

Using RC we are able to derive (retain) the intuitive inferences that: eukary-
otic cells usually have a nucleus and even though mammalian red blood cells are
considered eukaryotic, they are allowed to break the tradition and be devoid of a
nucleus. In essence, mammalian red blood cells are recognised by RC as excep-
tional eukaryotic cells. RC also caters for exceptions to exceptions by noting that
a human red blood cell that is infected with EMH is an exceptional mammalian
red blood cell and is therefore allowed to possess a nucleus.

However, a limitation of RC is that it will not draw the reasonable inference
that: human red blood cells (even if they are infected with EMH) should be circular
in shape [20,11]. We can argue that this inference is reasonable to make because
we know that mammalian red blood cells usually have a circular shape (Axiom 3 in
D), and that human red blood cells are mammalian (Axiom 2 in T). The trouble is
that RC sees human red blood cells with EMH as exceptional even though the reason
for this has nothing to do with its shape (the reason is related to the property of
possessing a nucleus). Together with the fact that RC does not permit inheritance
of properties for exceptional elements, the desired inference is not allowed. In an
analogous way, we cannot derive another desirable conclusion that a camel red
blood cell should not possess a nucleus.

The Lexicographic and Relevant closures are syntax dependent extensions of
RC that overcome the above limitations [20,11]. They do this by identifying the
reasons for information to be considered exceptional in the KB (albeit in differ-
ent ways). Relevant closure (submitted work) notably uses the notion of justifica-
tions [17,4] in this regard which further exploits the connection between nonmono-
tonic reasoning and belief revision [13]. In both these proposals, we are able to

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics196

derive from Example 2 that human red blood cells infected with EMH are usually
circular in shape and that camel red blood cells usually lack a nucleus. �

3. Open Issues

As mentioned earlier, the framework for preferential reasoning in DLs is not com-
plete. “Lifting” the theoretical results from the propositional case to the DL case
is not straightforward in all situations. For example, there is a definition in the
propositional case for the exceptionality of a formula w.r.t. to a defeasible KB [21,
Definition 2.20]. We give the natural translation of this definition for ALC:

Definition 1 We define an ALC concept, C, as being exceptional w.r.t. a defea-
sible ALC KB 〈T ,D〉 if 〈T ,D〉 |=p �∼ ¬C. Each C �∼D ∈ D is also said to be
exceptional w.r.t., 〈T ,D〉.

Definition 1 uses ranked entailment (|=p) to define the exceptionality of a
concept C. Semantically, it means that C is considered exceptional w.r.t. the KB
if the most typical elements of the domain cannot belong to the extension of C in
any ranked model of the KB. In other words, from the information in the KB, it is
abnormal to belong to the extension of C. This definition is quite straightforward
and intuitive to understand in terms of ranked models but there is no relationship
drawn to help us understand this in terms of classical DL interpretations.

Clearly, such a relationship must exist because Casini and Straccia [10] have
shown that RC can be computed using purely classical DL decision steps. How-
ever, this relationship is not clearly demonstrated from a model-theoretic per-
spective. We argue that a reduction of the notion of exceptionality (Definition 1)
to some form of classical entailment would be invaluable in demonstrating this
relationship. We claim that this reduction would also help with other aspects,
such as, deepening our understanding of the relationship between defeasible KBs
and their corresponding classical counterparts and developing more optimised al-
gorithms for preferential reasoning that take advantage of existing classical DL
reasoner implementations.

Another issue that needs addressing is the fact that there are several alterna-
tives to answer the question of entailment. Rational Closure, is deemed the ap-
propriate starting point since it is the most conservative relation satisfying KLMs
logical postulates [21, Section 2.2]. But for the growing number of alternatives to
RC including Lexicographic Closure, Relevant Closure and even nonmonotonic
reasoning proposals outside the KLM framework, there needs to be an investi-
gation into exactly how they relate to RC and the logical postulates. We plan
to investigate these relationships in terms of the entailments that they give, the
applications where each is most suitable and their reasoning performance.

It is important to stress here the type of nonmonotonic formalism we are
developing. The formalism is addressing the problem of classical logics being in-
tolerant to exceptions. We wish to provide the capability of expressing potentially
fallible statements. Note that this is different from representing uncertain state-
ments. A common misconception in nonmonotonic reasoning is to conflate the
meaning of these terms. The sentences “there is a sixty percent chance of rain

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics 197

tomorrow” and “it may rain tomorrow” represent uncertain statements because
even if our probability value of sixty is correct for the first statement there is no
certainty about whether it will rain tomorrow. In contrast, the sentence “students
usually don’t pay taxes” is a certain statement. We are certain that students usu-
ally don’t pay taxes but this “general rule” can be defeated given an exceptional
case (for example, a student who works).

We are aware that there are alternatives, in the DL setting, to the preferential
approach for addressing this particular problem of reasoning about exceptions.
The most published approaches in the literature are based on Circumscription [5,
6,24] but there are others such as Default logic [2,3] and Minimal Knowledge and
Negation as Failure (MKNF) [12,18]. Another planned contribution of this PhD
is a comparison of these approaches in terms of the quality (logical merit) of their
entailments and their performance.

Finally, the ultimate goal of our research is to enable the practical use of
preferential reasoning in ontology development settings where DLs are the main
underlying formalism. The OWL (www.w3.org/TR/owl-features) standard and
OWL-related tools for ontology development are the main targets for the intro-
duction of preferential reasoning features. Optimisations are needed to enable on-
demand reasoning in OWL tools. In addition, various new avenues for research
open up when considering non-standard reasoning services in the preferential con-
text. Tasks such as classification (computing the subsumption relationship be-
tween each pair of concept names in the ontology) and axiom pinpointing [4]
cannot be translated to the preferential context in a trivial way.

4. Methodology

Exceptionality (Definition 1) is a central principle in KLM-style preferential rea-
soning. It is used in preferential reasoning to induce a unique a priori ordering
on the “defaults” (defeasible subsumptions) in our KB, which represents the in-
creasing levels of “exceptional” information in the KB. We plan to determine if
there is a reduction of this notion to classical entailment and if so, what this re-
duction is. We know classical ALC statements such as C � D can be equivalently
represented by C
 ¬D � ⊥. An interesting result in the preferential framework
is the correspondence between C �∼⊥ and C � ⊥. Semantically, “if there are no
typical C’s then there are no C’s” and vice versa. This is the starting point for
investigation of a reduction to classical entailment of exceptionality.

Even though KLM proposed a preferential reasoning approach in their sem-
inal work [21], they also provided a tool (KLM postulates [21, Section 2.2]), in
that same work, for evaluating the quality of the inferences drawn by any non-
monotonic formalism. By studying and comparing nonmonotonic logics from the
perspective of the consequence relations (CR) they define, one can evaluate and
compare the logical merit of the conclusions drawn, avoiding overly detailed com-
parisons of the mechanics of these logics. For example, any nonmonotonic for-
malism should satisfy Rational Monotonicity: given the consequence relation (|∼)
defined by some nonmonotonic logic, this property states that if we can derive β
from α (α |∼ β) and we cannot derive ¬γ from α (�|= α |∼ ¬γ) then it is “safe” to

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics198

“add” γ to α and still derive β (α∧γ |∼ β). We plan to undertake this evaluation
in depth for the different nonmonotonic proposals.

Within the preferential approach, a task which is of increasing importance
is to determine the relationships between the different entailment proposals. We
plan to investigate this both from a theoretical perspective (e.g. LC is a venturous
extension of RC, the CR of LC is a superset of the one of RC) and from a practical
perspective (e.g. RC is more cautious in drawing inferences therefore it is perhaps
more suitable for systems in high risk domains where extreme care should be
taken before making an inference).

We have shown that we can integrate defeasible subsumption into current
OWL tools with surprisingly minor modifications [23] through the use of OWL
annotations. In addition, we can compute preferential reasoning using classical
DL decision steps and therefore, we can exploit existing highly optimised DL
reasoners to perform defeasible inference. We have a preliminary Protégé plugin
which demonstrates these positive points [23].

For evaluating the performance of our algorithms, the decision of what data
(defeasible ontologies) to select is a non-trivial task. We have used synthetic on-
tologies in the past [9] which has understandably drawn criticism because of the
possible biases in their generation as well as these ontologies not resembling those
found in the wild. Thus, we have to develop meaningful ways of integrating de-
faults into existing ontologies for our results to be more significant.

5. Conclusion

We have presented a general outline of the research that will be conducted for this
PhD. The ultimate goal is to enable on-demand reasoning services for DL-based
ontologies that represent defeasible subsumptions in the preferential framework.
Before that goal can be achieved we propose to lift the solid theoretical founda-
tion that was established by KLM, in propositional logic, to the DL ALC. The
different entailment proposals have to be documented and placed into perspective
w.r.t. each other. These need to be compared and evaluated to determine their
suitability in different contexts and practical performance. Finally, we plan to
optimise the proposals and implement them in a defeasible reasoning system that
can be integrated into existing OWL-related tools and systems.

Acknowledgements. This work is based upon research supported by the National
Research Foundation (NRF). Any opinion, findings and conclusions or recommen-
dations expressed in this material are those of the authors and therefore the NRF
do not accept any liability in regard thereto. Kody Moodley is a Commonwealth
Scholar, funded by the UK government.

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics 199

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

[2] F. Baader and B. Hollunder. How to prefer more specific defaults in terminological default
logic. In Proc. of the International Joint Conference on Artificial Intelligence, 1993.

[3] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge represen-
tation formalisms. Journal of Automated Reasoning, 14(1):149–180, 1995.

[4] F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010.

[5] P. Bonatti, C. Lutz, and F. Wolter. Description logics with circumscription. In Proc. of
Principles of Knowledge Representation and Reasoning, volume 6, pages 400–410, 2006.

[6] P. A. Bonatti, C. Lutz, and F. Wolter. The complexity of circumscription in DLs. Journal
of Artificial Intelligence Research, 35:717–773, 2009.

[7] K. Britz, G. Casini, T. Meyer, K. Moodley, and I. J. Varzinczak. Ordered Interpretations
and Entailment for Defeasible Description Logics. Technical report, CAIR, CSIR Meraka
and UKZN, South Africa, 2013.

[8] K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation for preferential description
logics. In Proc. of the Australasian Joint Conference on Artificial Intelligence, pages
491–500. Springer, 2011.

[9] G. Casini, T. Meyer, K. Moodley, and I. J. Varzinczak. Towards practical defeasible
reasoning for description logics. In Proc. of DL, 2013.

[10] G. Casini and U. Straccia. Rational closure for defeasible description logics. In Proc. of
JELIA, pages 77–90, 2010.

[11] G. Casini and U. Straccia. Lexicographic closure for defeasible description logics. In Proc.
of Australasian Ontology Workshop, volume 969, 2012.

[12] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and
negation as failure. ACM TOCL, 3(2):177–225, 2002.

[13] P. Gärdenfors. Belief revision, volume 29. Cambridge University Press, 2003.
[14] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Minimal model semantics and

rational closure in description logics. In Proc. of DL, 2013.
[15] L. Giordano, N. Olivetti, V. Gliozzi, and G. L. Pozzato. ALC + T: a preferential extension

of description logics. Fundamenta Informaticae, 96(3):341–372, 2009.
[16] S. Grimm and P. Hitzler. A preferential tableaux calculus for circumscriptive ALCO. In

Proc. of RR, pages 40–54, 2009.
[17] M. Horridge. Justification based explanation in ontologies. PhD thesis, the University of

Manchester, 2011.
[18] P. Ke and U. Sattler. Next steps for description logics of minimal knowledge and negation

as failure. In Proc. of DL, 2008.
[19] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models

and cumulative logics. Artificial Intelligence, 44:167–207, 1990.
[20] D. Lehmann. Another perspective on default reasoning. Annals of Mathematics and

Artificial Intelligence, 15:61–82, 1995.
[21] D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial

Intelligence, 55(1):1–60, 1992.
[22] R. A. McPherson, W. H. Sawyer, and L. Tilley. Band 3 mobility in camelid elliptocytes:

implications for erythrocyte shape. Biochemistry, 32(26):6696–6702, 1993.
[23] T. Meyer, K. Moodley, and U. Sattler. DIP: A defeasible-inference platform for owl

ontologies. In Proc. of DL, 2014.

[24] Kunal Sengupta, Adila Alfa Krisnadhi, and Pascal Hitzler. Local closed world seman-
tics: Grounded circumscription for OWL. In Proc. of the International Semantic Web

Conference, pages 617–632. Springer, 2011.

[25] R Verani, J Olson, and J. L. Moake. Intrathoracic extramedullary hematopoiesis: report of
a case in a patient with sickle-cell disease-beta-thalassemia. American journal of clinical

pathology, 73(1):133–137, 1980.

K. Moodley et al. / Practical Defeasible Reasoning for Description Logics200

Integration of Temporal Abstraction and

Dynamic Bayesian Networks for

Coronary Heart Diagnosis

Kalia Orphanou a,1, Athena Stassopoulou b and Elpida Keravnou c

a Department of Computer Science, University of Cyprus, Nicosia, Cyprus
b Department of Computer Science, University of Nicosia, Nicosia, Cyprus

c Department of Electrical and Computer Engineering and Computer Science, Cyprus
University of Technology, Limassol, Cyprus

Abstract. Temporal data abstraction (TA) is a set of techniques aiming to abstract

time-points into higher-level interval concepts and to detect significant trends in

both low-level data and abstract concepts. Dynamic Bayesian networks (DBNs)

are temporal probabilistic graphical models that model temporal processes, tem-

poral relationships between events and state changes through time. In this paper,

we propose the integration of TA methods with DBNs in the context of medical

decision-support systems, by presenting an extended DBN model. More specifi-

cally, we demonstrate the derivation of temporal abstractions which are used for

building the network structure. We also apply machine learning algorithms to learn

the parameters of the model through data. The model is applied for diagnosis of

coronary heart disease using as testbed a longitudinal dataset. The classification

accuracy of our model evaluated using the evaluation metrics of Precision, Recall

and F1-score, shows the effectiveness of our proposed system.

Keywords.
temporal abstraction, temporal reasoning, Dynamic Bayesian networks, medical

diagnostic models, coronary heart disease

1. Introduction

Temporal abstraction (TA) and Dynamic Bayesian networks (DBNs) have been gaining

interest in the research community of medical-based systems. TA [1] is a knowledge-

based process which creates high-level concepts from raw data interpreted over time in-

tervals. The derived high-level abstract concepts have proved to be helpful in various

clinical tasks and domains such as therapy planning, the summarization and interpreta-

tion of patient records [2].

DBNs [3] have been proposed in the literature to incorporate the explicit or implicit

representation of time. They are the most widely used temporal extension of Bayesian

networks, which are graphical models representing explicitly probabilistic relationships

1Corresponding author: Department of Computer Science University of Cyprus P.O. Box 20537 1678

Nicosia, Cyprus; E-mail address: korfan01@cs.ucy.ac.cy

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-201

201

among variables. DBNs are able to model stochastic processes in discrete time and they

utilize a representation of a dynamic process via a set of stochastic variables in a se-

quence of time slices. DBNs have many applications in medicine in tasks such as medi-

cal diagnosis, forecasting, and medical decision making [4, 5]. A detailed survey on TA

and DBN applied to medicine can be found in our recent work in [6].

In this paper, we present a novel approach of integrating TA techniques with DBNs.

Our recent review of the relevant literature [6] indicated that both these areas have been

largely used independently of each other in clinical domains. Our proposal is that they

could be effectively integrated in the context of medical decision-support systems. We

apply this integration in the medical domain of coronary heart disease (CHD) using as a

testbed the STULONG dataset 2. The proposed model, called ‘DBN-extended’ performs

a CHD diagnosis on a particular patient based on the patient’s medical history.

In particular, we use temporal abstraction methodologies to extract basic abstrac-

tions (i.e. state, single trend and persistence) using the finest possible granularity. The

finest granularity is the smallest time interval period during which the variable state value

remains the same and it can be acquired from experts’ knowledge and raw data. The

derived concepts are then used for DBN model development and deployment. Learning

parameters and inference algorithms are applied to the constructed model.

The paper is structured as follows. In Section 2, we provide an overview of our ap-

proach and our testbed dataset. The methodology of deriving the temporal basic abstrac-

tions is described in Section 3 and the proposed DBN-extended model is introduced in

Section 4. An extensive discussion of our experiments and experimental results is given

in Section 5, and we conclude in Section 6.

2. Overview

Our goal is to integrate temporal abstraction techniques with Dynamic Bayesian net-

works, thus the first step is to extend the DBN network so that its nodes represent basic

temporal abstractions. In order to evaluate the benefits of this integration, we developed

and deployed the extended model using as a benchmark dataset, the STULONG dataset

which was collected from a longitudinal study of coronary heart disease prevention. Ex-

amples of CHD events are: acute coronary syndrome, myocardial infarction, angina pec-

toris and ischemic heart disease. The target group includes 1428 men who may have had,

or not, a CHD event before the beginning of the study.

2.1. System Overview

Our approach consists of four main phases:

i) Data preprocessing and feature selection

ii) Derivation of basic temporal abstractions (state, trend and persistence TAs) from

raw data

iii) Construction of the ‘DBN-extended’ model and

iv) Evaluation of the model

2The data resource is on: http://euromise.vse.cz/challenge2004/ [Date accessed: 15 May 2014]

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis202

The first main phase consists of the feature selection process and the selection of

the temporal range of observations. The selected time period is the total number of years

of observations based on which the temporal abstractions were generated and the total

number of time slices for the DBN were selected. We base our selection of features on

the domain knowledge that we acquired from a CHD expert. The selected features are

either direct or indirect risk factors (RFs) of CHD. Direct RFs include age, hyperten-

sion, cigarette smoking status (current smoker or not), dyslipidemia levels (such as Total

cholesterol/HDL ratio, LDL and triglycerides levels), obesity, diabetes and history fea-

tures (such as past personal history and family history). Indirect RFs include medicines

treating high cholesterol (taken or not), diet (if they follow any diet or not) and exercise

(if they regularly exercise or not).

The key problem for model construction is the choice of the total observation period

for all patients since it ranges from 1 to 24 years. In order to remove as few records as

possible from the dataset, the temporal range is chosen to be 24 years. For patients whose

total observation period is less than 24 years, the CHD event is considered unknown on

the years beyond their observation period. The patients’ health condition is assumed to

remain stable during any time period that their examination results are unknown either

because their total observation period is less than 24 years or they did not take any exam-

ination at the particular time period. The target group was reduced by removing records

of patients with less than three years of observations since in this study we are going to

focus on the temporal aspect of the data, utilizing the advantage of long-term observa-

tions. The final target group consists of 849 individuals from whom 254 had an event at

some point in time during their whole monitoring examination period.

3. Basic Temporal Abstractions

Temporal abstraction techniques are divided into two categories: basic and complex TAs.

In this study we are concerned with basic temporal abstractions techniques such as:

states, trend and persistence. One of the assumptions used in deriving temporal abstrac-

tions (state and trend) is that the abstraction value of a variable with missing raw values

at any time within the interval period, is defined to be the same as its last known value.

The same applies for cases when no record is defined during the required time interval.

3.1. State TAs

The state abstractions determine the state of an individual parameter over a particular

time period based on predefined categories. The state categories for the selected features

(variables) are defined by clinical experts rules. For example, poor-controlled and well-

controlled hypertension are state TAs of systolic and diastolic blood pressure values. The

hypertension variable is defined by the ‘poor-controlled’ state label if the patient has a

history of hypertension and his systolic or diastolic blood pressure levels are above the

standard limits; and by the ‘well-controlled’ state label when a patient has a history of

hypertension and his systolic or diastolic blood pressure levels are normal. Otherwise,

it is defined by the ‘no hypertension’ label. Dyslipidemia is a state TA of dyslipidemia

values. It is defined as ‘Present’ when a patient has any of the dyslipidemia values higher

than the standard limits and ‘Absent’ otherwise. State TAs for the Age variable are de-

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis 203

rived using three state categories labels: a) ‘Normal’ when the patient is under 50 years

old, b) ‘High’ when the patient is between 50 and 60 years old and c) ‘Very High’ when

the patient is over 60 years old. State TAs for the rest of the variables are derived in a

similar manner. All state TAs are displayed in Table 1.

Table 1. State TAs variables and their state values. Variable code is the variable name in the DBN model

Variable Variable Code Value=1 Value=2 Value=3

Smoking Smoking No Smoker Current Smoker

Cholesterol Medicines medCH Taken Not taken

Hypertension HT No Hypertension Well Controlled Poor

Controlled

Dyslipidemia Dislipidia Absent Present

Obesity Obesity Absent Present

Age AGE Normal High Very High

Diet DIET Following Diet Not Following Diet

Exercise Exercise Exercising Not Exercising

3.2. Trend TAs

Trend abstractions of a feature are generated by observing the changes between their

values. Examples of trend values are: decreasing, steady and increasing. In our approach,

trend abstractions of a variable are generated by comparing two or more consecutive

feature values (during the interval period of 3 years) as follows: taking into consideration

the trends of all the feature values of all the examinations during a particular time period

interval (3 years duration - 1-3 examinations), the most frequent trend value is selected

for the corresponding feature for that period. We have also used a combination of trends

and state abstractions in order to define the ratio of change of a particular variable based

on its state value. Trend abstraction values are:

• ‘Abnormal’ when the variable state value is abnormal and its trend ratio is in-

creasing or steady

• ‘AbnormalDecr’ when the variable state value is abnormal and its trend ratio is

decreasing

• ‘NormalInc’ when the variable state value is normal and its trend ratio is increas-

ing and

• ‘Normal’ when the variable state value is normal and its trend ratio is decreasing

or steady

The resulting trend abstractions are displayed in Table 2.

3.3. Persistence TAs

Persistence TA techniques derive maximal intervals for some property by applying per-

sistence rules both backwards and forwards in time from the specific time of the given

property. Such examples are Diabetes, Family History (FH) and the past personal history

of a patient for a CHD event (HistoryEvent). For example, when someone was diagnosed

with diabetes at time t, diabetes is present from time t and onwards. Similarly, when

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis204

Table 2. Trend TAs variables and their trend values. Variable code is the variable name in the DBN model

Variable Name Variable Code Value = 1 Value = 2 Value = 3 Value =4

Total Cholesterol/HDL Ratio TCH/HDL Abnormal AbnormalDec NormalInc Normal

LDL LDL Abnormal AbnormalDec NormalInc Normal

Triglycerides TRIG Abnormal AbnormalDec NormalInc Normal

HDL HDL Increasing Steady Decreasing

Total Cholesterol TCH Increasing Steady Decreasing

someone was diagnosed with a CHD event at time t, he has a history of event from t+1
and onwards, thus the value of HistoryEvent variable is ‘Present’ from t + 1 until the

end of the monitoring process. The FH is an example of persistence TA for the whole

representation time period, since its value does not change through time. The resulted

persistence TAs are displayed in Table 3.

Table 3. Persistence TAs variables and their persistence values. Variable code is the variable name in the DBN

model

Variable Name Variable Code Value = 1 Value = 2

Diabetes Diabetes Present Absent

Past Personal History HistoryEvent Present Absent

Family History FH Present Absent

4. Constructing the Dynamic Bayesian Network

The construction of the extended Dynamic Bayesian network consists of two steps:

i)Building the network structure (qualitative part) and ii)Learning the parameters of the

network (quantitative part).

4.1. Network Structure

The network structure, as displayed in Figure 1, was designed by incorporating prior

information elicited from medical experts and medical literature. The derived basic tem-

poral abstractions described in Section 3 form the nodes (variables) of our DBN. The

DBN framework enables us to combine all the observations of a patient as evidence and

derive a probability for the hypothesis that the patient is diagnosed with a CHD, given

the total evidence gathered.

The model consists of 17 variables of which 15 are observed and two are hidden

(with unknown value). Hidden variables are the class variable CurrentEvent represent-

ing the diagnosis of a CHD event and the Dislipidia node. Both of these variables take

two values: ‘Present’ and ‘Absent’. Dislipidia is introduced as a common effect node of

TCH/HDL, LDL and triglycerides, which are direct risk factors to the class variable,

using the parent divorcing method in order to simplify the parameters estimation pro-

cess [7]. The variable FH is not repeated since it was modeled only as an initial condition

and it is not changing over time. It is therefore shown in the network of Figure 1, to be

outside the temporal plate. The arcs in the network are carriers of the causal and tem-

poral relationships among the variables. Intra-slice arcs represent the static relationships

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis 205

among variables within the same time-slice whereas inter-slice arcs connect nodes be-

tween different time slices to represent the changes over time among the variables. The

single digit numbers on the arcs denote the temporal delay of the influence of the cause

node to the effect. For example, an arc labeled as 1 between the variables History of CHD

(HistoryEvent) and itself denotes an influence that takes one time step which is reflected

to the next time slice. On the other hand, the arc without label connecting the CHD risk

factors (hypertension, obesity, etc.) to the CHD event, denotes a static influence at the

same time slice.

The first time slice in the network represents the time period starting from the pa-

tients’ entry examination and ending three years after their entry examination. This fixed

three-year granularity is chosen as it is the finer granularity, because DBNs are not able

to represent irregular time periods.

4.2. Learning Parameters

Having defined the structure of the network, we need to define the conditional proba-

bilities which quantify the arcs of the network. More specifically, we need to define the

prior probability for the root nodes such as: AGE, Diet, Exercise, Smoking and FH as

well as the conditional probability distributions for all non-root nodes. Each table gives

the conditional probability of a child node to be in each of its states (values), given all

possible parent state combinations. All of the parameters are learned from data using the

expectation maximization (EM) algorithm [8].

Once the network structure is defined and the network is quantified with the learned

conditional probability tables, the next step is to predict the probability of the class node

CurrentEvent. Each variable in the network is instantiated by the corresponding feature

value. The DBN is unrolled for eight time slices in order to represent the total observation

period (24 years) of all patients included in the training dataset. Then it performs infer-

ence and derives the belief in the class variable, i.e. the posterior probability of the class

at t to take on each of its values given the evidence (features) observed at the previous

time step t− 1 and at the current time-step.

Figure 1. The graphical structure of the developed DBN model displaying the nodes on one time slice and

temporal arcs representing the static or temporal relationships among variables.

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis206

5. Experimental Results and Analysis

In this section, we present the experiments performed in order to apply our methodology

and evaluate the performance of our ‘DBN-extended’ model. For the evaluation of the

accuracy of our model, we divided the dataset into training and testing using the cross-

validation technique. The version of cross validation that we used in the experiments is 10

times 10-fold cross-validation, i.e. we averaged 10 runs of 10-fold cross-validation with

different 10 folds in each run [9]. The classification accuracy of the model is estimated

on t = 7 which is the last time slice.

5.1. Training in the Presence of Class Imbalance

One of the most important problems in the data mining field is to deal with imbalanced

datasets. The datasets present a class imbalance when there are many more examples of

one class (majority class) than of the other (minority class). It is usually the case that this

latter class, i.e. the unusual class, is the class of interest. Because this unusual class is

rare among the general population, the class distributions are very skewed.

In the current dataset, individuals who were not diagnosed with a CHD event at a

particular time period are many more than those who were diagnosed with a CHD event

(minority class). Most existing classification methods tend not to perform well on minor-

ity class examples when the dataset is extremely imbalanced. One approach to tackle the

problem of an imbalanced dataset is to use resampling to modify the datasets [10, 11].

This is achieved by either removing examples from the majority class (undersampling)

or adding more examples to the minority class (oversampling) or a combination of both.

In our system, we evaluate our classifier on two oversampling methods as well as on a

combination of oversampling with undersampling. More specifically, we apply the fol-

lowing resampling methods: a)SMOTE-N (Synthetic Minority Oversampling Technique

for nominal features) [12], which generates synthetic examples to be added to the minor-

ity class, b)random oversampling where minority cases are randomly chosen for dupli-

cation until the ratio of majority to minority reaches a desirable level and c)SMOTE-N

oversampling on the minority class with random undersampling the majority class.

We performed 4 experiments, based on resampling at various ratios. Table 4 shows

the number of patients records with a CHD event (‘Present’) at t = 7 and the number of

patients records without a CHD event (‘Absent’) in each of the 4 training data sets:

• Dataset D1 is the original dataset (no resampling)

• Dataset D2 is defined by random oversampling the minority class

• Dataset D3 is obtained via oversampling using SMOTE-N and finally

• Dataset D4 is derived using a combination of oversampling with SMOTE-N and

random undersampling.

We constructed four networks, one for each experiment. The networks had the same

structure but differed in their parameters, i.e. prior probabilities and the conditional prob-

ability tables. Each time a new training dataset was introduced, new network parameters

were derived using training on the new set. Throughout the remaining of the paper we

will refer to the four models as: D1, D2, D3 and D4. The models presented in this paper

were created and tested using the SMILE inference engine and GeNIe 3.

3A development environment for reasoning in graphical probabilistic models, available at:

http://genie.sis.pitt.edu/. [Date accessed: 15 May 2014]

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis 207

5.2. Testing the System

Two metrics that are commonly applied to imbalanced datasets to evaluate the perfor-

mance of the models is recall (Eq 1) and precision (Eq 2). These two metrics are summa-

rized into a third metric known as the F1 measure (Eq 3). The F1 measure is the combi-

nation of precision and recall which measures the effectiveness of classification in terms

of a ratio of the weighted importance of recall and precision. In the evaluation of the pro-

posed approach, both metrics are given equal importance. Recall and precision should be

close to each other, otherwise the F1 measure yields a value closer to the smaller of the

two. Applied to our problem, precision is the ratio of the number of patients who had a

CHD event at time t and are correctly classified, divided by the total number of patients

who are classified of having a CHD event at time t. Recall, on the other hand, is the ratio

of the number of patients who had a CHD event at time t and are correctly classified,

divided by the number of patients with an actual CHD event at t.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1score = 2× Precision×Recall

Precision+Recall
(3)

Table 4. Datasets used for four experiments with and without resampling

The values of recall, precision and F1-measure obtained from the evaluation of our

model for each of the four training datasets are given in Table 5. As expected, the per-

formance of the model without resampling (D1) is very low as this dataset is highly

imbalanced and the classifier is biased towards the majority class. By applying both the

random oversampling and SMOTE-N methods, we obtained dramatically improved re-

sults compared to D1. One risk with random oversampling, is overfitting due to placing

exact duplicates of minority examples from the original set and thus making the classifier

biased by remembering examples that were seen many times. The SMOTE-N technique

overcomes this risk by creating synthetic examples by interpolating pairs of the closest

neighbors in the minority class and introduces some new cases not included in the orig-

inal dataset. The dataset derived by applying SMOTE-N oversampling combined with

undersampling (D4) had the best classification performance. With this dataset, recall

reaches as high as 91% whereas precision reaches as high as 75% yielding a combined

F1-score of 82%.

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis208

Table 5. The evaluation results for all the four training datasets

We also used Receiver Operating Characteristic (ROC) curves [13, 14] to show

graphically the classification performance of the four models. ROC displays graphically

the trade-off between true positive rate (TPR) and false positive rate (FPR) of a classifier.

TPR is the fraction of positive examples predicted correctly whereas FPR is the fraction

of negative examples predicted as positive. A point on the ROC curve represents the FPR

and TPR associated with the classification based on a given discrimination threshold.

The threshold refers to the cut-off value above which a record is classified as positive.

By varying the threshold we produce different points on the ROC curve (i.e. different

(FPR,TPR) pairs). A good classification model is located as close as possible to the upper

left corner of the diagram, i.e. point (TPR =1, FPR=0). The resulted graphs are displayed

in Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false positive rate

t
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

false positive rate

t
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

false positive rate

t
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

false positive rate

t
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

Dataset D4Dataset D3

Dataset D1 Dataset D2

Figure 2. ROC curves t = 7 for all the four datasets.

6. Conclusions and Future Work

In this paper, we represented a new approach of integrating temporal abstraction with

Dynamic Bayesian networks in the context of coronary heart disease. The benefits of

applying our developed DBN-extended model to the CHD domain are that this exten-

sion can handle incomplete evidence in predicting disease outcomes and dealing with

uncertainty which are the most usual challenges in the domain of CHD.

During our training and evaluation stages we addressed the class imbalance prob-

lem on the dataset. We have used three techniques of resampling, random oversampling,

SMOTE-N and combination of SMOTE-N with undersampling to deal with the imbal-

ance problem and developed four models by training on four different datasets. The high

classification accuracy results proves the effectiveness of our proposed methodology.

Our recall and precision were reaching as high as 91% and 75% respectively by apply-

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis 209

ing SMOTE-N technique in combination with undersampling to the original dataset. The

classification results provide a promising direction for future work. The next step is to

apply the proposed approach for prognosis in the CHD domain. Estimating CHD risk

for future time periods (prognosis) can help clinicians provide treatment decisions to

patients that will prevent CHD events.

In addition, we are currently investigating the introduction of complex temporal ab-

stractions to the nodes of the DBN-extended model. Complex temporal abstractions de-

fine a combination of basic TAs and/or temporal patterns. Through their representation

into the DBN-extended model, we will also introduce the representation of new tempo-

ral dependencies between the variables (such as ‘meets’, ‘overlaps’ and ‘starts’)and the

representation of events occuring at irregular time periods into the time slices.

References

[1] Y. Shahar, M. A. Musen, Knowledge-based temporal abstraction in clinical do-

mains, Artificial intelligence in medicine 8 (3) (1996) 267–298.
[2] N. Lavrač, I. Kononenko, E. Keravnou, M. Kukar, B. Zupan, Intelligent data anal-

ysis for medical diagnosis using machine learning and temporal abstraction, AI

Communications 11 (3,4) (1998) 191–218.
[3] K. P. Murphy, Dynamic bayesian networks: representation, inference and learning,

Ph.D. thesis, University of California (2002).
[4] Y. Xiang, K.-L. Poh, Time-critical dynamic decision making, in: Proceedings of the

Fifteenth Conference Annual Conference on Uncertainty in Artificial Intelligence

(UAI-99), Morgan Kaufmann, San Francisco, CA, 1999, pp. 688–695.
[5] T. Charitos, L. C. van der Gaag, S. Visscher, K. A. M. Schurink, P. J. F. Lucas, A

dynamic bayesian network for diagnosing ventilator-associated pneumonia in ICU

patients, Expert Systems Applications 36 (2) (2009) 1249–1258.
[6] K. Orphanou, A. Stassopoulou, E. Keravnou, Temporal abstraction and temporal

bayesian networks in clinical domains: A survey, Artificial Intelligence in Medicine

60 (3) (2014) 133 – 149.
[7] F. V. Jensen, An introduction to Bayesian networks, Vol. 210, UCL press London,

1996.
[8] T. Moon, The expectation-maximization algorithm, Signal Processing Magazine,

IEEE 13 (6) (1996) 47–60.
[9] J. M. Pena, J. Björkegren, J. Tegnér, Learning dynamic bayesian network models

via cross-validation, Pattern Recognition Letters 26 (14) (2005) 2295 – 2308.
[10] A. Estabrooks, T. Jo, N. Japkowicz, A multiple resampling method for learning

from imbalanced data sets, Computational Intelligence 20 (1) (2004) 18–36.
[11] A. Stassopoulou, M. D. Dikaiakos, Crawler detection: A bayesian approach, in: Pro-

ceedings of the International Conference on Internet Surveillance and Protection,

ICISP ’06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 16–.
[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic

Minority Over-sampling Technique, Journal of Artificial Intelligence Research 16

(2002) 321–357.
[13] T. Fawcett, An introduction to ROC analysis, Pattern Recogition Letters 27 (8)

(2006) 861–874.
[14] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, (First Edition),

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

K. Orphanou et al. / Integration of Temporal Abstraction and DBNs for Coronary Heart Diagnosis210

Clause Simplifications in Search-Space

Decomposition-Based SAT Solvers

Tobias PHILIPP

International Center for Computational Logic
Technische Universität Dresden, Germany

Abstract. Inprocessing is to apply clause simplification techniques during search

and is a very attractive idea since it allows to apply computationally expensive

techniques. In this paper we present the search space decomposition formalism

SSD that models parallel SAT solvers with clause sharing and inprocessing. The

main result of this paper is that the sharing model SSD is sound. In the formalism,

we combine clause addition and clause elimination techniques, and it covers many

SAT solvers such as PaSAT, PaMira, PMSat, MiraXT and ccc. Inprocessing is not

used in these solvers, and we therefore propose a novel way how to combine clause

sharing, search space decomposition and inprocessing.

Keywords. SAT, guiding paths, inprocessing, blocked clause elimination

1. Introduction

The satisfiability problem (SAT) is one of the most prominent problems in theoret-

ical computer science and has many applications in software verification [6], plan-

ning [25, 36], bioinformatics [27] or scheduling [13]. Modern SAT solvers based on

the DPLL algorithm [7] use many advanced techniques like clause learning [31],

non-chronological backtracking [40], restarts [12], clause removal [3, 10], preprocess-
ing [9, 28], inprocessing [5, 23, 39], efficient data structures [21, 33] and advanced deci-
sion heuristics [2, 3, 19, 33]. These improvements in the last decades led to a spectacu-

lar performance of conflict-driven satisfiability solvers. The search space decomposition
approach [43] was introduced in 1996, and is a promising approach to solve hard in-
stances (see [18,32,38] for an overview of parallel SAT solving). In particular, CCC [42]

is based on this approach. The search space, i.e. the set of interpretations, is decomposed

into different spaces by guiding paths [43], that are then explored in parallel by modern

sequential SAT solvers. This means that the solvers compete in finding a model of the

formula, and cooperate in proving its unsatisfiability.

Combining clause sharing with inprocessing in a parallel setting can make a for-

mula unsatisfiable, as the following example demonstrates [29]: Consider the situation in

which we have the two solvers Solver1 and Solver2 and the input formula F0 consisting

of the single unit clause (x). Then, Solver1 can rewrite F0 to its negation because this

operation preserves satisfiability. Suppose that Solver2 imports the negated formula, then

it can terminate with the answer UNSAT because the conjunction of F0 and its negation

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-211

211

is unsatisfiable, but the input formula F0 is satisfiable. Therefore, inprocessing must be

restricted if we allow clause sharing without any restriction.

To understand the interplay of advanced techniques and to reason about modern SAT

solvers, we propose to formalize parallel SAT solvers. Indeed, abstracting the specific

solver implementation is important since modern parallel SAT solvers consist of multiple

thousand lines of code and are written in programming languages with side effects like

C or C++. The formalisms presented in [1, 30, 34] models clause learning sequential SAT

solvers, but they are inadequate to express advanced features like restarts, preprocessing,

inprocessing and the ability to share clauses. But, Generic CDCL [20] can handle the

above techniques. A formalization in [29] was introduced, that models portfolio solvers

with inprocessing, and it was argued that this can be extended to guiding path solvers.

The contribution of this paper is the formal system SSD that models the computation

of search-space decomposition based SAT solvers with clause sharing and inprocessing.

It extends the formalism presented in [29] and we formally prove soundness of this

system. We combine clause addition techniques and clause elimination techniques.

This paper is structured as follows: We start with basic notions, parallel satisfiability

testing and clause simplifications in Sect. 2. Afterwards, we study some properties of

guiding paths in Sect. 3, and present the sharing model SSD in Sect. 4. Finally in Sect. 5

we conclude.

2. Background

2.1. Propositional Logic

We assume a fixed infinite set V of Boolean variables. A literal is a variable v (positive
literal) or a negated variable v (negative literal). The complement x of a positive (nega-

tive, resp.) literal x is the negative (positive, resp.) literal with the same variable as x. The

set of all literals is denoted by L . For a set of literals J the complement of J, denoted

by J, is defined as J = {x | x ∈ J}, and J is consistent if and only if {x,x} �⊆ J for every

literal x ∈ L . In SAT, we deal with finite clause sets called formulas. Each clause C is a

finite set of literals. We write a clause {x1, . . . ,xn} also as disjunction (x1∨ . . .∨xn) and a

formula {C1, . . . ,Cn} as a conjunction (C1 ∧ . . .∧Cn), where the empty clause is denoted

by ⊥.

The formula F after substituting all occurrences of the variable v with the variable

w is denoted by F [v)→ w]. The set of all variables occurring in a formula F (in positive

or negative literals) is denoted by vars(F). For a formula F and literal x, the formula

consisting of all clauses in the formula F that contain the literal x is denoted by Fx.

The semantic of formulas is built on interpretations. An interpretation I is a set of

literals that contains for all variables v exactly one of v or v, and can be understood as a

mapping from the set V of all Boolean variables to the set {,⊥} of truth values. The

interpretation I satisfies the literal x, in symbols, I |= x, if and only if x ∈ I. It satisfies the

clause C, in symbols I |= C, if and only if there is a literal x ∈ C such that I |= x. For a

formula F , the interpretation I satisfies the formula F , in symbols I |= F , if and only if

the interpretation I satisfies the clause C for every clause C ∈ F . A model I of a formula

F is an interpretation I that satisfies the formula F . If there is such an interpretation I,

the formula F is satisfiable. Otherwise, the formula F is unsatisfiable. The main ques-

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers212

tion can be expressed as follows: Given a formula F , the Satisfiability Problem (SAT)
asks whether the formula F is satisfiable. Two formulas F and F ′ are equisatisfiable,

in symbols F ≡sat F ′, if and only if either both are satisfiable or both are unsatisfiable.

In this paper, we relate formulas by the entailment relation: The formula F entails the

formula F ′ if and only if every model of the formula F is a model of the formula F ′.
This definition of entailment has two beneficial properties: transitivity and monotonic-

ity. The drawback is that some formula simplification rules must be treated differently.

Two formulas F and F ′ are equivalent, in symbols F ≡ F ′, if and only if the formula

F entails the formula F ′ and vice versa. The formula F ′ is an unsatisfiability-preserving
consequence of a formula F if and only if F |= F ′, and if the formula F is unsatisfiable,

then the formula F ′ is unsatisfiable.

The reduct of the formula F w.r.t. the consistent set of literals J, in symbols

reduct(F,J) is a formula obtained in two steps: First, we remove every clause from the

formula F that contains a literal from J, and in the second step, we remove each literal

in the remaining clauses such that the complement of the literal is contained in J.

2.2. Formula Simplifications

Simplifying the formula before giving it to the SAT solver has become an important part

of the solving chain [28]. The following techniques were proposed among many others.

Subsumption Elimination The clause C subsumes the clause D if and only if C ⊂ D.

Given an input formula (F ∧C ∧D), where the clause C subsumes the clause D, the

subsumption elimination technique produces the formula F ′ = (F ∧C).

Hyper Binary Resolution [4] Given an input formula F with (y∨x1 ∨x2 ∨ . . .∨xn) ∈ F
and (xi∨z)∈F for i∈{1, . . . ,n}. Then, the clause (y∨z) is a hyper binary resolvent w.r.t.

the formula F , and the hyper binary resolutions technique adds a hyper binary resolvent,

i.e. the result of applying hyper binary resolution is the formula F ′ = F ∧ (y∨ z).

Variable Elimination [9, 41] For two formulas F1,F2 and a variable v, the set of all

non-tautological resolvents of a clause in the formula F1 with a clause in the formula

F2 upon the variable v is denoted by F1 ⊗v F2. Given an input formula F and a variable

v ∈ V , variable elimination adds all resolvents of the input formula F upon the variable

v, and afterwards deletes all clauses containing the literals v or v. Formally, the result of

applying variable elimination is the formula F ′ = (F ∪ (Fv ⊗v Fv))\ (Fv ∪Fv).

Equivalence Elimination [17] Two variables v and w are equivalent in the formula F ,

if the formula F entails the equivalence v ↔ w. Equivalence elimination produces the

formula F ′ = F [v)→ w], if the variables v and w are equivalent in the formula F .

Blocked Clause Elimination [22] A clause C is called blocked in the formula F , if it

contains a blocked literal x such that for all clauses D ∈ Fx the resolvent of C and D upon

the variable of x is a tautology. The result of applying blocked clause elimination in the

input formula (F ∧C), where the clause C is blocked in the formula F , is the formula

F ′ = F .

Note that the above techniques produce unsatisfiability-preserving consequences

(see [29]). Unfortunately, not all formula simplifications, like the reverse operation of

blocked clause elimination [22], generate unsatisfiability-preserving consequences.

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers 213

2.3. Parallel Satisfiability Solvers

Search space decomposition is an approach that distributes the search space among mul-

tiple SAT solvers that explore the assigned search spaces in parallel. The search space of

a formula F , in symbols SearchSpace(F), is the set of all interpretations and the solution
space of a formula F , denoted by SolutionSpace(F), is the set of all models of the for-

mula F . Parallel solvers based on the search space decomposition approach use parallel

architecture by searching in these spaces in parallel. This means that if a solver incarna-

tion finds a model of the formula in its assigned search space, the parallel solver immedi-

ately terminates the computation and outputs SAT. Therefore, the solvers are competing

w.r.t. the SAT answer. On the other hand, the solvers cooperate on finding a witness for

the unsatisfiability of the formula. That means, the computation terminates with the out-

put UNSAT, if all solver incarnations proved that no model in the corresponding search

spaces exists. The dominant approach to divide the search space are guiding paths [43].

Guiding paths divide the search space by a conjunction of literals, and were first imple-

mented in the parallel SAT solver PSATO [43]. A recent solver also applies look-ahead
techniques to determine the guiding path (e.g. [42]). Clause sharing can be implemented

in these solvers, as done in the SAT solvers PASAT [24], PAMIRA [37], PMSAT [11].

The SAT solver MIRAXT [26] additionally performs probing-based formula simplifica-

tions during search.

2.4. State Transition Systems

State transition systems are well-understood, formal descriptions of algorithms in terms

of states and binary relations over states. Formally, a state transition system is a tuple

(Δ,�) where Δ is the set of states and �⊆ Δ×Δ is the state transition relation. Given a

system (Δ,�), we define
0�= {(x,x) | x ∈ Δ},

n�= {(x,z) | (x,y) ∈ n−1� and (y,z) ∈�}
for all n ∈ N>0 and

∗�= ∪i∈N
i�. We write x � y instead of (x,y) ∈�.

3. Guiding Paths

We start with a formal definition of guiding paths.

Definition 1 (Guiding Paths). A guiding path P is a finite set of non-complementary
literals. A set P of guiding paths is complete if and only if for every interpretation I we
find a guiding path P ∈P such that I |= x for every literal x ∈ P. The search space of the
guiding path P is SearchSpace(P) = {I | I |= x for all literals x ∈ P}.

The definitions here are slightly different than in [43]: In this paper a guiding path

does not include information whether its assigned search space contains a model, and its

assigned search space is not part of the search tree of the DPLL procedure [7, 8], but a

set of interpretations.

Lemma 1 presents properties of guiding paths and the interplay of the reduct op-

erator, guiding paths and search spaces: A complete set of guiding paths is always

non-empty (Lemma 1.1), the trivial set of guiding paths { /0} is complete (Lemma 1.2).

Lemma 1.3 relates complete sets of guiding paths and the search space: The union over

all guiding paths of a complete set of guiding paths over the search space of P is equal

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers214

to the search space. Lemma 1.4 relates the reduct operator with the search space: The

interpretation I is a model of a formula F and belongs to the search space that is defined

by the guiding path P if and only if the formula reduct(F,P) is satisfiable. Moreover, the

formula F is satisfiable if and only if for some complete set of guiding paths P we find a

guiding path P ∈ P where reduct(F,P) is satisfiable (Lemma 1.5). The reduct operator

is compatible with the entailment relation (Lemma 1.6).

Lemma 1. Let F be a formula, I be an interpretation and P a set of guiding paths.
1. A complete set of guiding paths is non-empty.
2. { /0} is a complete set of guiding paths.
3. P is complete iff

⋃
P∈P SearchSpace(P) = SearchSpace(F).

4. There is I with I |= F and I ∈ SearchSpace(P) if and only if reduct(F,P) is satis-
fiable.

5. Let P be complete. Then F is satisfiable if and only if there is a guiding path
P ∈ P such that reduct(F,P) is satisfiable.

6. If F |= F ′, then reduct(F,J) |= reduct(F ′,J).

Proof. See [35].

4. The Search Space Decomposition Model SSD

We model the computation of SAT solvers based on the search space decomposition

approach by means of a state transition system as follows: A state of computation of

a single sequential solver is a formula F and guiding path P, represented as the pair

(F,P). To ease our notation, we represent sequential solver states as F and say that P
is the associated guiding path. A state of computation of a parallel SAT solver based

on the search space decomposition approach of n sequential solver Solver1, . . . ,Solvern
is then an n-tuple (F1, . . . ,Fn) of formulas where Fi is the state of Solveri and Pi is the

guiding path that is assigned to Solveri. Then, the set of states in SSD with multiplicity
n is {(F1, . . . ,Fn) | Fi is a formula}∪{SAT,UNSAT} and we associate a guiding path Pi
to the formula Fi for every i ∈ {1, . . . ,n}. The initial state in SSD for the input formula
F0 with multiplicity n and the complete set of guiding paths {P1, . . . ,Pn}, denoted by

initn,P1,...,Pn(F0), is the tuple (F1, . . . ,Fn) where the guiding path Pi is associated with the

formula Fi for all i∈ {1, . . . ,n}. The sharing model SSD is characterized by the following

transition relation:

�SSD := �SAT ∪ �UNSAT ∪ �CM ∪ �SHARE ∪ �ADD ∪ �DEL .

Corresponding transition rules are given in Figure 1. We have two termination rules: The

SAT-rule terminates the computation in the final state SAT if and only if reduct(Fi,Pi)
is satisfiable for some i ∈ {1, . . . ,n}. By Lemma 1.4 this situation happens if and only if

a model of the formula Fi exists that is contained in the assigned search space of the i’th
solver. Likewise, the UNSAT-rule terminates the computation in the final state UNSAT
if and only if the formula reduct(Fi,Pi) is unsatisfiable for every i ∈ {1, . . . ,n}. Again by

Lemma 1.4 this situation happens if and only if no model of the formula Fi exists that is

contained in the search space of the i’th solver for all i ∈ {1, . . . ,n}. Modern complete

solvers are modifying the formula by adding and removing learned clauses. Such clause

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers 215

SAT-rule: (F1, . . . ,Fn) �SAT SAT
iff reduct(Fi,Pi) is satisfiable for some i ∈ {1, . . . ,n}.

UNSAT-rule: (F1, . . . ,Fn) �UNSAT UNSAT
for reduct(Fi,Pi) is unsatisfiable for all i ∈ {1, . . . ,n}.

CM-rule: (F1, . . . ,Fi−1,Fi,Fi+1, . . . ,Fn) �CM (F1, . . .Fi−1,F ′
i ,Fi+1, . . . ,Fn)

iff Fi ≡ F ′
i .

SHARE-rule: (F1, . . . ,Fi−1,Fi,Fi+1, . . . ,Fn) �SHARE (F1, . . . ,Fi−1,F ′
i ,Fi+1, . . . ,Fn)

iff F ′
i = Fi ∧C, and C ∈ Fj for some j ∈ {1, . . . ,n}\{i}.

ADD-rule: (F1, . . . ,Fn) �ADD (F1 ∧C,F2, . . . ,Fn)
iff vars(C)⊆ vars(F0), and F1 ∧C ≡sat F1.

DEL-rule: (F1, . . . ,Fi−1,Fi,Fi+1, . . . ,Fn) �DEL (F1, . . . ,Fi−1,F ′
i ,Fi+1, . . . ,Fn)

iff i > 1 and Fi is an unsatisfiability-preserving consequence of F ′
i .

Figure 1. Transition relations used to characterize search space decomposition based SAT solvers by

means of portfolio systems with input formula F0 and multiplicity n. These definitions apply to all formu-

las F1, . . . ,Fn,F ′
1, . . . ,F

′
n , clauses C and i ∈ {1, . . . ,n}, and guiding paths Pi where Pi is the guiding path that is

assigned to the solver incarnations Solveri.

management is modeled by the CM-rule that rewrites a formula Fi of a solver incarnation

into an equivalent formula F ′
i . Finally, clause sharing is captured by the SHARE-rule that

adds a clause C from the formula Fj to the formula Fi, where i �= j. The ADD-rule adds

a clause C to the formula F1, if F1 and F1 ∧C are equisatisfiable and vars(C)⊆ vars(F0).
On the other hand, clause deletion is captured by the DEL-rule, which replaces a formula

Fi with a formula F ′
i , if the F ′

i is an unsatisfiability-preserving consequence of Fi, and

i > 0.

We say that the formalism SSD is sound if and only if for all formulas F0 and com-

plete set of guiding paths {P1, . . . ,Pn} we have that initn,P1,...,Pn(F0)
∗� SAT implies that

the formula F0 is satisfiable and initn,P1,...,Pn(F0)
∗� UNSAT implies that the formula F

is unsatisfiable. Intuitively, soundness means that every answer in the system is correct.

Before we prove soundness of SSD, we establish the following invariants:

Proposition 1. Let n ≥ 1, let F0,F1, . . . ,Fn be formulas, P1, . . . ,Pn be guiding paths, and
let m ≥ 0. Assume initn,P1,...,Pn(F0) �m (F1, . . . ,Fn). Then the following properties hold:

1. F1 |= F2 ∧ . . .∧Fn, and
2. Fi ≡sat F0 for all i ∈ {1, . . . ,n}.

Proof. See [29]

We then can prove the following theorem, stating that the computed answers of the

sharing model SSD are sound:

Theorem 1. The search space decomposition model SSD is sound.

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers216

Proof. We divide the proof in two parts, first proving that the output SAT is correct, then

proving that the output UNSAT is correct. Let n > 0, and {P1, . . . ,Pn} be a complete set

of guiding paths. Suppose initn,P1,...,Pn(F0)
∗�SSD (F1, . . . ,Fn)�SSD SAT(UNSAT, resp.).

1. SAT: In this case reduct(Fi,Pi) is satisfiable for some i ∈ {1, . . . ,n}. Clearly, this

observation implies that the formula Fi is satisfiable. By Proposition 1, we know

that the formulas Fi and F0 are equisatisfiable. Then the input formula F0 is satisfi-

able and consequently the SAT answer is correct.

2. UNSAT: The proof is by contradiction: Suppose that the answer is incorrect,

i.e. the input formula F0 is satisfiable. We know by Proposition 1.2 that the for-

mula F1 is satisfiable. Since {P1, . . . ,Pn} is complete, we know by Lemma 1.5

that reduct(F1,Pj) is satisfiable for some j ∈ {1, . . . ,n}. Hence, there is an in-

terpretation I such that I |= reduct(F1,Pj). By Proposition 1.1 we know that

F1 |= F2 ∧ . . .∧Fn and conclude by Lemma 1.6 that I |= reduct(F2 ∧ . . .∧Fn,Pj).
Since reduct(F2 ∧ . . .∧Fn,Pj) |= reduct(Fi,Pj) for every i ∈ {2, . . . ,n}, we know

that I |= reduct(Fi,Pj) for every i ∈ {2, . . . ,n}. Hence reduct(Fi,Pj) is satisfiable

for every i ∈ {1, . . . ,n}. Then reduct(Fj,Pj) is satisfiable, but the UNSAT-rule is

not applicable, which is a contradiction. Therefore the input formula F0 is unsatis-

fiable, and consequently the UNSAT answer is correct.

In particular, Theorem 1 states that the particular setting of clause sharing, clause ad-

dition and elimination techniques together with search space decomposition with guiding

paths is sound.

5. Conclusion

Parallel SAT solvers employ many advanced techniques, but not every combination of

advanced technique is sound. In particular, the combination of clause sharing and inpro-

cessing can make a formula unsatisfiable.

Consequently, a SAT solver can incorrectly report the unsatisfiability of a formula.

Fuzzying is a technique that allows SAT solver engineers to test and empirically verify

combinations of techniques. One of the reasons for this methodology is the lack of tools

to study such advanced combinations. Moreover, useful combinations that involve com-

plicated constraints might be missed with the purely experimental approach. We there-

fore propose to formalize modern parallel SAT solvers to understand the interplay of ad-

vanced techniques, and to reason about them. In this paper, we developed a formal model

in terms of state transition systems.

Search space partitioning is an early approach to use parallel hardware architectures.

Guiding paths are a simple method to divide the search space among the solver incarna-

tions. We studied guiding paths and their relation to search spaces, and afterwards devel-

oped the sharing model SSD that models parallel SAT solvers based on the guiding paths

with clause sharing and inprocessing. The presented formalism covers many SAT solvers

such as PASAT [24], PAMIRA [37], PMSAT [11], MIRAXT [26]. We have shown that

the formalism SSD, that combines clause addition and clause elimination techniques as

in [29], is sound. Therefore, the solvers can be improved by inprocessing techniques,

which is a new result to the best of our knowledge.

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers 217

Moreover, we indicate possibilities to improve modern parallel SAT solvers by new

combinations of inprocessing and clause sharing. It is our conviction that the formal-

ism SSD is one part of the tools desired for developing parallel SAT solvers with new

combinations of advanced techniques.

As future work, we identify two interesting challenges: Biere combines restricted

forms of blocked clause elimination and addition in the upcoming version of PLIN-

GELING, and has shown empirically that it is sound. How can we use clause addition
and elimination techniques in all solver incarnations? Moreover, the construction of

unsatisfiability proofs, DRAT proofs [14–16], becomes an important discipline to gain

confidence in UNSAT answers. How can we create DRAT refutations for search-space
decomposition based SAT solvers?

Acknowledgement

I would like to thank Steffen Hölldobler, Norbert Manthey and Christoph Wernhard for

many fruitful discussions.

References

[1] Arnold, H.: A linearized DPLL calculus with clause learning. Tech. rep., Universität Potsdam. Institut

für Informatik (2009)

[2] Audemard, G., Lagniez, J.M., Mazure, B., Sais, L.: On freezing and reactivating learnt clauses. In:

Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 188–200. Springer (2011)

[3] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.)

IJCAI 2009. pp. 399–404. Morgan Kaufmann Publishers Inc., Pasadena, California, USA (2009)

[4] Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In:

Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer (May 2003)

[5] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Tech-

nical Report 10/1, Johannes Kepler University, Linz, Austria (2010)

[6] Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT proce-

dures instead of BDDs. In: Irwin, M.J. (ed.) DAC 1999. pp. 317–320. ACM (1999)

[7] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7),

394–397 (Jul 1962)

[8] Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (Jul

1960)

[9] Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus,

F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer (2005)

[10] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.

LNCS, vol. 2919, pp. 502–518. Springer (2004)

[11] Gil, L., Flores, P., Silveira, L.M.: PMSat: a parallel version of MiniSAT. JSAT 6, 71–98 (2008)

[12] Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint

satisfaction problems. Journal of Automated Reasoning 24(1–2), 67–100 (Feb 2000)

[13] Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving periodic event

scheduling problems with SAT. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS,

vol. 7345, pp. 166–175. Springer (2012)

[14] Heule, M., Jr., W.A.H., Wetzler, N.: Trimming while checking clausal proofs. In: FMCAD 2013. pp.

181–188. IEEE (2013)

[15] Heule, M., Jr., W.A.H., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P.

(ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359. Springer (2013)

[16] Heule, M., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause sharing parallel SAT

solvers. In: Pragmatics of SAT 2014 (2014, accepted)

[17] Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication graphs.

In: Büning, H.K., Zhao, X. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer (2011)

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers218

[18] Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview on modern parallel

SAT-solvers. In: ICACSIS 2011. pp. 201–206. IEEE (2011)

[19] Huang, J.: The effect of restarts on the efficiency of clause learning. In: Veloso, M. (ed.) IJCAI 2007.

pp. 2318–2323. IJCAI’07, Morgan Kaufmann Publishers Inc., Hyderabad, India (January 2007)

[20] Hölldobler, S., Manthey, N., Philipp, T., Steinke, P.: Generic CDCL – a formalization of modern propo-

sitional satisfiability solvers. In: Hölldobler, S., Malikov, A., Wernhard, C. (eds.) Proc. of the Young

Scientists’ International Workshop on Trends in Information Processing. vol. 1145, pp. 25–34. CEUR-

WS.ORG (2014)

[21] Hölldobler, S., Manthey, N., Saptawijaya, A.: Improving resource-unaware SAT solvers. In: Fermüller,

C.G., Voronkov, A. (eds.) LPAR 17. LNCS, vol. 6397, pp. 519–534. Springer (2010)

[22] Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.)

TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer (2010)

[23] Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.)

IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer (2012)

[24] Jurkowiak, B., Li, C.M., Utard, G.: Parallelizing satz using dynamic workload balancing. Electronic

Notes in Discrete Mathematics 9, 174–189 (2001)

[25] Kautz, H.A., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) ECAI 1992. pp. 359–363

(1992)

[26] Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT solving. In: ASP-DAC 2007. pp. 926–931. IEEE

Computer Society, Washington, DC, USA (2007)

[27] Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with haplotype inference. In: Biere,

A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–141. Springer (2006)

[28] Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT

2012. LNCS, vol. 7317, pp. 436–441. Springer Berlin Heidelberg (2012)

[29] Manthey, N., Philipp, T., Wernhard, C.: Soundness of inprocessing in clause sharing SAT solvers. In:

Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 22–39. Springer (2013)

[30] Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom. Reason. 43(1), 81–119

(2009)

[31] Marques Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE

Transactions on Computers 48(5), 506–521 (1999)

[32] Martins, R., Manquinho, V., Lynce, I.: An overview of parallel SAT solving. Constraints 17(3), 304–347

(2012)

[33] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT

solver. In: DAC 2001. pp. 530–535. Association for Computing Machinery (2001)

[34] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract

Davis–Putnam–Logemann–Loveland procedure to DPLL(T). JACM 53(6), 937–977 (Nov 2006)

[35] Philipp, T.: Expressive Models for Parallel Satisfiability Solvers. Master thesis, Technische Universität

Dresden (2013)

[36] Rintanen, J.: Engineering efficient planners with SAT. In: Raedt, L.D., Bessière, C., Dubois, D., Do-

herty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012. Frontiers in Artificial Intelligence and

Applications, vol. 242. IOS Press (2012)

[37] Schubert, T., Lewis, M., Becker, B.: PaMira - a parallel SAT solver with knowledge sharing. In: Abadir,

M.S., Wang, L.C. (eds.) MTV 2005. pp. 29 –36 (2005)

[38] Singer, D.: Parallel Resolution of the Satisfiability Problem: A Survey, chap. 5, pp. 123–148. Wiley

Interscience (2006)

[39] Soos, M.: CryptoMiniSat 2.5.0. In: SAT Race Competitive Event Booklet (July 2010)

[40] Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system

for computer-aided circuit analysis. Artificial Intelligence 9(2), 135–196 (1977)

[41] Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocess-

ing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291.

Springer (2005)

[42] van der Tak, P., Heule, M., Biere, A.: Concurrent cube-and-conquer. In: Cimatti, A., Sebastiani, R. (eds.)

SAT 2012. LNCS, vol. 7317, pp. 475–476. Springer (2012)

[43] Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover and its application to

quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)

T. Philipp / Clause Simplifications in Search-Space Decomposition-Based SAT Solvers 219

Multi-objective learning of accurate and
comprehensible classifiers – a case study

Rok PILTAVERa,b, Mitja LUŠTREKa and Matjaž GAMSa,b
a

 Jožef Stefan Institute - Department of Intelligent Systems, Ljubljana, Slovenia
bJožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. Accuracy and comprehensibility are two important classifier properties,
however they are typically conflicting. Research in the past years has shown that
Pareto-based multi-objective approach for solving this problem is preferred to the
traditional single-objective approach. Multi-objective learning can be represented
as search that starts either from an accurate classifier and modifies it in order to
produce more comprehensible classifiers (e.g. extracting rules from ANNs) or the
other way around: starts from a comprehensible classifier and modifies it to
produce more accurate classifiers. This paper presents a case study of applying a
recent algorithm for multi-objective learning of hybrid trees MOLHC in human
activity recognition domain. Advantages of MOLHC for the user and limitations
of the algorithm are discussed on a number of datasets from the UCI repository.

Keywords. Multi-objective learning, hybrid classifier, hybrid tree, accuracy,
comprehensibility.

Introduction

When evaluating a classifier, one is usually most interested in its predictive accuracy
estimated by e.g. percent of correctly classified instances, confusion matrix, area under
ROC, or other measures. However, there are also other classifier properties that are
often important for the user: comprehensibility [1] – also referred to as
understandability or interpretability – justifiability [2, 3], surprisingness [4], and others.
This paper is limited to discussing accuracy and comprehensibility.

The comprehensibility is defined as: “the ability to understand the output of
induction algorithm” [5] or “the ability to understand the logic behind a prediction of
the model” [6]. According to Craven and Shavlik [7] it is important because it enables:
classification explanation, classifier validation, knowledge discovery and supports
classifier generalization improvement and refinement of approximately-correct domain
theories. Furthermore, there are many application domains in which the importance of
comprehensible classification models continues to be emphasized, such as: medicine,
credit scoring, churn prediction, and bioinformatics [1].

The main problem in learning accurate and comprehensible classifiers is that the
two objectives are conflicting [8]. There are two main approaches to solving this
problem [8, 9]. The weighted-formula approach is conventional; it transforms the
multi-objective problem into a single-objective one. The second approach is Pareto-
based multi-objective approach. Its objective function is no longer a scalar value, but a
vector so all the criteria are treated separately. This produces a number of Pareto-
optimal solutions [10] (i.e. classifiers) instead of a single solution. Freitas [9] lists

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-220

220

arguments for and against each approach and concludes that the more complex Pareto-
based approach is preferred because it avoids multiple runs of single-objective
optimisation algorithm and the ad-hoc specification of its parameters (i.e. weights) as
well as provides very informative set of non-dominated solutions [10]. Nevertheless,
depending on the application domain, there are cases in which the weighted-formula
approach is sufficient or the Pareto-based approach is too complex.

To learn accurate and comprehensible classifier an algorithm can start with an
accurate classifier and transform it to produce more comprehensible ones. Examples of
such approaches are extracting rules from artificial neural networks (ANN) [8] and
pruning decision trees to find a trade-off between their size – which is related to its
comprehensibility – and accuracy [11]. The search can also proceed inversely: start
from a comprehensible classifier and transform it to produce more accurate classifiers.
An example of such algorithm is the recently presented multi-objective learning of
hybrid classifiers (MOLHC) algorithm [12], which is guaranteed to find the entire
Pareto set of hybrid trees by replacing sub-trees in the initial classification tree with
black-box classifiers (e.g. SVM, ANN, or random-forest).

This paper presents a case study of applying the MOLHC algorithm in human
activity recognition domain: motivation for learning hybrid classifiers and the insights
in the classification task provided by the visualization of the algorithm’s output.
Limitations and performance of MOLHC algorithm are discussed on a number of
datasets from the UCI repository [13, 14].

The structure of the paper is as follows: Section 1 gives a quick overview of the
MOLHC algorithm, Section 2.1 introduces the activity recognition domain used for the
case study, Section 2.2 illustrates the use of the algorithm, its advantages and
drawbacks, and finally Section 3 summarizes the paper and suggests directions for
further research.

1. The multi-objective learning of hybrid classifiers algorithm

The basic idea of the multi-objective learning of hybrid classifiers (MOLHC) algorithm
[12] is to replace sets of leaves in a given comprehensible classification tree with black-
box (BB) leaves that invoke a provided accurate BB classifier in order to increase the
accuracy of the resulting hybrid trees compared to the initial tree. The algorithm is
motivated by the fact that many machine learning domains as well as human expert
knowledge can be partially explained with simple models (e.g. rules) but require much
more complex and less comprehensible model in other parts. The algorithm guaranties
to find the complete Pareto set of described hybrid trees efficiently: it outperforms a
state of the art multi-objective optimisation algorithm NSGA-II [17] for the discussed
task in terms of run-time, and in contrast with NSGA-II guaranties finding the
complete Pareto set (i.e. is not stochastic) and does not require setting any search
parameters [12]. It has been shown to produce sets of hybrid trees that considerably
outperform the baseline algorithms (classification tree and BB classifier) in terms of
hyper-volume under the attainment surface in many domains [12]. In simple words: the
set of hybrid trees produced by MOLHC algorithm consists of classifiers that cannot be
constructed with the baseline algorithms and offer useful trade-off between accuracy
and comprehensibility.

In contrast with most related work MOLHC does not use the size of classification
tree as a measure of comprehensibility because it operates with hybrid trees. Instead,

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers 221

the comprehensibility c of a hybrid tree is defined by Eq. 1 as the ratio between the
number of examples that are classified by the regular leaves i and the number of all
examples N used to evaluate the comprehensibility of the hybrid tree.

c = (∑i is non-replaced leaf Ni)/N (1)

 The comprehensibility of a hybrid tree is therefore equal to the probability of
classifying an instance with a comprehensible model. By definition, the
comprehensibility of the initial classification tree is 1. A classification tree is
considered as perfectly comprehensible regardless of its size; however it is only
sensible to use the measure and the algorithm on reasonably small classification trees,
i.e. with less than ~50 leaves. Comprehensibility of the BB classifier is 0, meaning that
it is not comprehensible at all. The comprehensibility of all other hybrid trees are
between 0 and 1.

A naïve approach to finding the Pareto set of hybrid trees would be to generate,
evaluate and compare all the possible hybrid trees. This yields a search space with 2n
hybrid trees where n is the number of leaves in the initial classification tree that are
considered to be replaced with BB leaves. Only the leaves in which BB classifier
achieves higher accuracy than the majority class classifier belonging to the leaf should
be considered for replacing with BB leaves - replacing leaves for BB decreases
comprehensibility and is therefore only worthwhile if it increases accuracy at the same
time. The MOLHC examines the search space using an iterative search methods that
avoids generating most hybrid trees not belonging to the Pareto set. The main loop of
the algorithm considers a set of hybrid trees that have the same number of replaced
leaves. It starts with hybrid tree that has zero replaced leaves (only the initial tree
belongs to this set) and increases until it has considered replacing all the leaves. When
considering a hybrid tree (from the set of hybrid trees processed in the current iteration),
it produces a set of new hybrid trees that can be generated from the given hybrid tree
by replacing exactly one non-dominated leaf. The set of non-dominated leaves Ln is
defined by Eq. 2 and contains the leaves l that are better than all the other currently
non-replaced leaves L considering the difference in accuracy al and comprehensibility
cl introduced by replacing the leaf for the BB – they increase accuracy more and at the
same time decrease comprehensibility less than other leaves.

Ln = { l L; L: (al ≥ ai) (cl ≤ ci) } (2)

Replacing only the non-dominated leaves limits the search but has been proven to
find the complete Pareto set of hybrid trees [12]. The search optimisation enables exact
multi-objective learning based on initial trees with less than ~50 leaves in under a
second on a personal computer (e.g. 3 GHz Intel® Core™ 2 Duo) [12]. For comparison
consider that a naïve algorithm takes over 3 minutes for an initial tree with 17 leaves
and 18 minutes for 18 leaves; bigger trees cannot be used with the naïve algorithm as
its time complexity increases exponentially with the number of leaves [12].

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers222

2. Case study of multi-objective learning of hybrid classifiers algorithm

In order to demonstrate the use of MOLHC algorithm in practice and show the
advantages of multi-objective learning and hybrid trees with black-box (BB) leaves this
section presents a case study of MOLHC application in activity recognition domain
described in the following subsection. In addition we selected the datasets for testing
from the set of 94 classification datasets from the UCI repository [13] available in
ARFF format at the Weka webpage [14]. Among the 49 datasets with more than 300
instances we chose 23 datasets where the BB classifier achieved at least 10 % better
accuracy than the tree with approximately 20 leaves. Finally 40 trees were used to
calculate the results shown in Figure 2 and Figure 4: one small tree (~20 leaves) for
each of the 23 datasets and another bigger tree (~40 leaves) for 17 dataset that allowed
building larger trees. The choice of datasets and initial trees is the same as in [12].

2.1. Motivation for MOLHC application and the case study domain

The goal of activity recognition is to recognize the activity a person is performing
using sensors and software for sensor data processing. The task can be to recognize:
basic activities such as lying, sitting, standing, walking, running, cycling, transitions
between activities, etc.; events such as falling, sitting down, standing up, stop moving,
etc.; or complex activities such as performing house chores, preparing meal, eating,
exercising, shopping, etc. Sensor data can be obtained from video cameras, real-time
locating systems, inertial sensors, or 3D motion capture systems. Activity recognition
is an important task in ambient intelligence as it is prerequisite for many applications
such as sport applications, health monitoring, smart house automation, and others. This
section considers learning a classifier that distinguishes between 10 basic activities
(listed in the following paragraph) based on attributes extracted from data provided by
a single 3-axis accelerometer mounted on person’s chest. The recognized basic
activities can then be used to recognize events and complex activities.

The training and testing dataset was recorded in a laboratory with 9 persons each
performing a given sequence of activities lasting for approximately 1.5 hours: 22 % of
the time lying, 17 % walking, 14 % cycling, 10 % standing, 7-8 % of sitting, kneeling,
on all fours, and running (each), 4 % transitions between activities, and 3 % leaning.
Two-second time windows of measured accelerations along each of the 3
accelerometer axes was used to compute 61 attributes suggested by literature, for
example: mean value, area under the curve, amplitude, total energy, dominant
frequency, mean crossing rate, entropy, variation coefficient, etc. The time windows
were overlapping (1 second overlap with the previous window and 1 second overlap
with the following window) therefore a total of around 48.000 instances were acquired.

We intended to enter the EvAAL live activity-recognition competition
(http://evaal.aaloa.org/) therefore we required a classifier that we could trust to perform
correctly in a situation substantially different from the one in the laboratory. The
sequence and duration of activities that would be used for testing at the competition
were not known. In addition the placement of the accelerometer could not be
guaranteed to be exactly the same as in the laboratory and the motion of the person
evaluating the activity recognition system at the competition could be different then the
motion recorded in the laboratory, e.g. different posture or intensity of movement. A
very accurate (90.6 % classification accuracy) black-box classifier was constructed
using high-quality laboratory data, however it did not allow an expert to validate it. On

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers 223

the other hand, completely comprehensible classifiers performed poorly (77.0 %
classification accuracy) in comparison. Hence this was a problem that called for a
hybrid approach using MOLHC to generate a set of hybrid classifiers ranging from the
most comprehensible to the most accurate in order to get an insight in the classification
problem at hand and choose a classifier (hybrid tree) that has high enough accuracy and
is as comprehensible as possible.

2.2. MOLHC for activity recognition

The first step in using MOLHC is to choose an initial classification tree and a black-
box (BB) classifier with high accuracy. First a classification tree was constructed using
the original dataset but was difficult to validate. In order to support validation the
domain expert choose a subset of 12 attributes that were known to be important for the
classification and were easy to interpret. They were used to build a classification tree
using C4.5 learning algorithm [15] implemented as J48 in Weka [16]. Its pruning
parameters were set so that it produced a tree of appropriate size (12 leaves) and
accuracy (76.1 %). The tree is shown in Figure 3 – attributes are renamed and
numerical attribute values that split the data into sub-trees are replaced with words in
order to improve comprehensibility for readers not familiar with the domain. The size
of the initial tree should be small enough to prevent overfitting and enable the expert to
analyse it in reasonable time. On the other hand pruning a tree too much will decrease
its accuracy. The initial classification tree can also be built by a domain expert based on
his knowledge: it should include the rules he knows are valid and possibly some
additional rules he suspects are valid in most cases.

To choose a BB classifier, several classifiers should be trained using various
learning algorithms and learning parameter settings, and compared according to their
accuracy estimated on a test set. In our case, random forest classifier was chosen as the
BB classifier (90.6 % classification accuracy) based on the experts’ past experience
with the domain. All the 61 available attributes were used for learning the random
forest classifier – there is no point in holding back any data (except redundant and
random attributes) from the algorithm that learns the BB classifier. A possible
improvement of the algorithm could use multiple BB classifiers: one for each leaf or
one for each sub-tree with enough examples to learn an accurate BB classifier.

The second step is the execution of the MOLHC algorithm, which uses the
following inputs: the initial classification tree, BB classifier, and data that was not used
to train the two input classifiers. The output of the algorithm is a Pareto set of hybrid
trees, which is represented in the objective space as the Pareto front: a graph with
accuracy on one axis, comprehensibility on the other, and points on the graph
representing individual hybrid trees (see Figure 1). By analysing the Pareto front and
data about the Pareto set, knowledge about the domain can be extracted as illustrated in
the following paragraphs.

The first thing to observe is the steepness of the Pareto front. A steep Pareto
front (e.g. Figure 1a) represents a case in which the difference in accuracy between the
initial tree and BB classifier is small. In such cases the user should consider choosing
the initial tree because it achieves accuracy similar to the BB classifier but is
completely comprehensible as opposed to the BB. On the other hand, a Pareto front
that decreases gradually (e.g. Figure 1c) represents a case with considerable difference
in accuracy between the initial tree and BB classifier. In such cases the user should
investigate the Pareto front further in order to select an appropriate hybrid tree with a

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers224

desired trade-off between accuracy and comprehensibility. The steepness of Pareto
front corresponds to the difficulty of classification task for a decision tree (given a
comprehensible decision tree and an accurate BB classifier). Figure 1 shows that iris
data set [13] is easy to classify using a comprehensible classifier, while a simple
classifier does not suffice to classify activity or letter datasets [13] with high accuracy.

Hybrid trees - training set
Hybrid trees - test set
Tree, BB - training set
Tree, BB - test set

classification accuracy

co
m

pr
eh

en
si

bi
lit

y

0.5 0.6 0.7 0.8 0.9 1

1

0.8

0.6

0.4

0.2

classification accuracy

co
m

pr
eh

en
si

bi
lit

y

0.5 0.6 0.7 0.8 0.9 1

1

0.8

0.6

0.4

0.2

classification accuracy

co
m

pr
eh

en
si

bi
lit

y

0.5 0.6 0.7 0.8 0.9 1

1

0.8

0.6

0.4

0.2

a) iris b) activity c) letter

knees

Figure 1. Pareto fronts of hybrid trees for a) iris, b) activity, and c) letter datasets

The second property of the Pareto front to be investigated is the density and

spread of hybrid trees along the Pareto front. For instance the Pareto front for iris
dataset (Figure 1a) is sparse (includes only two hybrid trees), while the Pareto front for
letter dataset (Figure 1c) is dense (403 hybrid trees). Deb [10] lists several measures of
spread, however a threshold between sparse and dense Pareto front depends on the
application domain. If there are few hybrid trees on a Pareto front the user can inspect
and compare all of them, otherwise he should concentrate on a subset of hybrid trees.
Pareto front in Figure 1c is well spread along the entire range while the Pareto front in
Figure 1b is considerably sparser in the low comprehensibility range. Hybrid trees in
the sparse part of the Pareto front should be inspected thoroughly while only a subset of
trees needs to be inspected in the dense part since it contains many similar trees – the
similarities usually become obvious quickly, however a program with appropriate
graphical interface could automate and simplify the task further. Figure 2 shows that
the number of hybrid trees and hence the density of Pareto front depends on the number
of leaves in the initial tree for which the accuracy of BB classifier is higher than the
accuracy of majority class classifier in the leaf. It also depends on the differences in
accuracy and comprehensibility that is introduced by replacing each leaf for a BB leaf,
which explains the outliers in Figure 2.

The third important property of the Pareto front is presence of knees: parts of
Pareto front with sudden jump in one of the objectives. Jin [18] argues that quantitative
measure for knee should be defined according to the application domain. Example of a
knees are shown in Figure 1b; the most obvious one occurs where accuracy approaches
0.9. Knees are important because they limit the set of hybrid trees that needs to be
examined by the user. For instance, if a hybrid tree with high accuracy is requested in
the activity dataset (Figure 1b) then the one with accuracy 0.89 and comprehensibility
0.55 is a good candidate (an arrow pointing at it in Figure 1b). It has almost the same
accuracy as the hybrid trees further down the Pareto front but it has considerably higher
accuracy. Among the hybrid trees near a knee, the ones that have extreme values of an
objective are the most interesting for the user.

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers 225

0

100

200

300

400

0 10 20 30 40 50

N
um

be
r o

f h
yb

rid
 tr

ee
s i

n
th

e
Pa

re
to

 se
t

Number of leaves considered for replacing with BB
Figure 2. Number of hybrid trees in a Pareto set depends on the number of leaves in the initial tree that are
considered for replacing with BB leaves (results obtained from 40 initial trees built on 23 UCI datasets).

Another insight offered by the MOLHC approach is validation of classification

tree leaves. It is most useful if the initial tree is constructed by an expert (not by a
machine learning algorithm) as it validates the experts knowledge and exposes expert’s
assumptions that are not in line with the provided data; it can be used to validate a
learned tree as well. Among the 12 leaves in the initial tree (used for the activity
recognition domain) BB achieved higher accuracy in all but the leaf number 8 (Figure
3). Because the BB classifier cannot improve classification accuracy for the instances
belonging to that leaf, the user can accept the leaf as valid peace of extracted
knowledge. For iris dataset, which can be accurately classified with a classification tree,
there were three leaves in the initial tree and BB classifier outperformed them in only
one leaf while the other two were confirmed as valid.

Besides checking in which leaves BB classifier achieves higher accuracy then the
leaf, the Pareto set of hybrid classifiers is analysed in order to calculate the relative
quality of leaves. The algorithm counts the number of Pareto optimal hybrid trees in
which a leaf was replaced for a BB leaf. If the count for a leaf is low, it means that the
leaf is good according to both objectives (accuracy and comprehensibility): it correctly
classifies a large share of instances belonging to the leaf and provides classification
explanation for a big number of instances. Discretized counts are depicted as stars
under each leaf in Figure 3: a high number of black stars represents leaves with good
accuracy and comprehensibility and vice versa. Figure 3 shows that leaves with high
probability of the class assigned in the leaf (percent of instances belonging to the class
are given in each leaf) receive good score, which is to be expected. However, these
scores provide additional information: leaves 7 and 10 have similar classification
accuracy (~56 %), but leaf 10 has lower score. This means that BB classifier is able to
improve the classification accuracy in leaf 10, but not in leaf 7. A quick look at the
number of stars in Figure 3 revels that running, walking, cycling and lying activities are
easy to recognize while sitting, kneeling and standing are often confused by the
classification tree and are classified with low accuracy. Therefore, they should be
replaced by BB classifier in order to improve accuracy, since comprehensible
classification is not provided by the initial tree. The domain expert confirmed that
additional accelerometer on thigh should be used in order to distinguish sitting from
standing. He also confirmed that the suggested four activities are easy to classify: an

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers226

older version of activity recognition software that he developed used hand crafted rules,
similar to the ones in the tree, to recognize the four activities. This illustrates how the
MOLHC supports the knowledge discovery and classifier validation.

The domain expert finally choose the hybrid tree (Figure 3), which achieves
84.1 % accuracy and comprehensibility 0.72. By sacrificing some accuracy he obtained
an accurate classifier enabling good classifier validation. The chosen hybrid tree
replaced a sub-tree (containing leaves 1-3) with a single BB leaf, which increased the
overall accuracy by 3.3 % and decreased comprehensibility by 0.13. It also replaced
leaves 5 and 10, which increased accuracy by additional 4.7 % and decreased
comprehensibility by additional 0.15. The expert could change the initial tree by adding
sub-trees to those two leaves and run the MOLHC again if higher comprehensibility
and similar accuracy was required. This illustrates how MOLHC supports classifier
generalization improvement and refrainment of approximately-correct domain theories.

Since the user chooses a hybrid tree based on the Pareto front, it is very important
that the comprehensibility and accuracy values used for drawing the Pareto front are
accurate. They are estimated on the training set and therefore depend on the number of
training instances as is shown in Figure 4. Insufficient number of training instances
may lead to errors in the estimated comprehensibility and accuracy and therefore
mislead the user while choosing a hybrid tree. Figure 1a shows one such example,
which occurred because only 50 instances were used for the iris dataset. The problem is
only amplified by the fact that MOLHC approach requires three datasets: one for
learning the initial tree and BB classifier, another for learning the Pareto set of hybrid
trees and usually also the third for evaluating the hybrid trees. An improvement of the
algorithm, which would enable it to perform reliably with small datasets and would
limit the errors of the predicted comprehensibility and accuracy of the hybrid trees,
would be welcome. It could probably be achieve using internal n-fold cross-validation.

22.2

upright

moving x

low

moving xyz

low

body angle
perfectly upright

moving z

low
54.0

standing

high

body angle 2

flat

correlation 1

low

correlation 3

low
53.4

kneeling

high
55.3

standing

high
66.1

sitting

inclined +
74.3

standing

upright
59.6

sitting

other
56.6

cycling

high

moving xyz

other
88.0

walking

high
99.7

running

flat

body angle 2

inclined -

body angle

flat
78.9

cycling

completely flat
56.3

allfours

flat
95.3

lying

body angle

1

2 3

4

5

6

7 8 9 10 11

12

Figure 3. Output of the MOLHC algorithm for the activity recognition domain: quality of the leaves (stars),
black-box leaves of the chosen hybrid tree (black leaves), and pie charts representing class distributions in
each node.

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers 227

Figure 4. Error in predicted comprehensibility of hybrid trees depends on the number of learning examples
(results obtained from 40 initial trees built on 23 UCI datasets).

3. Conclusion

This paper presents the motivation for and advantages of using multi-objective learning
algorithm MOLHC in a real world use case. The algorithm graphically presents the
difficulty of classification task for a comprehensible classifier, identifies parts of the
domain that can be classified accurately with understandable classifier, and parts of the
domain that are more challenging and should be classified with a black-box (BB)
classifier instead. It offers an insight into the analysed classification problem and
supports classifier validation, knowledge discovery, and refinement and improvement
of classifiers, which are important features according to [7]. The output of the
algorithm is the Pareto set of hybrid trees, which range from most comprehensible to
the most accurate. The paper shows that the size of the Pareto set depends mostly on
the number of leaves in initial tree in which BB classifier achieves higher accuracy than
the majority class classifier of the leaf. The Pareto front supports the user in taking well
informed decision when choosing a hybrid tree that should be both accurate and
comprehensible. Furthermore, the paper shows that the error of predicted
comprehensibility depends on the number of learning instances, which could be a
limiting factor for MOLHC application on domains with few instances. Another
drawback of using MOLHC is a possible large number of hybrid trees presented on the
Pareto front; however, the case study shows that the user needs to focus only on a
subset of those hybrid trees that satisfies the requirements about accuracy and
comprehensibility. Furthermore, presence of knees on the Pareto front and scoring of
leaf quality further decreases the number of hybrid trees that must be compared by the
user.

Future work should be devoted to decreasing the error of predicted
comprehensibility and accuracy of hybrid trees and enabling reliable algorithm
performance on small datasets. Using multiple BB classifiers should be investigated as
it could provide improvements in accuracy of the hybrid trees. A program with
appropriate graphical user interface could improve the user experience with the
MOLHC algorithm and provide additional insights into the classification problem.

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers228

Systematic investigation of exploiting the Pareto set of hybrid trees to calculate the
qualities of individual leaves also seems promising.

References

[1] A. A. Freitas, Comprehensible classification models - a position paper. ACM SIGKDD Explorations, vol
15-1 (2013), 1-10.

[2] H. Allahyari, N. Lavesson, User-oriented Assessment of Classification Model Understandability, in
Proceedings of the Eleventh Scandinavian Conference on Artificial Intelligence, (2011), 11-19, IOS
Press, ISBN 978-1-60750-753-6

[3] D. Martens, B. Baesens, Building Acceptable Classification Models, Data Mining - Annals of
Information Systems, vol 8 (2010), 53-74

[4] D. R. Carvalho, A. A. Freitas, N. F. F. Ebecken, A Critical Review of Rule Surprisingness Measures, in
Proceedings of Data Mining IV - International Conference on Data Mining, (2003) 545-556.

[5] R. Kohavi, Scaling Up the Accurcy of Naive-Bayes Classifiers: a Decision-Tree Hybrid, Second
International Conference on Knowledge Discovery and Data Mining, (1996), 202-207, AAAI Press.

[6] D. Martens , J. Vanthienen, W. Verbeke, B. Baesens, Performance of classification models from a user
perspective, Decision Support Systems, vol 51-4 (2011), 782–793.

[7] M. W. Craven, J. W. Shavlik, Extracting Comprehensible Concept Representations from Trained Neural
Networks, In Working Notes on the IJCAI’95 Workshop on Comprehensibility in Machine Learning
(1995) 61-75

[8] Y. Jin, Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies, IEEE
transactions on systems, man, and cybernetics - part C: applications and reviews, vol. 38-3 (2008), 397-
415.

[9] A. A. Freitas, A critical review of multi-objective optimization in data mining: a position paper, ACM
SIGKDD Explorations Newsletter, vol 6-2 (2004), 77-86.

[10] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Hoboken
(2009).

[11] M. Bohanec, I. Bratko, Trading accuracy for simplicity in decision trees, Machine Learning vol. 15-3
(1994), 223-250.

[12] R. Piltaver, M. Luštrek, J. Zupančič. S. Džeroski, and M. Gams, Multi-objective learning of hybrid
classifiers, 21st European Conference on Artificial Intelligence (2014).

[13] A. Frank, A. Asuncion, UCI Machine Learning Repository, http://archive.ics.uci.edu/ml
[14] Weka: Collections of Datasets, http://www.cs.waikato.ac.nz/ml/weka/datasets.html
[15] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA,

1993.
[16] I. H. Witten, E. Frank, M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques,

Third Edition. Morgan Kaufmann, San Francisco (2011)
[17] K. Deb, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE transactions on

evolutionary computation, vol. 6- 2 (2002).
[18] J. Yin, Multi-objective Machine Learning, Springer, Berlin (2006).

R. Piltaver et al. / Multi-Objective Learning of Accurate and Comprehensible Classifiers 229

Predicting Players Behavior

in Games with Microtransactions

Ondřej Pluskal a Jan Šedivý a

a Czech Technical University in Prague, Czech Republic

Abstract. This paper focuses on predicting player behaviour in two-player games

with microtransactions. Typically the games are for free and companies generate

their revenue by selling in-game goods. We show creation of a users behaviour

model, which are then used in a recommendation system increasing in-game goods

purchases. We focus on learning techniques in a novel way, predicting the time of

purchases rather than the most likely product to be purchased. The player model

is based on in-game signals, such as players success, curiosity, social interactions

etc. We had access to a Pool Live Tour game dataset made by Geewa. We report

promising results in predicting the purchase events.

Keywords. machine learning, feature extraction, online games, data mining

1. Introduction

In this paper we specifically focus on how to improve the monetization of two-player on-

line games. The game is typically free but to gain a special game advantage players may

purchase in-game goods improving their skills. They purchase the goods in small pay-

ments, microtransactions, for real-currency. To increase the revenue users are bombarded

with ads [5]. The problem is that very frequent advertisements are do not typically lead

to increased revenue because of advertisement fatigue and advertisement wear out.

Both phenomenons are recognized in marketing models [9]. Advertisement fatigue

is the event of a customer no longer liking or buying goods from the advertisement,

because the advertisement is bothering them too much. Advertisement wear out means

that the customer will ignore the advertisement and it would have no effect.

These two negative effects can be reduced by advertising the in-game goods only

when the player is likely to make the purchase. When the ad’s timing is correct the like-

lihood of converting through the advertisement is increased. This improves the revenue.

Building such a system by an expert is impossible, simply because we are analysing a

large-scale dataset of thousands of players.

We tested our novel idea on a Pool Live Tour (PLT) game made by Geewa. PLT

is a virtual pool game, that can be played in a web browser or on a tablet. This game

is played by 2.5 million daily active users1 all over the world. The in-game good are

better cues giving a slight advantage. Certainly, buying a better cue does not guarantee

a win it only increases player’s chances. To design the model Geewa provided us with

1Collected from http://corporate.geewa.com/game/pool-live-tour/ on 2nd Feb 2014

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-230

230

two datasets, dataset D1 with a sample of monthly users’ activity, totalling 272k unique

user ids, and dataset D2 with monthly activity of a subset of users, that registered that

month and bought in-game item, totalling 11.5k unique user ids. The datasets contain

client actions collected from the clients as well as events generated by the server. The

datasets in their raw form contain over 30 GB.

We show creation of a model from the player logs that predicts the players’ readiness

to buy a cue after finishing a match. In the next section we review the behaviour predic-

tion in general. We will also discuss impact of some of the recommendation systems. In

Section 3 we explain our approach to the behaviour prediction as a machine learning task

and develop and evaluate the model. In Section 4 we show the properties of the datasets

and how the feature extraction was done. In Section 5 we describe the testing and show

the results of our experiments. We conclude our observations and set our goals for future

work in Section 6.

2. Related Work

In the literature there are a few studies concerning player modelling using machine learn-

ing and data mining methods. We have identified a few trends in the literature, from

matchmaking, user segmentation, to cheater detection. Up to our knowledge, nobody

published any work about building recommendation systems in games. This section

therefore covers not only player modelling, but also recommendation systems.

In cheater detection studies there are several studies using machine learning and data

mining methods. The studies define the problem as a classification problem. They use

derived rules [7], SVM [13] and Hidden Markov Models [16] with a set threshold. The

features were consisting of playtime lengths[7] or action frequencies [13]. Bot detection

tasks are studied in several game settings. These are mainly MMOGs2 [7,13] and FPS3

games [16].

More descriptive models were made in the case of segmentation [3,4,14], a prob-

lem of finding distinct groups of users. Segmentation is viewed in all of these articles as

unsupervised machine learning problem. Two papers consider player segmentation task

[3,4], the third segments organised groups of players called guilds [14]. Player segmen-

tation is done using cumulative features including playtimes, game specific estimates of

success (e.g. number of trials per level, number of kills etc.). The approaches used for

this task vary from NMF[14], k-means, Simplex Volume Maximization[3], to SOM[4].

In research the main challenge is the number of users and therefore the problem of large-

scale datasets. All the interesting information are extracted from game logs, that the pro-

ducers store in databases acquired by telemetry. The games used in player segmentation

are both single player games [4] as well as multiplayer games [3,14].

There are more papers[10,15] using supervised machine learning. Another paper

tries to predict the players’ maximal progress in a single player game [10]. This is done

using machine learning methods, by monitoring gameplay features in the early levels of

the game and solving this problems both as classification problem as well as regression

problem. Both problem abstractions show promising results. Another paper [15] studies

2Massive Multiplayer Online Games
3First Person Shooter

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 231

the prediction of strategy that a competitive RTS4 player would play from his actions

done in game at certain time point. This study aims to creating an AI that by predicting

the strategy probabilities would infer correct counter strategy.

Since up to our knowledge in the research of player modelling there is no relevant

literature of how to present players with in-game goods we have tried to find resources

in the setting of web recommendation systems aimed at recommending relevant goods,

entertainment or web pages to specific users based on their preferences or browsing

history.

In recommendation systems there are many ways from which data we should predict

what a user might like. This can be done via contextual information, where in advertise-

ment we try to find ads with similar context to the site. Also user based recommenda-

tions, where we look at similar users and recommend goods to them that others purchases

(Collaborative filtering). And the last approach is that we use sequential data and try to

find sequential patterns that might help us what the user might want to see next. We try to

find out similarities with web recommendation, which is in active research for more than

ten years[11]. Also hybrid approaches [8] using combinations of different approaches

can be seen mainly in the Netflix Prize competition, where researchers improved the

accuracy of the Netflix recommendation system by 10%.

Other approaches use sequential patterns [17,12]. The idea comes from web-page

recommendation, where a users browsing in some domain might share the same brows-

ing sequential patterns as other users. Finding the most common patterns and creating a

patricia trees from them is the core idea. Then assuming the Markov property (depen-

dence of next state only on previous state, here states are web pages) the recommenda-

tion system can show the most probable web pages by traversing the patricia tree and

suggesting the most probable pages.

To the best of our knowledge there exists no study that would directly solve the issue

of dynamic advertisement space generation presented in this paper. This approach can

bring the notion of smart recommendation to games, where we can address the player

directly in the time, he is most likely to buy a new virtual item.

3. TASK DEFINITION

The main motivation of this paper is to increase the revenue generated by games using

microtransactions by reducing the amount of advertisement sent to the user. In the ideal

case we would like to suggest to the user to purchase in-game items only in the times he

would really buy the in-game item.

We will be explaining our approach on the PLT game. In this game there are two

currencies. The first one is coins, that can be acquired by playing, daily rewards and

earning trophies. The second one is gold coins, that can be only acquired by purchase

using real currency. The task at hand is predicting the buy of a cue for gold coins. We

divided the task into two stages, first we try to predict that the player would buy a cue

of any kind, then we decided to only predict the gold cue buys. Both stages use only

users of which we have information from their registration. For the second stage we use a

segment of paying users as a subset of all users whose behaviour we would like to model.

4Real Time Strategy

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions232

�����
�

��	
�

��	
�
�

�����
�
�

�
�

�����������

�
�

Figure 1. Visualization of xi and yi for player u.

We have decided to model the problem of timely in-game item recommendation as a

supervised machine learning task, particularly a binary classification task. The example

is a tuple (xi,yi), where xi corresponds to a feature vector containing information about

the activity of player u from registration to the end of game i. Fig 1 depicts the xi, yi
relationship on an example of a single user. The yi is whether the player u bought a cue

in between the start end of game i and the end of game i+1. Because we have only two

targets, we define yi = −1 if the player didn’t buy between games i and i+ 1, yi = 1 if

the player bought between games i and i+1.

Since we described the task as a binary classification tasks, we can use several mea-

sures to score classifiers performance. We could use accuracy, precision and recall or area

under a ROC curve (AUC) [6]. We decided to use AUC because it generally maximizes

the True Positive Rate (TPR) for every False Positive Rate (FPR). This is a good measure

for this problem, because upon creating the recommendation system the operator can

choose the FPR and then set a threshold on the scoring decision function.

4. DATA COLLECTION

Two datasets of raw data in form of logs were provided by Geewa from their game PLT.

The data come from their internal reporting system, that is used by their analytics in

order to better understand how the players are playing the game.

These are live data from real players in their homes captured by telemetry and stored

on Geewas side. The datasets contain logs from the client residing in player’s comput-

ers as well as actions generated by the server. The player base is from users from 187

countries all over the world. We were kindly provided with 2 datasets D1 and D2 from

Geewa. D1 is drawn as a small sample of all users and all of their actions generated by

client and server in one month (19th Mar 2013 - 18th Apr 2013). D2 is a set of all users

that registered and bought some cue in one month (1st Nov 2013 - 30th Nov 2013). The

size of raw data is 24 GB for D1 and 6.6 GB for D2.

4.1. Data Preprocessing

The log data contain information about user logins, their in-game actions, from starting

a game to shooting with a cue. The dataset was provided in a single csv file. We had to

split the single file into a file for each player and those needed to be sorted according to

the time when they were generated. Both datasets are exported from relational databases

in form of one large table with all events in a structured form.

The dataset D1 consists of a subset of all users. This means that out of 272k users for

example we have 181k users who played one game and 78k users who played 10 games.

Since we need full user history, we need the users who have newly registered, which out

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 233

of the total 272k users is only 57k users who registered. Only 6728 players have played

at least 10 games, newly registered and bought some cue. These players were used for

the first task of prediction of cue buys.

The dataset D2 consists of a subset of players who bought a gold cue. This process

unfortunately yielded only 6,838 players who registered and played at least 10 games.

4.2. Feature Extraction

We will now describe how we created the feature vector xi. We created a set of features

extracted from the logs containing information about the players progress, success and

curiosity. Also there is a difference in over which period the features are extracted. They

can be extracted from the registration until the game end, but they can also be extracted

from several games before the game end or even in time periods, e.g. in the last 5 hours.

We define a set of all basic features F . These are the basic features extracted from

the logs, that are in F :

• Number of matches: Number of matches ma the player played in both main

game modes, matched and friend games.

• Distribution of match types: Number of each game type the player played.

There are 2 different match types in PLT. These are matched games mm (the player

is matched against an opponent according to his skill), friend games m f (player

challenges his friend through some social platform).

• Distribution of levels played: A player can play matched games in different

game levels in the play mode. There are levels present at the moment. The ex-

tracted feature mi ∀i ∈ {1,2, ...,14} is the number of games played at each level.

• Performance in matches: The number of wins w in different game types. From

the game point of view each of the two competitive game types (matched games

wm and friend games w f) the number of wins for both match types wa. Also the

number of wins per level in matched games is measured wi. In matched games

the player bets a fixed amount of coins and wins his and his opponent’s bet, or

loses everything. The stakes are the higher the higher is the level.

• Match properties: Number of shots mns, time spent in game tm.

• Player curiosity: Number of shown opponents cards cpc, cue galleries ccg, own-

ers card coc, shop cs.

• Number of trophies: Number of trophies a a player got through achievements (e.

g. winning several games in row, sinking several balls in a row etc.). The player

also gets a small reward of additional coins for each trophy.

• Bonus coins: A player can get coins for free in two ways, by receiving a daily-

bonus package cdb or by depleting all coins and receiving a free-bonus package

c f b.

• Amount of coins: Current coin balance cb. The coins are used to bet and play

games. The bet value is set at each level and if the player wins, he gets back both

bets of both players. If the player loses he gains nothing. The player can spend

coins for various in-game items, for example cues. Also the player can buy coins

for real currency.

• Amount of winnings: The cumulative amount of gold a player has won is used

to unlock levels. For each level there is a set threshold for winnings, if the player

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions234

exceeds the threshold he has the option to play at that level. The feature is denoted

as cw.

• Rank-ups: When a player is able to play at a higher level (he has just unlocked

the level or he has enough coins to play at a higher level) he is shown a dialog, that

he is able to play at higher level. The number of these shown dialogs is encoded

in feature cr.

• Time from registration: How much time mt passed between the end of game

and registration.

• Inventory: Number of already bought cues bc and the subset of gold cues bgc.

As we said the feature extraction can be done in three different ways. We will be

explaining them using a generic feature f . One is by extracting the cumulative features

from registration up until game i, f (i). The second one is by extracting the features over

the last k games, f (k)(i). We call this extraction method match windowing. The third is

extracting features over a certain time period t, f̂ (t). We call this time windowing.

The feature vector is described in equation 1. The t time in time window features ĥi
t

is in hours.

x =
(f1, ..., fn, f (1)1 , ..., f (1)m , f (10)

1 , ..., f (10)
m ,

ĥ(1)1 , ..., ĥ(1)l , ĥ(24)
1 , ..., ĥ(24)

1 , ĥ(168)
1 , ..., ĥ(168)

l)
fi ∈ F ∪R

hi ∈ { ma,mm,m f ,m1, ...,m14,
wa,wm,w f ,w1, ...,w14}∪R

(1)

We are using a smaller feature vector for the games played before the first 10 games,

since for computing the features g(10)
i we need to have at least 10 games played by the

user. We divide each of the datasets D to two parts, D(1−9) and D(10), where feature

vectors from D(1−9) do not have the f (10)
i features, but the rest is the same as described

in equation 1.

5. EXPERIMENTS

The methodology used for evaluation is based on measuring the AUC. In order to create

a valid training protocol, we divided the dataset into two parts, training set and testing

set, where training set is 20% and testing set is 80%. If parameter tuning is needed in

order to find the best model we use 5-fold cross-validation.

5.1. User based and game based dataset divisions

The most important issue when constructing a testing protocol is the proper division

into training, validation and testing sets, so that the examples are i.i.d.(independent and

identically distributed). In this task we can split either based on user, or based on games.

In the previous section we described how to extract the tuples D = (xu
i ,y

u
i),∀u,∀i. The

split based on games would be done, by considering every tuple (xu
i ,y

u
i) independent on

u. This could lead to having a feature vector from particular user u in both training and

testing set, i.e. game 11 in training and game 12 in testing set. But this contradicts with

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 235

Table 1. This table shows the difference between validation and testing error with different splits. It ilustrates

overfitting with different techniques.

Validation AUC Testing AUC Change

Game split 74.76% 73.06% -1.7

User split 75.07% 75.99% +0.92

Table 2. This table consists of the properties of each of the different datasets.

D1−9
1 D10

1 D1−9
2 D10

2

No. buys 6,838 11,601 445 3750

No. games 83,160 383,703 35,271 445,554

No. players 9,240 6,161 3,919 3,511

the independency of the two sets. Also we suggest that the performance on new users

would be lower for the game split.

We made an experiment to support our claims and the results are shown in table 1

using a Random Forest on D(10)
1 . The dataset was divided into a training set and testing

set using a user split. The validation error is the error using 5 fold cross-validation using

the respective splitting on training set. The testing error is the performance of the clas-

sifier trained on the whole training set evaluated on the testing set. We can see that our

assumption were confirmed empirically.

5.2. General cue and gold cue predictions

Since we are not capable of computing the window features for the early matches, we

decided to divide the dataset into two parts. One are games 1-9 and the second part are

the games 10 up to what the player accomplished to play in given month. The dataset

will be labelled D(1−9) and D(10).For dataset D1 we will perform the experiment for all

cues, since there are only 299 gold buys. For dataset D2 we will be making experiments

on gold cues. The feature vectors will be the same for both settings.

From the characteristics of the dataset shown in table 2, we can see that the datasets

have a property of being unbalanced. This means that we have to choose the classifiers

accordingly. We have chosen scikit5 library in python for the training and evaluation of

the classifiers.

As the classifier to test the performance we have chosen Random Forest [1], linear

SVM [2] and a Decision Tree. They were chosen, because they have the option to han-

dle unbalanced classification tasks, due to the ability to assign class weights. The class

weights used were inversely proportional to class frequencies. The Random Forest is a

well performing classifier in various different tasks and linear SVM represents a simple

but well grounded model. For the classification task we used a small decision tree in

order to create a simplified view of the problem. The Decision Tree has maximum depth

set to 3 in order to give the reader an idea what are the most discriminative features and

how do they work.

Z-normalization was performed on the respective training sets when training the

SVM, because the scales in each feature are different. The scales do not affect the tree

5Version 0.14 http://scikit-learn.org/stable/

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions236

Table 3. Results of the experiments for each classifier and dataset.

Random Forest SVM Decision Tree

D(1−9)
1 75.37% 71.22% 71.53%

D(10)
1 75.99% 73.25% 68%

D(1−9)
2 79.69% 78.65% 76.96%

D(10)
2 87.22% 76.72% 78.27%

Figure 2. ROC curve of D(10)
1

Figure 3. ROC curve of D(10)
2

based classifiers. SVM’s regularization constant C was tuned on the validation sets. The

parameters tuned on the Random Forest were maximum number of feature, minimum

number of features and number of estimators.

In table 3 we can see the performance of each classifier on each of the two datasets.

We can see that the performance on the first dataset is significantly lower than the per-

formance on the second dataset. We suppose the reason for higher performance of Ran-

dom Forest over SVM is the fact, that the dataset is clearly not linearly separable. The

Random Forest can infer much more complex models than linear ones [1]. Also we can

see that the models’ performance using only a small decision tree is significantly lower

that each of the Random Forests.

In Figures 2 and 3 we can see the ROC curves for all the datasets computed over the

testing set. In each figure the cross is the operating point of the classifier.

Both ROC curves show, that the classifiers default operating point was trained on

a very low FPR. This corresponds to not suggesting the cues to the player many times.

An operator can adjust the threshold to move the TPR as well as FPR higher, in order to

raise the advertisement ratio.

The relative feature importance can be computed from each of the trained random

forests[1]. We are plotting only the first 20 highest scoring features in order to see, what

features are most important and to check whether all the types of designed features are

used by the random forest. In figures 4 and 5 we can see, that all types of different features

are present. These include to cumulative, time window and game window features.

For both cases D(10)
1 and D(10)

2 we can see similar features scoring high. One ex-

ception is feature importance of the number of previously purchased cues bgc is 0.19 in

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 237

Figure 4. Feature importances of D(10)
1

Figure 5. Feature importances of D(10)
2

figure 5. This is due to the fact, that many players buy only one cue and the acquisition of

a second cue is for the most cases unlikely. Another positive result is the appearance of

many different types of features, including cumulative, time window and game window

features.

Also we can see that among the highest scoring features there is no feature consid-

ering friend matches. The reason is that friend matches are less common than matched

matches. In the general cue case we can see that an important feature is the number of

clicks on opponent cue gallery. From opponent’s cue gallery he can see he is playing

against a player with better cue. Using these feature importance plots also might indicate

to the developers key components of the game that lead to possible design changes.

6. CONCLUSION AND FUTURE WORK

We presented a system predicting player purchase applicable on games with microtrans-

actions. Unlike a typical recommendation system we are not solving the problem of what

we should recommend to the player, but when is the right time to recommend purchase

of in-game goods. This approach allows dynamic advertisement placements.

The task is defined as a classification problem deciding whether to display or not an

advertisement at the end of a game. This decision is based on the prediction whether a

player would buy an in-game item after a match. The features used are of three types,

cumulative, game windows and time windows.

We created models predicting two actions general in-game items purchases and in-

game items purchases for hard currency leading to real revenue. Our experiments have

shown that the Random Forest algorithm was performing the best for both cases. For

the general case we have achieved 76% AUC and for the hard currency 87% AUC. We

have used the decision trees to study features differentiating power. We have found that

the most discriminative features are different for each case. Information about feature

importances can be useful to the game designers in order to improve the game and where

to focus their design goals.

This system is yet to be tested in practice, because the only way how to measure

the real impact on revenue is by A/B testing. We optimistically hope that the correct

advertisement placement timing will make the players buy the in-game items for hard

currency more frequently or earlier than today. This will bring higher revenue to the

company.

We plan to use these models in other tasks such as cheater, bot detection and churn

prediction in the future. The developed models can help to solve also these big problems.

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions238

7. ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Czech Technical University in

Prague, grant No. SGS14/072/OHK3/1T/13.

References

[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Discov., 2(2):121–167, June 1998.

[3] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau. Guns, swords and data: Clustering of player behavior

in computer games in the wild. In Computational Intelligence and Games (CIG), 2012 IEEE Conference
on, pages 163–170, 2012.

[4] Anders Drachen, Alessandro Canossa, and Georgios N. Yannakakis. Player modeling using self-

organization in tomb raider: underworld. In Proceedings of the 5th international conference on Compu-
tational Intelligence and Games, CIG’09, pages 1–8, Piscataway, NJ, USA, 2009. IEEE Press.

[5] Canossa Alessandro. El-Nasr Magy Seif, Drachen Anders. Game Analytics: Maximizing the Value of
Player Data. Springer, 2012.

[6] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874, June 2006.

[7] Ah Reum Kang, Jiyoung Woo, Juyong Park, and Huy Kang Kim. Online game bot detection based

on party-play log analysis. Computers & Mathematics with Applications, 65(9):1384 – 1395, 2013.

Advanced Information Security.

[8] Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Recommender Systems
Handbook, pages 145–186. Springer, 2011.

[9] Moorthy S. Lillien G., Kotler P. Marketing Models. Prentice Hall, 1992.

[10] Tobias Mahlmann, Anders Drachen, Julian Togelius, Alessandro Canossa, and Georgios N. Yannakakis.

Predicting player behavior in tomb raider: Underworld. In CIG, pages 178–185. IEEE, 2010.

[11] R. Suguna and D. Sharmila. An efficient web recommendation system using collaborative filtering and

pattern discovery algorithms. International Journal of Computer Applications, 70(3):37–44, May 2013.

Published by Foundation of Computer Science, New York, USA.

[12] Usha Rani M. Suneetha K. Web page recommendation approach using weighted sequential patterns and

markov model. Global Journal of Computer Science and Technology, 2012.

[13] Ruck Thawonmas, Yoshitaka Kashifuji, and Kuan-Ta Chen. Detection of mmorpg bots based on behav-

ior analysis. In Proceedings of the 2008 International Conference on Advances in Computer Entertain-
ment Technology, ACE ’08, pages 91–94, New York, NY, USA, 2008. ACM.

[14] C. Thurau and C. Bauckhage. Analyzing the evolution of social groups in world of warcraft. In Com-
putational Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 170–177, 2010.

[15] Ben G. Weber and Michael Mateas. A data mining approach to strategy prediction. In Proceedings of
the 5th international conference on Computational Intelligence and Games, CIG’09, pages 140–147,

Piscataway, NJ, USA, 2009. IEEE Press.

[16] S.F. Yeung, J.C.-S. Lui, Jiangchuan Liu, and J. Yan. Detecting cheaters for multiplayer games: theory,

design and implementation[1]. In Consumer Communications and Networking Conference, 2006. CCNC
2006. 3rd IEEE, volume 2, pages 1178–1182, 2006.

[17] Baoyao Zhou, Siu Cheung Hui, and Kuiyu Chang. An intelligent recommender system using sequential

web access patterns. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on, volume 1, pages

393–398 vol.1, 2004.

O. Pluskal and J. Šedivý / Predicting Players Behavior in Games with Microtransactions 239

Extension–Based Semantics of Abstract

Dialectical Frameworks

Sylwia POLBERG a,1

a Vienna University of Technology, Institute of Information Systems,
Favoritenstraße 9-11, 1040 Vienna, Austria.

Abstract. One of the most prominent tools for abstract argumentation is the Dung’s

framework, AF for short. Although powerful, AFs have their shortcomings, which

led to development of numerous enrichments. Among the most general ones are

the abstract dialectical frameworks, also known as the ADFs. They make use of

the so–called acceptance conditions to represent arbitrary relations. This level of

abstraction brings not only new challenges, but also requires addressing existing

problems in the field. One of the most controversial issues, recognized not only in

argumentation, concerns the support or positive dependency cycles. In this paper

we introduce a new method to ensure acyclicity of arguments and present a family

of extension–based semantics built on it, along with their classification w.r.t. cycles.

Finally, we provide ADF versions of the properties known from the Dung setting.

Keywords. abstract argumentation, abstract dialectical frameworks, argumentation

semantics

Introduction

Over the last years, argumentation has become an influential subfield of artificial in-

telligence [2]. One of its subareas is the abstract argumentation, which became espe-

cially popular thanks to the research of Phan Minh Dung [3]. Although the framework

he has developed is quite powerful, it has certain shortcomings, which inspired a search

for more general models [4]. Among the most abstract enrichments are the abstract di-

alectical frameworks, ADFs for short [5]. However, a framework cannot be considered a

suitable argumentation tool without properly developed semantics.

The semantics of a framework are meant to capture what we consider rational. Many

of the advanced ones, such as grounded or complete, coincide when faced with simple,

tree–like frameworks. The differences between them become more visible in compli-

cated cases. On various occasions examples were found for which none of the available

semantics returned satisfactory answers. They gave rise to new concepts, such as pru-

dent and careful semantics for handling indirect attacks [6,7], sustainable and tolerant

for self–attackers [8] or some of the SCC–recursive semantics for the problem of attack

cycles [9]. Introducing a new relation, such as support, creates additional problems.

The most controversial issue in a setting permitting support concerns the support

cycles and is handled differently from formalism to formalism. Among the best known

1The author is funded by the Vienna PhD School of Informatics. This research is a part of the project I1102

supported by the Austrian Science Fund FWF. An earlier version of this paper can be found in [1].

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-240

240

ones are the Bipolar Argumentation Frameworks (BAFs) [10], Argumentation Frame-

works with Necessities (AFNs) [11] and Evidential Argumentation Systems (EASs) [12].

While the latter two discard support cycles, BAFs do not make such restrictions and in

general, neither do ADFs. This variety is not an error in any of the structures. First of all,

in a more advanced setting, a standard Dung semantics can be extended in several ways.

Moreover, since one can find arguments both for and against any of the cycle treatments,

lack of consensus as to what approach is the best should not be surprising.

Many properties of the available semantics can be seen as “inside” ones, i.e. “what

can I consider rational?”. On the other hand, some can be understood as on the “outside”,

e.g. “what can be considered a valid attacker, what should I defend from?”. Various ex-

amples of such behavior exist even in the Dung setting. An admissible extension defends

against all possible attacks in the framework. We can then restrict this by saying that

self–attackers are not rational, and thus limit the set of arguments we have to defend the

extension from. If we now add support, we can again define admissibility in the basic

manner. However, one often demands that the extensions are free from support cycles

and that we only defend from arguments not taking part in them. From this perspective

semantics can be seen as a two–person discussion, describing what “I can claim” and

“what my opponent can claim”. This is also the point of view that we follow in this paper.

Although various extension–based semantics for ADFs have already been proposed

in the original paper [5], many of them were defined only for a particular ADF subclass

and were not suitable for all types of situations. Moreover, they did not solve the prob-

lem of positive dependency cycles. The aim of this paper is to address these issues. We

introduce a family of extension–based semantics and specialize them to handle the prob-

lem of support cycles, as their treatment seems to be the greatest difference between the

available frameworks. Furthermore, we present a classification of our sub–semantics in

the internal–external fashion that we have described before. We also recall our research

on admissibility in [13] and show how it fits into the new system. Finally, we show which

known properties, such as Fundamental Lemma, carry over from the Dung framework.

1. Dung’s Argumentation Frameworks

Let us briefly recall the argumentation framework by Dung [3] and its semantics. For

more details we refer the reader to [14].

Definition 1.1. A Dung’s abstract argumentation framework (AF for short) is a pair

(A,R), where A is a set of arguments and R ⊆ A×A represents an attack relation.

Definition 1.2. An argument a ∈ A is defended by a set E in AF , if for each b ∈ A s.t.

(b,a) ∈ R, ∃c ∈ E s.t. (c,b) ∈ R. A set E ⊆ A is:

• conflict–free in AF iff for each a,b ∈ E, (a,b) /∈ R.

• admissible iff it is conflict–free and defends all of its members.

• preferred iff it is maximal w.r.t set inclusion admissible .

• complete iff it is admissible and all arguments defended by E are in E.

• stable iff it is conflict–free and for each a ∈ A\E there exists b ∈ E s.t. (b,a) ∈ R.

The characteristic function FAF : 2A → 2A is defined as: FAF(E) = {a | a is defended by

E in AF}. The grounded extension is the least fixed point of FAF .

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks 241

We would also like to recall the notion of range, as its idea will be used in the ADF

semantics. Even in the Dung setting, the concepts of the E+ and E− sets can be used to

redefine defense. Finally, we also list some of the properties of Dung’s semantics [3].

Definition 1.3. Let E+ be the set of arguments attacked by E and E− the set of arguments

that attack E . E+∪E is the range of E.

Lemma 1.4. Dung’s Fundamental Lemma Let E be an admissible extension, a and b
two arguments defended by E. Then E ′ = E ∪{a} is admissible and b is defended by E ′.

Theorem 1.5. Every stable extension is a preferred extension, but not vice versa. Every
preferred extension is a complete extension, but not vice versa. The grounded extension is
the least w.r.t. set inclusion complete extension. The complete extensions form a complete
semilattice w.r.t. set inclusion. 2

2. Abstract Dialectical Frameworks

Abstract dialectical frameworks have been defined in [5] and further studied in [13,15,

16,17,18]. Their main goal is to be able to express arbitrary relations. This is achieved by

the use of acceptance conditions, which define what sets of arguments should be present

in order to accept or reject a given argument.

Definition 2.1. An abstract dialectical framework (ADF) as a tuple (S,L,C), where S
is a set of abstract arguments (nodes, statements), L ⊆ S×S is a set of links (edges) and

C = {Cs}s∈S is a set of acceptance conditions, one condition per each argument.

An acceptance condition is a total function Cs : 2par(s) → {in,out}, where par(s) =
{p ∈ S | (p,s) ∈ L} is the set of parents of an argument s.

Please note that one can also represent the acceptance conditions by propositional for-

mulas over arguments instead of “boolean” functions [19]. It is easy to see that links L
are somewhat redundant and can be extracted from the conditions. Thus, we will use of

shortened notation and assume an ADF D = (S,C) through the rest of this paper. In order

to introduce our new semantics, we need to explain some basic notions first.

Decisiveness: At the heart of Dung’s semantics is the concept of defense. Admissibility

represents a defensible stand, where no matter what our opponent says against us, we can

provide a counter argument to it. From this also follows that given accepted arguments E
and the ones attacked by them (E+), whatever argument is left cannot further change the

status of the ones in E. This idea that an argument has a “final” assignment is captured

with the notion of decisiveness in ADFs. Its basic form, where we check the outcome

of an acceptance condition w.r.t. accepted and rejected sets of arguments, can already be

found in the original paper [5]. It is further developed in an interpretation–based form in

[13], which will be used in this paper. A two–valued interpretation v is a mapping that

assigns the truth values {t, f} to arguments. We will use vx to denote a set of arguments

mapped to x by v, where x is some truth–value. Given an argument s ∈ S, its condition

Cs and an interpretation v, we define a shorthand v(Cs) as Cs(vt ∩ par(s)). Now, in order

2A partial order (A,≤) is a complete semilattice iff each nonempty subset of A has a glb and each increasing

sequence of S has a lub.

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks242

a b c d e
 ¬a∨ c b ¬c∧¬e ¬d

Figure 1. Sample ADF

to check is some (possibly partial) interpretation is decisive for s, we basically need to

check if all “bigger” interpretations stemming from it evaluate Cs in the same way:

Definition 2.2. Given a two–valued interpretation v defined on a set A, a completion of

v to a set Z where A ⊆ Z is an interpretation v′ defined on Z s.t. ∀a ∈ A v(a) = v′(a). By

a t/f completion we understand v′ that maps all arguments in Z \A respectively to t/f.

Definition 2.3. We say that an interpretation v defined on A is decisive for an argument

s ∈ S iff for any two (respectively two or three–valued) completions vpar(s) and v′par(s) of

v to A∪ par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs). We say that s is decisively out/in
wrt v if v is decisive and all of its completions evaluate Cs to respectively out, in.

Example 2.4. Let ({a,b,c,d,e},{Ca : ,Cb : ¬a∨ c,Cc : b,Cd : ¬c∧¬e,Ce : ¬d}) be

the ADF in Figure 1. Examples of decisively in interpretations for b include v1 = {c : t}.

This means that knowing that c is true, we know that the whole disjunction (and thus

the acceptance condition) are satisfied. Formally speaking, v1 is decisive as both of its

completions {c : t,a : f} and {c : t,a : t} satisfy the condition.

Acyclicity: Let us now focus on the issue of positive dependency cycles. Please note

we refrain from calling them support cycles in the ADF setting in order not to confuse

them with specific definitions of support available in the literature [10].

Informally speaking, an argument takes part in a cycle if its acceptance depends on

itself. An intuitive way of verifying the acyclicity of an argument would be to “track” its

evaluation, e.g. in order to accept a we need to accept b, for b we need c and so on. This

basic case becomes more complicated when disjunction is introduced. We then receive a

number of such “paths”, with only some of them proving to be acyclic. Moreover, they

might be conflicting one with each other. It can also happen that all acyclic evaluations

are blocked and a cycle is forced. Our approach to acyclicity is based on the idea of such

“paths” that are accompanied by sets of arguments used to detect possible conflicts.

Let us now introduce the formal definitions. In order to obtain the arguments that are

required or should be avoided for the acceptance of a given argument, we will make use

of decisive interpretations. Naturally, it suffices to focus on the minimal ones, by which

we understand that both vt and vf are minimal w.r.t. ⊆. Given an argument s ∈ S and x ∈
{in,out}, by min dec(x,s) we will denote the set of minimal two–valued interpretations

that are decisively x for s.

Definition 2.5. Let A ⊆ S be a nonempty set of arguments. A positive dependency
function on A is a function pd assigning every argument a ∈ A an interpretation v ∈
min dec(in,a) s.t. vt ⊆ A or N for null iff no such interpretation can be found.

Definition 2.6. An acyclic positive dependency evaluation acea for a ∈ A based on a

given pd–function pd is a pair ((a0, ...,an),B), 3 where B =
⋃n

i=0 pd(ai)
f and (a0, ...,an)

3Please note that it is not required that B ⊆ A

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks 243

is a sequence of distinct elements of A s.t.: 1) ∀n
i=0 pd(ai) �=N , 2) an = a, 3) pd(a0)

t =
/0, and 4) ∀n

i=1, pd(ai)
t ⊆{a0, ...,ai−1}. We will refer to the sequence as the pd–sequence

and to B as the blocking set. We will say that an argument a is pd–acyclic in A iff there

exist a pd–function on A and a corresponding acyclic pd–evaluation for a.

We will write that an argument has an acyclic pd–evaluation on A if there is some

pd–function on A from which we can produce the evaluation. There are two ways we

can “attack” an acyclic evaluation. We can either discard an argument required by the

evaluation or accept one that is capable of preventing it. This corresponds to rejecting a

member of a pd–sequence or accepting an argument from the blocking set. We can now

formulate this “conflict” by the means of an interpretation:

Definition 2.7. Let A ⊆ S be some set of arguments and a ∈ A s.t. a has an acyclic pd–

evaluation acea = ((a0, ...,an),B) in A. We say that a two–valued interpretation v blocks
acea iff ∃b ∈ B s.t. v(b) = t or ∃ai ∈ {a0, ...,an} s.t. v(ai) = f.

Example 2.4 (Continued). Let us now show why we store the blocking set. For argument

b there exist two minimal decisively in interpretations: v1 = {a : f} and v2 = {c : t}.

The interpretations for a and c are respectively w1 = {} and z1 = {b : t}. Therefore, on

{a,b,c} we have two pd–functions, namely pd1 = {a : w1,b : v1,c : z1} and pd2 = {a :

w1,b : v2,c : z1}. They result in one acyclic evaluation for a: ((a), /0), one for b: ((b),{a})
and one for c: ((b,c),{a}). Let us analyze the set E = {a,b,c}. We can see that accepting

a “forces” a cycle between b and c. The acceptance conditions of all arguments are

satisfied, thus this simple check is not enough to verify if a cycle occurs. If we checked

only if the members of the pd–sequences are accepted, we would also get the wrong

answer. Only looking at the whole evaluations shows us that b and c are both blocked by

a. Although b and c are technically pd–acyclic in E, we see that their evaluations are in

fact blocked and this type of conflict needs to be taken into account by the semantics.

3. Extension–Based Semantics of ADFs

Although various semantics for ADFs have already been defined in the original paper

[5], only three of them – conflict–free, model and grounded – are still used (issues with

the other notions can be found in [13,15,16]). Moreover, the treatment of cycles and their

handling by the semantics was not sufficiently developed. In this section we will address

all of those issues. Recall that there is no consensus among available bipolar frameworks

as to how support cycles should be treated. Therefore, we would like to explore the

possible approaches in the context of ADFs by developing appropriate semantics.

The classification of the sub–semantics that we will adopt in this paper is based

on the inside–outside intuition presented in the introduction. Appropriate semantics will

receive a two–element prefix xy−, where x will denote whether cycles are permitted

or not on the “inside” and y on the “outside”. We will use x,y ∈ {a,c}, where a will

stand for acyclic and c for cyclic constraints. As the conflict–free and naive semantics

focus only on what we can accept, we will drop the prefixing in this case. Although

the model, stable and grounded fit into our classification (see Theorem 3.15 and [20]),

they have quite unique naming and further annotations are not needed. We are thus left

with admissible, preferred and complete. The BAF approach follows the idea that we

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks244

can accept arguments that are not acyclic and we allow our opponent to do the same.

The ADF semantics created in [13] also shares this view. Therefore, they will receive

the cc− prefix. In contrast, AFNs and EASs do not permit cycles both in extensions

and in attackers. Thus, the semantics following this line of reasoning will be prefixed

with aa−4. Although we believe that a non–uniform approach can be suitable in certain

situations (i.e. ca− and ac−), for now we will focus only on the aa− and cc− ones.

Conflict–free and naive semantics: In the Dung setting, conflict–freeness meant that

the elements of an extension could not attack one another. In ADF setting, this notion

is strengthened by also providing required support. This represents the intuition of argu-

ments that can stand together presented in [14].

Definition 3.1. A set of arguments E ⊆ S is a conflict–free extension of D iff for all

s ∈ E we have Cs(E ∩ par(s)) = in.

In the acyclic version of conflict–freeness we also need to deal with the conflicts

arising on the level of evaluations. To meet the formal requirements, we first have to

show how the notions of range and the E+ set are moved to ADFs.

Definition 3.2. Let E ⊆ S a conflict–free extension of D and vE a partial two–valued

interpretation built as follows:

1. Let M = E and for every a ∈ M set vE(a) = t;
2. For every b ∈ S\M that is decisively out in vE , set vE(b) = f and add b to M;

3. Repeat Step 2 until no new elements are added to M.

By E+ we understand the set of arguments vf
E and we will refer to it as the discarded

set. vE now forms the range interpretation of E.

However, this notion of range is quite strict as it requires an explicit “attack” on all possi-

ble arguments. This is not always a desirable property, since depending on the approach

we might not treat cyclic arguments as valid and hence want them “out of the way”.

Definition 3.3. Let E ⊆ S a conflict–free extension of D and va
E a partial two–valued

interpretation built as follows:

1. Let M = E. For every a ∈ M set va
E(a) = t.

2. For every b ∈ S\M s.t. every acyclic pd–evaluation of b in S is blocked by va
E , set

va
E(b) = f and add b to M.

3. Repeat Step 2 until no new elements are added to M.

By Ea+ we understand the set (va
E)

f and call it the acyclic discarded set. va
E now forms

the acyclic range interpretation of E.

We can now define an acyclic version of conflict–freeness and the naive semantics:

Definition 3.4. A conflict–free extension E is a pd–acyclic conflict–free extension of

D iff every argument a ∈ E has an unblocked acyclic pd–evaluation on E w.r.t. vE .5

4More explanations can be found in [20].
5Since we are in a conflict–free setting, it suffices to check whether E ∩B = /0 to see if an evaluation is not

blocked. Consequently, it does not matter which version of range we use.

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks 245

Definition 3.5. The naive and pd–acyclic naive extensions are respectively maximal

w.r.t. set inclusion conflict–free and pd–acyclic conflict–free extensions.

Example 2.4 (Continued). The conflict–free extensions of our ADF ({a,b,c,d,e},{Ca :

,Cb :¬a∨c,Cc : b,Cd :¬c∧¬e,Ce :¬d}) are /0,{a},{b},{d},{e},{a,d},{a,e},{b,c},
{b,d},{b,e},{a,b,c},{b,c,e} and {a,b,c,e}. As a blocks evaluations of b and c,

{a,b,c} and {a,b,c,e} are not pd–acyclic conflict–free. Naive and pd–acyclic naive ex-

tensions are respectively {{a,d},{b,d},{a,b,c,e}} and {{a,d},{a,e},{b,d},{b,c,e}}.

Let us briefly look at the discarded sets of {a,d}. Since a blocks the evaluations of

b and c, they will be included in the acyclic version. However, since none of them is

decisively out w.r.t. just {a}, they will not appear in the standard version. It is easy to see

that presence of d permanently discards e and thus it is in both sets.

Model and stable semantics: The concept of a model basically follows the intuition

that if something can be accepted, it should be accepted:

Definition 3.6. A conflict–free extension E is a model of D if ∀ s ∈ S, Cs(E∩ par(s)) =
in implies s ∈ E.

Verifying whether a condition of an argument s is met does check the effect of ac-

cepting s on E, thus it can happen that including s breaks conflict–freeness of E. Conse-

quently, it is clear to see that model semantics is not universally defined. Moreover, the

extensions might not be maximal w.r.t. ⊆, as visible in the continuation of Example 2.4.

The model semantics was used as a mean to obtain the stable models. The main

idea was to make sure that the model is acyclic. Although the original reduction–based

method was not adequate [15], the initial idea still holds and we use it to define sta-

bility. Although the produced extensions are now incomparable w.r.t. set inclusion, the

semantics is still not universally defined.

Definition 3.7. A model E is a stable extension iff it is pd–acyclic conflict–free.

Example 2.4 (Continued). Out of all conflict–free extensions, only {a,d},{a,e} and

{a,b,c,e} are models. {a} itself is not a model, since Cd({a}∩{c,e}) = in and Ce({a}∩
{d}) = in and we thus we can still accept some arguments. Recall that {a,b,c,e} was

not pd–acyclic conflict–free. Consequently, {a,d} and {a,e} are our stable extensions.

Grounded semantics: The grounded semantics introduced in [5] is defined in the terms

of a special operator. Although it might look complicated at first, this is nothing more

than analyzing decisiveness using the set, not the interpretation form [20].

Definition 3.8. Let ΓD(A,R) = (acc(A,R),reb(A,R)), where acc(A,R) = {r ∈ S | A ⊆
S′ ⊆ (S\R)⇒Cr(S′ ∩ par(s)) = in} and reb(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S\R)⇒Cr(S′ ∩
par(s)) = out}. Then E is the grounded model of D iff for some E ′ ⊆ S,(E,E ′) is the

least fix–point of ΓD.

Example 2.4 (Continued). As noted in [5], the grounded extension can be obtained by

applying the operator to (/0, /0). Let us compute acc(/0, /0). Obviously, we can accept a.

The condition of c is already out, and so are the ones of b, d and e when we consider

S′ being respectively {a},{e} and {d}. It is easy to see that for now, reb(/0, /0) remains

empty – S′ such as {a,c},{b}, /0 and /0 evaluate respectively b,c,d and e to in. Next

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks246

step is ΓD({a}, /0). However, by reasoning presented above no further arguments can be

accepted or rejected and we reach a fixpoint. Thus, {a} is our grounded extension.

Admissible and preferred semantics: In [13] we have presented our first definition of

admissibility, before the sub–semantics classification was developed. The new, simplified

version of our previous formulation, is now as follows:

Definition 3.9. A conflict–extension E ⊆ S is cc–admissible in D iff every e ∈ E is

decisively in w.r.t to the range interpretation vE .

It should be noted that decisiveness w.r.t. range encapsulates the defense known

from the Dung setting. If an argument is decisively in, then any set of arguments that

would have the power to out the acceptance condition is “prevented” by the interpreta-

tion. Hence, the statements required for the acceptance of a are mapped to t and those that

would make us reject a are mapped to f. The former encapsulates the required “support”,

while the latter contains the “attackers” known from the Dung setting.

When working with the acyclic semantics, we not only have to defend the mem-

bers, but also their acyclic evaluations. Example 2.4 shows that although decisiveness

encapsulates defense of an argument, it might not be the case for its evaluation.

Definition 3.10. A pd–acyclic conflict–free extension E is aa–admissible in D iff every

e ∈ E 1) is decisively in w.r.t. acyclic range interpretation va
E , and 2) has an unblocked

acyclic pd–evaluation on E s.t. all members of its blocking set B are mapped to f by va
E .

Definition 3.11. A set of arguments is xy–preferred in D iff it is maximal w.r.t. set

inclusion xy–admissible, where x,y ∈ {a,c}.

Example 2.4 (Continued). Recall our ADF ({a,b,c,d,e},{Ca : ,Cb : ¬a∨c,Cc : b,Cd :

¬c∧¬e,Ce : ¬d}) and that {b,c} was a pd–acyclic conflict–free extension. Its standard

and acyclic discarded sets are just {d}. It is easy to see, that both arguments are decisively

in w.r.t. both range interpretations. Although uttering a would not change the values of

the conditions, it would still force a cycle between b and c. Thus, the acyclicity is not

“defended” and {b,c} is cc, but not aa–admissible. Similar follows for {b,c,e}. /0 and

{a} are trivially both cc and aa–admissible. Since the discarded sets of {e} include d, so

are {e} and {a,e}. By the reasoning above, it is also easy to see that {a,b,c},{b,c,e} and

{a,b,c,e} are cc (though not aa) admissible. Finally, apart from /0,{a} and {a,e}, also

{a,d} is aa–admissible. Its acyclic discarded set is {b,c,e} and thus decisiveness and

evaluation defense are preserved. Since the standard set is just {e}, d is not decisively

in and the extension is not cc–admissible. The set {a,b,c,e} is the only cc–preferred

extension, while {a,d} and {a,e} are aa–preferred.

Complete semantics: Completeness represents an approach in which we have to accept

everything we can safely conclude from our opinions. In the Dung setting “safety” means

defense, while in the bipolar setting it is strengthened by providing sufficient support. In

a sense, it follows the model intuition that whatever we can accept, we should accept.

However, now we not only use an admissible base in place of a conflict–free one, but

also defend the arguments in question. Therefore, instead of checking if an argument is

in, we want it to be decisively in.

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks 247

Definition 3.12. A cc–admissible extension E is cc–complete in D iff every argument in

S that is decisively in w.r.t. to range interpretation vE is in E. An aa–admissible extension

E is aa–complete in D iff every argument in S that is decisively in w.r.t. to acyclic range

interpretation va
E is in E.6

Example 2.4 (Continued). It is easy to see that since a can always be accepted, only

{a,d},{a,e} and {a} are aa–complete. From this also follows that cc–admissible ex-

tensions such as /0,{e},{b,c}{b,c,e} are not cc–complete. Since the discarded set of

{a,b,c} is {d}, e can still be included in the extension and thus it is also disqualified.

Therefore, we obtain three cc–complete sets: {a}, {a,e} and {a,b,c,e}.

Properties: Let us close the paper with the properties of our semantics. Although the

study provided here will by no means be exhaustive, we would like to show how the lem-

mas and theorems from the original paper on AFs [3] are shifted into this new setting7.

Even though every pd–acyclic conflict–free extension is also conflict–free, it does

not mean that every aa–admissible is cc–admissible. These approaches differ signifi-

cantly. The first one makes additional restrictions on the “inside”, but due to acyclicity

requirements on the “outside” there are less arguments a given extension has to defend

from. The latter allows more freedom as to what we can accept, but also gives this free-

dom to the opponent, thus there are more possible attackers. Moreover, it should not

come as a surprise that these differences pass over to the preferred and complete seman-

tics, as visible in Example 2.4. Our results show that admissible sub–semantics satisfy

the Fundamental Lemma. Moreover, the relations between the semantics presented in [3]

are preserved by some of the specializations.

Lemma 3.13. CC Fundamental Lemma: Let E be a cc–admissible extension, vE its
range interpretation and a,b∈ S two arguments decisively in w.r.t. vE . Then E ′ = E∪{a}
is cc–admissible and b is decisively in w.r.t. v′E.

Lemma 3.14. AA Fundamental Lemma: Let E be an aa-admissible extension, va
E its

acyclic range interpretation and a,b ∈ S two arguments decisively in w.r.t. va
E . Then

E ′ = E ∪{a} is aa–admissible and b is decisively in w.r.t. v′E.

Theorem 3.15. Every stable extension is an aa–preferred extension, but not vice versa.
Every xy–preferred extension is an xy–complete extension for x,y ∈ {a,c}, but not vice
versa. The grounded extension might not be an aa–complete extension. The grounded
extension is the least w.r.t. set inclusion cc–complete extension.

4. Conclusions and future work

In this paper we have introduced a method for detecting positive dependency cycles in

ADFs and a family of semantics based on it. Our results show that they satisfy ADF

versions of Dung’s Fundamental Lemma and that appropriate sub–semantics preserve the

relations between stable, preferred and complete approaches. Our future work focuses

on shifting the mentioned bipolar frameworks into the ADF setting and proving that their

6No further assumptions as to the defense of the evaluations are needed, as visible in Lemma 3.14.
7The relevant proofs can be found in [20].

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks248

semantics are properly generalized by the presented approaches. Moreover, we would

like to study the complexity of the new semantics. Final aim is to provide an efficient

implementation, as the existing one was created purely for verification purposes and

leaves a lot of room for optimization.

References

[1] Sylwia Polberg. Extension-based semantics of abstract dialectical frameworks. In Proc. of NMR, 2014.

[2] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence. Springer, 2009.

[3] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-

ing, logic programming and n-person games. Artif. Intell., 77:321–357, 1995.

[4] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of dung frameworks and their

role in formal argumentation. Intelligent Systems, IEEE, 29(1):30–38, Jan 2014.

[5] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proc. KR ’10, pages 102–111.

AAAI Press, 2010.

[6] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Inference from controversial arguments. In

Geoff Sutcliffe and Andrei Voronkov, editors, Proc. LPAR ’05, volume 3835 of LNCS, pages 606–620.

Springer Berlin Heidelberg, 2005.

[7] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics for argumentation

frameworks. In Proc. of ICTAI’05, pages 568–572, Washington, DC, USA, 2005. IEEE Computer So-

ciety.

[8] Gustavo A. Bodanza and Fernando A. Tohmé. Two approaches to the problems of self-attacking argu-

ments and general odd-length cycles of attack. Journal of Applied Logic, 7(4):403 – 420, 2009. Special

Issue: Formal Models of Belief Change in Rational Agents.

[9] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-Recursiveness: A general schema for

argumentation semantics. Artif. Intell., 168(1-2):162–210, 2005.

[10] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumentation graphs: Towards

a better understanding. Int. J. Approx. Reasoning, 54(7):876–899, 2013.

[11] Farid Nouioua. AFs with necessities: Further semantics and labelling characterization. In Weiru Liu,

V.S. Subrahmanian, and Jef Wijsen, editors, Proc. SUM ’13, volume 8078 of LNCS, pages 120–133.

Springer Berlin Heidelberg, 2013.

[12] Nir Oren and Timothy J. Norman. Semantics for evidence-based argumentation. In Proc. COMMA ’08,

volume 172 of Frontiers in Artificial Intelligence and Applications, pages 276–284. IOS Press, 2008.

[13] Sylwia Polberg, Johannes Peter Wallner, and Stefan Woltran. Admissibility in the abstract dialectical

framework. In Proc. CLIMA’13, volume 8143 of LNCS, pages 102–118. Springer, 2013.

[14] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation se-

mantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[15] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner, and Stefan Woltran. Ab-

stract dialectical frameworks revisited. In Proc. IJCAI’13, pages 803–809. AAAI Press, 2013.

[16] Hannes Strass. Approximating operators and semantics for abstract dialectical frameworks. Artificial
Intelligence, 205:39 – 70, 2013.

[17] Hannes Strass. Instantiating knowledge bases in abstract dialectical frameworks. In Proc. CLIMA’13,

volume 8143 of LNCS, pages 86–101. Springer, 2013.

[18] Hannes Strass and Johannes Peter Wallner. Analyzing the Computational Complexity of Abstract Di-

alectical Frameworks via Approximation Fixpoint Theory. In Proc. KR ’14, Vienna, Austria, July 2014.

Forthcoming.

[19] Stefan Ellmauthaler. Abstract dialectical frameworks: properties, complexity, and implementation. Mas-

ter’s thesis, Faculty of Informatics, Institute of Information Systems, Vienna University of Technology,

2012.

[20] Sylwia Polberg. Extension–based semantics of abstract dialectical frameworks. Technical Report DBAI-

TR-2014-85, Institute for Information Systems,Vienna University of Technology, 2014.

S. Polberg / Extension-Based Semantics of Abstract Dialectical Frameworks 249

The Margin of Victory in Schulze, Cup,

and Copeland Elections: Complexity of

the Regular and Exact Variants

Yannick Reisch Jörg Rothe Lena Schend

Heinrich-Heine-Universität Düsseldorf, Germany
email: yannick.reisch@hhu.de, {rothe,schend}@cs.uni-duesseldorf.de

Abstract. The margin of victory is a critical measure for the robustness of vot-

ing systems in terms of changing election outcomes due to errors in the ballots or

fraud in using electronic voting machines. Applications include risk-limiting post-

election audits so as to restore the trust in the correctness of election outcomes.

Continuing the work of Xia [24], we show that the margin of victory problem is

NP-complete for Schulze and cup elections. We also consider the exact variant of

this problem, which we show to be complete for DP in Schulze, cup, and Copeland

elections.

Keywords. margin of victory, computational complexity, Schulze elections, cup

elections, Copeland elections, computational social choice

1. Introduction

The computational aspects of voting, as a common method of preference aggregation, are

a central topic in the field of computational social choice, mainly due to the wide range of

applications in multiagent systems (see, e.g., the bookchapter by Brandt et al. [1]). Much

of the work so far has focused on winner determination and various types of manipulative

attacks (including manipulation [4], bribery [5], and control [6]). Other properties of

voting systems have been studied extensively from a social-choice perspective, but much

less so in terms of their computational complexity.

We are concerned with one such property: the robustness of elections. When vot-

ers cast their votes using voting machines in political elections, errors might occur in

various ways (be it by accident or with malicious intent [23]), leading to incorrect vote

counts. How many errors are affordable before the election outcome (i.e., the winner

set) changes? The margin of victory is a central concept to measure the robustness of

voting systems in terms of changing election outcomes due to errors in the ballots, or

due to fraud. It is defined as the smallest number of votes that need to be changed in a

given election so as to change its winner set. The higher the margin of victory is, the

more robust is the election. In political elections, post-election audits are used to restore

the trust in the correctness of election outcomes via “verifiable paper records” [10], and

if too many mismatches are found, an extremely costly recount of all votes is in order.

Risk-limiting audit methods [20,21,15] do not require to recount all votes, while limiting

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-250

250

the risk that the result might still be wrong. A critical parameter for this is the margin of

victory.

These issues have been intensively studied from the point of view of political sci-

ences, employing mainly statistical methods and focusing on plurality voting [18,19],

scoring rules, approval voting, range voting, and single transferable vote (STV) [15,3,8].

Xia [24] was the first to study the margin of victory in terms of its computational com-

plexity while other notions of robustness in voting have been studied by Procaccia et

al. [13] and Shiryaev et al. [17] from a computational perspective. In particular, Xia

showed that while this problem is efficiently solvable for scoring rules, approval voting,

plurality with run-off, and Bucklin voting, it is NP-complete for Copeland, STV, max-

imin, and ranked pairs, and he also studied the approximability of these NP-complete

problems. Continuing this line of research, we study the complexity of the margin

of victory for Schulze and cup elections (a.k.a. sequential majority), establishing NP-

completeness as well. The Schulze rule is a particularly attractive voting system due to its

many desirable axiomatic properties [16]; its computational properties have also drawn

much attention recently (see, e.g., [12]).

While our result for cup voting requires a novel reduction, NP-hardness of the mar-

gin of victory problem for Schulze is a straightforward consequence of the NP-hardness

result for destructive bribery due to Parkes and Xia [12], along with the connection be-

tween these two problems due to Xia [24]. We add to this connection by showing that, for

multi-winner voting systems, destructive bribery can be easy, yet the margin of victory

problem can still be hard.

The main technical contribution of this paper is the study of the exact variant of

the margin of victory problem for Schulze, cup, and Copeland elections for which we

obtain DP-completeness results. Exact variants of NP-hard problems from a variety of

areas are known to be DP-complete (often with rather involved proofs; see, e.g., [22] and

the survey [14]), including the exact variants of social welfare optimization problems

in multiagent resource allocation [9]. In the exact margin of victory problem, we not

only ask whether the margin of victory of a given election meets or exceeds some given

threshold, but we ask whether or not it falls into a predetermined interval. It is known

that the size of this interval does not matter in terms of the problems’ complexity (see,

e.g., [22]), so we can fine-tune it to whatever accuracy we desire, even to just one integer,

and that is how we will define this problem.

2. Preliminaries

Elections and voting systems: An election is a pair (C,V), where C is a finite set of

candidates and V is a list of votes (or ballots) expressing the voters’ preferences over the

candidates in C. The form of the ballots depends on the voting system used; we focus on

ballots that are (strict) linear orders of the candidates in C. For example, if C = {a,b,c}
is our candidate set, a ballot could be of the form b > c > a meaning that this voter

(strictly) prefers b to c, and (strictly) prefers c to a. Throughout this paper, we will omit

the greater-than sign, so the above preference would be written as bca.

For a given election (C,V) and two candidates a,b ∈ C, let DV (a,b) denote the

number of votes in V that prefer a to b minus the number of votes in V that prefer b to a.

If DV (a,b)> 0, we say that a (strictly) beats b in pairwise comparison. Given an election

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections 251

(C,V), define the weighted majority graph for (C,V), denoted by WMG(C,V), to be

the weighted, directed graph G with vertex set C and edges between any two distinct

vertices, where the weight of an edge (a,b) is DV (a,b) and DV (a,b) =−DV (b,a) holds

by definition.

A voting system E is a (set of) rule(s) for how to determine the winner(s) of an

election (C,V) based on the ballots in V . We will denote the set of winners of (C,V)

under E by E (C,V). In particular, we will consider the following voting systems.

Let α , 0 ≤ α ≤ 1, be a fixed rational number. In Copelandα elections, given an

election (C,V), DV (a,b) is determined for every pair (a,b) ∈ C ×C. Each candidate

a receives one point for every pairwise comparison she (strictly) wins (i.e., whenever

DV (a,b) > 0), and gets α points for every tie (i.e., whenever DV (a,b) = 0). All candi-

dates with the highest score are the Copelandα winners of (C,V).

In Schulze elections, construct the weighted majority graph G = WMG(C,V) from

a given election (C,V). The strength of a path from a to b in G is defined as the smallest

weight any edge on this path has. For each pair (a,b) of candidates, P(a,b) denotes the

strength of a strongest path from a to b (i.e., of a path with the greatest minimum edge

weight among all paths from a to b). All candidates a ∈C with P(a,b) ≥ P(b,a) for all

b ∈C�{a} are the Schulze winners of (C,V). Note that a candidate a ∈C is the unique

Schulze winner of (C,V) if and only if P(a,b)> P(b,a) for all b ∈C�{a}.

In cup (or sequential majority) elections, an election is defined by specifying (C,V)

and, additionally, a voting tree T (i.e., a complete binary tree with as many leaves as

there are candidates in C, where we assume that C contains enough dummy candidates

so as to satisfy ‖C‖ = 2k for some k, and all dummy candidates are ranked worst in V),

and a schedule that assigns the candidates to the leaves of T . Determine the value of

DV (a,b) for each pair of candidates, a and b, that are siblings in the tree. The winner of

the pairwise comparison is assigned to the parent node. This procedure is continued until

the cup winner is assigned to the root. The schedule is known beforehand and whenever

ties occur, they are broken by a beforehand fixed tie-breaking rule.

Complexity theory: We assume that the reader is familiar with the basic notions

of the complexity classes P and NP and hardness and completeness with respect to

the polynomial-time many-one reduction, denoted by ≤p
m. Papadimitriou and Yan-

nakakis [11] introduced the complexity class DP = {A�B |A,B ∈ NP}, the class of dif-

ferences of any two NP problems, which is, together with coDP, also known as the sec-

ond level of the boolean hierarchy over NP (see [2]). It is well-known (see, e.g., [14]) that

DP contains the exact variants of many NP-complete problems, such as the following

DP-complete problem EXACT VERTEX COVER (XVC) that asks for a given undirected

graph G = (A,E) and a positive integer k whether τ(G) = k, i.e., whether the size of

a smallest vertex cover in G is exactly k.1 Changing the question to whether τ(G) ≤ k
gives the well-known NP-complete VERTEX COVER problem (see, e.g., [7]).

1A vertex cover of an undirected graph G = (A,E) is a subset A′ ⊆ A that contains at least one vertex of

each edge. The size of a smallest vertex cover is denoted by τ(G). (As V is already used to denote voter lists,

we will use A to denote vertex sets in graphs, although the common notation is V .)

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections252

3. The Margin of Victory and Destructive Bribery

In this section, we will give the formal definitions of the investigated problems and con-

tinue the work of Xia [24] by drawing further connections between the margin of victory

and the complexity of destructive bribery. The margin of victory is defined as follows.

Definition 1 For a given voting system E and a given E election (C,V), we define the
margin of victory to be the smallest integer � such that the winner set can be changed by
changing � votes in V , while the other votes remain unchanged. We will use the notation
MOV(E ,(C,V)) = �.

Just as Xia [24], we will focus on the decision version of this problem denoted by

E -MARGIN OF VICTORY (E -MOV) for a given voting system E , that asks for an E
election (C,V) and a positive integer k whether MOV(E ,(C,V))≤ k holds.

The MOV problem is closely related to the standard bribery scenario in elections that

was defined by Faliszewski et al. [5]. In particular, in E -DESTRUCTIVE UNWEIGHTED

BRIBERY (E -DUB), we are given an E election (C,V), a designated candidate p ∈ C,

and a positive integer k, and we ask whether it is possible to prevent p from being a

unique E winner by bribing at most k voters (i.e., by changing their votes).

The above problem is defined in the so-called unique-winner model. By changing the

question to whether the designated candidate can be prevented from being an E winner

by bribing at most k voters, the problem would be defined in the so-called nonunique-
winner model (a.k.a. the co-winner model). When analyzing the relationship between

the bribery problem and the MOV problem, one has to pay close attention on whether

the voting system at hand always selects unique winners or whether the winner set may

contain more than one candidate. The following result, due to Xia [24], deals with the

former type of voting rules and displays the close connection between the margin of

victory and the standard bribery scenario in elections.

Proposition 2 (Xia [24]) Let E be a voting system that always selects a unique winner of
an election in deterministic polynomial time, and satisfies E -MOV �= /0.2 Then E -MOV

and E -DUB are ≤p
m-equivalent, i.e., E -MOV ≤p

m E -DUB and E -DUB ≤p
m E -MOV.

For voting rules that may select more than one winner, however, we now show that

the above equivalence does not hold in general, unless P could be shown to equal NP.

Note that the voting rule we will construct for showing the following theorem is not

neutral.3 Whether there exists a neutral voting rule satisfying the same properties as the

one we construct is an interesting open question.

Theorem 3 There exists a voting system K such that K -DUB ∈ P but K -MOV is
NP-complete.

Proof Sketch. Due to space constraints we only sketch the proof by providing the vot-

ing system K that always outputs at least two winners if there are at least two candi-

2As is common, we view a decision problem such as E -MOV as the language of yes-instances.
3A voting rule is called neutral if the outcome does not depend on the candidates’ naming, i.e., if any two

candidates are swapped in each vote, the outcome changes accordingly.

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections 253

dates. For an election (C,V) with C = {p}∪C′, the winnerset in K is determined as

follows:

K (C,V) =

{
p if C = {p}
{p}∪ cup(C′,V) otherwise.

It is easy to see that K -DUB ∈ P. NP-hardness of K -MOV immediately follows from

the NP-hardness of cup-MOV, which we will show in Theorem 5. �

4. Margin of Victory in Schulze and Cup Voting

Xia [24] established complexity results for the margin of victory problem for various

voting rules, including all scoring protocols, STV, and Copeland elections. We now turn

to the complexity of this problem in Schulze and cup elections.

Theorem 4 For Schulze elections, MOV is NP-complete.

Proof. NP-hardness directly follows from the NP-hardness result for Schulze-DUB

shown by Parkes and Xia [12] and the fact that E -DUB ≤p
m E -MOV for each voting

system E with E -MOV �= /0. Membership of Schulze-MOV in NP is easy to see. �

Theorem 5 For cup elections, MOV is NP-complete.

Proof. This result follows from the NP-hardness of cup-DUB, which we will show

by a reduction from the well-known NP-complete problem VERTEX COVER (recall its

definition from Section 2) using the so-called UV technique introduced by Faliszewski et

al. [6]. To do so, let G=(A,E) be an undirected graph with vertex set A= {a1,a2, . . . ,an}
and edge set E = {e1,e2, . . . ,em}, and let k ∈N. We construct the cup election (C,V) with

C = {c,d}∪E ∪P∪T , where P = {p1, p2, . . . , pm} and T is a set of dummy candidates

that will be used to ensure that the voting tree is balanced (we will come to that later).

Let Na = {e ∈ E | e∩{a} �= /0} be the set of edges incident to vertex a ∈ A.

V contains 2m(n+k−3)+6n+6k−3 voters whose preferences are listed in Table 1.

When a set of candidates, say Z ⊆ C, is given in a voter’s preference, then we assume

that the candidates in Z are ordered with respect to a (tacitly assumed) fixed order, while←−
Z denotes that the candidates are ordered in reverse. In particular, we fix the order of the

candidates in P to be p1 > p2 > · · ·> pm.

The dummy candidates in T are always positioned at the bottom of each voter’s

preference, so they lose every pairwise comparison to the candidates in C � T . This

implies that their position in the schedule is irrelevant, so we will omit them in Figure 1.

For the sake of readability and clarity, we will omit the dummy candidates in our

further arguments, and we will use the voting tree and schedule shown in Figure 1. (To

transform this tree into a complete binary tree (i.e., into a legal voting tree), the dummy

candidates in T have to be added to the three subtrees with the roots d,c, and X , respec-

tively.) Since the height of the tree is in O(logm), we have in total a polynomial number

of leaves, which ensures that the reduction is in fact polynomial-time computable.

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections254

Table 1. List of votes V for the proof of Theorem 5

Preference

one vote for each a ∈ A
c d Na P (E �Na) T

P c d (
←−−−−
E �Na)

←−
Na T

k votes
c d P E T

c d P
←−
E T

2(n+ k−2) votes
c E P d T

c
←−
E P d T

n+ k−3 votes c (P�{pi}) pi ei (E �{ei}) d T

for each i ∈ {1, . . . ,m} d (
←−−−−−
E �{ei}) pi ei (

←−−−−−
P�{pi}) c T

one vote P c d E T

p1 e1 pi ei pm em

X d

c

Figure 1. Voting tree of the cup election (C�T,V) without dummies

In this election, we have the following pairwise comparisons between the candidates

in C�T :

DV (c,d)> 4k, DV (c,P) = DV (d,P) = 2k−1, DV (c,E) = DV (d,E) = 2n+2k+1,

DV (pi, p j)

{
>

≤
4k if i < j
0 if i ≥ j, DV (pi,e j) =

{
−2n−2k+5 if i �= j
−1 if i = j.

Thus, c is the unique cup winner of this election. We claim that G has a vertex cover

of size at most k if and only if c can be prevented from being a unique cup winner by

changing at most k votes.

From left to right: Assume that A′ ⊆ A is a vertex cover of size k. Change

the preferences of those k voters corresponding to A′ in the first voter group from

cd Na P(E �Na)T to Pcd Na (E �Na)T . Since A′ is a vertex cover we have that due to

these changes each ei ∈ E has one vote where she is positioned behind all candidates in

P. So we have that each pi wins her first pairwise comparison against ei by one point. In

the subelection corresponding to the subtree with root X (recall Figure 1), the relevant

pairwise comparisons are among the candidates in P and due to the fixed ordering of

these candidates in the votes, p1 is the winner of this subelection. Both c and d have lost

k votes in comparison to p1 due to the bribe, so p1 wins both pairwise comparisons and

is thus the unique cup winner of this election. So c has been successfully prevented from

winning.

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections 255

From right to left: Assume that c can be prevented from being a unique winner by

bribing at most k voters. Due to the scores only candidates from P have a chance to

prevent c from being a unique winner, so the following has to hold for the bribed election:

A candidate from P, say p1, has to be the winner of the subelection corresponding to the

subtree with root X and p1 has to win the pairwise comparisons against both d and c. For

the latter to hold, all k bribed votes have to have p1 positioned behind d and c (before

the bribe). For the former to hold, no candidate in E may win her first contest, which

implies that every pi ∈ P has to win the pairwise comparison against the corresponding

candidate ei ∈ E. So the votes that are bribed also have to rank the candidates in E better

than those in P before the bribe is conducted. With this we see that the k bribed votes

have to be from the first voter group and that the vertices corresponding to these votes

have to form a vertex cover of size k to ensure that each ei ∈ E loses the first pairwise

comparison. �

5. Exact Margin of Victory in Schulze, Copeland, and Cup Voting

In this section, we present our complexity results for the exact variants of the margin of

victory problem, which for a given voting system E is denoted by E -EXACT MARGIN

OF VICTORY (E -XMOV) and asks for a given E election (C,V) and a positive integer

k whether MOV(E ,(C,V)) = k. In particular, we will consider this problem for the two

systems studied in the previous section, Schulze and cup, and also for Copelandα vot-

ing. (Note that Xia [24] proved that Copelandα -MOV is NP-complete.) Due to space

constraints we only provide a proof sketch for the following result in Schulze elections.

Theorem 6 For Schulze elections, XMOV is DP-complete.

Proof Sketch. For showing DP-hardness we provide a reduction from the DP-complete

problem XVC. Let G=(A,E) be an undirected graph with vertex set A= {a1,a2, . . . ,an}
and edge set E = {e1,e2, . . . ,em}, and let k be a positive integer. Without loss of gen-

erality, we assume that 6 ≤ k ≤ n and that k − 1 mod 5 = 0. Let U = E1 ∪E2 ∪E3 be

the marked union of three copies of E, which are denoted by Ei = {ei1,ei2, . . . ,eim} for

i ∈ {1,2,3}, and let Na = {ei j | e j ∩{a} �= /0 and i ∈ {1,2,3}} denote the set of all edges

in U that are incident to vertex a ∈ A. We define the Schulze election (C,V), where

C = {c,d,e, f ,g,h, p}∪U, and V is a list of 40n+324k−132 voters, whose preferences

are specified in Table 2. When a set of candidates Z ⊆ C is given in a preference, we

assume that the candidates in Z are ordered with respect to a (tacitly assumed) fixed

order.

Figure 2 shows a subgraph of the weighted majority graph of this election that only

contains edges relevant for the argumentation. Table 3 shows the weights of the relevant

strongest paths in (C,V); hence, c is the unique Schulze winner in this election. We will

elaborate on some useful properties of the constructed election: Since candidate c is the

unique Schulze winner, the winner set can only be changed by achieving P(c,x)≤P(x,c)
for at least one candidate x ∈ C� {c}. Since P(c,x)− 2k ≥ 12k− 2k > 12(k−1)

5 + 2k ≥
P(x,c)+2k holds for all candidates x ∈C�{c, p}, only p can tie with c when no more

than k votes can be changed. So it suffices to focus on the paths leading from c to p, and

vice versa. From p to c, the only reasonable path is ((p,d),(d,e),(e, f),(f ,g),(g,c)).

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections256

Table 2. List of votes V in the proof of Theorem 6

Preference Type

one vote for each a ∈ A

h > c > g > f > e > Na > p > d > (U �Na) 1

c > g > e > f > d > Na > p > (U �Na)> h 1

h > c > g > f > d > e > Na > p > (U �Na) 1

c > f > g > e > d > Na > p > (U �Na)> h 1

h > g > c > f > e > d > Na > p > (U �Na) 1

n votes

d > p > e > f > g > c >U > h 2

h > p > d > f > e > g > c >U 2

p > e > d > f > g > c >U > h 2

h > p > d > e > g > f > c >U 2

p > d > e > f > c > g >U > h 2

12(k−1)/10 votes
h > p > d > e > f > g > c >U 2

p > d > e > f > g > c >U > h 2

3k−3+ 12(k−1)/10 votes
h > e > f > g > c > p > d >U 3

d > c > g > f > e > p >U > h 3

6k+ 12(k−1)/10 votes

h > p > g > c > f > e > d >U 2

c > d > e > f > g > p >U > h 3

h > p > c > f > g > e > d >U 2

g > d > e > f > c > p >U > h 3

h > p > g > c > e > f > d >U 2

f > d > e > c > g > p >U > h 3

6k votes

c > h > g > e > f > p > d >U 3

d > p > f > e > g > c > h >U 2

h > g > c > e > f > p > d >U 3

d > p > f > e > c > h > g >U 2

h > d > c > g > E1 > E2 > p > E3 > f > e 4a

e > f > E2 > E1 > p > E3 > g > c > d > h 4b

5n+41k−20 votes
h > d > c > f > E1 > E3 > p > E2 > g > e 5a

e > g > E3 > E1 > p > E2 > f > c > d > h 5b

h > d > c > e > E2 > E3 > p > E1 > f > g 6a

g > f > E3 > E2 > p > E1 > e > c > d > h 6b

Table 3. Weights of the strongest paths in (C,V) in the proof of Theorem 6

x d e f g h p U

P(c,x) 12k 12k 12k 12k 12k 6k−6 > 12k

P(x,c) 12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

12(k−1)
5

We can argue that when at most k changes are allowed, we have that P(p,c)≤ 12(k−1)
5 +

8(k−1)
5 = 4(k− 1) holds in this new election. The following property can be shown for

completing the proof:

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections 257

U

p d e

c g f

h

12(k−1)/5 12(k−1)/5

12(k−1)/5

12(k−1)/512(k−1)/5

6k−6

6k−66k−6

12k

12k

12k
6k−6

12k
12k

> 12k

4k−2

Figure 2. Subgraph of the WMG(C,V) of the Schulze election (C,V) in the proof of Theorem 6

MOV(Schulze,(C,V))

⎧⎪⎨⎪⎩
= k−1 if τ(G)< k
= k if τ(G) = k
> k otherwise,

(1)

where, recall, τ(G) denotes the size of a smallest vertex cover in G. We show the first

case in (1) in detail: Assume that τ(G) < k and let A′ ⊆ A be a vertex cover in G of

size k− 1. For each vertex a ∈ A, there are five voters in V of type 1 (recall Table 2),

which only differ in the ordering of the candidates {c,d,e, f ,g, p}. If for each a ∈ A′

one of the five type-1 votes is changed such that p > d > e > f > g > c > · · · holds in

this vote and these changes are carefully conducted while ensuring that all five votes are

changed equally often, it can be achieved that P(c, p) = 4k− 4 = P(p,c). So we have

that MOV(Schulze,(C,V))≤ k−1. By changing at most k−2 votes in this election, one

could achieve that P(c, p) ≥ 4k− 2 > 4k− 4 ≥ P(p,c), so c would remain the unique

winner of the changed election. Thus we have that MOV(Schulze,(C,V))≥ k−1, which

gives MOV(Schulze,(C,V)) = k−1. �

For the other two voting systems, we have the same complexity results, and we omit

their (similar) proofs due to space constraints.

Theorem 7 For both cup and Copelandα , XMOV is DP-complete.

6. Conclusions and Open Questions

Continuing the work of Xia [24], we have shown that the margin of victory problem

is NP-complete for Schulze and cup elections, and its exact variant is DP-complete for

Schulze, cup, and Copeland elections. For future research, it would be interesting to study

the approximability of the margin of victory also for Schulze and cup. Furthermore the

following variant of the MOV problem might be worthwile to analyze: Instead of count-

ing the number of votes that have to be changed entirely to change an election’s outcome,

the overall number of swaps (or other changes in the votes depending on the voting sys-

tem used) leading to a different winner set could be counted. This version would, e.g.,

model accidental errors in votes more naturally and allow a more fine-grained analysis.

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections258

Acknowledgments: This work was supported in part by DFG grant RO 1202/15-1.

References

[1] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. In G. Weiß, editor, Multiagent
Systems, pages 213–283. MIT Press, 2013.

[2] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung. The

boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–1252, 1988.

[3] D. Cary. Estimating the margin of victory for instant-runoff voting. In Website Proc. EVT/WOTE’11,

2011.

[4] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to manipulate?

Journal of the ACM, 54(3):Article 14, 2007.

[5] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is bribery in elections. Journal of
Artificial Intelligence Research, 35:485–532, 2009.

[6] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and Copeland voting computa-

tionally resist bribery and constructive control. Journal of Artificial Intelligence Research, 35:275–341,

2009.

[7] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Company, 1979.

[8] T. Magrino, R. Rivest, E. Shen, and D. Wagner. Computing the margin of victory in IRV elections. In

Website Proc. EVT/WOTE’11, 2011.

[9] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Computational complexity and approximability of social

welfare optimization in multiagent resource allocation. Journal of Autonomous Agents and Multi-Agent
Systems, 28(2):256–289, 2014.

[10] L. Norden, A. Burstein, J. Hall, and M. Chen. Post-Election Audits: Restoring Trust in Elections. Bren-

nan Center for Justice at the NYU School of Law and the Samuelson Law, Technology & Public Policy

Clinic at the UC Berkeley School of Law (Boalt Hall), 2007.

[11] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of complexity). Journal
of Computer and System Sciences, 28(2):244–259, 1984.

[12] D. Parkes and L. Xia. A complexity-of-strategic-behavior comparison between Schulze’s rule and

ranked pairs. In Proc. AAAI’12, pages 1429–1435. AAAI Press, 2012.

[13] A. Procaccia, J. Rosenschein, and G. Kaminka. On the robustness of preference aggregation in noisy

environments. In Proc. AAMAS’07, pages 416–422. IFAAMAS, 2007.

[14] T. Riege and J. Rothe. Completeness in the boolean hierarchy: Exact-Four-Colorability, minimal graph

uncolorability, and exact domatic number problems – a survey. Journal of Universal Computer Science,

12(5):551–578, 2006.

[15] A. Sarwate, S. Checkoway, and H. Shacham. Risk-limiting audits and the margin of victory for nonplu-

rality elections. Statistics, Politics and Policy, pages 29–64, 2012.

[16] M. Schulze. A new monotonic, clone-independent, reversal symmetric, and Condorcet-consistent single-

winner election method. Social Choice and Welfare, 36(2):267–303, 2011.

[17] D. Shiryaev, L. Yu, and E. Elkind. On elections with robust winners. In Proc. AAMAS’13, pages 415–

422. IFAAMAS, 2013.

[18] P. Stark. Conservative statistical post-election audits. Annals of Applied Statistics, 2(2):435–776, 2008.

[19] P. Stark. A sharper discrepancy measure for post-election audits. Annals of Applied Statistics, 2(3):982–

985, 2008.

[20] P. Stark. Risk-limiting postelection audits: Conservative-values from common probability inequalities.

IEEE Transactions on Information Forensics and Security, 4(4):1005–1014, 2009.

[21] P. Stark. Super-simple simultaneous single-ballot risk-limiting audits. In Website Proc. EVT/WOTE’10,

2010.

[22] K. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theoret-
ical Computer Science, 51(1–2):53–80, 1987.

[23] S. Wolchok, E. Wustrow, J. Halderman, H. Prasad, A. Kankipati, S. Sakhamuri, V. Yagati, and R. Gong-

grijp. Security analysis of India’s electronic voting machines. In Proc. ACM-CCS’10, pages 1–14. ACM

Press, 2010.

[24] L. Xia. Computing the margin of victory for various voting rules. In Proc. ACM-EC’12, pages 982–999.

ACM Press, 2012.

Y. Reisch et al. / The Margin of Victory in Schulze, Cup, and Copeland Elections 259

Electronic Tourist Guides: User-friendly

Editing of Automatically Planned Routes

Richard SCHALLER a

a E-mail: richard.schaller@fau.de
AI Group, University of Erlangen-Nuremberg, Germany

Abstract. Sightseeing tourists on a city trip can be supported by an electronic

tourist guide. More advanced systems generate personalized routes taking into ac-

count user preferences and traveling distances between sights. Recommenders can

be used in order to estimate user’s interest in the available sights. Typically recom-

mendations are then fed into a planning algorithm that tries to determine a subset

of sights and a suitable order. The aim being to include the most interesting sites

for the user and possibly as many interesting sights as possible within a given set of

constraints. Additional constraints can be considered such as a sight being a must-

see for the user or opening hours of sights. At some point the generated route is

shown to the user. If the user is not satisfied with the route he may want to change

it. In most systems modifying the constraints or user preferences and then regen-

erating a completely new route is the only option to accomplish this task. More

fine-grained control over route modifications is in typically unavailable.

In this paper we examine how sightseeing tourists can be supported in editing an

automatically generated route. We discuss what is necessary for editing operations

to meet user’s expectations. We then show how six different route editing oper-

ations can be implemented via the idea of collapsing and expanding a route. Fi-

nally we present a potential route editing user interface for an electronic tourist

guide. The presented interface makes disadvantageous route modifications obvious

by providing instant feedback on how an operation affects the route.

1. Introduction

When planning a city trip tourists are faced with various tasks: a city and time frame

has to be chosen, various traveling options and hotels have to be considered and finally

the stay itself has to be planned. This last aspect is particularly challenging for trips to

bigger cities with hundreds of sights, restaurants, shopping locations and various other

tourist-related venues. These Points of Interest (POIs) tend to be geographically (e.g.

throughout a city) and temporally (e.g. different opening hours during the day) dispersed.

Tourists usually consider many different properties and contextual factors when deciding

for which POIs to visit and in which order, i.e. the type, price, location and opening hours

of the POI, the distance/transfer links to the POI and the personal interest in the POI but

also general context factors such as time of day or weather [1]. An electronic tourist guide

can assist visitors in finding optimal or near-optimal solutions to this multi-criteria opti-

mization problem. In [2] three components of an electronic tourist guide are described:

a recommendation phase that facilitates a user profile and POI data to generate a list of

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-260

260

personalized POI recommendations. In a second step, a planning algorithm determines

an optimal subset and order of these POIs taking into account various constraints such

as opening hours, traveling times or user restrictions such as start and end time of the

route. As there might be user preferences or contextual factors not being modeled in the

system it is necessary to have a third step which allows modifications of the generated

route, like removal or insertion of a POI visit. Also during plan execution it is more than

likely that visitors will need to re-plan due to external or internal causes, e.g. a POI being

overcrowded or the tourist being exhausted. In [3] an electronic tourist guide was eval-

uated in a field trial: only 55% of the actually visited sights were contained in the route

planed beforehand showing a need for route modifications on the move.

Most research performed on electronic tourist guides focuses on either the recommen-

dation of POIs or on the planning of routes. The resulting routes are packed – as this

is one of the objectives of the planning algorithm – making route modifications in most

cases impossible without rendering the complete route infeasible. Consider, for example,

adding a POI: if a gap in the route were big enough to insert a POI, the planning algo-

rithm would already have done that. Most likely a visitor would expect to reduce the visit

duration of other POIs to make room for the additional POI. On the other hand visitors

would like to close gaps after removing POIs by expanding the visit of the remaining

POIs. Additionally, moving POIs within a route might need to shorten visits as traveling

times likely increase due to deriving from the optimal ordering.

In this paper we will focus on operations that can be performed on an already given route

making it easy for visitors to modify routes to match their preferences:

We introduce the concept of collapsing the visit durations in a route to make room for fur-

ther modifications. We furthermore, introduce the corresponding concept of expanding

a route by increasing visit durations to fill gaps. We then show how user modifications

can be implemented by making use of collapsing and expanding a route. Next we discuss

removing, inserting and moving a POI, changing the visit duration of a POI and filling up

a route with additional POIs. Finally we present a system where we implemented these

ideas.

2. Related Work

Recommenders. Although this paper focuses on supporting route modification it is

worthwhile to explore how recommendations can be obtained as they can be used for

filling up a route with additional POIs. There are two main types of recommenders used

in electronic tourist guides. These are content-based recommenders and collaborative fil-

tering approaches. For content-based recommenders additional data for each POI and a

user profile for each user have to be acquired. For example in [4] an ontology is used

for categorizing each POI, e.g. as memorial. The user is then asked upon the first use of

the system to specify his interest in these categories resulting in a detailed user profile.

A semantic matching is then used to find those POIs that are most similar to the user’s

profile. Contrastingly, collaborative filtering approaches use other users’ POI selections

to learn which POIs are similar [5]: users with similar tastes are also likely to select the

same POIs. Hybrid recommenders combine both approaches to improve the quality of

recommendations [5,6]. An overview and comparison of the use of recommender sys-

tems in the field of electronic tourist guides is given in [1].

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 261

Planning. For planning purposes the optimization problem has to be formalized. [7] sug-

gests to use the OP (Orienteering Problem) as the formal framework, a derivative of the

Traveling Salesman Problem (TSP): a set of locations with an assigned score and infor-

mation about traveling times between all locations is given. Additionally a starting point

and time as well as a destination point and time is given. A solution of the OP is a route

that contains a subset of the available locations and connects the starting point with the

ending point. The optimal solution is the route that maximizes the sum of the collected

scores. The OP can be extend to consider various additional constraints such as opening

hours (Orienteering Problem with Time Windows) or to plan for multiple days (Team

Orienteering Problem). For solving the OP both exact [8] and heuristic [4] approaches

exist. In [7] an Iterative Local Search is used to solve the OP: a route is created by itera-

tively adding and removing POIs. Choosing which POI to add considers the score of the

POI and the additional required time caused by the POI insertion. Adding POIs is done

until no further POIs can be added and the algorithm is stuck in a (local) optima. Then

removing of POIs is performed to escape the local optima. Under all circumstances the

route is feasible, meaning start and end time constraints, traveling times and visit dura-

tions are considered and additional constraints such as opening hours are respected.

Electronic Tourist Guides. Various research projects have developed prototypical or

complete electronic tourist guides: The CT-Planner described in [9] uses a content-based

recommender to calculate scores for all POIs. For route generation a heuristic approxi-

mation algorithm is used. To obtain a user profile a user can specify his interests directly

or indirectly by choosing between different routes. The latter are generated by using the

recommender with a slightly modified user profile. In case the user decides for one of

these alternatives the user profile is updated accordingly. Furthermore the user can influ-

ence the route generation by selecting certain POIs as must-haves or don’ts. However,

there is no possibility to edit the generated route in detail. The system developed in [2]

uses a content-based recommender to choose POIs but also let users specify which POIs

are of interest to them. The planning is based on an Iterative Local Search algorithm. To

customize the generated route various operations such as adding, removing or moving

a POI are provided. These operations shift beginning times of all POIs after the editing

position accordingly. It is possible for the user to make modifications that violate some of

the restrictions. From the description given in [2] it does not become clear whether this

applies only to user specified restrictions such as the end time or to all kinds of restric-

tions. Violating POI restrictions such as opening hours would render routes infeasible.

Thus it is plausible that such modifications are forbidden. Permitted modification will

shift visits beyond the specified end time as needed, effectively removing this constraint.

To our knowledge, visit durations are not adjusted.

3. User-friendly editing operations

Considering the systems presented in the previous section most do either provide no

route modifications or do so via recalculating a route under modified constraints. A fine-

grained control of routes is only provided by [2] where the route end time constraint is

lifted. Depending on the type of POIs this lifting might not be enough to yield still fea-

sible routes. Consider for example POIs with very limited opening hours where shifting

results in missing the opening hours. The user is either left behind with no explanation

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes262

why his operation is not permitted or a complex explanation – probably involving multi-

ple constraints – must be generated and communicated.

We instead suppose to lift a different constraint: the visit duration of POIs. In most sys-

tems its value is either fixed per POI or estimated in advance for each user. We argue that

the visit duration is a soft constraint from a user’s point of view and the user is flexible

regarding the exact visit duration: routes do not suddenly become infeasible if a museum

visit is scheduled for a few minutes less. Of course further editing might reduce the visit

duration even more and make the route unrealistic. However, our approach has the ad-

vantage that the user can see how the route slowing becomes more and more infeasible

and receives feedback regarding why his editing operations are unfavorable. Thus we

suggest to adjust the visit durations of other POIs in order to allow editing operations un-

der most circumstances. The only exception where editing operations are still forbidden

is when visit durations cannot be shortened further or route independent conflicts make

the operation fail, e.g. visiting two POIs at the same time at different locations.

As the visit duration becomes very flexible and time can be shuffled arbitrary between

POIs we make some assumptions regarding how the system should behave when per-

forming route modifications:

• The route should always be feasible meaning all constraints are met (except the

visit duration constraint): traveling times are considered, opening hours are re-

spected, etc.

• The order of the POI remains unchanged except for the POI that is involved in the

modification.

• If there are gaps in the route they should be reduced as much as possible.

• With each POI a minimum visit duration is associated which should be respected

unless this results in a route modification becoming inexecutable. In this case the

visit duration might be reduced further still.

• The time surplus caused by gaps should be distributed “fairly” between available

POIs, meaning that time is distributed equally among all POIs. If a POI’s visit

duration cannot be extended any further the remaining time is distributed among

the other POIs.

• Also if time is needed to perform an operation, visit duration of all POIs should

be reduced in a ”fair” manner. As minimum visit durations should be respected,

time should be taken first from those POIs which are scheduled for a longer stay.

We consider the minimum visit duration as sufficient and any additional time

spent (=extra visit duration1) as not contributing to visitor’s experience. Never-

theless we want to keep the extra visit time of all POIs equal which leads to first

shortening that POI which has the most extra visit duration.

With these assumptions we can now redefine the route operations from [2]: Remove a
POI, Insert a POI at a specific position, Insert a POI at its best position and Move a POI.
Additionally we allow the user to Change the visit duration of a POI. In case the user

removes multiple POIs he might like to Fill-Up the route with POIs without specifying

the POIs to add but instead let the system decide which POIs to use.

1visit duration = minimum visit duration + extra visit duration

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 263

4. Collapsing and Expanding a Route

The different editing operations that we are going to implement either consume time or

leave additional time after they were performed. For the former we want to provide as

much flexibility as possible which means that we want to reduce the time spent on POIs

as much as possible. We call this process of transforming a given route into a route,

where every POI is only visited for no longer than its respective minimum visit duration,

collapsing a route. The delta between the old visit duration and the new visit duration is

remembered. The following pseudo code shows this function:

Collapse(route):
FORALL p in route:
diff = max(0, p.duration - p.minDuration)
p.delta += diff
newDuration = p.duration - diff
Change duration of p to newDuration

Of course changing the visit duration of a POI results in shifting all subsequent POI visits

accordingly. Shifting POI visits is a crucial part of the Iterative Local Search approach

for solving the OP. Making it efficient and also taking into account restrictions such as

opening hours is described in [7].

As mentioned before we make the assumption that the minimum visit duration is re-

spected but there might be situations where we allow shorter visit durations. We there-

fore define a total collapsing of a route, which reduces the visit duration of each POI to

a small fixed value – 1 min in our case2 – as follows:

TotallyCollapse(route):
FORALL p in route:
diff = max(0, p.duration - 1)
p.delta += diff
newDuration = p.duration - diff
Change duration of p to newDuration

The inverse operation of collapsing a route is expanding a route. To restore a previously

collapsed route we first use the saved delta and distribute the available time between

those POI visits that were previously shortened (delta > 0). If there are still gaps in the

route the remaining time is distributed equal among all POIs. Thus expanding is split up

into two steps, which differ only in the POIs being affected:

Expand(route):
ExpandHelper(route,useOnlyDelta=True)
ExpandHelper(route,useOnlyDelta=False)

Even though it is possible to calculate for each POI by how much its visit duration has

to be extended and update them at a stroke we instead opted for incrementally expand-

ing a route. This simplifies the process and makes it easy to take account of additional

constraints, e.g. opening hours. Expanding is performed by successively increasing the

visit duration of each POI one after another by a small amount – we use a step size of

1 min. For every expansion of a POI visit its corresponding delta is reduced. In case a

POI visit becomes stuck and cannot be expanded further – again opening hours being a

potential cause – we skip this POI and continue with the next one. After all POIs have

been updated we start all over again until no further expansions are possible.

The following pseudo code shows how expanding a route is performed. Note the use

of useOnlyDelta to select whether all POIs should be affected or only those with a

saved delta:

2We choose 1 min as we do not want to confuse visitors with 0 min visits

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes264

ExpandHelper(route, useOnlyDelta):
DO:
expanded = False
FORALL p in route:
IF useOnlyDelta AND p.delta == 0:
CONTINUE

IF duration increase by 1 feasible for p:
newDuration = p.duration + 1
Change duration of p to newDuration
p.delta = max(0, p.delta-1)
expanded = True

WHILE expanded

One caveat of the presented method is that POIs towards the start of a route are con-

sidered first. In case only a small amount of time becomes available it is given to those

POIs. If this happens repeatedly instead of all time becoming available at once3, time is

not fairly split between those POIs towards the beginning and those towards the end of

the route. To remedy this problem one may remember at which POI the last expansion

stopped and continue from there instead of the first POI.

Consider what happens if a route is collapsed, then some operations are performed on it

and then it is expanded again. There are three cases of how available time changes de-

pending on the performed operations: a) Same amount of time is used: with the first run

of ExpandHelper the original visit durations are restored. b) Some time was freed up:

again the original visit durations are restored as above. But there is still some time left,

which is distributed equally by the second run of ExpandHelper. c) Some time was

used up: with the first run of ExpandHelper the original visit durations could not be

restored completely, but the available time is again distributed equally. This means that

POI visits that were reduced by a larger amount during collapsing than others are those

whose time is partially taken away to account for the used up time. They are not fully

expanded any further. The last case also means that delta remains > 0 for some of the

POI visits. In order to not affect further editing operations it is necessary to reset it.

Of course expanding a route can also be used to reduce gaps in a newly generated route:

planning algorithms may schedule POIs with their respective minimum visit duration

and the resulting route is then expanded afterwards.

5. Route Editing Operations

All editing operations described in this section follow a general scheme: (totally) col-

lapsing the route, performing the actual edit and finally expanding the route. Sometimes

slight variations of this scheme are used to realize the provided editing operations.

Remove POI. As removing POIs can only result in time being freed up, collapsing the

route can be skipped and expanding the route will close the resulting gap.

Insert POI at a specific position. For insertion of an POI at a specific position we first

totally collapse the route, then insert the POI and finally expand the route:

Insert(route, poi, position):
ResetDelta(route)
TotallyCollapse(route)
Insert poi at position
Expand(route)

Totally collapsing the route might result in POI visits dropping below their minimum

3i.e. when a user can modify the visit duration interactively via a slider interface (see Section 6)

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 265

visit duration but this is either fixed when expanding the route (because other POIs’ extra

visit duration can be used) or it is necessary and there is no way around it as time has to

be freed up for the added POI.

Insert POI at its best position. If the system should determine the best insertion position

for a POI, we initially want to consider only positions which would not result in other

POI visits dropping below their minimum visit duration. Thus we start with collapsing

the route to their POIs minimum visit duration. Then we try to insert the POI. If this is not

possible we must shorten visits below their minimum visit duration with a total collapse

of the route and try the insertion of the POI again. In any case the route is expanded

afterwards:

Insert(route, poi)
ResetDelta(route)
Collapse(route)
p = find best insertion position for poi
IF p is valid:
Insert poi at p

ELSE:
TotallyCollapse(route)
p = find best insertion position for poi
IF p is valid:
Insert poi at p

Expand(route)

Move POI. When moving a POI we adhere to the general scheme of total collapsing,

performing the move and expanding.

POI visit duration change. Changing the duration of a visit depends on whether it is

shrunk or extended. In case of a shrunk collapsing the route is not necessary because no

additional time is needed. As the duration of the affected POI is set directly it must be

excluded from the following expanding of the route (lock). Otherwise its visit duration

might get re-increased. In case a visit duration is extended we first totally collapse the

route. Then we change the visit duration. If the requested new duration of the POI is not

feasible we only change it to the maximum feasible value. Again we have to make sure

that the expanding of the route will leave out the modified POI:

ChangeDuration(route, position, newDuration):
poi = route[position]
oldDuration = poi.duration
IF newDuration < oldDuration:
ResetDelta(route)
Change duration of poi to newDuration
lock poi.duration
Expand(route)
unlock poi.duration

ELSE IF newDuration > oldDuration:
ResetDelta(route)
TotallyCollapse(route)
maxDuration = max feasible duration of poi
d = min(maxDuration, newDuration)
Change duration of poi to d
lock poi.duration
Expand(route)
unlock poi.duration

Fill-up route. Routes with larger gaps might be filled up by letting the system decide

which POIs to add. The systems choice might be restricted to a set of POIs – a candidate

set. Recommenders could be used to determine the set and/or to weight POIs. For filling

up a route we first collapse all visits to their minimum visit duration. Then we perform

one step of the Iterative Local Search algorithm for the OP described in [7]: we iteratively

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes266

(a) (b) (c) (d)

Figure 1. (a) Browsing through the available events by different means. (b) Following a generated route on

the map. (c) Editing the route by moving an event. (d) Editing the route by changing the visit duration.

insert one POI after another until the route is too packed to add further POIs. In each

iteration we determine the best candidate and its best position. We then add this POI at

that position to the route and remove it from the candidate set. Afterwards we expand the

route again to close any remaining gaps:

FillUp(route, poiSet)
ResetDelta(route)
Collapse(route)
DO:
insert best POI of poiSet at best position
IF route was changed
remove inserted POI from poiSet

WHILE route was changed
Expand(route)

Our local search approach on filling up a route results in a local optimum to be returned

which might be unfortunate. However, in our experience this seems to be less problematic

as long as the route to be filled-up is not empty or near empty: the existing POIs reduce

the search space, set a general frame for the resulting route and thus make sure that the

generated plan is plausible.

6. Route Editing User Interface

The editing operations described in the previous section can be implemented via a user

interface designed to assist visitors in modifying a generated route. We implemented an

electronic tourist guide for a special kind of tourism: visiting a distributed event. A dis-

tributed event [10] is a collection of smaller, single events occurring at approximately

the same time and conforming to one overarching theme. Well known examples include

the Cannes International Film Festival, the Edinburgh Festival Fringe, and Montreal In-

ternational Jazz Festival. We focus in this paper on the Long Night of Munich Museums.

What many of these events have in common is that they have huge number of diverse

sub-events that are geographically and temporally dispersed. Thus visitors of distributed

events are facing very similar problems to those visiting a city for sightseeing purposes.

One main difference are the special shuttle buses that are provided and that connect the

different events. In the developed Android app we provide assistance for three compo-

nents of electronic tourist guides mentioned in [2]:

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 267

In a first step we determine a set of POIs of potential interest to the visitor. For this

purpose we use a recommender system [5] but do not feed the results into the route

planning algorithm. Instead the recommendations are shown to the user to allow him to

decide upon the events he is interested in. This also makes it possible to provide users

other means of accessing events [11]. Each tab in Figure 1a provides one of these options:

the user can browse events organized geographically by their position on bus routes, by

type, by searching for their name/description or by selecting them on a map. The ”Rated”

tab shows a list of already selected events.

In a next step we generate routes containing as many events as possible from the set of

selected events. This is done with an Iterative Local Search algorithm similar to [7]. The

resulting route presented to the user as a list or on a map (see Figure 1b).

Finally when the user decides to modify the route we support him on a dedicated editing

screen (see Figure 1c and Figure 1d): all the editing operations described in Section 5 are

available: when adding events the user is directed to the already known event browser

(see Figure 1a) to choose an event. Moving an event is performed by drag and drop as

depicted in Figure 1c. During the dragging of an event the route is continuously updated

to reflect the current position of the event in the route. For changing the event visit du-

ration we use a slider interface as shown in Figure 1d: dragging the slider to the right

instantaneously increases the visit duration of the selected event and decreases those of

the other events. As for each slider movement the complete route has to be collapsed and

expanded we experienced some performance problems on older low-end smartphones.

To solve these problems and provide a responsive user interface we increased the step

size to 5 min when expanding the route. This only partially expands the route and would

leave gaps of up to 4 min which we close by expanding again with a 1 min step size.

At the top of the editing screen the total time spent at events and the total traveling time

is shown. This helps users in judging the effects of an editing operation on the route as a

whole. Additionally event visits dropping below the minimum visit duration are visually

highlighted via color depending on how much they fall short of the desired visit dura-

tion. This makes it easy for the user to realize that this constraint is violated and might

encourage him to make further route modifications to remedy this problem.

7. Conclusion and Future Work

In this paper we have provided insights into how sightseeing tourists could be supported

in editing an automatically generated route. We first looked into why it is desirable to

give users the opportunity to modify a route instead of focusing on improvements to the

POI recommender or the route planning algorithms. We also gave an overview on how

current systems approach this need showing that all but one system rely on re-planning.

Only that system provides fine-grained control on route modifications to the user but

ignores the user-specified route end time. We argued that this is neither sufficient to al-

low certain route modifications in case POIs have opening hours nor do users expect

the system to dismiss their input. Thus we next made up guidelines into how an edit-

ing system should behave to meet users’ expectations such as a fair distribution of time

surplus. We finally set on six operations we want the system to support. To define these

we established and defined the concept of collapsing and expanding a route. Collapsing

is reducing all POI visits to the bare minimum while expanding a route is the inverse

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes268

operation and furthermore closes all remaining gaps in the route. With the help of these

we then provided solutions for the six operations which adhere to the guidelines made up

earlier. We showed that most operations consist of the three steps collapsing the route,

performing edit operation and then expanding the route again. Finally we looked into an

assistance system for distributed events and especially into the route editing user inter-

face that uses the operations developed in this paper. The interface provides instant feed-

back on how an operation affects the route making disadvantageous route modifications

obvious while not hindering users in performing the modifications they envisioned.

Even though some of the operations make use of ideas used by planning algorithms,

the presented solutions are independent of these and can be used in conjunction with

any route generation algorithm. Nevertheless, a tighter integration between planning and

route modifications is imaginable: the fill-up algorithm presented in this paper is a first

step in this direction. More advanced route improvement strategies could recommend ad-

vantageous editing operation sequences such as: ”removing POI A, switching POI B and

C and then adding POI D, E and F would save you a lot of traveling and would increase

the total time spend at POIs.” This would show the user a way back from a customized

route to an optimized route.

In the near future we plan to evaluate how the editing interface is used in a field trial. We

are interested in how often the available operations are used, what events they are used

on and in which way the route is modified. We plan to use metrics, such as the topical

diversity of route events, to measure how routes before and after the edit differ from each

other. This might gain insights into what properties a route generation algorithm should

take into account. If user-made route improvements can be measured it might also be

possible to use these metrics during the planning phase to judge different route options.

References

[1] Katerina Kabassi. Personalizing recommendations for tourists. Telematics and Informatics, 27(1):51–

66, 2010.

[2] Ander Garcia, Olatz Arbelaitz, Maria Teresa Linaza, Pieter Vansteenwegen, and Wouter Souffriau. Per-

sonalized tourist route generation. In Current Trends in Web Engineering, pages 486–497. Springer,

2010.

[3] Ronny Kramer, Marko Modsching, Klaus Hagen, and Ulrike Gretzel. Behavioural impacts of mobile

tour guides. ENTER, pages 109–118, 2007.

[4] Ronny Kramer, Marko Modsching, and Klaus Ten Hagen. A city guide agent creating and adapting indi-

vidual sightseeing tours based on field trial results. International Journal of Computational Intelligence
Research, 2(2):191–206, 2006.

[5] Richard Schaller, Morgan Harvey, and David Elsweiler. RecSys for distributed events: Investigating the

influence of recommendations on visitor plans. In Proc. of SIGIR, 2013.

[6] Eui-young Kang, Hanil Kim, and Jungwon Cho. Personalization method for tourist point of interest

(POI) recommendation. In Knowledge-Based Intelligent Information and Engineering Systems, pages

392–400. Springer, 2006.

[7] Pieter Vansteenwegen. Planning in tourism and public transportation. 4OR, 7(3):293–296, 2009.

[8] Marcus Poggi, Henrique Viana, and Eduardo Uchoa. The team orienteering problem: Formulations and

branch-cut and price. In 10th Workshop on ATMOS, page 142, 2010.

[9] Yohei Kurata. CT-Planner2: More flexible and interactive assistance for day tour planning. In Informa-
tion and Communication Technologies in Tourism 2011, pages 25–37. Springer, 2011.

[10] Richard Schaller. Planning and navigational assistance for distributed events. In Proceedings of the 2nd
Workshop on Context Aware Intelligent Assistance, 2011.

[11] Richard Schaller, Morgan Harvey, and David Elsweiler. Entertainment on the go: finding things to do

and see while visiting distributed events. In Proc. IIiX, pages 90–99, 2012.

R. Schaller / Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes 269

A Cost-Based Relaxed Planning Graph

Heuristic for Enhanced Metric Sensitivity

Michal SROKA a, Derek LONG a

a name.surname@kcl.ac.uk

Abstract. Most applications of planning depend on finding high quality solutions.

The quality is evaluated in terms of user defined metric function. We discuss the

current state-of-the-art for finding good quality solutions, and its limitations. We

determine which planners are metric sensitive and are driven by cost. Following

that we present a novel metric sensitivity heuristic using a modified version of

the relaxed planning graph. The proposed heuristic helps in generating plans in

response to the change of the metrics.

Keywords. planning, multi-objective, metrics, metric sensitive

Introduction

Practical applications of planning depend on finding good quality plans, where the qual-

ity is generally not measured simply by the number of actions in the plan. Instead, it is

usual for the quality of a plan to be measured by costs associated with different actions,

which reflect consumption of resources: typically time, energy or money. PDDL2.1 [4]

introduced the extension that allows a user to specify the plan metric by which the qual-

ity of a plan is to be measured, but it is still the case that most modern planners ignore

this specification and simply focus on generating short plans. Most benchmark domains

exhibit a close correlation between plan length and plan cost, so the fact that planners

ignore the cost is obscured in empirical evaluations of performance.

In this paper, we explore the property of metric sensitivity [11], which means that

a planner responds directly to the plan metric. More specifically, we consider examples

of problems in which the optimal solution can vary significantly as the metric changes,

and then examine the small set of modern planners that are responsive to the plan metric.

User-specified plan metric is used to evaluate the plan quality. The use of metric fluents

may cause the action cost to vary depending on the state in which they are applied. A

planner can mitigate the cost by appropriately preparing the state.

After a short example we briefly review the state-of-the-art of planning with metric

functions, a description of domains which offer trade-offs between resources to achieve

the goal. A selection of current state-of-the-art planners, together with evaluation of their

metric sensitivity. We conclude that very few demonstrate metric sensitivity. In Section 3,

we introduce a novel method for calculating a metric sensitive heuristic function using a

cost-based Relaxed Planning Graph. An implementation of the method is then presented

using a novel compilation from a non-temporal cost domain to a temporal domain. We

conclude with a comparison between our method and relevant state-of-the-art planner.

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-270

270

1. Example

We now present a simple concrete example problem that illustrates some of the issues

involved in finding high quality plans. Suppose we want to transport two packages from

location L0 to location L5. We have two drivers and three vehicles available, one electric,

Te1, and two diesel, Tf1 and Tf2. The amount of resource used by a vehicle is equal

to the distance driven multiplied by the square of the loaded truck weight (number of

packages plus one) using metric fluents this is (resource-used) = (distance ?l1 ?l2) ∗
(load ?t)2 where resource can be diesel or electricity. This problem is represented in

Figure 1. The following plan metric is used for evaluation: (minimize(+(∗A(electricity-

used))(∗B(fuel-used)))). Where A and B vary, to check how planner responds to that

change.

Figure 1. A simple problem with different vehicle types to transport packages P1 and P2 to L5.

Plans solving this problem are summarised below:
1) Load both packages into Tf1 and then

drive them to L5 via L2 using driver D1.

Cost: 180 diesel, 0 electric, length: 6.

2) Load both packages into Tf1 and drive to

L5 via L1, L3 and L4, using D1. Cost: 54

diesel, 0 electric, length: 9.

3) Load both packages into Te1 and drive

to L5 via L1, L3 and L4, using D1. Cost:

0 diesel, 54 electric, length: 9.

4) Load one package into Tf1 and one into

Tf2 and drive both to L5 via L1. Cost: 48

diesel, 0 electric, length: 14.

Plans 1, 2, 3 and 4 are all different, both qualitatively and quantitatively. It is clear

that the optimal cost plan, under any combination of metric fluents, will involve using the

shorter path. The fact that this uses more actions is a problem for many planners, which

attempt to minimise plan length as a proxy for the plan quality.

Using a single plan metric combining metric fluents like fuel cost and electricity cost

with respective weights of 9 and 8, the optimal plan uses one diesel truck and the electric

truck, each carrying one package (cost 24 diesel and 24 electricity, with total weighted

cost of 408, while both plans 3 and 4 have weighted cost of 432). This example illustrates

how interesting choices arise according to the trade-offs between resources being used.

2. Background

For generation of good quality plans under different plan metrics we require the planner

to be metric sensitive [11]. A planner is metric sensitive if, presented with two different

plan metrics (cost), m1 and m2, it produces different plans, π1 and π2 for the same

problem instance, such that m1(π1) < m1(π2) and m2(π1) > m2(π2). In practice, a

metric sensitive planner will not always be able to find two different plans that are each

better under their respective plan metrics. In their specification of PDDL2.1, Fox and

Long [4] introduced plan metrics, which are functions of the metric fluent parameters of

a planning problem used to evaluate the cost or reward of a solution plan. For example:

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity 271

(:metric minimize (+(energy)(+(*5 (labour))(*4 (pollution)))))

Radzi [9] distinguishes different interactions between plan lengths and plan met-

rics. In the following we use π and π;σ to stand for executable sequences of ac-

tions, where the latter is a concatenation of two sub-sequences, c(π) as the cost of

π and |π| as the length of π. We say a plan metric, c, is strictly length-correlated if

∀π1π2 ·c(π1) ≤ c(π2) → |π1| ≤ |π2|, monotonic if ∀πσ ·c(π) ≤ c(π;σ), non-monotonic
if ∃πσ · c(π) > c(π;σ). While most current planners optimise quality only when the

plan metric is strictly length-correlated, only metric sensitive planners can effectively

deal with monotonic metrics. There are currently no planners, including our own, that

deal effectively with non-monotonic metrics.

Keyder and Geffner [7] present one approach to solving domains with monotonic

plan metric. Their heuristic is calculated backward from the goal taking the cheapest

achievers of each open facts, where the achievers are taken from the RPG constructed.

This gives the cheapest relaxed plan which is found when constructing the RPG, however,

it is still prone to bias demonstrated in the example as the actions which does not appear

in the RPG, like driving via l1, are not considered in the construction of the relaxed plan.

2.1. Domains

Current benchmark planning domains do not usually provide us with interesting plan

metric functions that are unrelated to the plan makespan. In our experiments we use

domains which contain the possibility of trade-off between various resources, introduced

in [9], Bread and Production. They contain the property that the length of the plan does

not correspond with the quality and, therefore, this property forces the planner to look for

a better rather than shorter solutions in order to increase the quality. We also introduce a

modified Driverlog domain [8], decoupling the plan length and quality.

The Bread domain describes a process of baking bread and buns. We start with flour

which we turn into a mix. The mix is used to create a dough. Dough is either created

by hand or using a machine. Using the machine increases energy consumption and the

machine needs cleaning, but can create twice more dough comparing to doing it by hand.

The next stage is to make a bun or a bread from the dough. From the same amount of

dough we can form either two loaves of bread or five buns. They can be baked using

either an electric oven or on charcoal. An electric oven uses one unit of energy and

charcoal increases the pollution by one unit. An electric oven can bake ten buns or four

loaves while charcoal only two buns or two loaves. Our plan metric function is composed

of weighted sum of the following metric fluents: energy, labour, pollution.

The aim in the Production domain is to obtain a certain amount of materials and

ready products in stock. There are various ways of creating the same product or obtaining

materials. The planner has flexibility to use various methods to arrive at the same goal

which differ in labour, hazard or machine-cost values.

The Driverlog domain [8] used in experiments is the standard benchmark but differ-

entiates electric and diesel trucks which creates a trade off between diesel and electric-

ity consumption used for transportation of packages. Driverlog metric was further mod-

ified by an addition of multiple shortcuts for driving between cities where, if used, the

resource consumption is much smaller but the number of drive actions is greater. This

change is a good test for planners which are truly metric sensitive. In our experiments

we have used two versions of Driverlog domain: Basic, where no changes are made to

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity272

the infrastructure, metric fluents, and plan metrics, where three locations, s0, s1 and s2,

are connected by very short routes with two intermediate steps.

2.2. Satisficing planners

Satisficing planners, due to their speed, offer a more promising approach to solving larger

problem instances. We briefly present some state-of-the-art planners which are capable

of reasoning with plan metrics as specified in PDDL2.1 [4]. Many satisficing planners

can generate high quality plans for domains containing metrics. Some of them, like Lama

[10]; aim at generating high quality solutions, however, they typically do not support

:FLUENTS. The only metrics which are allowed are the metrics which affect the (TOTAL-

COST) function which is assumed to be the cost of an action. Our work focuses on pro-

viding the flexibility for the user of the planning system to define functions against which

the plan is evaluated. Therefore these approaches are not applicable, since the planner

must generate good quality plans depending on the metric. The candidates which are

promising for exhibiting metric sensitive behaviour are presented below.

MetricFF [6] is a very successful domain independent planner working with

PDDL2.1. For each state which it evaluates it solves a relaxed version of the planning

problem to obtain the cost of arriving to the goal state. The most recent version is capable

of handling metric fluents and optimising a cost function, so it is a good candidate for a

metric sensitive planner.

LPG [5], is a domain independent, local search, stochastic planner. It creates its

search space based on a graph with interleaved proposition and action layers. Its heuristic

consists of two elements, estimating the expected search cost and the expected execution

cost to complete the plan from an evaluated search state, where search cost is the cost to

resolve all the flaws in the current search state and execution cost is the estimated total

cost of executing actions in the plan. Execution cost therefore represents plan quality.

There are two weights on these two components, which allow trade-off between finding

solutions quickly or searching for good quality solutions.

POPF2 [2] is a deterministic temporal planner that attempts to find minimum

makespan plans. It uses a Simple Temporal Network (STN) to handle temporal con-

straints between actions and schedule them in a feasible way. It handles metric fluents,

as for PDDL2.1, and therefore we believe it is a good candidate.

LPRPG [1] uses relaxed planning graph (RPG) heuristics combined with linear

programming (LP) methods. It solves a number of LP for every decision it makes to

calculate bounds on resources and to improve its numeric reasoning. Doing this gives

LPRPG more precise information about bounds on resources than other planners and

therefore is designed for use in domains with numeric resource.

2.3. Metric sensitivity test

Here we present results of the planners discussed in Section 2.2. Each planner is pre-

sented with the same problem, in eleven different versions, where each version is only

different in the plan metric function to be minimised. An instance of a problem from the

modified Driverlog domain, described in Section 2.1, is used. In order to show metric

sensitivity, we expect the planners to generate different solutions. This can be achieved

by using electric or diesel vehicles, depending on the cost of each of the resources (diesel

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity 273

and electricity). The plan metric function to minimise in each of the examples is ((10-i)

* (fuel-used) + i * (electricity-used)), for i=1,2,...,10. Figure 2 presents the results. It is

clear that the only planner which generates different results is LPG.

Figure 2. Results for running each of the planners 11 times on the same problem file, but with different plan

metric function to minimise. For MetricFF, POPF2 and LPRPG marks on the figure represent 11 identical plans

generated for 11 different plan metrics.

POPF2, LPRPG and MetricFF perform poorly in this test and do not exhibit metric

sensitive behaviour. We attribute this fact to the RPG-based heuristic which prefers plans

that achieve the goal in fewer action layers, instead of cheaper in terms of plan metrics.

LPG performed well by generating different plans for different plan metric function

for the same problem. It is therefore our choice for later comparison.

POPF2 will produce the same plan for a given problem instance, regardless of the

plan metric presented to it, since it does not respond to the plan metric. This does not

seem a very promising planner to consider in the context of the current work, but we will

show that its approach to optimising makespan can be harnessed to allow it to be metric

sensitive in solving non-temporal problems.

3. A cost-based relaxed planning graph

Most current planners use Relaxed Planning Graph (RPG) as the base for their heuristics.

This approach proved to provide a very good heuristic estimates efficiently for STRIPS

domains. When dealing with numeric domains where the plan quality is evaluated using

metric fluents RPG based approaches suffer from its bias towards shorter plans. Although

for strictly length correlated plan metrics, this is not a problem as shorter plans are also

plans of better quality, when faced with real life problems who are commonly monotonic

or non-monotonic, this approach performs poorly. We propose a novel approach to con-

structing a relaxed planning graph based on cost. This novel approach aims at preferring

cheaper, in terms of the cost, rather than shorter plans.

Figure 3 demonstrates how an example cost-RPG is constructed for the problem

described in Figure 1 and metric function (: metricminimize(+(∗1(electricity −
used))(+(∗2(fuel−used))(∗1(walked)))) to minimise. Construction of cost-RPG lay-

ers is done in the following steps:

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity274

Figure 3. cost-RPG constructed from the initial state for the problem shown on Figure 1.

• Insert all facts from the initial state into Fact Layer 0.

• Then new action starts are applied, and their ends queued based on cost, until no

new start action is applicable. Resulting layers are separated by ε.

• Then, lowest cost action ends are applied, this forms a new cost-RPG layer with

the cost determined by the action cost.

• Then all new applicable action starts are applied.

• The process repeats until a goal is found or no new facts can be achieved.

Figure 3, demonstrates how cheap actions, in terms of the plan metrics, appear in

cost-RPG and the expensive actions, in this case using fuel or driving via location 2,

are postponed. It is interesting to notice that action driving to location 2 is not finished

even when the goal is reached. Driving via location two is expensive and undesirable,

yet the standard version of RPG uses it. In cost domains, when non-temporal action is

split into start and end action, the start of an action contains no effects which can enable

other actions. All positive effects, which can enable other actions, are placed at end. This

ensures that the positive effects are available only after the cost is paid and, at the same

time, prevents unnecessary branching.

For the purpose of handling context dependent action cost, in every state before

creation of the cost-RPG, action costs are computed. These calculated action cost, within

the context of the current state, are then used inside the cost-RPG for estimating the

total cost of arriving to the goal state. The costs of single actions could change between

different layers from cost-RPG but for simplicity we keep them constant from the time

they have been calculated within the context of the state which is evaluated.

The basis of our use of POPF2 to achieve metric sensitivity lies in the way that

it constructs the Temporal Relaxed Plan Graph (TRPG) [2]. The idea in the temporal

setting, which is similar to the construction used in Sapa [3], is to extend the plan graph,

during construction, with applicable action start points, queueing their end points to

occur at the corresponding duration interval after the start. Once all applicable action

starts have been identified and applied, arriving at a fixed point for this stage, the earliest
queued action end point is applied and then the process is repeated, until this queue is

empty (or the goals are achieved). Critically, each layer of the TRPG is labelled with

the time at which it is reached. This means that the makespan of the relaxed plan can be

identified directly within the TRPG and this leads to an informative temporal heuristic.

3.1. Compiling the cost-RPG

In order to exploit POPF2, without the need to modify it directly, we propose a novel

compilation approach, in which non-temporal domains are compiled into ‘temporal’ do-

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity 275

Table 1. An original action, and one of the actions resulting from a compilation.

Original Action One of compiled temporal actions

(:action drive-electrictruck :parameters (?v -

electrictruck ?f ?t - location ?d - driver) :pre-
condition (and (at ?v ?f) (driving ?d ?v)(link ?f

?t)) :effect (and (not (at ?v ?f)) (at ?v ?t) (in-

crease (electricity-used) (* (time-to-drive ?f ?t)

(* (load ?t) (load ?t))))))

(:durative-action drive-electrictruck l0-l2 :parame-
ters (?v - electrictruck ?d - driver) :duration (= ?dura-

tion (* 100.0 (* (load ?t) (load ?t)) :condition (and (at

start(at ?v s0)) (at start(driving ?d ?v)) (at start(link s0

s2))) :effect(and (at start(not (at ?v s0)))(at end (at ?v

s2)) (at end (increase (electricity-used) (* 10.0 (* (load

?t) (load ?t)))))))

mains. Our method substitutes action ‘durations’ for action costs and, therefore, the

makespan of the plan is a proxy for the plan cost. This compilation exploits the similarity

between the construction of TRPG to the cost-based RPG. We now describe this process.

Faced with a non-temporal planning domain and problem instance with a single

plan metric, we compile the problem into a temporal model, in which the durations are

determined by the costs of the corresponding actions under the specific plan metric.

The positive effects of the action are then placed at the end of the action, while the

preconditions and negative effects are placed at the start.

There are several issues in the compilation. Firstly, we need to ensure that resource

consumption, not to be confused with cost, occurs as soon as an action is applied, other-

wise the gap between starting and ending the action can be exploited by the planner to

try to execute an action that uses the same resource. Although the attempt will fail, be-

cause it will prevent the end of the original action from being applied, it will significantly

impact on the search for a plan. We avoid this by ensuring that delete effects occur at the

start, and add effects at the end. For numeric variables representing resources, we apply

consumption effects (inhibiting) at the start and production effects (enabling) at the end.

This is achieved by identifying the way in which numeric variables appear in precon-

ditions of other actions. For example, in the Bread domain, increasing the metric fluent

(ready-dough ?k− kitchen) at the start allows actions to start baking bread before one

of the kneed-dough-machine or kneed-hand action finishes. In this case we have to

increase the (ready-dough ?k) resource as an end effect.

It is usually necessary to translate an action from the metric domain into multiple

actions in the temporal domain. One approach is to generate partially grounded versions

of each action from the original domain and calculate their costs separately. In this case,

we ground actions intelligently (checking static preconditions) to avoid unnecessary in-

crease in the domain size. The compilation supports actions that do not have a constant

cost and where cost depends on the context in which they are applied. Handling of this

is delegated to underlying planner, which means that a planner must be able to handle

context dependent action duration.

We now present an example of the compilation, consider the action presented in

Table 1. For the aggregated plan metric function: (: metricminimize(+(∗10(electricity−
used))(+(∗1(fuel−used))(∗1(walked)))) This action is compiled into multiple durative

actions. By grounding the location variables we can calculate the cost of the action given

(time-to-drive ?f ?t), we ground the action for each value of (time-to-drive ?f ?t) given in

the problem file. One of the translated actions is present in Table 1.

The duration of the action, 100 units multiplied by the load of the truck, is calculated

using the aggregated plan metric function and grounded location functions. Knowing

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity276

that we increase electricity-used by 10 units multiplied by the load of the truck, the plan

metric function increases by: 10× (10× (load?t)2)+ 1× 0+1× 0 = 100× (load?t)2.

4. Experiments and results

In our experiments we will show that using the cost-based approach to build the RPG can

generate better quality solutions, evaluated by the plan metrics, than the closest state of

the art planner. Based on our earlier experiments with the current state of the art planners,

discussed in Section 2.2, LPG is selected for comparison.

Each domain defines a set of metric fluents that combined, with different weights,

form a plan metric in each problem instance. For each domain and each problem instance,

we generate problem instances that combine three metric fluents with weightings chosen

from {0, ..., 10} so that the sum of weights is equal to 10. this generates sixty six different

weightings. Each time a planner is run it is given a 100 second window to find a solution.

After 100 seconds a planner is stopped whether it finds a solution or not. This repeats for

all the weighting schemes. Time of the planners reported in Section 4 is total time for

generating solutions to all of the sixty six problem instances, averaged over all problems.

The main focus of this work is increasing the quality of the solutions. The method

used when comparing the performance of planners with each other is based on the scor-

ing metric used in recent International Planning Competitions. After a set of planners

is run on a problem instance derived from a multi-objective problem by combining the

metric fluents into a single weighted sum, the plan metric, the solutions are gathered

and compared with each other. For each weighting scheme we calculate the value of the

best plan across all the planners, Θbest and then we assign a score to each planner, i,
producing a plan for this problem with value Θi, using the relative quality score:

Definition 1 Relative Quality is Θrelative
i = Θi−Θbest

Θbest

Where: Θi- plan metric value; Θbest- Best value across planners.

This method is used to evaluate the quality of solutions for multiple runs over dif-

ferent plan metrics for each problem file for each domain described in Section 2.1.

Results. Experiments were conducted on an Intel R©CoreTMi7-2600 CPU @ 3.40GHz

8 machine with 4GB or RAM memory for each planner.

Table 2 A) shows results for 13 problems from the modified Driverlog domain. It

is clear that the approach based on the cost-RPG outperforms current state of the art in

terms of quality. This approach takes far more time, as we depicted by average time re-

sults in Table 2 B). This can be partly explained by time contributed towards the compila-

tion of the domain, larger amount of action in the compiled domain and the performance

of POPF2 without the compilation which is also slower than LPG.

An interesting observation with regards to the role of stochasticity comes from the

difference between the number of best plans found by each planner and their relative

quality. This is especially visible for the Bread domain where LPG N3 generated more

plans of higher quality, but its average relative quality is very low. We attribute this to

its stochastic behaviour which in many cases leads to good quality solutions, but it also

forces the planner to search in areas of the search space with poorer quality solutions.

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity 277

(a) Results for domain bread (b) Results for domain production

(c) Results for domain driverlog (d) Results for domain driverlog metric

Figure 4. Results for all weights and all problems by domain aggregated together. Squares compare quality of

LPG n1 and circles LPG n2 with the quality of MS-POPF2. Lower cost values are better.

5. Conclusion

We have presented a novel cost-based expansion of RPG which is a new approach to cost

oriented planning. The method is analogical to temporal RPG mentioned earlier.

The comparison of performance shows that although cost-RPG requires more time

to find a solution, it finds a solution of higher quality than LPG. The comparison is limited

to LPG because most planner do not handle context/metric dependent action costs.

The cost-RPG heuristic works particularly well in finding plans where the number

of actions does not correlate well with the change of cost. In the example presented in

Section 1 there are two routes, A: L0−L2−L5 and B: L0−L1−L3−L4−L5. It is

common for planners to favour the shorter action sequence, but more expensive, route A.

In constructing the cost-RPG, the end of the action (drive-electrictruck ?v L0 L2 ?d) would

not be added to the plan graph until after the cheaper route via L1 is already in place.

Our results, presented in Section 4, show that use of the cost-RPG leads to a metric

sensitive performance that generates plans of much higher quality than the closest com-

petitor. We have shown that LPG, as other planners, favours shorter plans over cheaper

in terms of plan metrics. Our novel cost-RPG heuristic overcomes this limitation. The

heuristic have been successfully implemented using a current temporal planner, POPF2,

and a novel compilation from metric to temporal domain.

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity278

Table 2. A) Average relative quality results for different plan metrics for each of the problems from

the modified Driverlog domain. B) Average results for relative quality, time and number of best

plans generated over 20 problem files for domain Production, Bread and 13 problems for Driverlog.

LPG1 LPG2 LPG3 MSPOPF

1 292 117 0.24 0
2 725 336 1.85 0.64
3 1149 308 136 0.02
4 1367 466 458 0.25
5 205 196 175 0.21
6 8 0.69 0.2 2.39

7 745 500 3.13 1
8 2915 2594 448 0
9 668 632 1.24 0.61
10 3395 1572 526 0.32
11 7253 5149 2956 0.34
12 1996 3.97 136 0.31
13 7272 4530 2734 0.4

Avg 2153 1262 583 0.5

Quality LPG1 LPG2 LPG3 MSPOPF

Production 12.52 7.34 6 0.29
Bread 8.94 2.75 1.32 0.55
Driver 2024 1059 443 0.65

Driver m 1699 688 257 2.11

Time LPG1 LPG2 LPG3 MSPOPF

Production 6.23 56.91 305.5 602

Bread 5.14 151.37 1254.71 22.6

Driver 8.09 13.88 64.27 262.47

Driver m 8.92 13.92 63.92 439.5

Best LPG1 LPG2 LPG3 MSPOPF

Production 33 220 401 966
Bread 35 323 707 584

Driver 99 302 554 413

Driver m 47 186 358 436
Total 214 1031 2020 2399

References

[1] A. Coles, M. Fox, D. Long, and A. Smith, ‘A hybrid relaxed planning graphlp heuristic for numeric

planning domains’, Proc. Int. Conf. on Automated Planning and Scheduling (ICAPS), (2008).

[2] A. J. Coles, A. I. Coles, M. Fox, and D. Long, ‘Forward-chaining partial-order planning’, in Proc. Int.
Conf. on Automated Planning and Scheduling (ICAPS), (2010).

[3] Minh Binh Do and S. Kambhampati, ‘Sapa: A multi-objective metric temporal planner’, J. Artif. Intell.
Res., 20, 155–194, (2003).

[4] M. Fox and D. Long, ‘PDDL 2.1: An Extension to PDDL for Expressing Temporal Planning Domains’,

J. Artif. Int. Res., 20, 61–124, (2003).

[5] A. Gerevini, A. Saetti, and I. Serina, ‘LPG-TD: a Fully Automated Planner for PDDL2.2 Domains’,

Proc. Int. Conf. on Automated Planning and Scheduling (ICAPS), (2004).

[6] J. Hoffmann and B. Nebel, ‘The FF Planning System: Fast Plan Generation Through Heuristic Search’,

J. Artif. Int. Res., 14, 253–302, (2001).

[7] Emil Keyder and Hector Geffner, ‘”heuristics for planning with action costs revisited”’, in ECAI, pp.

588–592, (2008).

[8] D. Long and M. Fox, ‘The 3rd International Planning Competition: Results and analysis’, J. Artif. Int.
Res., 20, 1–59, (2003).

[9] Nor Haizan Mohamed Radzi, Multi-Objective Planning using Linear Programming, Ph.D. dissertation,

University of Strathclyde, 2011.

[10] S. Richter and M. Westphal, ‘The LAMA Planner: Guiding Cost-based Anytime Planning with Land-

marks’, J. Artif. Int. Res., 39, 127–177, (2010).

[11] M. Sroka and D. Long, ‘Exploring Metric Sensitivity of Planners for Generation of Pareto Frontiers.’,

in Starting AI Research Symposium (STAIRS), pp. 306–317, (2012).

M. Sroka and D. Long / A Cost-Based RPG Heuristic for Enhanced Metric Sensitivity 279

Towards Learning and Classifying

Spatio-Temporal Activities in a Stream

Processing Framework

Mattias TIGER a and Fredrik HEINTZ a

a Department of Computer and Information Science, Linköping University, Sweden 1

Abstract. We propose an unsupervised stream processing framework that learns

a Bayesian representation of observed spatio-temporal activities and their causal

relations. The dynamics of the activities are modeled using sparse Gaussian pro-

cesses and their causal relations using a causal Bayesian graph. This allows the

model to be efficient through compactness and sparsity in the causal graph, and to

provide probabilities at any level of abstraction for activities or chains of activities.

Methods and ideas from a wide range of previous work are combined and interact

to provide a uniform way to tackle a variety of common problems related to learn-

ing, classifying and predicting activities. We discuss how to use this framework to

perform prediction of future activities and to generate events.

Keywords. activity recognition, machine learning, knowledge representation,

situation awareness, knowledge acquisition, unsupervised learning

Introduction

Learning and recognizing spatio-temporal activities from streams of observations is a

central problem in artificial intelligence. Activity recognition is important for many ap-

plications including detecting human activities such that a person has forgotten to take

her medicine in an assisted home [1], monitoring telecommunication networks [2], and

recognizing illegal or dangerous traffic behavior [3,6]. In each of the applications the

input is a potentially large number of streams of observations coming from sensors

and other information sources. Based on these observations common patterns should be

learned and later recognized, in real-time as new information becomes available.

The main contribution of this paper is an unsupervised framework for learning activ-

ities and causal relations between activities from observed state trajectories. Given a set

of state space trajectories, the proposed framework segments the continuous trajectories

into discrete activities and learns the statistical relations between activities as well as the

continuous dynamics of each activity. The dynamics of the activities are modeled using

sparse Gaussian Processes and their contextual relations using a causal Bayesian graph.

The learned model is sparse and compact and supports both estimating the most likely

activity of an observed object, and predicting the most likely future activities.

1Corresponding Authors: {Mattias Tiger, Fredrik Heintz}, Department of Computer and Information

Science, Linköping University, Sweden; E-mail: {matti166@student.liu.se, fredrik.heintz@liu.se}.

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-280

280

As an example, consider a traffic monitoring application where a UAV is given the

task of monitoring the traffic in a T-crossing. The UAV is equipped with a color and

a thermal camera and is capable of detecting and tracking vehicles driving through the

intersection [6]. The output of the vision-based tracking functionality consists of streams

of states where a state represents the information about a single car at a single time-point

and a stream represents the trajectory of a particular car over time (Figure 1, left). Based

on this information the UAV needs to learn traffic activities such as a car driving straight

through the intersection or making a turn (Figure 1, right).

���������

	

��
��

�
��

�

Figure 1. An illustrative example of the expected input and output of the proposed framework. The left fig-

ure shows observed trajectories. Blue is constant velocity, yellow is negative acceleration, and red is positive

acceleration. The right figure shows a conceptual illustration of what we want to learn.

1. Related Work

There are many different approaches to activity recognition, both qualitative and quanti-

tative. Here we focus on quantitative approaches since they are most related to our work.

As far as we know there is no other unsupervised framework that can learn the atomic

activities, the dynamics of each activity and the causal relations between the activities.

A common approach is to use images as the raw input. One approach uses a Bayesian

Hierarchical Model with moving pixels from video surveillance as input [17]. They di-

vide the image into square regions which the pixels belong to and use together with four

different motion directions as a code book. They treat 10 second video clips as docu-

ments and the moving pixels as words and learn a Hierarchical Dirichlet Process. By

performing word document analysis, the resulting topics are normative atomic activities

in the form of pixel motion trajectories in the 2D image.

Our unsupervised framework in comparison requires trajectories, but can learn prim-

itive activities bottom up from these trajectories. This allow our framework to rapidly

learn new activities, while being able to compare their support by each activity’s accu-

mulated evidence. We also learn the causal statistical connections between activities al-

lowing for activity prediction. Our framework could use moving pixels as input, but also

other types of information such as 3D-positions. It also incorporates the uncertainties of

those measurements.

Another approach is to use splines with rectangular envelopes to model trajecto-

ries [10,5], compared to our approach and the approach of Kim [8] which use Gaussian

Processes (GPs) in a continuous Bayesian setting. Similar to our approach [5] divides

trajectories into shorter segments and split trajectories at intersections, while [8] only

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 281

considers trajectories beginning and ending out of sight and performs no segmentation

of activities. Neither of the frameworks mentioned are suitable in a stream processing

context with incrementally available information in the learning phase. Our framework

can continue to learn in the field on a robotic platform and adapt directly to new situ-

ations in regards to learning, classification and prediction. Our framework supports not

only detecting and keeping count of abnormal behaviors, but also learns those behaviors

and collect statistics on their detailed activities.

2. The Activity Learning and Classification Framework

The proposed framework (Figure 2) learns activities and their relations based on streams

of temporally ordered time-stamped probabilistic states for individual objects in an un-

supervised manner. Using the learned activities, the framework classifies the current tra-

jectory of an object to belong to the most likely chain of activities. The framework can

also predict how abnormal the current trajectory is and how likely future activities are.

�������	
��������	

����������	������

���������	��
����
	������������������
����

	��������������

������

���
�

������

��������

����	�

�����	����������!�	�����
��������������
����������"�������#��$%

Figure 2. An overview of the framework. It is built around the three modules Reasoning, Activity Learning
and the knowledge base consisting of two graphs, of which the two former modules make extensive use of. The

Activity learning takes entire observed trajectories and updates the graphs. It is divided into three parts which

are performed sequentially. The Reasoning module detects and predicts activities based on observations.

An activity can informally be defined as something a particular object does. In our

case, an instance of an activity is represented by a state trajectory where some state

variables are expected to change in a certain way while others may change freely. For

example, an activity could be slow down where the velocity state variable is expected to

decrease. An activity model should capture such continuous developments.

The framework models activities as Gaussian Processes, which are sufficiently ex-

pressive to model the development of the state variables including uncertainties in ob-

servations. Activities are learned as edges in a graph, where the nodes are intersection

points, in the state-space, between activities. On a higher abstraction level activities are

seen as nodes, with edges representing transitions which are weighted according to the

observed empirical probability of the transitions. The latter construct enables prediction

of activities through probabilistic inference. The graphs are called the State Space Graph
and the Activity Transition Graph. An example is shown in Figure 3. The Activity Tran-

sition Graph is a causally ordered discrete Markov chain. We currently only consider

1-order Markovian transitions in the formulation of this graph. However, a natural exten-

sion is to use a higher order Markov chain.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities282

�� ��

�� ��

��

��

(a) State Space Graph

�� ��

��

��

��

��

��

(b) Activity Transition Graph

Figure 3. A denotes an activity in both the State Space Graph and the Activity Transition Graph, I denotes

an intersection point in the state space, T denotes a transition in the Activity Transition Graph. All transitions

between A2, A3 and A4 can be seen as contained within the intersection point I2.

To handle activities on different scales the framework uses two parameters sthreshold
and lthreshold . The parameter sthreshold is a threshold on the similarity between activities

in the state space, based on the likelihood of one explaining the other. If an observed

trajectory has a similarity below the threshold when compared to any other activity, the

observation is considered novel and unexplained. The parameter lthreshold is a threshold

on the minimal length of an activity in the state space, which is used to limit the amount

of detail in the learned model.

The framework captures and models activities as statistically significant trajectories

through the state space. With enough observations all activities captured are discrimina-

tive and invariant of the observed variations which are not statistically significant.

In the work of [8] they detect abnormal trajectories by using the lack of dominant

trajectory models in explaining observed trajectories. In our case a similar lack of dom-

inance of activity models, or that several are almost equally likely, can be due to two

things. Either due to abnormality (novelty for learning) or due to a transition between ac-

tivities. By using the similarity threshold sthreshold we can distinguish between intervals

that are either abnormal or transitional.

3. Modeling Activities

An activity is seen as a continuous trajectory in the state space, i.e. a mapping from time

t to state y. A state can for example be a 2D position and a 2D velocity. To get invariance

in time, t is normalized to be between 0.0 and 1.0 and acts as a parametrization variable

of y = f (t). The mapping is modeled using Gaussian Processes. The assumption is that

an activity is a curve in a N-dimensional state space. The activity model is the result

of the continued accumulation of explained observed trajectories. The amount of these

supporting trajectories is seen as the amount of evidence E of the activity model, and is

used in comparison with other activity models.

Given an observed state, this parametrization variable must be known to calculate

how well the activity explains the observation. In [8] they assume this parametrization

to be known by assuming that it is already normalized to the interval [0,1] which can

only occur after the whole trajectory has been observed. Further, they only consider

entire trajectories without temporal segmentation, and with a state space consisting of

positions and velocities. When performing stream reasoning the entire trajectory cannot

be assumed to be present at once such that it can be normalized, because states are made

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 283

available incrementally. We estimate the parametrization for any observation to allow the

system to operate with only incrementally available pieces of the observed trajectories.

To estimate the temporal parameter for any observed state, an inverse mapping

t = g(y) is also learned. This adds a bijective restriction on an activity, meaning that

an activity cannot intersect itself. Concretely, it cannot map to the same state at different

points in time. This is a limitation arising from the non-causality of Gaussian Processes

used to model the activities. The limitation can be circumvented by segmenting observed

state trajectories into non-intersecting intervals and model each separately.

3.1. Gaussian Processes

Gaussian Processes have been shown to be useful for prediction, modeling and detect-

ing spatio-temporal trajectories such as motor vehicles in crossings [8], marine vessel

paths [12] and human body dynamics [16]. GPs have also been used to model spatial re-

gions and structures such as occupancy maps [9] and smooth motion paths [7]. They are

also good for handling noisy or missing data [8,16], where large chunks of trajectories

can reliably be reconstructed.

One major obstacle restricting their use has in the past been the expensive matrix in-

version operation necessary to update the model. Various methods have been employed to

reduce this weakness, by efficient iterative updates [13], segmentation into local patches

of GPs [11,15], and by techniques to make the GP sparse [14,15]. In this work we employ

sparse GPs to model activities, which are systematically segmented into local models.

The non-parametric model of the Gaussian Process is associated with a vector of

inputs x and two corresponding vectors of outputs y and output uncertainties σy. The

posterior density given an observed point x∗ is a Gaussian distribution. We use a sparse

representation of support points x and y, kept to a limited number, to make the calcula-

tions possible with any number of accumulated observations. The intention is to make

it possible for the system to continue to learn from as many observations as possible to

improve the confidence and get as much evidential support as possible.

3.2. Modeling Spatio-Temporal Dynamics

The activity model consist of the parametrized state trajectory y = fGP(t) and its inverse

mapping t = gGP(y) = f−1
GP (y). The inverse mapping is constructed by switching the

input and the output, x and y, of fGP. Since the inverse mapping is with respect to the

mean function of fGP, it is exact at these points and the observation error is therefore

zero. It is however chosen to be very small as to minimize numerical problems.

The main purpose of the inverse mapping is to project a state space point

x∗ ∼ N (μx∗ ,σ2
x∗) onto the mean function of fGP, thereby becoming the state space

point y∗ ∼ N (μy∗ ,σ2
y∗). This is used when calculating the likelihood of a point on

one trajectory being explained by a point on another. The calculation is performed by

approximating x∗ as μx∗ and t∗ as μt∗ ,

y∗ = fGP(μt∗), t∗ = gGP(μx∗). (1)

The latter approximation is valid if the inverse mapping accurately models the inverse

mean function. The former approximation can be improved by techniques for uncertain

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities284

inputs to GPs described in [4]. The mappings y = fGP(t) and t = gGP(y) currently use

the squared exponential kernel, which is commonly used in Gaussian Process regression,

k(x1,x2) = θ 2
0 e

− ||x1−x2||22
2θ2

1 , (2)

where θ 2
0 denotes the global variance of the mapping and θ 2

1 denotes the global smooth-

ness parameter of the mapping. The two mappings have separate parameters. The kernel

hyper parameters θ are optimized for each activity by maximizing the marginal likeli-

hood.

3.3. Local Likelihood

Let A be an activity with { fGP,gGP} and let x∗ ∼ N (μx∗ ,σ2
x∗) be an observed point or

a point on another activity. If the different dimensions of the state space are assumed to

be independent, the local likelihood[8] of x∗ given A is

P(x∗|A) = P(x∗|y∗) =
N

∏
n = 0

P(x∗n|y∗n), y∗ = fGP(gGP(x∗)), (3)

where N is the dimension of the state space and y∗ is a Gaussian distribution. When

considering multiple activities the calculation of the local likelihood is weighted by the

relative evidence E in support of respective activity. If Tn is point n on trajectory T then

P∗(Tn|Ak) =
Ek

∑i(Ei)
P(Tn|Ak), (4)

where i ranges over all activities in consideration of which Ak is one. This allows a well

supported activity with high variance to keep significant importance.

4. Learning Activities

To learn activities from observed trajectories, the framework segments trajectories into

sequences of activities, where each activity differs from all other activities currently

known. Activities are segmented such that no two activities can have overlapping inter-

vals in the state space, where the margin for overlap is controlled by sthreshold .

The learning process updates the State Space Graph and the Activity Transition

Graph based on an observed trajectory. The first step is to generate a GP from the ob-

served trajectory, and then to generate a new trajectory by uniformly sample the GP to

get a smaller number of support points for computational efficiency. The next step is to

classify the trajectory given the current set of activity models. Based on this classifica-

tion the graphs are updated. If a long enough interval of an observed trajectory lacks

sufficient explanation given the known activities, then this interval is considered novel

and is added as a new activity. Intervals that are explained sufficiently by a single activity

more than by any other is used to update that activity with the new observed information.

Sometimes long enough parts of activities become too similar, i.e. too close together in

the state space, to be considered different activities. In those cases such parts of these ac-

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 285

tivities are merged. This removes cases where intervals of the observation is sufficiently

and on equal terms explained by more than one activity.

By letting the transition nodes store statistics of the transitions between the activi-

ties, the Activity Transition Graph becomes another perspective of the same information

contained in the State Space Graph. It is updated simultaneously with the State Space

Graph in the different learning steps.

(a) An activity of driving straight and an obser-

vation of a left turn. Bright blue indicates inter-

val for update. Bright green indicates a interval

which will result in the creation of a new activity.

(b) Now three activities after learning the left

turn. The previous activity is now split at the

point where the left turn was no longer explained

sufficiently by the straight activity.

(c) An illegal overtake is observed. The rounded

trajectory of the overtake is indicated to be cre-

ated as two activities since it is too similar to the

left turn when spatially crossing it. This do not

happen if velocities are part of the state space.

(d) After the overtake has been learned. The

highly varying variance seen on the shorter ac-

tivities is due to the parameters of the kernels not

being updated properly.

Figure 4. Example of the learning of the State Space Graph using only 2D positions as state variables for

the activities, in order (a)-(d). Activity coloring is from green (t = 0.0) to red (t = 1.0). The white circles are

intersection points, the other circles are support points of the activities’ fGP.

4.1. Learning New Activities

A new activity is created for each maximal interval τ := [t0 : t1] where P(Tτ |Ak) <
sthreshold for all activities Ak in consideration and where Δlτ > lthreshold . That is, any long

enough interval of the observed trajectory, which is insufficiently explained by every

concerned activity, is added to the framework as a new activity.

&

���������	�
��

���������	�
��

���������	�
�� ���������	�
�� '''

'''

Figure 5. Illustrative example of the create procedure, where the left figure is before and the right figure is

after. The dotted lines indicate where the similarity of A and T is crossing the sthreshold .

Intersection points are used to connect activities with other activities. Since activi-

ties are not allowed to be shorter than lthreshold , it is also the case that two intersection

points cannot be created on the same activity with a distance between them shorter than

lthreshold .

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities286

A new intersection point is created at each end if the length to the nearest other

intersection point is larger or equal to lthreshold . If not, the new activity is connected to

the nearest intersection point and the intersection point is updated to be placed at the

weighted mean position of the end-points of the connected activities. The weighting is

done in accordance to the amount of evidence of each connected activity.

If a new activity is branching into or out of a previous activity, the previous activity

is split in two at the branching point. The intersection point is placed at the weighted

mean position.

If an intersection point after its placement update is closer than lthreshold to another

intersection point, they are merged into a single intersection point. An illustrative exam-

ple is shown in Figure 5.

4.2. Merging Activities

To remove redundant activities, activities are merged at intervals that are too similar to

each other. They are also merged in order to allow for spatially wide activities, which

might be initially observed as several parallel activities growing together over time as

more observations are acquired.

(

���������	�
��

)

���������	�
�����������	�
�� ''(

') '')

'('''(

Figure 6. An illustrative example of the merge procedure, where the left figure is before and the right figure

is after. The dotted lines indicate where the similarity of both A2 and A1 are exceeding the sthreshold

All activities Ak are merged with A∗ on the interval τ := [t0 : t1] for which P(Tτ |Ak)≥
sthreshold , Δlτ > lthreshold and A∗ is the activity with the maximum similarity P(Tτ |A∗).
That is, all activities which sufficiently explain long enough intervals of the observed

trajectory are merged with the activity best explaining that interval.

Activities are currently merged and updated by updating the most supported activ-

ity’s set of GP support points within the given interval with the corresponding state space

points sampled from the other activities. The new state space location of the support point

is the weighted mean of its previous location and the sampled location. The weighting

is based on the number of previous observations in support of respectively activity, used

as a measure of evidence for respective activity model. The final activity has the com-

bined amount of evidence from all activities merged. Intersection points are created and

updated in the same way as before. An illustrative example is shown in Figure 6.

4.3. Updating Activities

Any interval τi on T not used for creating or merging in the two previous steps carry

information that are used to update activities. The activity best explaining such an interval

cannot have been created or been part of a merge in the previous two steps.

The intervals remaining with length > lthreshold , In,n = 1...N, always have at every

point an activity A∗ with maximum similarity where P(Tt |A∗) ≥ sthreshold holds except

for intervals with length ≤ lthreshold . These intervals are segmented into shorter intervals

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 287

such that there is only a single activity with maximum similarity for the entire interval,

In,i.

If length(In,i) ≤ lthreshold it is combined with the neighbor of shortest length until

they are composite intervals satisfying length(Icn,i) > lthreshold . The activity assigned

as the most likely to the composite interval is the activity Ak which has the highest

P(Icn,i|Ak) for all k in consideration.

The intervals and composite intervals are merged with the most similar activity as

described in the previous section, with the weight of the intervals equal to one since they

only represent a single observation.

5. Detecting and Predicting Activities

The State Space Graph and the Activity Transition Graph can be used in several ways

to detect and predict activities. There is statistical information such as the evidence for

each activity, similarity between any two activities and the probability of transition be-

tween activities. Assuming the presence of one or several learned activities, it is straight-

forward to calculate the activity chain from n steps in the past to m steps into the future

that is most likely, least likely or anything in between. It is also possible to calculate the

k most likely activity chains, with or without sharing activities at any step.

Another possibility is to generate relevant events as part of the learning procedure.

Events can for example be created when the learning procedure creates, updates and

merges activities, or when an object has completed an activity due to the object crossing

an intersection point.

6. Preliminary Results

To verify that our approach works as expected, we have done a case study with a T-

crossing scenario. The data set contains two types of trajectories, straight trajectories

and left turning trajectories, 50 of each. These trajectories are provided to the framework

in a random order. The converged trajectories can be seen in Figure 7 compared to the

generated data. With position and constant velocity the turning activity breaks up a bit

earlier than with only position, and even more so with the slow down taking place.

Figure 7. Case study. Top row: Scenario with positions only. Bottom row: Scenario with a slow down. The

figures in the middle show the three learned activities after two observed trajectories, while the figures to the

right show the result after all observations. Blue color indicate a higher speed than yellow.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities288

7. Conclusions and Future Work

Learning and recognizing spatio-temporal activities from streams of observations is a

central problem in artificial intelligence. In this paper, we have proposed an initial ap-

proach towards an unsupervised stream processing framework that learns a Bayesian

representation of observed spatio-temporal activities and their causal relations from ob-

served trajectories of objects. An activity is represented by a Gaussian Process and the

set of activities is represented by a State-Space Graph where the edges are activities and

the nodes are intersection points between activities. To reason about chains of related

activities an Activity Transition Graph is also learned which represents the statistical

information about transitions between activities. To show that the framework works as

intended, it has been applied to a small traffic monitoring example.

The framework cannot yet learn complex activities as discrete entities other than

indirectly by parts, i.e. by learning chains of primitive activities. Neither are contexts

such as a T-crossing learned, instead configurations of different activities are learned

for each T-crossing instance. The current framework is designed to provide the building

blocks for these extensions to be possible in future work.

References

[1] J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Comput. Surv., 43(3), 2011.

[2] C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing and hierar-

chization. In Proc. IJCAI, 2007.

[3] R. Gerber and H.-H. Nagel. Representation of occurrences for road vehicle traffic. Artificial Intelligence,

172(4–5):351–391, 2008.

[4] A. Girard, C. Rasmussen, J. Candela, and R. Murray-Smith. Gaussian process priors with uncertain

inputs - application to multiple-step ahead time series forecasting. In Proc. NIPS, 2002.

[5] N. Guillarme and X. Lerouvreur. Unsupervised extraction of knowledge from S-AIS data for maritime

situational awareness. In Proc. FUSION, 2013.

[6] F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a uav tracking and monitoring

application. In Proc. FUSION, 2007.

[7] C. Tay Meng Keat and C. Laugier. Modelling smooth paths using gaussian processes. In Proc. FSR,

2007.

[8] K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of motion trajectories. In

Proc. ICCV, 2011.

[9] S. Kim and J. Kim. Continuous occupancy maps using overlapping local gaussian processes. In Proc.
IROS, 2013.

[10] D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance.

IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(3):397–408, 2005.

[11] M. Schneider and W. Ertel. Robot learning by demonstration with local gaussian process regression. In

Proc. IROS, 2010.

[12] M. Smith, S. Reece, I. Rezek, I. Psorakis, and S. Roberts. Maritime abnormality detection using gaussian

processes. Knowledge and Information Systems, pages 1–26, 2013.

[13] M. Smith, S. Reece, S. Roberts, and I. Rezek. Online maritime abnormality detection using gaussian

processes and extreme value theory. In Proc. ICDM, 2012.

[14] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Proc. NIPS, 2005.

[15] E. Snelson and Z. Ghahramani. Local and global sparse gaussian process approximations. In Proc.
AISTATS, 2007.

[16] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models for human motion. IEEE
Trans. Pattern Anal. Mach. Intell., 30(2):283–298, 2008.

[17] X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical bayesian models.

In Proc. CVPR, 2007.

M. Tiger and F. Heintz / Learning and Classifying Spatio-Temporal Activities 289

Empirical Study of Classification Models

for Web Page Categorization

Tomáš TUNYS a, Jan ŠEDIVÝ b

a Czech Technical University in Prague, tunystom@fel.cvut.cz
b Czech Technical University in Prague, sedivja2@fel.cvut.cz

Abstract. We describe one part of a web page content classification system used

for contextual advertising. The system classifies the content of a web page to one

of many predefined ad categories, i.e. performing text classification [2,8,10]. Our

goal is to identify the best performing classification model for Czech language. We

present a comprehensive comparison study of selected models, text representations,

and feature selection techniques on a collection of datasets with different numbers

of documents, numbers of categories, and varying category sizes. We conclude the

work with the recommendation for the best performing models.

Keywords. text classification, text representation, feature selection, model comparison,

naive bayes model, dirichlet compound multinomial

Introduction

Text classification is a frequently studied problem mostly with documents in English.

Our task was to find a good solution for Czech, which is morphologically more complex

language, and despite the fact that we believe there is no strong evidence that best models

for English should not work as well for Czech, we wanted to prove this assumption. We

approached the problem by comparing currently successful models for text classification

in English with models for Czech.

For comparison purposes we have selected publicly available datasets of differ-

ent sizes and different number of categories. For validity of our results across foreign-

language corpora, we paid a lot of attention to select publicly available corpora, which

are comparable to our Czech datasets in the size, number of classes, and content (web

pages). The chosen datasets are described in detail in Section 2.

The collection of studied models starts with a simple model such as Multinomial

Naive Bayes model together with its advanced versions referred to as Transformed

Weight-normalized Complement Multinomial Naive Bayes models [7], continuing with

more elaborate generative models such as Dirichlet Compound Multinomial model [4].

For completeness we included the discriminative SVM model into our experiments,

which is, to our knowledge, currently the best performing classification model. The se-

lected models are described in Section 1.

Since Czech is a morphologically rich language, i.e. its words take many different

forms, we decided to inspect the impact of different feature selection techniques and

vocabulary reduction methods together with lemmatization on the classification perfor-

STAIRS 2014
U. Endriss and J. Leite (Eds.)

© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-421-3-290

290

mance of the models. More details about the considered preprocessing techniques are in

Section 3 and 5.

The combination of datasets, feature selection techniques, models and different pa-

rameters led to a vast number of experiments, which consumed a large number of com-

putations resulting in even larger number of results. For the lack of space we limited the

size of the reported results. Nevertheless, we show and discuss the main outcomes, with

a small possibility of omitting a few details here and there.

Finally, we provide the results of the found optimal combinations of parameters and

preprocessing steps over models and datasets. We conclude with providing recommen-

dations that turns out to be valid across the different corpora, languages, and models.

1. Classification Models

This section provides a brief description of classification models and various transforma-

tions of a the simple vector space representation of documents.

1.1. Multinomial Naive Bayes Model

Multinomial Naive Bayes (MNB) is one of the most common text classification models.

The model assigns probability to a document represented as a vector of word counts

x = (x1, x2, . . . , xV) under the document category c according to

p(x|θc) =

(∑V
w=1 xw

)
!∏V

w=1 xw!

V∏
w=1

θxw
cw (1)

where V is the size of the vocabulary and θc are the word emission probabilities which

can be estimated using maximum likelihood [7]. A test document x is assigned to the

category c with the highest probability

p(c|x) = p(x|θc)p(c)∑C
c=1 p(x|θc)p(c)

(2)

where the a priori probability p(c) are commonly estimated from the training set using

maximum likelihood.

To fight against the tendency of MNB to overestimate emission probabilities because

of the violation of the independence assumption, a non-Bayesian alternative of the MNB

model called (Transformed) Weighted-normalized Multinomial Bayes [7] was devised.

We used both these models in our experiments to assess the relative improvement of the

latter over the former.

1.2. Dirichlet Compound Multinomial Model

Dirichlet Compound Multinomial Model (DCM) is a two-level hierarchical Bayesian

model that can be viewed as an extension of the MNB model and as such, it can be

understood as bag-of-bag-of-words [4]. The advantage of DCM model over MNB model

is that it accounts for word burstiness. The word burstiness refers to phenomenon which

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization 291

describes the natural tendency of words to appear in documents multiple times. The a

priori probability of a word appearing in a document may be quite low, but once the word

appears its probability of appearing again is much higher (less surprising). The strong

independence assumptions of MNB model can never capture this behaviour.

The model assigns probability to a document represented as a vector of word counts

x = (x1, x2, . . . , xV) under the category c according to

p(x|αc) =

(V∑
w=1

xw

)
!

V∏
w=1

xw!

Γ(
V∑

w=1
αw)

Γ(
V∑

w=1
xw + αw)

V∏
w=1

Γ(xw + αw)

Γ(αw)
(3)

where V is the vocabulary size and Γ is the gamma function (see [4] for the derivation). It

is obvious on the first glance that calculating the probability of a document under DCM

model (Eq. 3) is much more complicated in comparison with MNB model (Eq. 1).

Sadly, no closed-form solution for the maximum likelihood estimate of the αc exists,

but there are plenty of iterative gradient ascent optimization methods [6], from which the

method we used to train the models in our experiments is a fixed-point iteration.

The classification of a test document is done similarly as in case of the MNB model

using the class membership probability, see Eq. (2).

1.3. Complementary MNB and DCM Models

Complementary modeling with MNB was introduced to deal with corpora that contain

skewed document classes [7], and it showed promising results for DCM models as well

[4]. We refer to the complement alternatives of the two models as CNB and CDCM.

In regular versions of MNB and DCM models the parameters are estimated from

documents of particular category c, on the contrary, the CNB and CDCM models esti-

mate the parameters from the documents which belong to all the categories except c. For

the explicit formulas on parameter estimation and prediction see [7,4].

1.4. Text Document Representations

To improve the classification performance of a multinomial models several heuristics

based on transformation of word count vectors have been proposed [7]. We have imple-

mented 15 different transformations which altogether with the original vector make 16

different document vector representations.

Consider a corpora containing D documents, represented as count vectors xd =
(xd1, xd2, . . . , xdV), we define the transformations as follows

x1
dw = xdw

x2
dw =

xdw

max′w xdw′

x3
dw = log(1 + x1

dw)

x4
dw = log(1 + x2

dw)

xi+4
dw = xi

dw log
D∑D

d=1 δdw
, i = 1, . . . , 4

xi+8
dw =

xi
dw√∑V

w=1(x
i
dw)

2

, i = 1, . . . , 8

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization292

where δdw is 1 iff word w occurs in document d. Note that the document representations

x5, . . . , x16 are referred to as tf-idf counts in Information Retrieval community.

2. Datasets

To assess the quality of the models across languages we used our Czech corpora together

with commonly used corpora for text classification in English. There is to our knowledge

no evidence that the performance of any of the considered model is language dependent,

but to make sure we can spot this (theoretical) dependency, we selected the English

datasets carefully to resemble our Czech datasets in the number of categories, content,

and the size.

2.1. English Datasets

The 4 Universities dataset1 (denoted as webkb) contains web pages collected at com-

puter science departments of four universities. The 8,282 pages were manually classified

into the 7 categories from which we used only 4 similarly to [3], namely student,

faculty, course, and project, resulting in 4200 documents.

The 20 Newsgroups2 (denoted as 20news) is a popular benchmarking collection for

document classification models. It consists of approximately 20k newsgroup documents,

partitioned evenly across 20 different categories.

The industry sector dataset3 (denoted as sector) is another popular document col-

lection for benchmarking of text classification algorithms. The data set comprises of

95470 corporate web pages partitioned into 104 categories.

2.2. Czech Datasets

We have 2 collections of Czech web pages. The web pages from both of these collections

are divided into 36 categories. We received these datasets from Czech company Sez-

nam.cz, the 36 categories correspond to web page categories used in their Sklik.cz pay

per click system. We refer to these collection as seznam1k and seznam11k where the

former contains 1818 documents and the latter contains 11114 documents.

3. Dataset Preprocessing

This section summarizes the basic preprocessing steps, which were applied to datasets

prior to the application of feature selection and subsequent training of the models. Note

that before any of these techniques is applied, the datasets are rid of HTML tags, stop-

words, numbers, special characters, and whole text is put to lowercase.

1Available at: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
webkb-data.gtar.gz

2Available at: http://qwone.com/˜jason/20Newsgroups/20news-18828.tar.gz
3Available at: http://people.cs.umass.edu/˜mccallum/data/sector.tar.gz

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization 293

3.1. Vocabulary Pruning

A simple technique relying on the assumption that very rare and very common words are

not likely to be relevant because among the former, technical terms and typos prevail in

terms of word occurrences, on the other hand in the latter, words like ”the”, ”of”, ”and”

are the most common (in English) which are not very useful terms for classification.

Final step in preprocessing of text documents is to count the document frequency

of each word, i.e. in how many documents the word appears. If the frequency is below

a chosen absolute (lower) threshold (e.g. 10 documents) or more then a chosen relative

(upper) threshold (e.g. 50% of documents) the word is discarded. The words that are

shorter than 3 or longer than 20 characters are being discarded as well.

3.2. Lemmatization

Our target language is Czech, which is morphologically more complex than English.

It is common for many Czech words (especially for nouns, verbs, and adjectives) to

occur in many distinct forms, so-called inflections, therefore vector representations of

the documents are usually very long and sparse even after pruning of the vocabulary. The

process of lemmatization groups together different inflected forms of a word to a single

instance (lemma) resulting in reduction of the dimensionality of the document vectors.

We used the Common Part-of-speech Tagger (COMPOST)4 for lemmatization of

Czech and WordNetLemmatizer from NLTK5 to lemmatize English. Apart from the

lemma we also used the information from the tagger to extract only nouns, adjectives,

and verbs, to further reduce the dimensionality of the document vectors.

3.3. Database Postprocessing Statistics

The effect of the described preprocessing steps on the datasets are summarized in Ta-

ble 1 in columns ADL, AUWD, and AVS. The statistics were calculated from 10 random

samples from the datasets using stratified sampling with appropriate training set sizes,

these are the statistical properties of the datasets seen by the different models during

training. The training set sizes of the known datasets where chosen according to previous

experiments made by others [4,7].

4. Feature Selection Methods

The classification performance of the models can be hugely influenced by the selection

of words in the vocabulary. We searched for and decided to use two common feature

(word) selection techniques: information gain (IG), chi-square statistic (χ2) ([5,8,10]),

that works well and one non-standard feature selection method known as within class
popularity (WCP) reported to have a big improvement gap over the previous methods

[9]. The impact of these techniques on the classification precision of the models is being

part of our examination in the experiments.

4The Common POS Tagger - COMPOST has been developed by the Institute of Formal and Applied Lin-

guistics, http://ufal.mff.cuni.cz/.
5NLTK Homepage: http://www.nltk.org/

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization294

Table 1. Database Postprocessing Statistics. Legend: Number of documents (ND), Minimum category size

(mCS), Maximum category size (MCS), Average document length (ADL), average number of unique words

per document (AUWD), average vocabulary size (AVS), number of categories (NC), and training set size

(TSS). The 3 values reported in the columns ADL, AUWD, and AVS, are the average numbers of words in the

vocabulary after: no processing, vocabulary pruning, and vocabulary pruning together with lemmatization.

Dataset ND mCS MCS ADL AUWD AVS NC TSS

20news 15076 503 800

279 142 93412

20 80%112 76 15652

111 74 14474

sector 4795 14 53

352 155 48211

104 50%183 99 11388

182 97 10615

webkb 2940 353 1149

273 144 33602

4 70%129 82 6864

130 82 6542

seznam1k 916 2 56

733 375 87165

36 50%590 345 91115

567 297 59687

seznam11k 8916 133 353

863 426 100000

36 80%560 334 41968

575 305 27702

Note that the former two methods compute local word importances, i.e. how the

word is ”important” in the context of the document category, where on the contrary WCP

computes the word importance globally, i.e. how the word is important in the context

of the whole corpus. In order to assess the global importance for the two methods, we

adopted the best performing approaches from [8], which are for IG and χ2 the sum and

a maximum over the local importances, respectively.

5. Experiments Description

The goal of the first experiments was to compare the performance of all the models

trained on every document vector representation mentioned in Section 1. Our primary

goal was to find out how the performance of the best classification models (found in

training) are susceptible to different corpora preprocessing steps. We trained the mod-

els on corpora with pruned vocabulary (1), lemmatized pruned vocabulary (2), pruned

vocabulary after feature selection (3), and lemmatized pruned vocabulary after feature

selection (4), where the numbers in brackets are used as cross-reference into Figure 1

summarizing the results. When feature selection methods were applied, the words in the

vocabulary were initially order by their importances and the final vocabulary was built

out of only 10%, 20%, . . . up to 90% of the most important words.

In our next experiments we were interested in finding what is the (relative) minimum

number of words that can be selected from already pruned and lemmatized vocabulary

using the feature selection methods without having substantial deteriorating effect on

the performance of the classifiers. The results of these experiments are summarized in

Figure 2.

In the both experiment setups we also compared the classifiers against (linear) Sup-

port Vector Machines in one-vs-all regime [2], which is to our knowledge considered the

state-of-the-art text classifier.

We have implemented the classification models ourselves in Python except for SVM,

in which case we used the open-source machine learning library for Python scikit-learn.

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization 295

6. Classification Results

The performance of the models is measured using micro-averaged precision [1], defined

as
∑C

c=1 TPc∑C
c=1 TPc+FPc

where TPc and FPc is the number of documents correctly classified

into category c and the number of documents incorrectly classified into category c.
We have chosen to optimize precision solely for the purpose of the target domain,

which is categorization of web pages for advertising, where the cost of false positives,

manifesting in displaying adverts not corresponding with the web page content or worse,

being inappropriate for it, can be relatively high.

The results in Table 2, Figure 1, and Figure 2 are calculated from the averages of

the results from the experiments (see Section 5) run repeatedly over 5 random splits of

the datasets on training and hold-out sets (for training set sizes see Table 1). We took

considerable care to construct vocabularies only from the training splits in effort not to

leak any information from the hold-out set into training. Also MNB and CNB models

were validated with different word smoothing factors [7] and SVM with different penalty

factors.

Figure 1 illustrates not only how the best combination of the model together with a

corpora transformation performs (the peaks of the bars) but also what is its performance

gap from the baseline version of the classifier (shaded bar). Note that we omitted the

results for DCM and CDCM in case of reduced vocabularies. These models are naturally

suited for bigger vocabularies hence their results in this setup would be inadequate and

meaningless.

Figure 1 and Table 2 which provide numerical values for the best performances

of the models without feature selection (left side) and the best and worst (in brackets)

performances of the models per feature selector (right side). It can be concluded that the

reduction of vocabularies has not a substantial, yet not insignificant (≤ 2%) impact on

the performances on webkb, seznam1k, and seznam11k datasets, but on the contrary

big vocabulary reduction in case of 20news and sector leads to great loss in precision

(up to 6% and 13%, respectively, on average across classifiers). We think that the reason

for this is given by the textual content and diversity of the topics, it is certainly not by

the external characteristics of the datasets, since the two are ”complementary” in terms

of the basic statistics (sector has fewer documents and a lot of categories with skewed

distribution, on the contrary 20news has more documents, fewer categories that are

uniformly distributed, both have vocabularies of comparable sizes).

Figure 2 shows how severe the loss in performance of the models is for different

degrees of reduction of the vocabulary. Following the discussion above, we reduced the

vocabulary in case of webkb, seznam1k, and seznam11k to 1%, up to 9% to find

when the performance start to drop similarly to 20news and sector, and from how it

looks we hit just the right range. We found that in datasets of our interest we can afford

to lose up to 94% of the vocabulary without paying the price in terms of precision.

We conclude this section by stating that from the results on the different datasets

none of the considered models matches the performance of SVM even with all the pos-

sible transforms and feature selections. On the other hand DCM and CDCM models

performed worse, these models are hard to train and according to our result does not

prove useful for a simple categorization task as ours. But considering the computational

demands for training and demonstrated robustness, we conclude that the model of our

choice is from the category of Multinomial Naive Bayes models.

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization296

Figure 1. Impact of different preprocessing steps on the precision for individual classification models (left)
and across different classification models (right).

Finally, since the results of the different classification models over different datasets

and languages exhibit the same behaviour we conclude that we found no evidence that

the performance of the models should be language dependent in case of English and

Czech.

7. Conclusion

We presented results of an extensive empirical study of known Bayesian models and en-

hanced non-Bayesian alternatives to Multinomial Bayes models for text categorization.

The study shows what is the best achievable performance for web documents classified

to a given number of categories. The optimum combination of the model, the feature ex-

traction method and preprocessing steps can be read out of the tables and graphs referred

from Section 6.

We found that on two out of five datasets, among which is the Czech dataset of our

interest, we can afford to reduce the vocabulary size approximately to 10% of the total

without any classification performance degradation. This property holds across all types

of models.

We also proved, that the models perform similarly across two different languages,

English and Czech. Despite the fact that Czech is especially difficult and morphologi-

cally rich language, we found that lemmatization has no significant influence on clas-

sification precision of the considered models, but in the end it does not hurt and it can

substantially reduce the vocabulary size which makes the computation during training

and classification much faster.

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization 297

Figure 2. Impact of vocabulary reduction by feature selection methods on the precision for individual classi-

fication models (left) and across different classification models (right) for vocabulary reduced to 1%/10% up

to 9%/90%.

Table 2. The maximum value of precision across different classification models and different feature selectors.

20 Newsgroups Dataset
MNB CNB SVM DCM CDCM FS MNB CNB SVM

0.91 0.88 0.92 0.89 0.88

IG 0.90 (0.83) 0.88 (0.80) 0.92 (0.84)

CHI 0.90 (0.84) 0.89 (0.81) 0.93 (0.85)

WCP 0.90 (0.85) 0.88 (0.81) 0.92 (0.86)

Industry Sector Dataset
MNB CNB SVM DCM CDCM FS MNB CNB SVM

0.78 0.78 0.86 0.70 0.77

IG 0.78 (0.60) 0.78 (0.52) 0.86 (0.71)

CHI 0.80 (0.68) 0.78 (0.65) 0.86 (0.69)

WCP 0.76 (0.60) 0.78 (0.51) 0.86 (0.70)

4 Universities Dataset
MNB CNB SVM DCM CDCM FS MNB CNB SVM

0.87 0.86 0.94 0.87 0.86

IG 0.89 (0.88) 0.88 (0.87) 0.94 (0.94)

CHI 0.90 (0.88) 0.88 (0.87) 0.94 (0.94)

WCP 0.90 (0.88) 0.87 (0.86) 0.94 (0.90)

Seznam1K Dataset
MNB CNB SVM DCM CDCM FS MNB CNB SVM

0.66 0.68 0.72 0.64 0.63

IG 0.68 (0.67) 0.70 (0.68) 0.72 (0.71)

CHI 0.69 (0.65) 0.70 (0.65) 0.72 (0.65)

WCP 0.68 (0.67) 0.69 (0.68) 0.72 (0.71)

Seznam11K Dataset
MNB CNB SVM DCM CDCM FS MNB CNB SVM

0.90 0.90 0.95 0.89 0.90

IG 0.89 (0.88) 0.90 (0.84) 0.95 (0.94)

CHI 0.89 (0.89) 0.90 (0.82) 0.95 (0.93)

WCP 0.89 (0.89) 0.90 (0.85) 0.95 (0.93)

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization298

Furthermore our results show that none of the feature selection techniques consid-

ered in this study is bringing significant improvement. Also, based on our empirical

results, we can surely recommend the document vector representation x15 (see Sec-

tion 1.4), which is the only document vector representation that led most often (almost

all the time) to improvement in the performance of the models.

To conclude, we came to similar result as previous studies that SVM is consistently

delivering the top performance. It is certainly the best choice when the training com-

putational requirements are not of a concern, training SVM model in comparison with

training of MNB model, which is as easy as simple counting, is a completely different

(quadratic optimization) story. Yet the runtime number of operations for all considered

models is linearly dependent on the size of the vocabulary and the number of categories.

Finally, note that the best MNB is performing almost on par with SVM, which means

in practice, when the best classification performance is not necessary, picking up the right

configuration for MNB is probably the right way to go.

Acknowledgements

This work was supported by the Decision Making and Control for Manufacturing III,

Research programme MSM 6840770038, funded by the Czech Ministry of Education.

References

[1] George Forman. An extensive empirical study of feature selection metrics for text classification. J.
Mach. Learn. Res., 3:1289–1305, March 2003.

[2] Thorsten Joachims. Text categorization with suport vector machines: Learning with many relevant

features. In Proceedings of the 10th European Conference on Machine Learning, ECML ’98, pages

137–142, London, UK, UK, 1998. Springer-Verlag.

[3] Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multinomial naive bayes

for text categorization revisited. In Proceedings of the 17th Australian Joint Conference on Advances in
Artificial Intelligence, AI’04, pages 488–499, Berlin, Heidelberg, 2004. Springer-Verlag.

[4] Rasmus E. Madsen, David Kauchak, and Charles Elkan. Modeling word burstiness using the dirichlet

distribution. In In Proceedings of the 22nd international conference on Machine learning, volume 119
of ACM International Conference Proceeding Series, pages 545–552, 2005.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008.

[6] Thomas P. Minka. Estimating a dirichlet distribution. Technical report, 2000.

[7] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tackling the poor assumptions

of naive bayes text classifiers. In In Proceedings of the Twentieth International Conference on Machine
Learning, pages 616–623, 2003.

[8] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput. Surv., 34(1):1–

47, March 2002.

[9] Sanasam Ranbir Singh, Hema A. Murthy, and Timothy A. Gonsalves. Feature selection for text classi-

fication based on gini coefficient of inequality. In Huan Liu, Hiroshi Motoda, Rudy Setiono, and Zheng

Zhao, editors, FSDM, volume 10 of JMLR Proceedings, pages 76–85. JMLR.org, 2010.

[10] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text categorization. In

Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97, pages 412–

420, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

T. Tunys and J. Šedivý / Empirical Study of Classification Models for Web Page Categorization 299

This page intentionally left blank

Subject Index

A* 141

abstract argumentation 240

abstract dialectical frameworks 240

accuracy 220

activity recognition 280

and-or graph 101

argumentation semantics 240

attack graph 101

autonomous agents and

multiagent systems 31

Baum-Welch 171

blocked clause elimination 211

card game description language 161

cognitive modeling 31

comparison 71

comprehensibility 220

computational complexity 250

computational social choice 250

configuration checking 11

cooperation 141

Copeland elections 250

coronary heart disease 201

cup elections 250

data mining 71, 230

decision theory 21

defeasible reasoning 191

description logics 21, 191

dirichlet compound multinomial 290

dynamic Bayesian networks 201

exceptions 191

feature extraction 230

feature selection 290

game description language 161

general game playing 161

guiding paths 211

heuristic search 141

hidden Markov models (HMMs) 171

hidden semi-Markov models

(HSMMs) 171

hybrid classifier 220

hybrid tree 220

information integration 111

inprocessing 211

interestingness measures 71

interference 181

knowledge acquisition 280

knowledge generation 111

knowledge representation 161, 280

learning 81

leverage 71

local optima 171

local search 41

machine learning 230, 280

margin of victory 250

Markov decision process 101

medical diagnostic models 201

metrics 270

metric sensitive 270

model comparison 290

model identification 171

multi-agent-based simulation 31

multi-objective 270

multi-objective learning 220

multicriteria decision making 21

multidisciplinary topics 31

naive Bayes model 290

narrowing 61

non-negative matrix factorization 181

nondeterminism 141

nonmonotonic reasoning 191

novelty heuristic 11

online games 230

open information extraction 111

optimal policy 101

optimisation 41

OWL 191

parallel algorithm 141

pattern selection 71

PCP-net 81

planning 270

plan repair 41

preference 81

preferential reasoning 191

probabilistic description logic

(Prob-DL) 21

probabilistic ontology 21

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

301

protege 191

random large k-SAT instances 11

recommandation 81

rewriting logic 61

RMDP 61

SAT 211

scheduling 41

Schulze elections 250

situation awareness 280

social simulation and modeling 31

sound separation 181

sparse 181

stability 71

statistical modeling 111

subjective expected utility 21

supervised 181

symbolic value iteration 61

temporal abstraction 201

temporal planning 41

temporal reasoning 201

text classification 290

text representation 290

training 181

unsupervised learning 280

utility theory 21

302

Author Index

Abramé, A. 1, 11

Acar, E. 21

Alechina, N. 91

Baccan, D. 31

Bajada, J. 41

Barbier, M. 51

Bechon, P. 51

Belzner, L. 61

Bigot, D. 81

Buffet, O. 121

Buzmakov, A. 71

Canadas-Quesada, F.J. 181

Dearden, R. 151

Du, H. 91

Durkota, K. 101

Dutech, A. 121

Dutta, A. 111

Endriss, U. v

Fansi T., A. 121

Flacher, F. 121

Fox, M. 41

Gams, M. 220

Habet, D. 1, 11

Hacker, M. 131

Halme, A. 141

Harris, C. 151

Heintz, F. 280

Infantes, G. 51

Keravnou, E. 201

Kowalski, J. 161

Kuznetsov, S.O. 71

Leite, J. v

Lemeire, J. 171

Lesire, C. 51

Lisy, V. 101

Liu, T. 171

Long, D. 41, 270

Luštrek, M. 220

Macedo, L. 31

Martinez-Colón, A. 181

Meilicke, C. 111

Mengin, J. 81

Meyer, T. 191

Moodley, K. 191

Moreno-Fuentes, F. 181

Napoli, A. 71

Orphanou, K. 201

Philipp, T. 211

Piltaver, R. 220

Pluskal, O. 230

Polberg, S. 240

Reisch, Y. 250

Rothe, J. 250

Ruiz-Reyes, N. 181

Sattler, U. 191

Sbruzzi, E. 31

Schaller, R. 260

Schend, L. 250

Šedivý, J. 230, 290

Sroka, M. 270

Stassopoulou, A. 201

Stuckenschmidt, H. 111

Thomas, V. 121

Tiger, M. 280

Toumi, D. 11

Tunys, T. 290

Vera-Candeas, P. 181

Vidal, V. 51

Zanuttini, B. 81

STAIRS 2014
U. Endriss and J. Leite (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

303

This page intentionally left blank

	Title Page
	Preface
	Symposium Organisation
	Contents
	On the Extension of Learning for Max-SAT
	A Two-Levels Local Search Algorithm for Random SAT Instances with Long Clauses
	Computing Subjective Expected Utility Using Probabilistic Description Logics
	Towards Modeling Surprise in Economics and Finance: A Cognitive Science Perspective
	Temporal Plan Quality Improvement and Repair Using Local Search
	HiPOP: Hierarchical Partial-Order Planning
	Value Iteration for Relational MDPs in Rewriting Logic
	On Evaluating Interestingness Measures of Closed Itemsets
	Learning Probabilistic CP-Nets from Observations of Optimal Items
	A Logic of Part and Whole for Buffered Geometries
	Computing Optimal Policies for Attack Graphs with Action Failures and Costs
	Semantifying Triples from Open Information Extraction Systems
	Towards the Usage of Advanced Behavioral Simulations for Simultaneous Tracking and Activity Recognition
	Human Speech Processing for Pedestrian Assistance: Towards Cognitive Error Handling in Spoken Dialogue Systems
	A! - A Cooperative Heuristic Search Algorithm
	Run-Time Plan Repair for AUV Missions
	Embedding a Card Game Language into a General Game Playing Language
	Effective and Efficient Identification of Persistent-State Hidden (Semi-) Markov Models
	Supervised Separation of Speech from Background Piano Music Using a Nonnegative Matrix Factorization Approach
	Practical Defeasible Reasoning for Description Logics
	Integration of Temporal Abstraction and Dynamic Bayesian Networks for Coronary Heart Diagnosis
	Clause Simplifications in Search-Space Decomposition-Based SAT Solvers
	Multi-Objective Learning of Accurate and Comprehensible Classifiers - A Case Study
	Predicting Players Behavior in Games with Microtransactions
	Extension-Based Semantics of Abstract Dialectical Frameworks
	The Margin of Victory in Schulze, Cup, and Copeland Elections: Complexity of the Regular and Exact Variants
	Electronic Tourist Guides: User-Friendly Editing of Automatically Planned Routes
	A Cost-Based Relaxed Planning Graph Heuristic for Enhanced Metric Sensitivity
	Towards Learning and Classifying Spatio-Temporal Activities in a Stream Processing Framework
	Empirical Study of Classification Models for Web Page Categorization
	Subject Index
	Author Index

