4,962 research outputs found

    Evaluation and improvement of the workflow of digital imaging of fine art reproduction in museums

    Get PDF
    Fine arts refer to a broad spectrum of art formats, ie~painting, calligraphy, photography, architecture, and so forth. Fine art reproductions are to create surrogates of the original artwork that are able to faithfully deliver the aesthetics and feelings of the original. Traditionally, reproductions of fine art are made in the form of catalogs, postcards or books by museums, libraries, archives, and so on (hereafter called museums for simplicity). With the widespread adoption of digital archiving in museums, more and more artwork is reproduced to be viewed on a display. For example, artwork collections are made available through museum websites and Google Art Project for art lovers to view on their own displays. In the thesis, we study the fine art reproduction of paintings in the form of soft copy viewed on displays by answering four questions: (1) what is the impact of the viewing condition and original on image quality evaluation? (2) can image quality be improved by avoiding visual editing in current workflows of fine art reproduction? (3) can lightweight spectral imaging be used for fine art reproduction? and (4) what is the performance of spectral reproductions compared with reproductions by current workflows? We started with evaluating the perceived image quality of fine art reproduction created by representative museums in the United States under controlled and uncontrolled environments with and without the presence of the original artwork. The experimental results suggest that the image quality is highly correlated with the color accuracy of the reproduction only when the original is present and the reproduction is evaluated on a characterized display. We then examined the workflows to create these reproductions, and found that current workflows rely heavily on visual editing and retouching (global and local color adjustments on the digital reproduction) to improve the color accuracy of the reproduction. Visual editing and retouching can be both time-consuming and subjective in nature (depending on experts\u27 own experience and understanding of the artwork) lowering the efficiency of artwork digitization considerably. We therefore propose to improve the workflow of fine art reproduction by (1) automating the process of visual editing and retouching in current workflows based on RGB acquisition systems and by (2) recovering the spectral reflectance of the painting with off-the-shelf equipment under commonly available lighting conditions. Finally, we studied the perceived image quality of reproductions created by current three-channel (RGB) workflows with those by spectral imaging and those based on an exemplar-based method

    The synthesis and analysis of color images

    Get PDF
    A method is described for performing the synthesis and analysis of digital color images. The method is based on two principles. First, image data are represented with respect to the separate physical factors, surface reflectance and the spectral power distribution of the ambient light, that give rise to the perceived color of an object. Second, the encoding is made efficient by using a basis expansion for the surface spectral reflectance and spectral power distribution of the ambient light that takes advantage of the high degree of correlation across the visible wavelengths normally found in such functions. Within this framework, the same basic methods can be used to synthesize image data for color display monitors and printed materials, and to analyze image data into estimates of the spectral power distribution and surface spectral reflectances. The method can be applied to a variety of tasks. Examples of applications include the color balancing of color images, and the identification of material surface spectral reflectance when the lighting cannot be completely controlled

    Outdoor computer vision and weed control

    Get PDF

    Estimation of illuminants from color signals of illuminated objects

    Get PDF
    Color constancy is the ability of the human visual systems to discount the effect of the illumination and to assign approximate constant color descriptions to objects. This ability has long been studied and widely applied to many areas such as color reproduction and machine vision, especially with the development of digital color processing. This thesis work makes some improvements in illuminant estimation and computational color constancy based on the study and testing of existing algorithms. During recent years, it has been noticed that illuminant estimation based on gamut comparison is efficient and simple to implement. Although numerous investigations have been done in this field, there are still some deficiencies. A large part of this thesis has been work in the area of illuminant estimation through gamut comparison. Noting the importance of color lightness in gamut comparison, and also in order to simplify three-dimensional gamut calculation, a new illuminant estimation method is proposed through gamut comparison at separated lightness levels. Maximum color separation is a color constancy method which is based on the assumption that colors in a scene will obtain the largest gamut area under white illumination. The method was further derived and improved in this thesis to make it applicable and efficient. In addition, some intrinsic questions in gamut comparison methods, for example the relationship between the color space and the application of gamut or probability distribution, were investigated. Color constancy methods through spectral recovery have the limitation that there is no effective way to confine the range of object spectral reflectance. In this thesis, a new constraint on spectral reflectance based on the relative ratios of the parameters from principal component analysis (PCA) decomposition is proposed. The proposed constraint was applied to illuminant detection methods as a metric on the recovered spectral reflectance. Because of the importance of the sensor sensitivities and their wide variation, the influence from the sensor sensitivities on different kinds of illuminant estimation methods was also studied. Estimation method stability to wrong sensor information was tested, suggesting the possible solution to illuminant estimation on images with unknown sources. In addition, with the development of multi-channel imaging, some research on illuminant estimation for multi-channel images both on the correlated color temperature (CCT) estimation and the illuminant spectral recovery was performed in this thesis. All the improvement and new proposed methods in this thesis are tested and compared with those existing methods with best performance, both on synthetic data and real images. The comparison verified the high efficiency and implementation simplicity of the proposed methods

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables

    LEDMET Report: Simulation and correction of stray light in spectrometers

    Get PDF

    Evaluation of HCMM data for assessing soil moisture and water table depth

    Get PDF
    Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)
    corecore