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Abstract 

 

Colour is an important source of information in the natural world. It can be used 

for distinguishing and identifying surfaces and objects and separating one region 

from another. For instance, flowers and grasses in a garden can be distinguished 

by their colours despite a change in illuminant. Intuitively, the identifiability of 

surfaces in a scene can be described by their volumes of colour gamuts. But is 

this approximation of the identifiability accurate? On the other hand, the 

existence of metamerism in natural scenes shows that colour is sometimes 

unreliable for surfaces identification. Estimating frequency of metamerism 

normally requires many comparisons between surface colours to determine their 

distinguishability under different illuminants. Is there a simpler approach to 

predict the frequency of metamerism in natural scenes? The aim of this thesis 

was to address these two questions about the identifiability of surfaces in natural 

scenes.  

To answer the first question, the volumes of colour gamuts were estimated over 

50 natural scenes under different illuminants. The logarithm of the gamut volume 

was regressed on the differential entropy of colours. It was found that gamut 

volume can be an accurate approximation, given a colour difference threshold 

representing the visual distinguishability within an approximately perceptually 

uniform colour space.  

To answer the second question, the frequency of metamerism was estimated over 

50 natural scenes with changes in illuminant; and predictive models were 

constructed based on different combinations of Shannon differential entropies of 

colours. There was strong dependence of the frequency of metamerism on the 

combination of the differential entropy and the conditional differential entropy of 

colours. It means that the frequency of metamerism can be predicted by the 

informational quantities of the colours in a scene. 
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Chapter 1. Introduction 

 

Colour is an important source of information in our world. Colour can be used 

for distinguishing and identifying objects, determining the shapes of objects, and 

predicting the properties of objects. However, to precisely describe colour is 

another story. For instance, ‘dark red flower’ and ‘pale green leaf ’ are 

ambiguous descriptions, which do not offer accurate specification of the 

particular attributes of these colours: the lightness and the hue. The development 

of colorimetry [1, 2] provides a tool to numerically quantify individual colours, 

which is able to tell how ‘dark’ the red flower is. Nevertheless, a single flower 

does not make a garden. The information supplied by colour such as the 

identifiability of surfaces contained in a garden as a whole cannot be expressed 

by the specification of individual colours. Obviously, a naive measurement of 

this kind of colour information is to count the number of surface colours. But is 

this method accurate? 

One should be aware that colour, as an information source, is not always reliable 

for surface identification. Two fabrics with the same colour in the shop may 

appear different when viewed outside. For a given observer, if two colour stimuli 

with different spectral radiant power distributions match in colour, these colour 

stimuli are referred to as metamers [3]. The phenomenon of metamerism 

represents a loss of information in which a generally complex spectral 

distribution describing lights or reflecting surfaces is reduced typically to three 

numbers, corresponding to the excitations of the three classes of cone receptors 

of the normal eye. Is there any alternative method that is capable of predicting 

the occurrence of metamerism in natural scenes?  

This thesis aims to address these two fundamental questions about surfaces in 

natural scenes, namely, predicting their identifiability by their colour despite 

differences in illumination.  
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1.1 Colour vision and colorimetry 

Colour is one type of visual perception that can be used to distinguish. Colour 

vision is referred to as the ability to distinguish the visual stimuli based on 

wavelength composition regardless of radiance [2, 4, 5]. Colorimetry provides a 

quantitative framework to specify colour and to measure the difference between 

colours. In order to study the colour distribution and metamerism in natural 

scenes, it is useful to briefly review the basic elements of colour vision and 

colorimetry. 

 

1.1.1 Colour vision 

Human colour vision in the natural world is the result of the interactions between 

light sources, objects and the visual system. Light reflected by surfaces is 

sampled by the retinal cone photoreceptors in the eye, and the transformed signal 

is sent to the different cortical areas in the brain. An understanding of the 

anatomy and physiology of human vision is fundamental for the design and 

application of colorimetry.   

1.1.1.1 Structure of the eye 

The structure of the eye limits the visual experience of observers. The cornea is 

the outermost surface of the eye through which light passes. This transparent 

curved layer provides most of the optical power.  The light passes through the 

pupil whose size is controlled by the iris. Behind the pupil, the lens alters the 

optical power by changing its shape for viewing objects at different distances. 

The cornea and lens function together to project an inverted image on the retina. 

The retina, which covers most of the interior of the eye, serves much the same 

function as the film or sensory array in a camera. The extent of the retinal image 

can be measured by the visual angle, that is, the angle subtended by an object at 

the optical centre of the eye [6]. The retina provides a very wide field of view for 

the eye, including a small central area subtending 2–3 degrees of visual angle 



 

 

18 

 

termed fovea. The fovea has the highest visual acuity owing to the high density 

of cones receptors (see Chapter 1, Section 1.1.1.2). The fovea is covered by 

macular pigment which serves as a protective filter. The amount of macular 

pigment varies markedly between individuals, by a factor of 7 [7]. The blind spot 

is the area where the optic nerve fibres exit the eye, and where it has no 

sensitivity to light. The optic nerve transmits the signal to the higher levels of the 

visual system. Interestingly, the ratio between the number of retinal 

photoreceptors and the number of optic nerve fibres is believed to be larger than 

50 [8, 9]. This compression is achieved partly by decorrelation of spatio-

temporal information in the retina [10]. 

The illumination level influences the size of pupil; the optical density of yellow 

filters of the lens affects the absorption and scattering; and there are differences 

in the optical density of the macular pigment, even between left and right eyes of 

one single observer, which play a significant role in inter-observer variability 

[11]. Yet, the general colour-distinguishability of ordinary observers is 

surprisingly similar; as evidenced by the utility of the international standards 

defined by the CIE and  traditional clinical colour-vision tests [12]. 

 

1.1.1.2 Sensitivities of the receptors of the eye 

There are four classes of photoreceptor cells in the retina, three classes of the 

cones and one class of the rod, whose names are derived from their prototypical 

shape. At very low illumination levels, only the rods function and give 

monochromatic vision. If illumination level is higher, the rods are effectively 

saturated, and only the cones function [13, 14]. Vision served only by the rods is 

referred to as scotopic vision. Vision served only by the cones is referred to as 

photopic vision. Vision served by both the rods and the cones is referred to as 

mesopic vision. The three types of the cones have broad bandwidth over the 

visible spectrum, and are referred to as long -, middle-, and short-wavelength-

sensitive cones respectively, or simply L, M, and S cones [15, 16]. Figure 1.1 

illustrates the spectral sensitivities of the cones [17]. The overlapping spectral 
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sensitivities of the cones (especially between long- and middle-wavelength-

sensitive cones) results in high correlation between cone responses [18]. 

 

Figure 1.1: Spectral sensitivities of the long-, middle-, and short-wavelength 

cones, data from [17]. 

 

In order to convert radiometric measures, such as radiance, to perceptually 

relevant quantities, such as luminance, the CIE established two luminous 

efficiency functions, ( )V   for photopic vision and ( )V   for scotopic vision. 

The luminous efficiency functions are relative weighting functions which define 

visual ‘effectiveness’ over wavelength [19, 20]. The function ( )V   is used at 

low illumination levels for scotopic vision. The function ( )V   represents overall 

sensitivity of the three types of the cone for photopic vision. Figure 1.2 illustrates 

the CIE luminous efficiency functions ( )V   and  ( )V   [3] for the standard two 

degree observer (see Chapter 1, Section 1.1.4.2). 
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Figure 1.2: The CIE spectral luminous efficiency functions for scotopic '( )V   

and photopic ( )V   vision, data from [17]. 

 

1.1.1.3 Theories of colour vision 

In order to explain the function of colour vision, several theories were developed 

in history.  

Trichromatic theory was supported by psychophysical experiments. The 

assumption of trichromacy was that there are three independent cone types, and 

the cone signals are transmitted to the brain to generate colour sensations [3, 21]. 

As shown in Equation 1.1 to 1.3, the responses of the cones are obtained by the 

integration of the power distribution ( ) of incident light weighted by ( )l  , 

( )m  , and ( )s  , the sensitivities of L, M, and S cones over the wavelength 

range.  

 ( ) ( )d( ),L l


     1.1 
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 ( ) ( )d( ),M m


     1.2 

 ( ) ( )d( ).S s


     1.3 

This transformation reduces the degrees of freedom of dimension from infinity to 

three, which leads to a loss of spectral information. The reduction of the degrees 

of freedom of dimension means that the spectral information can only be 

retrieved by analysing the responses of the cones. Historically, trichromatic 

theory was often credited to Young and Helmohltz in the 19
th

 century [3, 22]. 

And later in 1964, Marks, Dobelle and MacNichol used microspectrophotometry 

to reveal that there are three classes of the receptors responding maximally to 

different wavelengths of light [23], confirming the earlier assumption about the 

existence of the three types of the cones. 

Although the trichromatic theory explains the process of distinguishing the 

spectral stimuli, it cannot explain colour appearance, such as hue, an important 

perceptual attribute in colour vision. This is because trichromacy only explains 

the visual coding process at the receptoral level without considering the post-

receptor processing. The information from the cones is carried by optic fibres 

before it reaches the post-receptoral level. As mentioned earlier, the number of 

photoreceptors is at least 50 times larger than the number of optic nerve fibres. 

And the overlapping sensitivities of L and M cones results in high correlation 

between the responses of the cones. The encoding of information in optic fibres 

is very efficient owing to the decorrelation process [10]. The existence of colour 

opponent retino-geniculate channels provides the physiological confirmation to 

opponent and non-opponent coding [4, 24-26]. These opponent channels were 

also inferred from psychophysical and experiments [27, 28]. The transformation 

from the cone responses to the opponent colour signals can be modelled by the 

orthogonal vector model based on electrophysiological studies [28]. 

Figure 1.3 illustrates the basic processing organisation of colour vision [29]. At 

the receptoral stage, the light is absorbed by the three classes of cone 

photoreceptors. For a fixed visual angle and time, the responses of the cones are 
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univariate, and independent of wavelength. At the post-receptoral stage, the 

inputs are cone responses, and the outputs can be treated as weighted 

combination of cone responses. Approximately, the achromatic channel, which is 

often referred to as the luminance channel, adds the responses from L and M 

cones. The second channel, which is often referred to as the red-green channel, 

obtains the difference between weighted responses from L and M cones. And the 

third channel, which is often referred to as the yellow-blue channel, obtains the 

difference between weighted responses from S cone and sum of weighted 

responses from L and M cones [21, 29]. 

L

Receptoral

stage

Post-receptoral 

stage

Luminance

channel

SM

Chromatic 

channels

+

−

−

L+M

L−M

S−(L+M)

 

Figure 1.3: Basic illustration of two stage colour coding in human visual system, 

adapted and modified from [28, 29]. 

 

1.1.2 Adaptation mechanisms 

The human vision system is not just a static transformation. The dynamic of 

human vision system allows chromatic and achromatic visual discrimination over 

a large range of illumination levels, with a ratio of intensities between daily 

visual extreme over 10
9
 [21, 30, 31]. It was also found that the colour distribution 

in viewing environment can be a potent stimulus for adaptation [32]. The time 

course of adaptation ranges from milliseconds to weeks, or perhaps even years 

[33]. The adaptation mechanisms are able to optimize the visual response to the 
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particular viewing environment by regulating the sensitivities of the 

photoreceptors. 

1.1.2.1 Dark Adaptation 

Dark adaptation is caused by the variation of visual sensitivities when the 

dominant level of illumination immediately decreases. The rods need to improve 

their sensitivities to outperform the cones after the transition from an extremely 

high illumination level to complete darkness. It takes on the order of 30 minutes 

[3, 34] for the rods to reach the maximum sensitivity. 

1.1.2.2 Light Adaptation 

On the contrary, light adaptation is the opposite process of dark adaptation. 

Nevertheless, compared to the time of dark adaptation, it only takes 

approximately 5 minutes for the visual system to reduce the sensitivities to 

produce clear perceptions. The dynamic range of neurons is nowhere near the 

wide range of illumination levels. Fortunately, it is very rare to view the entire 

range of illumination levels at the same time. In any given situation, light 

adaptation changes the operating range of output range in order to obtain the best 

possible visual perception. 

1.1.2.3 Chromatic Adaptation 

The human visual system is capable of remaining preserving the colour 

appearance against varying illumination [35]. This ability is often referred to as 

chromatic adaptation which is closely related to colour constancy [36]. An 

understanding of the mechanisms of chromatic adaptation is essential for the 

design and applications of colour appearance model (see Chapter 1, Section 

1.1.4.6). Chromatic adaptation can be interpreted as largely independent 

regulating the sensitivities of the cones. It is assumed that there may exist at least 

two stages of chromatic adaptation: a faster one is about several seconds, a 

slower one is about one minute.  And the chromatic adaptation was believed to 

be completed within 2 minutes [35, 37]. 

Generally, the function of the adaptation mechanisms is to make observer less 

sensitive to the greater change of physical intensities of the stimulus.  
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1.1.3 Psychophysics of colour vision 

Psychophysics is the quantitative study of the relations between physical stimuli 

and psychological sensations and perceptions that those stimuli evoke. It is the 

foundation of colorimetry (see Chapter 1, Section 1.1.4). Psychophysical tools 

allow quantitative measurements of perception and performance which hitherto 

were often considered subjective. 

In psychophysical experiments, decisions of observers are recorded. Basically, 

there are two types of decision tasks: judgments and adjustments [38]. The idea 

of threshold and matching in judgments tasks plays an important role in visual 

experiments. Threshold experiments are used to investigate visual sensitivities to 

small changes in stimuli which are referred to as a just-noticeable difference. 

And there are two types of matching experiments: Class A and Class B. Class A 

observation can be expressed as the identity or non-identity of two sensations. 

Class B observation only requires responses of a particular aspects of stimuli, 

generally with additional conditions. For example, the observers might be asked 

to match the brightness of two patches with different colours [39]. However, it 

was pointed out that the results of Class B observations are less secure than 

results of Class A observations [40]. The Class A matching experiments, which 

determine whether two stimuli are perceptually the same, are the basic tools to 

investigate the properties of metameric reproduction in a tristimulus system such 

as CIE (International Commission on Illumination) colorimetry (see Chapter 1, 

Section 1.1.4). 

 

1.1.4 Colorimetry 

Colorimetry offers the numerical specification of  the colour of a physically 

defined visual stimulus [3].  Basic colorimetry predicts colour matching of two 

visual stimuli in certain viewing conditions. Advanced colorimetry is concerned 

with colour appearance in various viewing conditions, including colour 

differences and chromatic adaptation. The CIE colorimetric system is the most 
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widely used international standard which compromises several metrics. It 

provides the mathematical foundation for answering the questions raised in this 

thesis. 

1.1.4.1 Trichromatic generalization and tristimulus colour spaces 

An empirical generalization of the experimental law of colour matching is 

referred to as the trichromatic generalization. It states that if there are three fixed 

primary stimuli whose radiant powers can be adjusted by the observer to suitable 

levels and none of them can be matched in colour by a mixture of the other two, 

some colour stimuli can be matched in colour by a mixture of the three fixed 

primary stimuli; some colour stimuli mixed with one of the primary stimuli can 

be matched in colour by a mixture of the other two primary stimuli; other colour 

stimuli mixed with two primary stimuli can be matched in colour by the 

remaining primary stimulus [3]. The tristimulus values of a colour stimulus are 

the intensities of the three primary stimuli to match it. Tristimulus space is one of 

the colour spaces which are based on the trichromatic generalization in order to 

describe colour stimuli. If the primary stimuli (red, green and blue) of unit 

amounts are represented by uppercase letters R, G, and B, a colour stimuli match 

can be achieved under the same conditions in terms of the amounts of three 

additive primaries as illustrated in Equation 1.4. 

 ( ) ( ) ( ),C C CC R R G G B B    1.4 

where the scalar multipliers RC, GC and BC measured in terms of the assigned 

respective units of the given primary stimuli R, G and B are called the tristimulus 

values of C. As a result, a given colour stimulus defined by a spectral power 

distribution can be specified by an additive mixture of three primaries [3].  

Figure 1.4 illustrates a set of spectral tristimulus values for monochromatic 

primaries of wavelengths 645 nm, 526 nm, and 444 nm based on data from Stiles 

and Burch [3]. The tristimulus values over the whole defined spectrum are 

named ‘colour matching functions’. If other primaries had been used instead, the 

colour-matching functions obtained would have been different, but linearly 

related to those of Stiles and Burch [41]. The negative tristimulus values in 
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Figure 1.4 means the negative contribution of R primaries. Adding the primary to 

the monochromatic light can desaturate it, which leads to a negative tristimulus 

value.  

 

Figure 1.4: Spectral tristimulus values for the CIE RGB system of colorimetry 

with monochromatic primaries at 645, 526, and 444 nm, data from Stiles and 

Burch [41]. 

 

In a stronger from of the trichromatic generalization, the results of colour 

matching are assumed to obey linearity laws of additivity and proportionality. 

Thus, the tristimulus values of a colour stimulus can be obtained by multiplying 

the colour matching functions by a certain amount of energy in the stimulus at 

each wavelength and  integrating across the spectrum [3]. Given a stimulus with 

spectral power distribution ( ) , the tristimulus values can be calculated from 

Equations 1.5 to 1.7, where ( )r  , ( )g   and ( )b   are the colour matching 

functions.  

 ( ) ( )d( ),R r


     1.5 
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 ( ) ( )d( ),G g


     1.6 

 ( ) ( )d( ).B b


     1.7 

The equations for calculating tristimulus values actually show the cause of a 

common colour phenomenon called metamerism (see Chapter 2 and Chapter 1, 

Section 1.3). Since two colour stimuli with different spectral power distributions 

will match if they have equal R, G and B values. Once the spectral power 

distribution changes, it is likely that the sets of tristimulus values of two stimuli 

become different. 

1.1.4.2 CIE standard observers 

Because of the physiological differences among the observers, the colour 

matching functions of different observers are not the same. It is essential for 

practical applications to build average colour matching functions of the observers 

with normal vision. The CIE decided to set standard colour matching functions 

based on the mean results of the Wright [42] and Guild [43] experiments, with 

primaries located at 700.0, 546.1 and 435.8 nm. These adopted primaries were 

accurately reproducible during that time, because wavelengths 546.1 and 435.8 

nm are mercury excitation lines and 700.0 nm is the location where the change in 

wavelength barely affects the hue of spectral lights [44]. In order to achieve 

convenience with non-negative computation and coherence with the CIE 1924 

photopic luminous efficiency function ( )V  , the CIE issued a linearly 

transformed set of primaries, the so-called XYZ primaries. These imaginary 

tristimulus values and the corresponding colour matching functions were 

standardized in the CIE 1931 Standard Colorimetric Observer [12]. The original 

colour matching functions were defined in the wavelength range λ = 380 to 780 

nm at intervals of ∆λ = 5 nm. In 1971, the CIE complemented the CIE 1931 

Standard Colorimetric Observer with interpolated values at 1 nm intervals and 

range λ = 360 to 830 nm, illustrated in Figure 1.5.  
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Figure 1.5: Spectral tristimulus values of the CIE 1931 standard two degree 

colorimetric observer. 

 

In order to eliminate the influence of rod vision, the colour-matching 

experiments for standard observers were obtained with matching fields of two 

degrees angular subtense [3]. The colour matching functions (Equations 1.8 to 

1.10) of CIEXYZ system follow the same form as those of RGB system, where 

( )x  , ( )y  , and ( )z   are colour matching functions; k is a constant which is 

chosen for computational convenience according to the different application. 

 ( ) ( )d( ),X k x


     1.8 

 ( ) ( )d( ),Y k y


     1.9 

 ( ) ( )d( ),Z k z


     1.10 
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In 1964, new supplement colour-matching functions were recommended by the 

CIE (illustrated in Figure 1.6). These functions are used when colour matching 

experiments are conducted with fields of 10 degrees which is named as the CIE 

1964 Supplementary Standard Colorimetric Observer [3].  

 

Figure 1.6: Spectral tristimulus values of the CIE 1931 standard ten-degree 

colorimetric observer. 

 

It should be emphasized that the most recent version of the CIEXYZ colour 

matching functions [45] are a linear transformation of the human cone spectral 

sensitivities measured by Stockman, Sharpe and Fach [15, 16]. Stockman, Sharpe 

and Fach measured the short-wavelength cone spectral sensitivity by measuring 

S-cone thresholds centrally and peripherally in five trichromats and three blue-

cone monochromats (who lack functioning L- and M- cones) [16]. Subsequently, 

Stockman and Sharpe measured the spectral sensitivities of L- and M-cones by 

testing dichromats of known genotype: M-cone sensitivities in nine protanopes 

(who are missing L-cone function), and L-cone sensitivities in 20 deuteranopes 

(who are missing M-cone function) [15]. These measurements and re-analysis of 
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the original 10 degrees Stiles and Birch data, were later incorporated by the CIE 

into the CIE colour-matching functions [45]. 

 

1.1.4.3 CIE standard illuminants 

There would be no colour at all without light. The CIE specified the light with 

two terms: light source and illuminant. A source refers to a physical emitter of 

radiant power and an illuminant refers to a specific spectral radiant power 

distribution incident on the object viewed by the observer [3]. The CIE 

standardized illuminants and sources can be identified by using correlated colour 

temperature (CCT). Correlated colour temperature is defined as the absolute 

temperature of a Planckian radiator whose chromaticity is located nearest to the 

chromaticity of the given spectral distribution. Because of the importance of 

daylights in natural scenes, different phases of daylights were simulated in this 

thesis by using the CIE standard daylight illuminants D. The relative spectral 

power distribution of the CIE daylight illuminant D65 over the visual spectrum is 

shown in  Figure 1.7, which is intended to represent the average daylight. 

 

Figure 1.7: Relative spectral power distributions of the CIE standard illuminants 

D65 and A (tungsten-filament lighting) [3, 46]. 
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1.1.4.4 Chromatic-adaptation models 

The human visual system is able to adapt to moderate changes in the spectrum of 

the illumination, so that the colour appearance remains approximately constant. 

This phenomenon is generally referred to as colour constancy [36]. The 

mechanisms of chromatic adaptation may be the most likely source for 

discounting the changes in the illumination. The mechanisms of chromatic 

adaptation can be classified as two types: sensory and cognitive [35, 47]. And 

most theories and models of sensory mechanisms are based on the work of von 

Kries [3]. 

The hypotheses of Johannes von Kries [3] are interpreted nowadays that three 

types of cone responses adapt independently and linearly, as expressed in 

Equation 1.11. 

 

a

a

a

0 0

0 0 ,

0 0

L

M

S

L K L

M K M

S K S

     
     
     
          

 1.11 

where L, M and S represent the original cone responses; KL, KM and KS are the 

scaling coefficients; La, Ma and Sa represent the post-adaptation cone responses. 

In practice, the scaling coefficients are generally taken to be the inverse of the 

white or the maximum stimuli value of L, M and S responses, respectively. 

Despite their simplicity, these hypotheses are still capable of explaining the 

majority of chromatic-adaptation effects. Indeed, independent adjustment of 

multiplicative coefficients is a feature of most theories of colour constancy [48, 

49]. The sensor transformations developed by Finlayson et al., which narrow the 

band of sensitivities of receptor over the wavelengths, improved the performance 

of colour constancy [50, 51]. An enhanced version of the von Kries model is the 

Retinex Theory, which takes the spatial distribution into consideration [48, 49]. 

The non-linear Nayatani model is able to predict the state of incomplete 

adaptation [52]. And this model can also predict several additional effects such 

as the Hunt effect, Steven effect and Helson-Judd effect [53].  
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1.1.4.5 Colour differences and uniform colour spaces 

The aim of basic colorimetry is to predict the match between two colour stimuli. 

If two colours are different, what is the magnitude of the difference? The 

CIELAB system was initially designed to be a perceptually uniform colour space 

[54], which means that the colour difference between two stimuli located 

anywhere in the space is measured by the Euclidean distance between them. The 

full transformation from CIEXYZ to CIELAB is given in Equations 1.12 to 1.14, 

where X, Y and Z are the set of tristimulus values of one colour stimulus and Xn, 

Yn and Zn represent the reference white. 

 *

n116 ( / ) 16,L f Y Y   1.12 

 *

n n500[ ( / ) ( / )],a f X X f Y Y   1.13 

 n n* 200[ ( / ) ( / )],b f Y Y f Z Z   1.14 

where 

 
1/3 1/3

1/3

( ) , (24 /116)
( ) .

(841/108)( ) 16 /116, (24 /116)

if
f

if

 


 

 
  

  
 1.15 

One should be aware that CIELAB does not include real von Kries scaling, 

because the CIEXYZ tristimulus values are not transformed to cone responses at 

any stage. This modified version of von Kries scaling results in a failure of 

prediction of colour appearance (e.g. gemstone tanzanite upon changes of 

illumination [55]).  The poor blue constancy within CIELAB colour space has 

also been of concern [56]. As shown in Figure 1.8, the lines of constant hue of 

OSA uniform colour scales [57, 58] shift from blue to purple when the chroma is 

decreased. 

In order to improve the perceptual uniformity available with CIELAB [59],  

additional colour difference equations such as CMC(l:c) [60] and BFD(l:c) [61, 

62] were introduced in place of the Euclidean distance.  The CIE recommended 
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CIE94 [63] and CIEDE2000 [64] for industrial use. The CIEDE2000 colour 

difference equation is given in Equation 1.16. 

 2 2 2 2 2

00 T

L L C C H H C C H H

( ) ( ) ( ) ( ) ( ) ,
L C H C H

E R
k S k S k S k S k S

        
     1.16 

where L , C  and H   are referred to as the lightness, chroma, and hue 

differences, respectively; kL, kC, kH are parametric factors based on different 

applications; SL, SC, SH  are lightness-, chroma-, and hue-dependent weighting 

functions, respectively; and RT  is an additional function that improves the 

performance of fitting chromatic differences in blue region [64]. 

 

Figure 1.8: Radial sampling of OSA uniform colour scales within the CIELAB. 

 

1.1.4.6 Colour-appearance models 

Colour-appearance models offer a more comprehensive description of colour 

stimuli, including the prediction of lightness, chroma and hue, and effects of 

chromatic adaptation. CIECAM02 [65] is a colour-appearance model 

recommended by CIE after CIECAM97s [66]. Unlike CIECAM97s, a von Kries-
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type chromatic-adaptation transform (Equations 1.20 to 1.22) is incorporated in 

CIECAM02, which can be compared with Equation 1.11. CIECAM02 simplifies 

the computation and allows for an analytical inverse model. The forward model 

which transforms CIECXYZ tristimulus values to colour-appearance attributes in 

CIECAM02 is given as follows [65]. 

Step 1: Convert CIEXYZ tristimulus values to long, middle and short-

wavelength space. 

 CAT02 ,

R X

G Y

B Z

   
   
   
      

M  1.17 

where 

 CAT02

0.7328 0.4296 0.1624

0.7036 1.6975 0.0061 .

0.0030 0.0136 0.9834

 
  
 
  

M  1.18 

Step 2: Decide degree of adaptation and apply it to chromatic adaptation. 

 
A( 42)

( )
92

1
1 ( ) ,

3.6

L

D F e
  

  
 

 1.19 

where LA is the luminance of adapting field, 

 C W W[( / ) (1 )] ,R Y D R D R    1.20 

 C W W[( / ) (1 )] ,G Y D G D G    1.21 

 C W W[( / ) (1 )] ,B Y D B D B    1.22 

where RW, GW and BW are the cone responses of adapting white reference [67]; 

and YW is the Y tristimulus value of white reference, which is normally 100 if 

white reference is a perfect reflecting diffuser. 

Step3: Compute parameters of viewing conditions 
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A1/ (5 1),k L   1.23 

 4 4 2 1/3

L A A0.2 (5 ) 0.1(1 ) (5 ) ,F k L k L    1.24 

 b w/ ,n Y Y  1.25 

where Yb is background luminance, 

 0.2

bb cb 0.725(1/ ) ,N N n   1.26 

 1.48 .z n   1.27 

Step4: Convert to Hunt-Pointer-Estevez space, which is closer to cone 

sensitivities. 

 

C

1

HPE CAT02 C

C

,

R R

G G

B B



   
    
   

      

M M  1.28 

where 

 HPE

0.38971 0.68898 0.07868

0.22981 1.18340 0.04641 ,

0.00000 0.00000 1.00000

 
  
 
  

M  1.29 

 1

CAT02

1.096124 0.278869 0.182745

0.454369 0.473533 0.072098 .

0.009628 0.005698 1.015326



 
 
 
   

M  1.30 

Step5: Apply post-adaptation non-linear compression 

 
0.42

L
a 0.42

L

400( /100)
0.1,

27.13 ( /100)

F R
R

F R


  


 1.31 

 
0.42

L
a 0.42

L

400( /100)
0.1,

27.13 ( /100)

F G
G

F G


  


 1.32 

 
0.42

L
a 0.42

L

400( /100)
0.1.

27.13 ( /100)

F B
B

F B


  


 1.33 
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If any of R , G  or B  is negative, then the corresponding absolute values must 

be used, and then the quotient term must be multiplied by −1. 

Step6: Create opponent-colour responses. 

 a a a12 /11 /11,a R G B      1.34 

 a a a(1/ 9)( 2 ).b R G B      1.35 

Step7: Calculate the attributes. 

Hue 

 1tan ( / ).h b a  1.36 

Eccentricity factor 

 
t

1
[cos( 2) 3.8].

4 180
e h


    1.37 

Achromatic response 

 a a a bb[2 (1/ 20) 0.305] .A R G B N       1.38 

Lightness 

 
W100( / ) ,czJ A A  1.39 

where c is the surround factor. 

Brightness 

 0.25

W L(4 / ) /100( 4) .Q c J A F   1.40 

Chroma 

 0.9 0.73/100(1.64 0.29 ) ,nC t J   1.41 

where  
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2 2

cb bb t

a a a

(50000 /13)
.

(21/ 20)

N N e a b
t

R G B




   
 1.42 

Colourfulness 

 0.25

L .M CF  1.43 

Saturation 

 100 / .s M Q  1.44 

Cartesian coordinates 

 C cos( ),a C h  1.45 

 C sin( ),b C h  1.46 

 M cos( ),a M h  1.47 

 M sin( ),b M h  1.48 

 S cos( ),a S h  1.49 

 S sin( ).a S h  1.50 

CIECAM02 includes a more comprehensive description of the viewing 

conditions than colour spaces such as CIELAB and CIELUV. It can also predict 

certain luminance-dependent effects and incomplete adaptation. Although the 

colour uniformity is not the specified objective of CIECAM02, Moroney and 

Zeng showed the significant improvement of hue uniformity for CIECAM02 

relative to CIELAB, especially for blue hues [68]. CIECAM02 also performs 

reasonably [69] compared to other uniform colour spaces such as DIN99 [70].  
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1.2 Hyperspectral imaging 

1.2.1 Hyperspectral image acquisition 

Hyperspectral imaging systems have higher spectral resolution over the spectrum 

than conventional three-sensory RGB colour camera. As mentioned earlier, 

colour in natural scenes is a result of the interaction between light sources, 

objects and vision systems. The spectrally fine-grained hyperspectral images 

allow a more accurate estimation of spectral reflectances of object surfaces. In 

order to investigate colour distribution and metamerism of object surfaces in 

natural scenes, a dataset of 50 hyperspectral images [71, 72] was used for most 

simulations in this thesis.  

The hyperspectral images were acquired with a low-noise Peltier-cooled digital 

camera with spatial resolution of 1344 × 1024 pixels. A fast tuneable liquid-

crystal filter was mounted in front of the lens with an infrared blocking filter in 

order to select specific wavelengths of light. The exposure time at each 

wavelength was chosen by software so that maximum pixel output was within 86% 

to 90% of the saturation value of CCD (charge-coupled device). The raw images 

were corrected for dark noise, spatial non-uniformities, stray light, and any 

wavelength-dependent variations in magnification or translation. The spectrum 

of light reflected from a small reference surface (Munsell N5 or N7) in the scene 

was recorded with a telespectroradiometer. The estimated effective spectral 

reflectance at each pixel was obtained by normalizing the corrected signal 

against the signal reflected from the reference surface. The line-spread function 

of the hyperspectral imaging system was close to Gaussian with standard 

deviation of ≈ 1.3 pixels at 550 nm. In order to exclude the trivial correlation 

between pixels, adjacent pixels were discarded in the samples. Thus, 

hyperspectral images used in the simulations were within a size of 672 x 512 

pixels after the down-sampling [71].  

In total, there were 29 scenes categorized as predominantly vegetated, and 21 

scenes categorized as predominantly non-vegetated [73, 74]. All visible sky and 

other self-luminous regions or objects were excluded. Each hyperspectral image 
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of one scene had spectral range from 400 nm to 720 nm sampled at 10 nm 

intervals.  

1.2.2 Conversion of hyperspectral images to tristimulus images 

The CIEXYZ tristimulus values can be calculated by integrating spectral power 

data with colour-matching functions as weighting functions [75]. Given a certain 

observer and an illuminant, the tristimulus values can be calculated from 

Equation 1.51 to 1.53.  

 ( ) ( ) ( ; , )d ,X x e r x y      1.51 

 ( ) ( ) ( ; , )d ,Y y e r x y      1.52 

 ( ) ( ) ( ; , )d .Z z e r x y      1.53 

where ( )r   is the reflectance of the surface; ( )x  , ( )y   and ( )z  are the 

colour-matching functions of the observer; and ( )e   is the illuminant spectrum 

on the reflected surface. Compared with Equation 1.8 to 1.10, the spectral power 

distribution ( )  of a stimulus is replaced by a product of spectral reflectance 

( )r   and illuminant ( )e  .  

 

1.3 Metamerism 

Physically, a colour stimulus has complex spectral power distribution over the 

whole visible wavelength. But the eye only has three classes of the cone 

receptors. The reduction in dimensions makes it possible for two colour stimuli 

with different spectral power distributions to match each other in colour. If two 

colours with different spectral power distributions match each other, they are 

metamers [3, 75]. Metamerism in natural scenes is of interest since this 

phenomenon suggests the failure of surfaces identification by using colours in 

real world. Given two illuminants, the frequency of metamerism in each scene 
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under these two illuminants is defined by the ratio between the number of 

metameric pairs and the number of all possible pairs. With the same situation, the 

relative frequency of metamerism is defined by the ratio between the number of 

metameric pairs and the number of indistinguishable pairs under one of the given 

illuminants. More technical details will be given in Chapter 2. 

 

1.4 Why information theory? 

Thanks to colorimetry, within colour spaces the numeric specification of colours 

makes it possible to further measure the colour gamut of surface colours in 

natural scenes and to determine the metamers. Nevertheless, the questions raised 

at the beginning of this thesis are still unanswered.  

Information theory supplies a mechanism to measure information objectively and 

quantitatively. Quantities derived from information theory such as entropy, 

relative entropy, and mutual information [76] are defined as functionals of 

probability distributions [77]. Entropy can be used as a measure of relative 

amount of trichromatic information of a image, which is obtained from a scene 

under a particular illuminant. Relative entropy and mutual information can detect 

general dependency between trichromatic images obtained from the same scene 

but under different illuminants.  

Colour gamut sometimes were used to describe the volume of colour content of 

an image obtained from a natural scene, but the distribution of surface colours 

was ignored when using this method. To compare the colour information of 

different images by using the corresponding colour gamut is not mathematically 

justifiable. In a perceptually uniform colour space, this comparison can be 

justified by using the entropy of trichromatic images.  

From an engineering point of view, the process of colour coding in colour vision 

can be treated as a type of communication. Thus, metamerism (see Chapter 2) 

can be interpreted as a mismatch between senders and receivers in a 

communication network. Indeed, the phenomenon of metamerism represents a 

loss of information, as explained in Chapter 6.  
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The definition of entropy, relative entropy and mutual information of discrete 

random variables are given in this section. More details of differential entropy 

and mutual information and their application on trichromatic images will be 

revealed in Chapter 3. 

 

1.4.1 Entropy 

The entropy of a discrete random variable X, which is a measure of the 

uncertainty of the random variable X, is defined as 

 ( ) ( ) log ( ).
x X

H X p x p x


   1.54 

where ( )p x is the probability mass function. Entropy is expressed in bits if the 

logarithm is to the base 2, and in nats if the logarithm is to the base e. Note the 

convention is that 0log0 0 , which is justified by continuity because 

log 0x x   as 0x  [77]. If a pair of discrete random variables (X, Y) is 

considered to be a single vector random variable with a joint distribution ( , )p x y , 

the joint entropy can be defined as 

 ( , ) ( , ) log ( , ).
x X y Y

H X Y p x y p x y
 

   1.55 

Similarly, the conditional entropy of a random variable Y given another random 

variable X is defined as, 

 ( | ) ( , ) log ( | ).
x X y Y

H Y X p x y p y x
 

   1.56 

1.4.2 Mutual information 

The joint entropy of a pair of random variables is a measure of the amount of 

information required on average to describe the pair of random variables. On the 

other hand, the relative entropy is a measure of the relationship between the two 

distributions. The relative entropy [77] between two probability mass functions 

( )p x  and ( )q x is defined as 
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( )

( || ) ( ) log .
( )x X

p x
D p q p x

q x

  1.57 

Mutual information [77] between random variable X and Y,  can be defined as 

(( ( , ) || ( ) ( ))D p x y p x p y , the relative entropy between the joint distribution 

( , )p x y  and the product distribution ( ) ( )p x p y : 

 
( , )

( ; ) ( , ) log .
( ) ( )x X y Y

p x y
I X Y p x y

p x p y 

  1.58 

Mutual information [77] between random variables X and Y, is the reduction in 

the uncertainty  of one random variable caused by knowing the other variable, 

which can also be defined as 

 ( ; ) ( ) ( | ) ( ) ( | ).I X Y H X H X Y H Y H Y X     1.59 

The relationship between entropy, relative entropy, and mutual information may 

be illustrated in a Venn diagram [77]. 

 

Figure 1.9 Relationship between entropy and mutual information, adapted from 

[77]. 
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1.5 Objectives 

The objectives of this thesis are as follows: 

 To construct models for predicting the frequency/conditional frequency 

of metamerism in natural scenes by information-theoretic measurements. 

 

 To determine whether colour gamut is a good description of the 

distribution of surface colours in natural scenes. 

 

 To determine the number of basis functions to represent the spectral 

reflectances of surfaces in natural scenes, and to explore spectral features 

of observed metamers in natural scenes. 

 

 

1.6 Thesis structure 

The remainder of this thesis is organized as follows. 

Chapter 2 Metamerism and frequency of metamerism. A further review of 

previous work on metamerism and frequency of metamerism is reviewed here, 

including the terminology of metamerism, the CIE indices of metamerism, and 

previous research on frequency of metamerism.   

Chapter 3 Information-theoretic measurements of colours. To quantify the 

information content of colours is not straightforward. The literature on estimating 

differential entropy with limited number of samples is considered at first. Second, 

the method to obtain entropy and mutual information from trichromatic images is 

revealed. Last, the robustness of this method is examined. 

Chapter 4 Measurements of colour gamut of natural scenes. The volume of 

the colour gamut of natural scenes may be treated as an approximate description 

of the information content of colours. Convex hull algorithms and cube-counting 

algorithms were used to measure the volume of the colour gamut. It turned out 
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that given certain colour difference thresholds, volumes measured by a cube-

counting algorithm within the colour space CIECAM02 is a quite good 

description information content. 

Chapter 5 Exploratory analysis of reflectances in natural scenes. Spectral 

reflectance, rather than colour, is a reliable property for identifying surfaces. The 

statistical properties of spectral reflectances in natural scenes are analyzed in this 

chapter. Reflectances of metamers are analyzed for both synthetic and real 

surfaces data. 

Chapter 6 Predicting frequency of metamerism. Estimating the frequency of 

metamerism usually requires numerous comparisons between the colour 

appearance of surfaces under different illuminants. Information-theoretic 

measurements were used instead to predict the frequency of metamerism over 50 

natural scenes under two different illuminants.  

Chapter 7 Conclusion. Salient results and contribution are recalled in this 

chapter with potential research on different subjects suggested. 

Chapter 8 Appendix. Technical details of the simulations and analysis are set 

out in this chapter including the parameters of transformations from CIEXYZ 

colour space to CIELAB colour space and CIECAM02 colour space. 
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Chapter 2. Metamerism and frequency of 

metamerism 

 

The phenomenon of metamerism is of importance in practice because the match 

between metameric colours could disappear if one of the viewing conditions is 

changed [54]. Metameric matches can be upset by a change in illuminant, a 

change in field size, and a change in observer. Metamerism associated with 

reflecting surfaces is particularly important [75], not least because it concerns the 

foundations of camouflage [78] and the relationship between visual and material 

identity in the natural world [71]. The existence of metamerism means that 

surface colours may be unreliable for identifying objects. A mismatch between 

metameric colours affects colour reproduction in industries such as printing, 

dyeing, photography and digital imaging.  

In this chapter, the technical terms of metamerism are reviewed, followed by an 

application of the method of estimating the relative frequency of metamerism 

that was first described in [71]. 

 

2.1 Definitions of metamerism 

By definition, metameric stimuli appear the same in colour although they have 

different spectral power distributions [3]. In colorimetric terms, spectral power 

distributions of metameric stimuli produce the same tristimulus values when 

weighted by the CIE colour matching functions (See Equations 1.8 to 1.10 in 

Chapter 1, Section 1.1.4.2) [75].  
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2.1.1 Terminology 

There are several different interpretations of metamerism in the literature, which 

are not all endorsed by the CIE. In order to clarify, the explanations of these 

terms are given as follows. 

1. Metameric colour stimuli, metamers 

Colour stimuli with different spectral power distributions that have 

the equal tristimulus values. The corresponding concept is 

metamerism. The practical problem is that as the representation of 

physical quantities, tristimulus values are never likely to coincide 

exactly. 

2. Perceived metameric colour stimuli, perceived metamers 

Colour stimuli with different spectral power distributions that match 

each other visually for a particular real observer under specified 

viewing conditions. This interpretation circumvents the problem 

described in (1), but a threshold level or statistical equivalent needs 

also to be defined. 

3. Parameric colour stimuli, paramers 

Colour stimuli with different spectral power distributions that have 

nearly the same tristimulus values. The corresponding concept is 

paramerism. Technically, there is no difference between paramerism 

and perceived metamerism. The word ‘parameric’ is often used for 

parameric correction [79].  

As a practical approach to the problem defined in (1), that is, because it is not 

very often that two colours have the same tristimulus values, a visual match 

between colour stimuli with different spectral composition (perceived 

metamerism) were often referred to as metamers if the meaning from context is 

clear.  
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2.1.2 Metameric black 

In order to study the frequency of metamerism and the features of metameric 

reflectances in natural scenes, it is helpful to understand some methods of 

generating metamers at first. Indeed, the process of colour reproduction involves 

generation of metamers since the duplicates of colours showed on papers, photos 

and monitors are generated by the mixture of pigments. One of the methods used 

for generating metameric object-stimuli is named as metameric black method [3]. 

For a given illuminant and a given observer, if the tristimulus values generated 

by the reflectance functions are equal to zero as there is no light at all, these 

reflectance functions are metameric blacks [80]. Because the spectral reflectance 

functions of all metameric blacks necessarily have negative values at some 

wavelengths unless the reflectances are all zero over the visible spectrum, no 

metameric black exists physically in natural scenes. Given a object surface with 

spectral reflectance function 1( )  , a corresponding metameric colour stimulus 

with spectral reflectance function 2( )   can be obtained by 

 2 1 b( ) ( ) ( ),        2.1 

where b( )   is the spectral reflectances of a metameric black. If the physical 

condition of real objects 20 ( ) 1    is not met, further scaling procedure by 

multiplying b( )   before adding it to 1( )   will be needed. Indeed, the 

metameric black space is orthogonal to the space consisted of colour matching 

functions [81].  This is the reason that the scaling procedure applied on a 

metameric black reflectance does not alter the tristimulus values.  

Theoretical approaches to reproducing metameric colours such as the metameric 

black method are useful for theoretical study of generation of metamers. 

Nevertheless, these numerical methods can tell neither the frequency of 

metamers nor the features of metameric reflectances in natural scenes. 

 



 

 

48 

 

2.2 CIE indices of metamerism 

As mentioned earlier, a metameric match can be upset due to a change in 

environment. When a mismatch happens, how should one quantify the degree of 

metamerism? In most cases, for a metameric pair, the greater the differences 

between spectral compositions, the greater the perceptual differences with a 

change in illuminant or observer. Nevertheless, because the phenomenon of 

metamerism is not solely determined by spectral compositions, it is impractical 

to quantify the degree of metamerism only on spectra. The CIE recommended 

special indices of metamerism for changes in illuminant or observer to quantify 

the degree of metamerism [54]. These indices are based on the colour differences 

between metameric pairs after a change in illuminant or observer. 

The procedure of quantify the degree of metamerism recommended by the CIE is 

described as follows. For a pair of metameric object colours, of which the 

tristimulus values under the reference illuminant are X1,r, Y1,r, Z1,r and  X2,r, Y2,r, 

Z2,r respectively, the metamerism index is calculated by the corresponding colour 

difference between tristimulus values X1,t, Y1,t, Z1,t and  X2,t, Y2,t, Z2,t under the test 

illuminant. The choice of colour difference equation should be noted if the colour 

difference equation other than CIELAB is used. The choice of the reference 

illuminant should also be noted if any illuminant other than the standard 

illuminant D65 is used as reference. The other suitable test illuminants include 

CIE standard illuminant A (tungsten light) and the FL (fluorescent lamps) and 

HP (high pressure discharge lamps) illuminants [54]. 

In practice, one should be aware that the perceptual non-uniformity of a colour 

space such as CIELAB reduces the quantitative power of the index of 

metamerism [82]. In addition, even the most advanced colour difference equation 

CIEDE200 [83], which corrects the non-uniformity of CIELAB for small colour 

differences under reference conditions, may not accurately represent the colour 

differences under other illuminants. In addition, there is no chromatic adaptation 

factor incorporated into the index of metamerism for change in illuminant. 

The index of metamerism for change in observer is analogous to the index for 

change in illuminant. The tristimulus values are obtained by substituting the 
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colour matching functions of the reference observer for those of the test observer. 

The test observer can be the CIE standard deviate observer, who is classified as 

normal and not colour deficient [54]. 

In order to offers quantitative measurements of the degree of a mismatch 

between metamers, the CIE made the special metamerism index: change in 

illumiant. But it is unsuitable for the estimating the frequency of metamerism in 

natural scenes because of two underlying reasons. First, the special metamerism 

index requires the same tristimulus values between surfaces under a certain 

illuminant, which makes the probability of finding such surfaces in natural 

scenes very small. Second, it is more relevant to vision in natural scenes if two 

surfaces are visually indistinguishable rather than having the same tristimulus 

values. Although the notes of the special metamerism indices (Section 9.2.2.3 in 

[54]) supplies a multiplicative adjustment method if the tristimulus values are not 

exactly equal, the allowance of this adjustment is not specified.  

Another index, the CMC 2002 colour inconstancy index [84], which is intended 

to predict colour constancy for the reflectance spectrum of a single surface, is 

also unsuitable for estimating the frequency of metamerism in natural scenes 

because metamerism is associated with the distinguishability of two surfaces. 

Alternative method should be used for estimating the frequency of metamerism 

in natural scenes rather than these indices.  

 

2.3 Metamerism in natural scenes 

According to the definition [3], metamers shall have numerically equal 

tristimulus values given certain viewing conditions. As noted earlier, the 

probability to find metamers with exactly equal tristimulus values in natural 

scenes is vanishingly small. Taking the limit of visual sensitivity into 

consideration, it is more pragmatic to count the number of perceived metamers in 

natural scenes. In other words, metameric surfaces are visually indistinguishable 

under a illuminant, but become distinguishable when the illuminant changes. 

Given a certain threshold colour difference for visual distinguishability, 
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metameric pairs can be determined if the colour difference between them is 

subthreshold under one illuminant and suprathreshold under another illuminant  

[71].  

 

2.3.1 Metamerism due to changes in illuminant 

Change in illuminant is a major cause of metamerism associated with surface in 

natural scenes. In order to study the frequency of metamerism in natural scenes, 

it is essential to build a model which simulates illumination changes upon natural 

scenes. The choice of simulated illuminants depends on two criteria. First, 

illuminants must be relevant to human vision in natural scenes. Second, changes 

in illuminant must be sufficiently large to reveal the visual difference between 

metameric pairs. Therefore, daylights were used for the simulation in [71], which 

include average daylight with correlated colour temperature (CCT) of 6500 K 

and the extremes with CCTs of 4000 K and 25,000 K, characteristic of the sun 

and sky at different times of the day [3, 85]. On a reciprocal colour-temperature 

scale, the distance from 4000 K to 6500 K is approximately equal to the distance 

from 25,000 K to 6500 K. These simulated daylights were assumed to be direct, 

global and constant [71]. The spectra of these daylights were generated according 

to the CIE [54] which is described as follows. 

Step1: Determine the chromaticity of the correlated colour temperature T of D-

illuminants. 

i. The x-coordinates of chromaticity of D-illuminants with CCT 

approximately from 4000 K to 7000 K is calculated by 

 
9 6 3

3 2

4.6070 10 2.9678 10 0.0911 10
0.244063.x

T T T

   
     2.2 

ii. The x-coordinates of chromaticity of the D-illuminants with CCT from 

greater than 7000 K to approximately 25000 K is calculated by 

 

9 6 3

3 2

2.0064 10 1.9018 10 0.24748 10
0.237040.x

T T T

   
    2.3 
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The y-coordinates of chromaticity is given by 

 23.000 2.870 0.275.y x x     2.4 

Step2: Compute the relative spectral power distribution of D-illuminants by 

using a linear combination of a mean distribution 
0( )S   and two distributions 

1( )S   and 2( )S   which represents the two most important eigenvectors of the 

dataset of daylights distributions [3]. 

 0 1 1 2 2( ) ( ) ( ) ( ),S S M S M S       2.5 

where the two factors M1 and M2 are determined by the chromaticity coordinates. 

 1

1.3515 1.7703 5.9114
,

0.0241 0.2562 0.7341

x y
M

x y

  


 
 2.6 

 2

0.0300 31.4424 30.0717
,

0.0241 0.2562 0.7341

x y
M

x y

 


 
 2.7 

As mentioned in Chapter 1, Section 1.2.2, given a certain observer and an 

illuminant the tristimulus values of reflecting surfaces can be computed by using 

Equations 1.51 to 1.53. Two metameric surfaces were selected from the same 

natural scene. The tristimulus values of these two surfaces were obtained under 

the daylights with CCT of 4,000 K and 25,000 K, with or without chromatic 

adaptation to the daylight with CCT of 6,500 K, respectively. After transforming 

to the sRGB colour space [86], the colour perception of surfaces can be displayed 

on monitors. Figure 2.1 illustrates the visual differences between two surfaces 

with different reflectances in a real scene when illumination changes. In Figure 

2.1 (a), it shows that if the eye is not chromatically adapted, the two surfaces 

cannot be distinguished by the eye. In Figure 2.1(b), if the eye is allowed to 

chromatically adapt to the daylight with CCT of 6,500 K, the surfaces are still 

indistinguishable. However, after changing the illuminant to a daylight with CCT 

of 25,000 K showed in Figure 2.1(c), if the eye is not chromatically adapted, the 

surfaces are noticeably different. The surfaces are still visually different even if 

the eye is chromatically adapted to the daylight with CCT of 6,500 K, with the 

surface on the left appearing more neutral than the surface on the right. 
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(a) Two surfaces under daylight (4,000 K) 

       

(b) Two surfaces under daylight (4,000 K), adapted to daylight (6,500 K) 

       

(c) Two surfaces under daylight (25,000 K) 

       

(d) Two surfaces under daylight (25,000 K), adapted to daylight (6,500 K) 
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(e) Reflectances of two metameric surfaces 

Figure 2.1: Illustration of metameric pairs under different illumination. 

The general procedure described in this section shows that technically how to 

obtain colour representations of natural scenes with changing illumination. It 

means that given a certain threshold colour difference for visual 

distinguishability, metamerism in natural scenes can be determined.  

 

2.3.2 Method of estimating frequency of metamerism 

In order to estimate the frequency of metameric surfaces, the spatial resolution of 

the eye must be taken into consideration because it decides whether or not the 

spectral reflectances of surfaces in a scene are unmixed. The 50 hyperspectral 

images used in this thesis [71, 87] were obtained at least with the spatial 

resolution of the eye.  

A threshold-based method was established in previous research [71] to answer 

the question that how often the metamerism happens in natural scenes. The 

illuminants upon natural scenes were assumed to be direct, global and constant 
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[71]. In order to capture the properties of the scene as a whole, a subset of N 

pixels was chosen at random without replacement according to a spatially 

uniform distribution. This sampling scheme is neutral to scene contents, and a 

previous analysis has shown that there was little effect on estimating the relative 

frequency of metamerism with different numbers of pixels within the subset [71, 

88]. The word “relative” means that the frequency was estimated from a set of N 

samples in one scene rather than the whole scene. If all the surfaces in this subset 

are unique, the total number of unique pairs for this subset of surfaces is

( 1) / 2N N  . Let the number of unique pairs with colour differences less than 

threshold ∆E
thr

 under one illuminant be N0. And from this subset of N0 pairs, the 

number of pairs whose colour difference is greater than a certain multiple n = 

1, … , 4 of the threshold ∆E
thr

 under another illuminant be N1, say. The multiple 

n is defined as the criterion degree of metamerism. The estimate of the relative 

frequency of metamerism in this scene is 1 /N N , and the estimate of the 

conditional relative frequency of metamerism is 1 0 1 0( / ) / ( / ) /N N N N N N  

[71]. The conditional relative frequency of metamerism is the probability of the 

indistinguishable surfaces of pairs under one illuminant becoming 

distinguishable when the illuminant changes. 

The nominal threshold ∆E
thr

 for visual distinguishability, can be quantified 

according to a colour difference formula, such as the CIEDE2000 [64] in 

CIELAB or the Euclidean distance in CIECAM02 [65]. In principle, 

psychometric functions could have been used instead of these nominal threshold 

values ∆E
thr

, but the increased complexity of analysis is unnecessary for 

estimating the frequency of metamerism because the variation of the frequency 

of metamerism introduced by psychometric functions is small. In addition, 

neither the performance of observer nor the level of physical stimulus is 

particular concerned in the present application. The value of nominal thresholds 

∆E
thr

 was chosen to encompass possible visual just-noticeable-differences in 

different colour spaces [70, 89, 90].  

In summary, given a colour difference threshold for visual distinguishability, two 

illuminants with known spectral power distribution, the reflectances of surfaces, 
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and colour matching functions of an observer, the frequency of metamerism can 

be estimated by this threshold-based method. 

 

2.4 Discussion 

Metamerism associated with surfaces is a phenomenon that shows that colour is 

unreliable for material identification occasionally. It is of great importance to 

understand the frequency of metamerism in natural scenes. Since exact 

metamerism is rare in natural scenes, it is more practical to use a visually 

relevant approach to estimate the occurrence of metamerism in natural scene.  

There are many factors that can affect the estimates of the relative frequency of 

metamerism in natural scenes, such as the spectral reflectances of surfaces, the 

spectral power distributions of illumination, the sensitivities of the individual 

cone classes, the threshold of distinguishability, the choice of colour difference 

equation, and the choice of colour spaces. In this thesis, daylights were chosen as 

the simulated illumination because of the relevance to vision in natural scenes. In 

order to study metamerism associated with surfaces rather than observers, the 

CIE 1931 and 1964 standard colorimetric observers were chosen to represent an 

average observer and eliminate the variation of sensitivities from different 

observers [71]. Because the distinguishability of surfaces is quantified by the 

threshold, the colour difference formula used for this quantification should 

provide approximately perceptual uniformity in a corresponding colour space. 

This approximately perceptual uniformity can be achieved by using CIEDE2000 

[64, 83, 91] in CIELAB  or the Euclidean distance in CIECAM02 [65]. 

Unfortunately, there is no consensus about the threshold of colour difference for 

distinguishability in CIELAB or CIECAM02. Further research including the 

threshold of colour difference appropriate for metamerism estimates and the 

difference between the two metrics will be discussed is discussed in Chapter 6. 

There are also other technical considerations to do with the method of estimating 

the frequency of metamerism [71]. It has been confirmed that the assumption of 

effective global illuminant has negligible effect on estimates of the relative 
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frequency of metamerism, which means that the effects of shadow is negligible. 

Increasing the number of samples randomly selected from the scene from 3,000 

to 6,000 or changing the colour matching functions of standard observer did not 

affect the results significantly as well. 

In this chapter, an established method of estimating the frequency of metamerism 

[71] is reviewed. The incorporation of nominal threshold in this method allows 

the inclusion of visual distinguishability in natural scenes. This method is applied 

in this thesis for estimating the frequency of metamerism in later chapters.   
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Chapter 3. Information-theoretic 

measurements of colours 

 

In natural world, colour supplies the information about reflected lights from 

surfaces. Thanks to the tools offered by colorimetry, a colour of physically 

defined visual stimulus can be numerically specified [3]. Nevertheless, the colour 

information such as identifiability of surfaces contained in a whole scene cannot 

be expressed by these individual specifications. Theoretically, if the spatial 

information of a scene is ignored, the numerical specifications of colours can be 

treated as random variables. Thus, the quantities derived from information theory 

such as Shannon’s entropy and mutual information [77] can be used to measure 

the colour information contained in a scene. Thus, the entropy of colours 

describes the average uncertainty of the colour appearance at a random point in a 

scene, and mutual information of colours quantifies the dependency between the 

two different sets of colours under two different illuminants in a scene. Because 

these informational quantities are determined by the probability functions of 

random variables, technical difficulties arise when the estimates of these 

quantities are based on the necessarily limited colour samples drawn from natural 

scenes. 

This chapter starts with the definitions of differential entropy and mutual 

information of continuous random variables, then continues with information 

measures for trichromatic representations of surface colours in natural scenes, 

and ends with a discussion of the application and robustness of asymptotically 

bias-free estimators of differential entropy for surface colours in natural scenes. 
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3.1 Informational quantities of continuous random 

variables 

Differential entropy and mutual information of continuous random variables are 

defined by analogy with the entropy and mutual information of discrete random 

variables (see Chapter 1, Section 1.4). If X is a continuous random variable with 

the probability density function ( )f x , the differential entropy [77] is defined as 

 ( ) ( ) log ( )d ,
S

h X f x f x x   3.1 

where S is the support set of the random variable. The differential entropy is 

quantified in bits if the logarithm is to the base 2, and in nats if it is based on the 

natural logarithm.  

If X and Y are continuous random variables with density functions ( )f x  and

( )f y , and a joint density function ( , )f x y , the conditional differential entropy 

can be expressed as 

 ( | ) ( , ) log ( | )d d .h X Y f x y f x y x y   3.2 

Additionally, the mutual information ( ; )I X Y  between two random variables is 

defined as 

 
( , )

( ; ) ( , ) log d d .
( ) ( )

f x y
I X Y f x y x y

f x f y
   3.3 

From these definitions, if all the differential entropies are finite, it can be proved 

that 

 ( | ) ( , ) ( ),h X Y h X Y h Y   3.4 

and  

 

( ; ) ( ) ( | )

( ) ( | )

= ( ) ( ) ( , ).

I X Y h X h X Y

h Y h Y X

h X h Y h X Y

 

 

 

 3.5 
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3.1.1 Difference between differential entropy and discrete 

entropy 

Differential entropy of continuous random variables can be related to the entropy 

of discrete random variables. Assume there is a continuous random variable X 

with a discrete density after quantization, as illustrated in Figure 3.1 [77]. There 

then exists a value 
ix within each bin of width Δ such that 

 
( 1)

( ) ( )d .
i

i
i

f x f x x
 


    3.6 

If the quantized random variable X 
 is defined as 

 ,  if  ( 1) ,iX x i X i         3.7 

then the probability that 
iX x   is 

 
( 1)

( ) ( ) .
i

i i
i

p f x dx f x
 


    3.8 

Thus, the entropy of the quantized variable is 

 

( ) log

( ) log( ( ) )

( ) log ( ) ( ) log

( ) log ( ) log .

i i

i i

i i i

i i

H X p p

f x f x

f x f x f x

f x f x










 

   

     

    





 



 3.9 

If the density ( )f x  is Riemann integrable, then as 0 , 

 ( ) log ( ) ( )H X h f h X    ． 3.10 

Thus the entropy of a continuous random variable X after n-bit quantization is 

approximately ( )h X n  [77]. 
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Figure 3.1: Quantization of a continuous random variable with bin width  , 

adapted from [77]. 

 

Discrete entropy is invariant to both translation and scaling of the random 

variable, but differential entropy is only invariant to translation not scaling, as 

shown in Equation 3.11 and 3.12. 

 ( ) ( ).h X c h X   3.11 

 ( ) ( ) log | | .h aX h X a   3.12 

Correspondingly, if a random continuous variable is scaled by an invertible 

transformation with matrix M, the entropy can be expressed as 

 ( ) ( ) log ,h X h X M M  3.13 

where |M| is the determinant of M. 
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3.2 Information measures for trichromatic 

representations 

In order to measure the colour information of natural scenes, the first step is to 

establish trichromatic representations of surface colours in natural scenes, which 

allows colours to be treated as continuous random variables. The second step is 

to define the entropy and mutual information of these trichromatic 

representations.  

3.2.1 Trichromatic representations 

Consider that there is a global illuminant with spatially uniform incident spectral 

radiance e(λ) upon a scene, where wavelength λ ranges over the visible spectrum. 

If a random point (x, y) has an effective spectral reflectance r(λ; x, y), the 

corresponding long-, medium-, and short-wavelength-sensitive cone responses, l, 

m, and s, are given by 

 ( , ) ( ) ( ) ( ; , )d ,l x y l e r x y      3.14 

 ( , ) ( ) ( ) ( ; , )d ,m x y m e r x y      3.15 

 ( , ) ( ) ( ) ( ; , )d ,s x y s e r x y      3.16 

where ( )l  , ( )m  , and ( )s   are cone spectral sensitivities and the integrals 

are evaluated over the visible spectrum [92]. This set of equations provides a 

numerical specification of the colour at each point (x, y) in a scene. Indeed, 

because there are an infinite number of possible values of colour specification, 

any triplet of values for colour specification may be treated as values of a 

trivariate continuous random variable [93], such as (L, M, S) for cone responses, 

(X, Y, Z) for tristimulus values, (L*, a*, b*) for coordinates in CIELAB colour 

spaces and (J, aC, bC) for coordinates in the CIECAM02 colour appearance 

model. 
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Figure 3.2 is an image of a natural scene under daylight with CCT of 6,500 K. 

The marginal histograms of the corresponding long-, medium- and short-

wavelength cone responses are illustrated in Figure 3.3. These histograms 

provide a one-dimensional uniform binning approach to estimating entropy, 

which will be discussed in Chapter 3, Section 3.3. 

 

Figure 3.2: A natural scene under daylight with CCT of 6,500 K [87]. 
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Figure 3.3: Marginal distributions of L-, M-, and S-cone excitations, obtained 

from the same scene as Figure 3.2 under a daylight with CCT of 6,500 K. 
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3.2.2 Differential entropy and mutual information of colours 

If colour specification is treated as instances u, of a trivariate continuous random 

variable U, with a probability density function (pdf) fU, the differential entropy of 

h(U) of U  can be defined by Equation 3.1. The differential entropy of colours 

describes the average uncertainty of colour appearance at a random point in 

scene.  

Similarly, suppose that a scene is illuminated by two different illuminants in turn. 

The differential entropies of surface colours are denoted by h(U1)  and h(U2) 

respectively, and the conditional differential entropy of colours is denoted by 

h(U2|U1). The conditional differential entropy h(U2|U1) of U2 given U1, may be 

defined as in Equation 3.2. But because generally 2 1 1 2 1( | ) ( , ) / ( )f u u f u u f u , it 

is more useful to calculate the conditional differential entropy of colours by 

Equation 3.4, for computational convenience. 

Mutual information of colours represents the reduction of uncertainty of colour 

appearance under one illuminant due to known colour appearance under another 

illuminant. The mutual information between different sets of colours in the same 

scene under two different illuminants can be obtained by Equation 3.5. 

The calculation of the differential entropy and mutual information of colours 

treated as continuous random variables is not straightforward. It is susceptible to 

bias if the estimators used for calculating informational quantities are based on 

binning [94]. It has been argued that because statistical fluctuations tend to make 

the distribution less uniform, the estimates obtained from histogram-based 

binning may leads to an underestimation of entropy [95]. With a limited number 

of samples obtained from natural scenes, it is important to achieve minimal bias 

for accurate estimates of colour information. 

 

3.3 Asymptomatically bias-free information estimator 

As mentioned in Chapter 1, Section 1.2.1, the spatial resolution of the 

hyperspectral imaging system is 1344 × 1024 pixels, sub-sampling algorithm was 
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applied to exclude the trivial correlation between adjacent pixels. These technical 

limitations mean that information measurements of colours must obtained from 

limited samples. 

Compared to binning, given a sufficiently large number of samples, an estimate 

based on adaptive partitioning [96] can be asymptomatically bias-free. But it still 

depends on the choice of origin and bin width, and it may lack smoothness. 

Kernel smoothing [97, 98] can overcome some of the difficulties mentioned 

earlier but still relies on the choice of window width. A kth-nearest neighbour 

method has been developed to estimate the differential entropy and mutual 

information without knowing the probability density function [94]. This 

advantage makes it possible to accurately estimate the colour information if 

insufficient samples were obtained from natural scenes. 

 

3.3.1 Kozachenko-Leonenko estimator 

Kozachenko and Leonenko proposed an entropy estimator of multi-dimensional 

continuous random variable without estimating the density function [99]. It was 

further generalized by Goria etal. to a class of estimators based on kth-nearest 

neighbour [100].  

Consider in a m-dimensional Euclidean space R
m
, the Euclidean distance 

 
2( , ) ( ) ,

m

j j

j

x y x y    3.17 

where 
1( ,..., ) m

mx x x R  , 
1( ,..., ) m

my y y R   and 1m  . Suppose there is a 

ball ( , )v y r  of radius r with centre my R , that is, 

 ( , ) : ( , )mv y r x R x y r   . Let the volume of the ball be 1( , ) ( )mv y r r c m , 

where 

 
/2

1

2
( ) ,

( / 2)

m

c m
m m





 3.18 
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and   denotes the gamma function. For a m-dimensional random variable X, a 

fixed point xi and fixed k, where 1 i N   and 0 k N  , let 
,i k  be the 

Euclidean distance between xi and its kth-nearest neighbour. Denote the 

geometric mean of the random variables 
,i k  by k ; that is,  

 

1/

, .

N
N

k i k

i

 
 

  
 
  3.19 

Then, the estimate of differential entropy, expressed in nats, is given by 

 KL 1
ˆ ( ; ) ln( ) ln( 1) ( ) ln( ( )),kh X N m N k c m       3.20 

where 1( )c m  is the volume of the ball given by Equation 3.18 and   is the 

digamma function. Thus, the estimated mutual information, in nats, is given by 

 KL KL KL KL
ˆ ˆ ˆˆ ( ; ; ) ( ; ) ( ; ) ( , ; ).I X Y N h X N h Y N h X Y N    3.21 

It has been shown that when N  , the estimates of differential entropy is 

asymptotical bias free and consistent under very weak conditions on the density 

function [99, 100]. Obviously, the estimate of mutual information in Equation 

3.21 is also asymptotical unbiased and consistent under the same condition. 

 

3.3.2 Offset version of the mutual information estimator 

Surface colours tend to appear similarly to the chromatic adapted eye when the 

illumination varies. This phenomenon means that the colour information is 

highly correlated. This property makes it possible to improve the estimator of 

mutual information between colours obtained from the same scene under 

different illuminants [101]. 

Let U1 and U2 be trivariate random vectors representing colour signals under two 

illuminants. Set * 1/2

1 1 1(var )U U U , * 1/2

2 2 2(var )U U U , and

* 1/2

1 2 1 2 1 2( , ) (var( , )) ( , )U U U U U U . Because the covariance matrix is an 
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invertible square matrix, the differential entropy of U1 can be calculated by 

Equation 3.13; that is, 

 * 1/2

1 1 1( ) ( ) log (var ) .h U h U U    3.22 

Furthermore, the mutual information between U1 and U2 is given by 

 

* * *

1 2 1 2 1 2

1/2 1/2

1 2

1/2

1 2

( ; ) ( ) ( ) (( , ) )

log var( ) log var( )

log (var( , )) .

I U U h U h U h U U

U U

U U

 



  

 



 3.23 

Let V1 and V2 be the two Gaussian vectors with the same covariance matrix as U1 

and U2. Then the mutual information between V1 and V2 is given by [77] 

 

1 2

1 2

1 2

1 2

1 2

var var1
( , ) log

2 var( , )

var var1
log .

2 var( , )

V V
I V V

V V

U U

U U

 
  

 

 
  

 

 3.24 

The mutual information I(V1,V2) is referred to as the mutual information of the 

equivalent Gaussian IEG [101]. Then Equation 3.23 can be rewritten 

 * * *

1 2 1 2 1 2 EG( ; ) ( ) ( ) (( , ) ) ,I U U h U h U h U U I     3.25 

where IEG is obtained by calculating the variance of the samples. 

The improved estimator of the differential entropy and mutual information can 

be obtained with the aid of the Kozachenko-Leonenko algorithm,  [101] 

 *

KLo 1 KL 1 1

1ˆ ˆ( ) ( ) log var ,
2

h U h U U   3.26 

 KLo 1 2 KLo 1 KLo 2 KLo 1 2
ˆ ˆ ˆˆ ( ; ) ( ) ( ) ( , ).I U U h U h U h U U    3.27 

By partitioning U1 into Gaussian and non-Gaussian components, the mutual 

information converges to the true value more quickly for highly correlated 

continuous random variables [101]. 
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3.3.3 Robustness of estimators 

Because the estimators based on kth-nearest neighbour are only asymptotically 

bias-free, they will still have an unacceptable bias if the size of the samples is too 

small. Unfortunately, it is impractical to tell how many samples are sufficient 

even if a certain threshold of error has been determined because the true values 

of entropy and mutual information of colours is not known. But it is sensible to 

test the robustness of the estimators by examining how quickly the estimates 

converge to the true value with a known distribution. 

The values estimated by the Kozachenko-Leonenko differential entropy 

estimator were compared with analytical results for some classical distributions 

in order to test the convergence of the estimator. The trivariate Gaussian 

distributions, which has the maximum differential entropy within the support set 

without any constraints, and the multivariate uniform distributions, which has the 

maximum differential entropy over the other distributions with a given 

covariance matrix, were used as test distributions.  

 

3.3.3.1 Behaviour of KL estimator on the trivariate Gaussian distributions 

The analytical expression of differential entropy of random variables with a 

multivariate Gaussian distribution [77] is 

 
1 2

1
( , ,..., ) log(2 ) ,

2

n

nh X X X e K  3.28 

where n is the dimension and |K| denotes the determinant of the covariance 

matrix. Since the mean of a multivariate Gaussian distribution does not affect the 

differential entropy, only the covariance matrix needs to be considered. Two 

different covariance matrices were obtained from the perceptual attributes J, aC 

and bC within CIECAM02 under the daylight 6,500 K with default chromatic 

adaptation in two natural scenes, one predominantly vegetated (roses) and 

another predominantly non-vegetated (urban buildings). 
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(a) 

 

(b) 

Figure 3.4: Differential entropy of a random variable with a trivariate Gaussian 

distribution, calculated by Equation 3.28 (red line), and by Kozachenko-

Leonenko estimator (black line). (a) Covariance matrix from vegetated scene. (b) 

Covariance matrix from non-vegetated scene. The results are the means taken 

over 100 runs. 
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Consider a random variable with a trivariate Gaussian distribution of with 

covariance matrix obtained from the real samples in natural scenes. There were N 

samples ( 2 63 10 3 10N    ) randomly selected from a three-dimensional 

space. The differential entropy estimated by Kozachenko-Leonenko estimator is 

illustrated in Figure 3.4. 

As expected, the difference in differential entropy between estimated and 

theoretical values diminished as the number of samples increased. The spatial 

resolution of the hyperspectral images used here is 1344 × 1024 pixels. Even 

sub-sampled by a factor of 2 at each dimension, the number of pixels is larger 

than 2.5 × 10
5
. If colours in one natural scene are treated as a trivariate random 

variable, the total number of down-sampled colour responses is still more than 3 

× 2.5 × 10
5
.
 
The error of the estimated differential entropy of a trivariate 

Gaussian distribution is about 0.004 and 0.001 with 3 × 10
5
 samples and with 3 × 

10
6
 samples respectively, which is much smaller than 1% of the magnitude of the 

theoretical values of the differential entropy of a variable with trivariate Gaussian 

distribution. It means that the error of differential entropy estimated by 

Kozachenko-Leonenko estimator for this particular application is negligible. 

 

3.3.3.2 Behaviour of KL estimator on the multivariate uniform 

distributions 

In principle, the Kozachenko-Leonenko differential entropy estimator is unstable 

for application of discontinuous functions [99]. But it is useful to know the extent 

of the bias if the estimator is applied on discontinuous functions, because it is 

possible that colours in a natural scene are uniformly distributed in a certain 

colour space. 

Uniform distribution has maximum differential entropy within the support set 

without any constraints [77]. Within the support colour set, if any colour appears 

more than others, the entropy will decrease. For instances, if the ‘red’ pattern 

appear multiple times in a colour system, the uncertainty of colour appearance 

will be reduced. 
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Consider a random variable with uniform distribution on the interval [a, b], so 

that the probability density function is 

 

1
, [ , ],

( )

, elsewh re.0 e

x a b
f x b a




 


 3.29 

The differential entropy [77] of the distribution is  

 
1 1

( ) log d .

b

a

h x x
b a b a

 
   3.30 

Note that if 1b a  , the differential entropy will be negative. The negative 

value makes it difficult to interpret physically the differential entropy of colours. 

But all the analysis regarding to differential entropy in this research were used as 

relative comparison involved within specified colour spaces.  

The differential entropy of a multivariate random variable with multivariate 

uniform distribution is 

 

1 2

1 2

1 2

1 1 2 2

1 1 1
( ) ... ... d d ...d ,

( ) ( ) ( )

n

n

b b b

n

n n
a a a

h x x x x
b a b a b a


      3.31 

where n is the number of dimensions. 

For colour coordinates L*, within CIELAB and J, within CIECAM02, the values 

L* and J range from 0 to 100. To illustrate some of the properties of colours in 

these coordinate systems, a multivariate random variable was constructed with a 

multivariate uniform distribution on the interval [0, 100] at each of n dimensions. 

The differential entropy of this multivariate random variable is 

 ( ) log100.h x n  3.32 

Suppose there is a m-dimensional (1 6m  ) multivariate random variable with 

N samples ( 2 610 10N  ) randomly selected at each dimension. The difference 

between differential entropy calculated from analytical expression and 

differential entropy estimated by Kozachenko-Leonenko estimator is 

summarized in Table 3.1. 
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Table 3.1: Difference
b
 between differential entropy calculated from analytical 

expression and estimated by Kozachenko-Leonenko estimator with various 

dimension and number of samples at each dimension. 

 N, Number of sample at each dimension
a,b 

Theoretic 

values M 10
6 

10
5
 10

4
 10

3
 10

2
 

1 0.20  0.02  0.00  0.00  0.00  6.64  

2 0.00  0.00  0.01  0.02  0.09  13.29  

3 0.01  0.03  0.06  0.12  0.24  19.93  

4 0.05  0.09  0.16  0.28  0.55  26.58  

5 0.12  0.19  0.31  0.50  0.84  33.22  

6 0.23  0.34  0.51  0.79  1.18  39.86  

a
 The number of samples for each test equalled to N m  in total. 

b
 All results showed are the means taken over 100 runs. 

 

As mentioned in Chapter 3, Section 3.3.3.1, if colours in one natural scene are 

treated as a trivariate random variable, the total number of pixels in hyperspectral 

images is larger than 3 × 2.5 × 10
5
.
 
The error of the estimated differential entropy 

of a three-dimensional uniform distribution with 3 × 10
5
 samples is about 0.03, 

which is less than 2% of the magnitude of the differential entropy of a variable 

with trivariate uniform distribution defined on the same domain. However, it 

should be noted that for a one-dimensional random variable, there was 0.20 

difference on average for the test with 10
6
 samples. With smaller numbers of 

samples, although the mean of difference was close to 0, there were still 

variations between individual tests. 

Figure 3.5 illustrates the relationship between estimated differential entropy and 

the theoretical value of a trivariate uniform distribution. The difference between 

estimation and theoretical values becomes smaller as the number of samples 

increases. Despite the discontinuity, the error of the application of Kozachenko-

Leonenko estimator on uniform distributions is acceptable. 
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Figure 3.5: Differential entropy a continuous random variable with a trivariate 

uniform distribution with interval [0, 100] at each of three dimensions. 

Theoretical values calculated from Equation 3.32 are shown in red line and the 

estimates is shown in black line. The results are the means taken over 100 runs. 

 

3.4 Discussion 

Differential entropy and mutual information, which are derived from information 

theory, were used in this chapter to measure the colour information in natural 

scenes. But these theoretical quantities cannot be directly applied on numerical 

specifications of colours because the definitions of these quantities are based on 

the known probability density of continuous random variables, as mentioned at 

the beginning of Chapter 3, Section 3.3. 

The Kozachenko-Leonenko estimator does not requires either pre-defined 

parameter or known probability density to estimate differential entropy. It has 

already been shown that this estimator can reach convergence quicker and close 

to analytical value of the highly correlated Gaussian variables [101]. One 

technical concern about the behaviour of this estimator is the error when the 
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estimator is applied on the insufficient number of samples. In Chapter 3, Section 

3.3.3, the robustness of the estimator was tested on the multivariate Gaussian and 

uniform distributions, which posses certain similar statistical properties as colour 

distribution in natural scenes. 

Note that all the estimated informational quantities were only interpreted as a 

relative measurement within specified colour space without any physical 

meaning in this thesis.  

  



 

 

75 

 

Chapter 4. Measurements of colour gamut 

of natural scenes 

 

The colour gamut of natural scenes is a subset of all possible colours in a colour 

space. Because there are certain limitations on the spectral power distribution of 

daylights and the spectral reflectance of surfaces in natural scenes, some 

theoretical colour samples may never appear in natural scenes. For instance, the 

optimal colours [102] were not found in the 50 hyperspectral images [71, 87]. 

Indeed, colour stimuli in natural scenes are very constrained compared with the 

theoretical limits [103].  

In principle, the volume of the colour gamut in real scenes may represent an 

approximate description of the colour information contained in a scene. For 

instance, to anticipate a later analysis, the estimated volume of the colour gamut 

of Figure 4.1 is larger than the one of Figure 4.2 (see Chapter 4, Section 4.2). 

Correspondingly, there are many distinguishable colours that can be identified in 

Figure 4.1, but only a few distinguishable colours in Figure 4.2.  
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Figure 4.1: A natural scene with many colours under daylight (6,500 K). 

 

Figure 4.2: A natural scene with few colours under daylight (6,500 K). 

This image has been intentionally brightened by using different gamma 

correction. 
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If surface colours in natural scenes were distributed in a similar way to the colour 

samples in the Musell colour system [104], the volume of the colour gamut 

within the Munsell colour system would certainly be good description of colour 

information such as identifiablity. In other words, the bigger the gamut, the more 

identifiable the colours. But colours in natural scenes are not distributed in this 

way: some colours can appear more frequently than others in natural scenes. In 

addition, there are many colours in natural scenes which are not included in the 

Munsell colour system. The question is then to what extent or under what 

circumstances, the volume of the colour gamut can be a good description of the 

colour information in natural scenes. 

Two different methods are available to estimate the volumes of the colour gamut 

of natural scenes. First method is based on convex hull algorithms, which relies 

on the assumption that the colour gamut of natural scenes is a convex hull in a 

three-dimensional colour space. Another method is based on a cube-counting 

algorithm, which counts the number of colours in the gamut by segmenting the 

colour space into ‘colour cubes’. Each colour cube represents one colour in a 

scene. This chapter demonstrates that given a reasonable colour difference 

threshold for the colour cubes, the volumes of the colour gamut of natural scenes 

calculated by a cube-counting algorithm is a good description of the uncertainty 

of colour appearance in natural scenes. 

 

4.1 Gamut measured by convex hull algorithms 

Convex hull algorithms are often used for gamut mapping in the colour 

reproduction industry [105]. Because different colour reproduction devices have 

different colour gamuts, gamut mapping is necessary to make sure that all the 

colours are located inside of the new gamut after the transformation of gamut 

between different devices. The method of gamut mapping is applied here to 

calculate the volume of the colour gamuts of natural scenes. 

 



 

 

78 

 

4.1.1 Preliminary convex-hull measurements 

In principle, within a perceptually uniform colour space, the volume of the colour 

gamut is more likely to be a good description of colour information of a scene 

than within a non-uniform colour space. Thus, the attributes of a colour such as 

L*, a* and b* within CIELAB and J, aC and bC within CIECAM02 were chosen 

as coordinates in a three-dimensional Euclidean space to measure the volume of 

the colour gamut. In the simulations reported here, natural scenes were 

illuminated by daylights with CCTs of 4,000 K, 6,500 K and 25,000 K, and all 

the illuminants were assumed to be constant, direct and global. The volumes of 

the colour gamut of the natural scenes under the daylights were initially 

estimated by the Matlab function ‘convhull’ (Matlab version: 2010a). The means 

and standard deviations of the estimates of the volumes within CIELAB and 

within CIECAM02 are given in Table 4.1 and Table 4.2, respectively. Within 

CIELAB, both full chromatic adaptation and no chromatic adaptation were 

applied. In Table 4.1, the second and third columns show the results obtained 

without chromatic adaptation and the fourth and fifth columns show the results 

obtained after full adaptation (degree 1 in CMCCAT2000 [106]). CMCCAT2000 

is a chromatic adaptation transform which can predict the corresponding colour 

appearance under different illuminants. Within CIECAM02, different degrees of 

chromatic adaptation were applied. In Table 4.2, the second and third columns 

show the results obtained after full adaptation (degree 1 in CAT02 [65]) and the 

fourth and fifth columns show the results obtained after the default degree of 

adaptation (degree 0.92 in CAT02 [65]); the technical parameters are detailed in 

Chapter 8 Section 8.1. 

Table 4.1: Means and SDs of the volume of colour gamut of natural scenes 

within CIELAB, estimated by convex-hull algorithm 

CCT of 

daylights 

No adaptation Adaptation to 6,500 K 

Mean SD Mean SD 

4,000 K 8.90×10
4
 5.44×10

4
 8.78×10

4
 5.35×10

4
 

6,500 K 8.49×10
4
 5.21×10

4
 Not applicable Not applicable 

25,000 K 7.59×10
4
 4.68×10

4
 8.26×10

4
 5.07×10

4
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Table 4.2: Means and SDs of the volumes of the colour gamut of natural scenes 

within CIECAM02, estimated by convex-hull algorithm 

CCT of 

daylights 

Fully adapted at 6,500 K
 

Default adapted at 6,500 K
 

Mean SD Mean SD 

4,000 K 7.77×10
4
 5.14×10

4
 10.30×10

4
 6.76×10

4
 

6,500 K 9.23×10
4
 5.88×10

4
 12.41×10

4
 7.82×10

4
 

25,000 K 11.00×10
4
 6.40×10

4
 14.86×10

4
 8.66×10

4
 

 

As Table 4.1 and Table 4.2 show, with the same degree of adaptation, the 

standard deviations of the estimated volumes of colour gamuts of natural scenes 

under each of the three daylights are fairly large, larger than the half of the 

average volume. These large standard deviations reflect the large variations of 

the colour gamuts between different scenes (see earlier examples in Figure 4.1 

and Figure 4.2). 

Table 4.1 shows that the effect of different degrees of chromatic adaptation on 

the estimated volumes of the colour gamuts within CIELAB is small. Within 

CIELAB, the differences between full and no chromatic adaptation in average 

volumes are 1194 and 6644, and the differences in standard deviation are 864 

and 3886, with the daylight with CCT of 4,000 K and 25,000 K respectively. But 

the effect of different degrees of chromatic adaptation on the volumes within 

CIECAM02 is very large, especially taking the small difference between degrees 

of adaptation into consideration. As shown in Table 4.2, the differences between 

full and no chromatic adaptation in average volumes are 2.53×10
4
, 3.19×10

4
 and 

3.87×10
4
, and the differences in standard deviation are 1.61×10

4
, 1.94×10

4
, and 

2.26×10
4
, with the daylight with CCT of 4,000 K, 6,500 K and 25,000 K 

respectively. 

One area of concern with convex-hull estimates is that the colour gamut of 

natural scenes is not always convex. In order to obtain a more accurate estimate 

and test the robustness of the convex hull algorithm, a modified convex hull 

algorithm was introduced, as described in next section. 
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4.1.2 Modified convex-hull measurements 

One consequence of the colour gamut not being convex is that a convex-hull 

algorithm will give an inflated estimate. There are, however, several modified 

convex-hull algorithms which are designed to reduce over estimation [105, 107, 

108]. The fundamental idea of the widely used modified convex-hull algorithm 

introduced in [108] is to increase the probability of finding correct vertices on the 

surfaces of a hull by inflating the hull. The volume can then be calculated like a 

polyhedron. If the idea is feasible for the estimation of the volume of the colour 

gamut of natural scenes, the volume of the colour gamut should be 

approximately equal to the sum of the volumes in sub-spaces. For instance, 

within CIECAM02, if a three-dimensional Euclidean space whose coordinates 

are J, aC, and bC is divided into eight octants with the centre at [50, 0 ,0], then the 

sum of the volumes located in eight divisions should be approximately equal to 

the volume calculated as a whole. But as Table 4.3 shows, there is a very large 

difference between the volume as a whole and the sum of the volumes of its eight 

parts. In addition, the volumes estimated by the modified convex-hull algorithm 

were even larger than the results given in Table 4.2. The large disparity of the 

volumes calculated by two methods and the more inflated volumes calculated by 

the modified convex-hull algorithm mean that the modified convex-hull 

algorithm designed for the gamut mapping cannot eliminate the effect of over 

estimation of the colour gamuts of natural scenes. 

Table 4.3: Comparison between the volumes of the colour gamuts of natural 

scenes within CIECAM02, estimated by the modified convex hull algorithm 

CCT of 

daylights 

Whole volume Sum of volumes of eight parts 

Mean SD Mean SD 

4,000 K
a
 9.64E+04 6.39E+04 7.25E+04 5.12E+04 

6,500 K 1.17E+05 7.45E+04 8.74E+04 5.70E+04 

25,000 K 1.39E+05 8.17E+04 1.06E+05 6.01E+04 

a
All CIECAM02 attributes were obtained with chromatic adaptation to a daylight with CCT of 

6,500 K. Default values were used for the CIECAM02 specification. 
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It is clear that both the conventional and modified convex hull algorithms are not 

capable of accurately estimating the volume of the colour gamut of natural 

scenes. To accurately estimate the volumes of colour gamut of natural scenes, an 

alternative method is needed. 

 

4.2 Gamut measured by cube-counting algorithm 

As indicated at the beginning of this chapter, the volume of a colour gamut can 

be estimated by segmenting the colour space into unit cubes [103]. This method 

does not require a assumption of the convexity of the colour distribution in 

colour space. The perceptual attributes L*, a*, and b* within CIELAB and J, aC, 

and bC within CIECAM02 can be used as coordinates in a three-dimensional 

Euclidean space to calculate the volumes of the colour gamut, as illustrated in 

Figure 4.3. The number of colours is counted as the number of cubes that contain 

at least one colour sample. The volume of the colour gamut is the product of the 

number of colours and the volume of a unit cube, which defines the smallest 

distinguishable colour region. This method is robust against the choice of the 

starting point in the specified coordinate system [103]. But a major disadvantage 

of this method is that it is difficult to determine the appropriate colour difference 

threshold defining the unit cube. To compare the effect of variations in threshold, 

seven different thresholds within CIECAM02 were used in measurements of the 

volumes of the colour gamuts of natural scenes. As a control, the volumes of the 

colour gamuts within CIELAB were also evaluated.  
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Figure 4.3: Representation of colour samples of a natural scene within the colour 

space CIECAM02. The samples of colour were spatially down-sampled by factor 

20 along with each spatial axis of the image. 

 

4.2.1 Relationship between volume of colour gamut and colour 

difference threshold 

To understand the relationship between the gamut volumes and colour difference 

threshold, it is helpful to consider their variation with a known colour 

distribution. Suppose that there is a scene with 10
5
 pixels distributed uniformly 

within a three-dimensional colour space, and that each pixel has a different 

colour. Suppose also that the range of the perceptual attributes of colours is 0 to 

100 in each dimension. Let the colour difference threshold ∆E
thr

 range from 0.1 

to 2 with 0.1 interval. The volume of a unit cube is thr 3E（ ）. The results are 

shown in Figure 4.4: if the cube is small enough so that it contains only one 

colour, the volume of the colour gamut increases linearly as the volume of the 

cube increases, but as each cube contains more and more one colours, the 

gradient decreases. 
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Figure 4.4: Relationship between the volume of the colour gamut and the volume 

of the unit cube with colours uniformly distributed in colour space. The linear 

part is shown in blue. 

 

Notice that the colour distributions obtained from natural scenes under daylights 

are different from the uniform distribution considered here. There may be many 

samples concentrated in a small region of space with just a few samples 

sporadically distributed over other parts of colour space. 

 

4.2.2 Estimated gamut volume within CIECAM02 

As noted earlier, the estimated gamut volumes are affected by the choice of the 

colour difference threshold of the cube. To encompass typical thresholds within 

CIECAM02 [70, 89, 90], initially the threshold ∆E
thr

 was set, in turn, to 0.5, 0.6 

and 1. But for theoretical study, the extreme colour difference threshold ∆E
thr

 

that ranged from 0.1 to 0.4 with interval of 0.1 was also tested. Table 4.4 shows 

the results of the estimated volumes of the colour gamuts within CIECAM02 

with the default chromatic adaptation, whereas Table 4.5 shows the results of 
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volumes of the colour gamuts with the full chromatic adaptation (parametric 

setting detailed in Chapter 8, Section 8.1). 

 

Table 4.4: Colour gamuts of the 50 natural scenes under daylights within 

CIECAM02 with the default chromatic adaptation to a daylight with CCT of 

6,500 K. Entries show estimated average colour-gamut volumes of colour gamut. 

CCT of 

daylights 

∆E
thr

 

0.1 0.2 0.3 0.4 0.5 0.6 1 

4,000 K 304 1767 4065 6645 9266 11831 21403 

6,500 K 313 1902 4516 7516 10587 13611 24931 

25,000 K 318 2033 5067 8738 12590 16424 30800 

 

Table 4.5: Colour gamuts of the 50 natural scenes under daylights within 

CIECAM02 with the full chromatic adaptation to a daylight with CCT of 6,500 

K. Entries show estimated average colour-gamut volumes of colour gamut. 

CCT of 

daylights 

∆E
thr

 

0.3 0.5 0.6 1 

4,000 K 3510 7692 9740 21183 

6,500 K 3888 8696 11069 24748 

25,000 K 4421 10417 13414 30528 

 

Unless the colour difference threshold represents the discriminable colour 

difference for observers [103, 109], the actual values of the gamut volumes do 

not have any physical meaning. But as a relative quantity, is the gamut volume a 

good description of the colour information contained in a natural scene under a 

certain illuminant? 

 

4.2.3 Gamut volume and colour entropy within CIECAM02 

As noted in Chapter 3, the colour information of natural scenes under certain 

illuminants can be quantified by the differential entropy and mutual information. 

If the volume of the colour gamut of natural scenes is a good description of the 
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colour information, the volume should have a strong dependence on some of 

these informational quantities. To give a more intuitive example, with an 

appropriate colour difference threshold, the estimated volumes of the colour 

gamuts of Figure 4.1 and Figure 4.2 within CIECAM02 shown in Table 4.6 

should be a good relative quantity to estimate the colour information contained in 

the images. The question then is what the appropriate colour difference threshold 

is. 

Table 4.6: Volumes of the colour gamut within CIECAM02 of Figure 4.1 and 

Figure 4.2 with different colour difference thresholds. Entries show estimated 

volumes of the colour gamut. 

 ∆E
thr

 

0.1 0.2 0.3 0.4 0.5 0.6 1 

Figure 4.1 336 2469 7083 13754 21881 30840 70293 

Figure 4.2 268 1338 2935 4754 6637 8505 15298 

 

To answer this question, a simple linear model was constructed of the 

relationship between the gamut volumes and the entropy of colours. The 

logarithm of the volume of the colour gamut was linearly regressed on the 

estimated differential entropy within CIECAM02 with the default or full degree 

of chromatic adaptation under a daylight with CCT of 6,500 K, as shown in 

Table 4.7 and Table 4.8. All values of R
2
 were adjusted for the degrees of 

freedom associated with different numbers of regressor variables [110]. As 

shown in Table 4.7, when ∆E
thr

 = 0.3, the regression of the logarithm of the 

volume of colour gamut on the estimated differential entropy of colours was the 

strongest within CIECAM02 with the default degree of chromatic adaptation. 

The maximum adjusted value of R
2
 was 0.94, independent of the CCT of the 

illuminant. 
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Table 4.7: Linear regression over 50 natural scenes of the logarithm of the 

volume of the colour gamut on the estimated differential entropy within 

CIECAM02 with default chromatic adaptation under a daylight with CCT of 

6,500 K. Entries show adjusted values of R
2
. 

CCT of 

daylights 

∆E
thr

 

0.1 0.2 0.3 0.4 0.5 0.6 1 

4,000 K 0.75  0.92  0.94  0.91  0.87  0.83  0.74  

6,500 K 0.72  0.90  0.94  0.92  0.89  0.85  0.76  

25,000 K 0.70  0.90  0.94  0.92  0.88  0.85  0.73  

 

Table 4.8: Linear regression over 50 natural scenes of the logarithm of the 

volume of the colour gamut on the estimated differential entropy within 

CIECAM02 with full chromatic adaptation under a daylight with CCT of 6,500 

K. Entries show adjusted values of R
2
. 

CCT of 

daylights 

∆E
thr

 

0.3 0.5 0.6 1 

4,000 K 0.92  0.85  0.82  0.73  

6,500 K 0.93  0.87  0.83  0.75  

25,000 K 0.93  0.86  0.82  0.72  

 

In the following, the number of colours in a gamut is taken to be the number of 

samples obtained by sampling with a given threshold, and the sampling is 

referred to as ‘colour sampling’. Although there was strong correlations between 

the gamut volume and entropy of colours for ∆E
thr

 = 0.3, this strong dependence 

must not be over interpreted.  

To understand the conditions that make this strong dependence possible, it is 

useful to consider a simplified version of this correspondence. The number of 

colours can be treated as an ill-defined version of the discrete distribution that 

has equal probability over the usually discontinuous support set, since the bin 

width (colour difference threshold) is arbitrary. Consider the colour specified by 

just one parameter, luminance. Let the number of colours be q; then the discrete 

entropy of the colours after the colour sampling will be log q . On the other hand, 
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the differential entropy is determined by the range of support set and the 

distribution within this range. For some small thresholds, the ill-defined discrete 

entropy may have strong dependence on the corresponding differential entropy, 

which means that the logarithm of the number of colours will have strong linear 

regression on the differential entropy. But if the threshold is too small, the 

number of colours will be simply equal to the number of pixels in the scene, and 

the strong dependence will disappear. The situation in a three-dimensional space 

is more complicated, but the simulations show that a strong regression is still 

possible for certain ∆E
thr

. 

 

4.2.4 Gamut volumes and colour entropy within CIELAB 

The relationship between gamut volumes and colour entropy within CIELAB 

was also examined as a comparison. The colour space CIELAB is also an 

approximate perceptually uniform colour space, but it is less uniform than 

CIECAM02, especially for very small colour difference when 1thrE   [111]. 

The unit Euclidean distance was used as one of the colour difference threshold 

within CIELAB, since it was originally designed to represent the just noticeable 

difference (JND). Table 4.9 summarizes the linear regressions over 50 natural 

scenes of the logarithm of the volume of the colour gamut on the estimated 

differential entropy of colours within CIELAB without chromatic adaptation.  

Table 4.9: Linear regression over 50 natural scenes of the logarithm of the 

volume of the colour gamut on the estimated differential entropy within CIELAB, 

with different colour difference thresholds. Entries show adjusted values of R
2
. 

CCT of 

daylights 

∆E
thr

 

1 0.5 0.3 0.1 0.05 

4,000 K 0.45  0.60  0.71  0.76  0.59  

6,500 K 0.46  0.61  0.72  0.77  0.59  

25,000 K 0.47  0.61  0.72  0.78  0.59  

 

Compared with the results within CIECAM02, the linear regression of the gamut 

volume on the estimated differential entropy is weaker within CIELAB. The 
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perceptual non-uniformity within CIELAB may be the major cause of the weaker 

dependence of gamut volume on the uncertainty of colour appearance in natural 

scenes. 

 

4.2.5 Colour distribution and flat entropy 

The density of the colour distribution in a colour space is not taken into 

consideration when the volumes of the colour gamuts are calculated by the cube-

counting algorithm. If one cube is treated as one colour, then the colour 

distribution after the colour sampling will be flatter than the natural colour 

distribution in natural scenes. Is the gamut volume still a good description of the 

uncertainty of these colours after the colour sampling? In other words, if a colour 

only appears once in a scene, can the gamut volume represent the uncertainty of 

the colour appearance? The differential entropy of colours obtained after the 

sampling is referred to as ‘flat entropy’ in the following discussion. 

Colour sampling is a procedure for selection, and the samples that are selected to 

represent unit colour cubes inevitably affect the values of the flat entropy. The 

differences between the flat entropies calculated by two different selection seeds 

were calculated. 

Table 4.10 shows that compared with the flat entropies which are always larger 

than 10 bits given the colour difference thresholds used in this section, the 

variation caused by the colour sampling procedure on the flat entropy is 

negligible. Another area of concern of with accuracy of flat entropy is that the 

number of samples decreases after colour sampling. The colour difference 

thresholds used here, however, were constrained to be sufficiently small that 

most sets still had more than 10
4
 samples, which is unlikely to result in a 

significant bias. 

 

 

 



 

 

89 

 

Table 4.10: Mean of the differences between flat entropies calculated from two 

sets of samples with different selection seeds. Entries show the mean of the 

differences. 

CCT of 

daylights 

∆E
thr

 

 0.3 0.5 0.6 1 

4,000 K 4.16×10
-3

 6.91×10
-3

 9.50×10
-3

 13.3×10
-3

 

6,500 K 3.40×10
-3

 5.12×10
-3

 6.66×10
-3

 15.5×10
-3

 

25,000 K 4.04×10
-3

 5.46×10
-3

 6.95×10
-3

 10.7×10
-3

 

 

The flat entropies calculated here can be treated as the lower bound of the true 

value of the entropy of the colours after sampling. Table 4.11 shows the linear 

dependence of the logarithm volume of the colour gamut on the estimated flat 

entropy within CIECAM02. For colour thresholds ranging from ∆E
thr

 = 0.4 to 1, 

the correlation is extremely strong. However, when the colour difference became 

smaller, the correlation becomes weaker. The results in Table 4.11 mean that 

when 1 0.4thrE   , the logarithm volume of the colour gamut can be a good 

description of uncertainty of colours after the colour sampling; that is, each 

distinguishable colour only appear once in a scene. 

Table 4.11: Linear regression over 50 natural scenes of the logarithm of the 

volume of the colour gamut on the estimated flat entropy within CIECAM02 

with default chromatic adaptation. Entries show adjusted values of R
2
. 

CCT of 

daylights 

∆E
thr

 

0.1 0.2 0.3 0.4 0.5 0.6 1 

4,000 K 0.56  0.75  0.85  0.91  0.94  0.95  0.97  

6,500 K 0.53  0.82  0.82  0.89  0.92  0.95  0.97  

25,000 K 0.50  0.81  0.81  0.87  0.92  0.94  0.97  

 

Compared with the regression of the gamut volume on the differential entropy, to 

interpret the regression of the gamut volume on the flat entropy is more difficult 

since the flat entropy changes along with the change of the colour difference 

threshold. There is no analytical expression to describe the changes of the 

distribution. The strong dependence only means that over 50 natural scenes, for 
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certain colour difference thresholds, the number of colours can be a good 

description of the uncertainty of themselves. 

 

4.3 Summary 

This chapter is to answer to what extent or under what circumstances, the volume 

of the colour gamut can be a good description of the colour information in 

natural scenes. The dependence between the gamut volume and differential 

entropy was used to test how good the description is. 

Both the conventional and modified convex-hull algorithms are not suited to 

estimating the volumes of the colour gamuts because these algorithms ignore the 

fact that colour distributions within a colour space of a natural scene can be 

concave. On the other hand, given an appropriate colour difference threshold, the 

logarithm volumes of the colour gamuts calculated by the cube-counting 

algorithm showed very strong linear dependence on the estimated differential 

entropy over 50 natural scenes for certain colour difference thresholds. The 

volume calculated by the cube-counting algorithm is the product of the number 

of colours and the volume of a unit cube. Because the volume of a unit cube is a 

constant, the strong linear dependence still holds if the number of colours was 

regressed on the differential entropy. It suggests that if the distinguishable colour 

difference ∆E
thr

 within CIECAM02 is between 0.2 and 0.6, the volume of colour 

gamut or the number of distinguisbale colours can be a good description of the 

uncertainty of the colour appearance in natural scenes.  

This strong dependence is affected by three factors. First is the uniformity of 

colour space. That is the reason that the dependence within CIECAM02 is much 

stronger than the dependence within CIELAB. Second is the choice of the colour 

difference threshold. The strong dependence only exists for certain thresholds 

within CIECAM02 and CIELAB, as shown in Table 4.7, Table 4.8 and Table 4.9. 

Third is the colour distribution in natural scenes. Imagine that images captured 

by a camera with the spatial resolution that is much better than the eye, it is 

unlikely that the gamut volumes of these kind of images have strong dependence 
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on the entropy of colours. The colour distribution related to the human vision in 

natural scenes makes it possible to model the uncertainty of colour appearance on 

the gamut volumes. 
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Chapter 5. Exploratory analysis of 

reflectances in natural scenes 
 

As noted earlier, colour is often used for surface identification. But the 

phenomenon of metamerism means that sometimes colour is an unreliable signal, 

because colour appearance may change when the illumination or observer 

changes. On the other hand, the spectral reflectances of surfaces are physical 

properties of surfaces, and they do not change when the illumination or observer 

changes.  

Despite the much analysis of the reflectances of Munsell colours and selected 

colour patterns [112-118], only limited research has been focused on reflectances 

of the surfaces with relevance to human vision in natural scenes [90, 119]. The 

aim of this chapter is to address three questions about these reflectances. First, 

how many basis functions of spectral reflectances are needed for an accurate 

approximation of spectral reflectances in natural scenes? Second, does any basis 

function represent the feature of a real pigment? Third, what are the features of 

the spectral reflectances of perceived metamerism? 

 

5.1 Analysis of reflectances in natural scenes 

To analyze the spectral reflectances of natural scenes, 50 hyperspectral images 

[71] as described in Chapter 1, Section 1.2, were used in the work reported in this 

chapter. The estimated effective spectral reflectances at each pixel were obtained 

by dividing the spectral radiance by the spectral radiance of a neutral reference 

surface [71]. Nevertheless, because some surfaces oriented at an angle to the 

camera may reflect more light than vertical surfaces, their effective spectral 

reflectances may exceed unity [71]. For computational convenience and 

consistency, if this maximum value was larger than unity, the spectral 

reflectances of the whole scene were normalized against the maximum value of 

spectral reflectance over all the measured wavelengths. For the purpose of this 

analysis, the spectral reflectances at extreme visible spectrum (400 nm, 410 nm, 
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710 nm, and 720 nm) were discarded owing to the low signal-to-noise ratios at 

these wavelengths. 

In accordance with previous research [112, 113, 115, 116, 118-121], as a first 

step, principal component analysis (PCA) was applied to the set of spectral 

reflectances in natural scenes. Alternative decomposition techniques were then 

used because of their technical advantages over PCA. 

 

5.1.1 PCA on spectral reflectances in natural scenes 

Principal component analysis (PCA) uses orthogonal transformation to 

decompose data into basis functions and their respective weights. To answer the 

first question raised at the beginning of this chapter, reflectances were 

approximated by using certain number of basis functions, and then the 

approximations were compared with the original reflectances according to two 

different criteria [113, 121]. One criterion is based on the mathematic accuracy 

of the approximations, such as variance and goodness of fit; the other criterion is 

based on the colorimetric quality of the approximations. To answer the second 

question, the basis functions of spectral reflectances were compared with the 

reflectances of real pigments. 

One should be aware that there are two different types of covariance matrix used 

in PCA: zero-centred [122] and mean-centred [85], as discussed in [123]. The 

difference between the two methods is that for the mean-centred matrix, the 

mean spectrum is subtracted from the original data. If the subtracted mean 

spectrum is not treated as one of the principal components, the mean-centred 

method will give the better fit to original data for a given number of principal 

components. In the following part of this section, mean-centred PCA was used to 

obtain basis functions as principal components from each individual natural 

scene. 
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5.1.1.1 Mathematical accuracy of approximations 

One property of PCA is that the first principal component accounts for the largest 

variability in the data. For both the Munsell colour chips [121] and the natural 

scenes [119], 95% and 99% of variance of the spectral reflectances can be 

accounted by a linear model with two and three basis functions, respectively 

[113].   

For the 50 natural scenes used here [71], on average, the first two basis functions 

accounted for more than 95% of the variance of the spectral reflectances in 

natural scenes, as shown in Table 5.1. But on average, three basis functions were 

not able to account for 99% of the variance of the spectral reflectances. In 

addition, more basis functions were needed to account for the same percentage of 

the variance from the predominantly vegetated scenes than the predominantly 

non-vegetated scenes. It is because that the first basis functions of the spectral 

reflectances in predominantly non-vegetated scenes may account for higher 

percentage of variance owing to possibly more uncorrelated spectra information. 

On the other hand, there are many surfaces such as leaves and grasses in the 

predominantly vegetated scenes that have subtle differences in spectral 

reflectance within the same group. As a result, the majority of variation cannot 

be described by one basis function. 

Table 5.1: Number of the basis functions accounting for the variance of spectral 

reflectances in 50 natural scenes. Entries show means (SDs) of the number of 

basis functions accounting for the percentage of variance. 

Percentage All scenes Non-vegetated Vegetated 

95 1.74 (0.60) 1.43(0.51) 1.97 (0.57) 

99 3.54 (1.90) 2.43 (0.75) 4.34 (2.07) 

 

Another mathematical quantity to measure the accuracy of the approximated 

spectral reflectances is goodness of fit. But some basis functions obtained from 

PCA have negative values, which may leads to negative reflectances. There were 

some approximated reflectances that exceed unity as well. The pixels with these 

physically unrealistic reflectances were subsequently discarded. Table 5.2 shows 

the number and percentage of these discarded pixels over 50 natural scenes. 
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Table 5.2: The number and percentage of pixels which posses unrealistic spectral 

reflectances after reproduction by PCA 

   Number of basis functions 

 3 4 5 6 7 8 

Negative Number 1062649 982169 925237 933829 923370 914410 

Percentage
a 

6.24% 5.76% 5.43% 5.48% 5.42% 5.37% 

Exceed unity Number 17 7 8 6 6 6 

Percentage 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

a
The total number of pixels in the 50 natural scenes is 17037540. 

 

To calculate the goodness of fit of the approximations, the approximated spectral 

reflectances for each pixel were regressed on the original reflectances with only 

one explanatory variable, which excludes the constant. The R
2
 of the linear 

regressions are shown in Table 5.3.  

Table 5.3: Simple linear regression of reproduced reflectances on original 

reflectances in 50 natural scenes. Entries show values of R
2
. 

  Number of basis functions 

 3 4 5 6 7 8 

Mean 0.86  0.90  0.92  0.93  0.94  0.95  

SD 0.08  0.06  0.05  0.04  0.04  0.03  

 

It is difficult to determine the minimum number of basis functions for accurate 

approximations, which depend on the specific requirements defining accuracy in 

different applications. But the simulation in this section shows the relationship 

between the number of basis functions of the spectral reflectances in natural 

scenes and the accuracy of approximations based on mathematic quantities. In 

next section, a vision-related approach will be introduced to measure the 

colorimetric quality of the approximated spectral reflectances. 
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5.1.1.2 Colorimetric quality of approximations 

To quantify the colorimetric quality of the approximated spectral reflectances, 

the colour difference between the colour signal reflected from the original and 

the approximated reflectances were used as measurements. But unlike the 

previous studies, which used chromaticity [121] or the Euclidean distance within 

CIELAB [90, 124], the Euclidean distance within CIECAM02 was used in this 

section because of its better perceptual uniformity. 

The illuminant on both types of reflectances was assumed to be a global, direct 

and uniform daylight with a CCT of 6,500 K. The CIE 1931 standard observer 

was used as the observer, who was assumed to be chromatically adapted to the 

illuminant. The parametric specifications of CIECAM02 used here are detailed in 

Chapter 8, Section 8.1. 

Table 5.4 shows that, as expected, the colour difference ∆E decreases as the 

number of basis functions used for approximations increases. On average, under 

the daylight of CCT of 6,500 K, the colour differences between the colour 

signals reflected from the original and the approximated reflectances in the 

predominantly non-vegetated scenes were smaller than those in the 

predominantly vegetated scenes. If the distinguishable colour difference 

threshold within CIECAM02 is 0.6, on average at least 8 basis functions are 

needed to accurately reproduce the spectral reflectance in natural scenes. This 

finding is consistent with [90]. 
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Table 5.4: Colorimetric quality of approximated spectral reflectances in natural 

scenes. Entries show the means and SDs of colour differences within 

CIECAM02. 

   Number of basis functions 

 3 4 5 6 7 8 

All scenes Mean 2.40  1.45  1.05  0.82  0.66  0.52  

SD 1.29  0.70  0.44  0.34  0.30  0.27  

Non-vegetated Mean 1.72  1.16  0.89  0.69  0.54  0.38  

SD 0.77  0.54  0.36  0.24  0.21  0.15  

Vegetated Mean 2.90  1.66  1.18  0.91  0.75  0.62  

SD 1.37  0.73  0.45  0.37  0.33  0.30  

 

Technically speaking, PCA does not guarantee the minimal visual difference 

between the lights reflected from the original and approximated spectral 

reflectances. Thus, the results here only mean that for a linear model, if the 

distinguishable colour difference is set to 0.6 within CIECAM02, it needs at least 

8 principal components to reproduce a spectral reflectance that is visually 

indistinguishable under a daylight with CCT of 6,500 K. 

 

5.1.1.3 Interpretation of basis functions 

For the spectral reflectances of the 50 natural scenes [71], the curves of the first 

basis functions were relatively flat, as shown in Figure 5.1. This indicates that the 

variation of reflectances in natural scenes were relatively uniform distributed 

over wavelengths. If the reflectances were therefore approximated with only one 

basis function, the corresponding images under daylights would be monochrome. 

It indicates that the largest variation in colour signals reflected from the surfaces 

are the achromatic signals, i.e., luminance, as mentioned in [125]. But the second 

and third basis functions were quite different over different scenes. Indeed, even 

for predominantly vegetative scenes that contain largely green colours, the 

second and third basis functions did neither share much similarity over different 

scenes, nor resemble the peaks of reflectances curves of chlorophyll [126, 127]. 
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Figure 5.1: The first basis functions of the sets of spectral reflectances from four 

natural scenes. 

 

5.1.2 Alternative methods of reflectance analysis 

5.1.2.1 Independent component analysis 

PCA helps quantify the importance of each dimension in accounting for the 

variance of the data. It requires, however, that each dimension must be 

orthogonal to the previous. This stringent limitation does not benefit some 

datasets arranged along non-orthogonal axes. To address this problem, one 

solution is to impose a more general statistical definition of dependency within a 

dataset, namely within the framework of independent component analysis (ICA) 

[128]. 

Statistical independence means that the joint probability density function of 

variables can be factorized into individual marginal probability density functions. 

The success of ICA depends on the maximization of non-gaussianity and 
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minimization of mutual information [128]. The FastICA algorithm [128] can be 

used to analyse the spectral reflectances of both the Munsell colour chips [129] 

and natural scenes. Nevertheless, it needs an additional criterion to determine the 

order of the independent components [130, 131]. Because of the complexity of 

the different selection criteria, this approach was not taken further. 

 

5.1.2.2 Non-negative matrix factorization 

The spectral reflectances in natural scenes are non-negative. Non-negative matrix 

factorization (NNMF) [132, 133] is an option to decompose spectral reflectances 

into all positive components and their respective weights. This makes it possible 

for basis functions to represent some physical pigment spectra such as 

chlorophyll in predominantly vegetated scenes. 

Previously, it was suggested that NNMF can reveal colour names based on the 

basis functions obtained from spectral reflectances of the Munsell colour chips 

[134]. It is an interative optimization algorithm which is guaranteed to find a 

locally optimal solution to matrix factorization [132, 133]. The NNMF algorithm 

introduced in [135] was used here. One concern with the NNMF to spectral 

reflectances, however, is the inconsistency of the basis functions caused by the 

different number of iterations. When the number of repetitions of the 

factorisation was set to 50, the basis functions of a set of 1269 

spectrophotometer-measured Munsell colour were similar to the results shown in 

[134] and Figure 5.2. When the number of repetitions of the factorization was 

increased to 200, the basis functions changed little, as shown in Figure 5.2. This 

shows that the number of iterations of NNMF has limited influence on the basis 

functions of the spectral reflectances of the Munsell colour chips.  
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(a) 

 

(b) 

Figure 5.2: Four basis functions computed by NNMF with different number of 

iterations of the update rules for the spectral reflectances of a set of 1269 Munsell 

colour chips. The ordinates are in arbitrary scale. (a) 50 times iterations, (b) 200 

times iterations. 
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Another concern of the colour naming based on Munsell colours [134] is that the 

spectral reflectances of Munsell colours are smooth functions of wavelength as 

opposed to the reflectances of surfaces in natural surfaces, where small-scale 

surface structure can cause complicated variations in the reflected light [72, 87]. 

In addition, the Munsell collection does not take the frequency of colour 

appearance in the real world into consideration.  

To test the capacity of colour naming based on NNMF in natural scenes, eight 

predominantly vegetated scenes were selected for analysis. The four basis 

functions computed by NNMF for the spectral reflectances of one natural scene 

were shown in Figure 5.3. The basis functions do not have narrow-banded peaks, 

which mean that the colour names in natural scenes cannot be revealed by 

NNMF. Indeed, according to [134], three basis functions are enough to 

categorize the three dominant colours, red, green and blue. But for predominantly 

vegetated scenes, it is hard to find basis functions which can represent green 

consistently over different natural scenes. Despite the non-negativity offered by 

NNMF, it failed to categorize colours based on the spectral reflectances in 

natural scenes. 
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(a) 

 

(b) 

Figure 5.3: (a) Four basis functions computed by NNMF for spectral reflectances 

of one predominantly vegetated natural scene. (b) The image obtained of the 

corresponding natural scene under the daylight with CCT of 6,500 K 
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5.1.3 Discussion 

Spectral reflectances are physical properties of the surfaces of objects, which are 

continuous functions of wavelength. But the colour signals perceived by the eye 

are often defined by three parameters. Despite the reduction in the freedom of 

dimension, the human visual system is still able to recover most of the spectral 

information available, even with changes in illuminants [92]. To explain this 

capability, it was assumed that spectral reflectances can be approximated by a 

low-dimensional linear model [113, 118, 119, 121, 122, 136]. This assumption 

has been treated as an explanation of the physical possibility of colour constancy 

[114], but the constraints are rarely satisfied [47]. From a colorimetric point of 

view, the minimum number of basis functions needed to approximate the spectral 

reflectances in natural scenes is larger than three, despite about 95% of the 

variance of spectral reflectances being accounted for by two basis functions. 

Nevertheless, it does not necessarily mean that three dimensions is insufficient 

for recovering most of the spectral information in natural scenes. It just showed 

that a three-dimensional linear model is highly unlikely to suffice. 

As shown here, it is difficult to relate any of the basis functions revealed by PCA 

to real pigments. This is because PCA is intended to explain the largest global 

variance. It does not guarantee that the second and third basis functions represent 

the largest variance in the reflectances of a particular pigment or mixture of 

pigments. In addition, if all the spectral reflectances were obtained from the same 

type of surfaces, the second and third basis functions might represent similar 

features. But in natural scenes, the variety of surfaces is very large. PCA did not 

extract any features of one particular pigment from the natural scenes used here. 

By contrast with PCA, ICA does not require orthogonality between basis 

functions, but it needs further criteria for ranking the significance of basis 

functions. NNMF posses some advantages over PCA in spectral reconstruction 

[137], but it seems unreliable for the colour naming of surfaces in natural scenes. 

Colour appearance is also affected by the receptor spectral sensitivities of visual 

system and the power distribution of illumination. If these two factors are not 
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taken into consideration, it is difficult to relate the basis functions to real 

pigments. 

 

5.2 Spectral reflectances and metamers 

As explained in Chapter 2, Section 2.1, two reflecting surfaces are metameric if 

they have the same tristimulus values under a certain illuminant but have 

different spectral reflectances. The large literature on metameric spectral 

reflectances has been focused on the theoretical reproduction of the spectral 

reflectances of exact metamers [80, 138-142]. The general procedure is to 

generate metameric reflectances that have the same tristimulus values given a 

certain illuminant and an observer. But neither the effect of complexity of 

spectral reflectances on metamerism nor the metameric reflectances found in 

natural scenes can be revealed by these methods because the spectral reflectances 

of a metamer set are generated for a pre-assigned triplet of tristimulus values. 

To take a more general approach, two methods were devised to study the spectral 

reflectances of perceived metamers (See Chapter 2, Section 2.1.1). The first 

examined the relationship between the complexity of the synthesized spectral 

reflectances and the frequency of metamerism. The second examined the features 

of the spectral reflectances of perceived metamers (see Chapter 2, Section 2.3) in 

natural scenes. 

 

5.2.1 Complexity of spectral reflectances and metamerism 

For two exact metamers (see Chapter 2, Section 2.1.1), given an illuminant and 

an observer, it has been shown that the curve of the spectral reflectances of two 

metamers should have at least three intersections [3, 143]. Previous research 

showed the number of intersections and the location of the intersections. But the 

question remains that if the spectral reflectances of surfaces have more 

intersections, will there be more perceived metamers [143, 144]? 
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Synthesized spectral reflectances were generated to examine the relationship 

between the complexity of the spectral reflectances and the frequency of 

metamerism (see Chapter 2, Section 2.3.2). Gaussian functions were used to 

generate reflectances because they have been used for modelling both reflectance 

and absorption spectra before [145, 146]. With the physical limits of reflectances, 

i.e. 0 ( ) 1   , the reflectances were obtained by summing different numbers 

of Gaussian functions. To increase the complexity of the reflectances, the centre 

of each Gaussian distribution was kept from the neighbouring Gaussian 

distribution by a distance at least equal to the standard deviation, and the 

standard deviation was kept small, as illustrated in Figure 5.4. These constraints 

mean that in most cases, the number of intersections between reflectances of 

different surfaces increases as the number of Gaussian distributions is increased. 

The spatial resolution of the synthesized reflectance was 400 × 400, and the 

reflectances were assumed to be represented by discrete samples over 

wavelength from 400 nm to 720 nm at 10 nm intervals. 

 

Figure 5.4: Examples of synthesized reflectances. 
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All the synthesized scenes were assumed to be illuminated by the daylights with 

CCTs of 4,000 K, 6,500 K and 25,000 K. The illuminant was assumed to be 

global, direct and uniform. For each synthesized scene, the relative frequency of 

metamerism and the conditional relative frequency of metamerism were 

calculated as mentioned in Chapter 2, Section 2.3.2. A set of 50,000 spectrally 

unique pixels were chosen at random according to a spatial uniform distribution 

for calculation, which means that there are 1249975000 unique pairs. Within 

CIECAM02, the colour difference threshold was set to 0.5, which was within the 

range of typical thresholds [70, 89, 90], and the criterion degree of metamerism 

was set to 1. 

 

Table 5.5: The number of indistinguishable pairs N0 and metamers N1 from 

50000 samples randomly selected from a synthesized scene. 

Number of 

Gaussian 

functions 

Daylights 

4,000 K to 6,500 K 4,000 K to 25,000 K 6,500 K to 25,000 K 

N0 N1 N0 N1 N0 N1 

1 2339209 102396 2335992 191908 2313532 88028 

2 58563 11757 57712 15512 64049 9051 

3 3997 2304 3980 2587 4399 1912 

4 1293 1185 1307 1231 1082 953 

5 1261 1243 1230 1221 997 977 

6 1504 1499 1472 1470 1098 1092 

7 2036 2031 2031 2029 1528 1520 

8 2699 2687 2681 2679 1928 1921 

9 3655 3637 3623 3616 2542 2532 

10 4733 4710 4804 4800 3212 3193 

 

As shown in Table 5.5, the reflectances generated with a smaller number of 

Gaussian functions result in more indistinguishable colours and more metamers. 

But with a larger number of Gaussian functions, most of the indistinguishable 

pairs become distinguishable after a change in illuminant. In other words, the 

surfaces with more complex reflectances have the lower relative frequency of 
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metamerism but the higher conditional relative frequency of metamerism. To 

some extent, if more narrow-banded peaks are located at the wavelengths with 

the maximum spectral sensitivities, there will be more distinguishable colours 

under daylights. That is why when the number of Gaussian functions is 1, the 

numbers of indistinguishable pairs are significantly larger than the others. But 

when the number of Gaussian functions is larger than 7, there is only a slight 

increase of the number of indistinguishable pairs, because some peaks are located 

at the wavelengths with small spectral sensitivities. 

 

Table 5.5 reveals a relationship between the complexity of spectral reflectance 

and metamerism, but it does not tell us the features of the spectral reflectances of 

real perceived metamers in natural scenes. In next section, the real spectral 

reflectances of perceived metamers in natural scene are examined. 

 

5.2.2 Spectral reflectances of metamers in natural scenes 

The structures of the spectral reflectances of metamers have been often discussed 

theoretically, but the reflectances of metamerism in natural scenes are quite 

different. First, exact metamers in natural scenes are very rare. Second, some 

synthesized reflectances (either generated for a pre-assigned tristimulus values or 

by the method introduced in Chapter 5, Section 5.2.1) do not exist in natural 

scenes. To understand the features of the spectral reflectances of metamers in 

natural scenes, several real metameric sets were selected from the 50 natural 

scenes [71]. 

Metamerism was determined within CIECAM02, and the colour difference 

threshold was set to 0.5 with the criterion degree of metamerism of 1, as used in 

Chapter 5, Section 5.2.1. To study the reflectances of metameric set with large 

samples, only the sets with more than 100 metameric surfaces were selected. For 

each metameric set, there was a reference surface, and all the other surfaces were 

metameric to this reference surface. Figure 5.5 illustrates the spectral reflectances 

of four metameric sets in natural scenes, in which the red lines represent the 
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spectral reflectance of the reference surface, and blue lines represent the subsets 

of the spectral reflectance of metameric surfaces. In order to fit the range of the 

spectral reflectances, the vertical axes were scaled accordingly. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.5: Subsets of the spectral reflectances of four metameric sets in natural 

scenes. The red line represents the reflectance of the reference surface, and the 

blue lines represent the reflectances of the corresponding metameric surfaces. 

The metamers were determined within CIECAM02. Colour difference threshold 

0.5thrE   and the criterion degree of metamerism was set to 1. 
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Because there is some allowance of colour difference for metamerism, some of 

the spectral reflectances shown in Figure 5.5 do not have any intersections. As 

mentioned in [144], if the requirement of exact metamerism is relaxed, the 

number of intersections may be reduced. Most of the spectral reflectances of 

metamers are similar to those of the reference surfaces in Figure 5.5 (b), (c) and 

(d). This is because these metameric surfaces may belong to the same group of 

objects, such as leaves or grasses. On the other hand, in Figure 5.5 (a), some 

spectral reflectances of metameric surfaces are different from the reflectances of 

the reference surface. It may suggest that certain metameric surfaces are also 

from different group of objects. 

 

5.2.3 Discussion 

The aim of Section 5.2 is to address the third question raised at the beginning of 

the chapter: what are the features of the spectral reflectances of metamers? 

Although these experiments are illustrative rather than comprehensive, they 

provide an approach to studying the relationship between reflectance and 

metamerism. 

The method used in Section 5.2.1 to generate synthesized reflectances is more 

general than the methods used in previous work which used pre-assigned 

tristimulus values [80, 138-142]. The experiment confirmed that if the 

requirement for exact metamerism is relaxed, the number of intersections of 

reflectances can be fewer than three. It was also shown that for two 

indistinguishable surfaces, the more complex their reflectances, the higher 

probability that they become distinguishable after a change in illuminant. It 

might be argued that there are other methods to generate the synthesized 

reflectances, but the objective of this experiment is to study the effect of the 

complexity of reflectances on the frequency of metamerism.  

Unlike some of the synthesized reflectances generated in Chapter 5, Section 5.2.1, 

the reflectances of surfaces in natural scenes do not have so many peaks. In 

addition, most of the reflectances of metamers shown in Section 5.2.2 are very 
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similar. These similarities may indicate that the majority of metamerism in 

natural scenes comes from surfaces which consist of the same material, such as 

grasses and leaves, and which exhibit the expected biological variation from 

sample to sample. 
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Chapter 6. Predicting frequency of 

metamerism 

 

The method of estimating the frequency of metamerism, which was mentioned in 

Chapter 2, Section 2.3.2, requires a large computation of the comparisons 

between surface colours under different illuminants. On the other hand, the 

colour information contained in a scene under a certain illuminant can be 

estimated by the quantities derived from information theory, such as differential 

entropy and mutual information. Is there a simpler approach based on these 

informational quantities for estimating the frequency of metamerism in natural 

scenes?  

This chapter begins with the estimation of the relative frequency of metamerism 

and the conditional relative frequency of metamerism in natural scenes, then 

continues with models of predicting the frequencies, and ends with the a 

discussion of the predictive power of informational quantities. 

  

6.1 Metamerism in natural scenes 

The treatment here follows that in [71, 87]. Spectral-reflectances were taken 

from 50 hyperspectral images (0, Section 1.2.1) [147, 148]. The colour signals 

under different illuminants were represented by the tristimulus values, and the 

observer was assumed to be the CIE 1931 standard observer. These tristimulus 

values were then transformed into the corresponding coordinates within 

CIECAM02 [149]and CIELAB [150] with respect to D65, respectively. 

The metamers were determined within colour spaces CIECAM02 and CIELAB, 

and a nominal colour-difference threshold value ∆E
thr

 was chosen to represent 

the corresponding distinguishable colour difference within each colour space.  
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The nominal threshold ∆E
thr

 was set, in turn, to 0.5 and 1.0 for both colour spaces, 

in order to encompass typical thresholds for the two spaces [70, 151, 152]. 

As in Chapter 2, Section 2.3.2, let the number of the indistinguishable pairs 

under one illuminant be N0, and from this subset, let the number of the 

distinguishable pairs under another illuminant be N1. If the number of total pairs 

is N, the estimate of the relative frequency of metamerism in this scene is 1 /N N , 

and the estimate of the conditional relative frequency of metamerism is 1 0/N N  

[71]. 

 

6.1.1 Frequency of metamerism within CIECAM02 

In a previous study of the frequency of metamerism [148], samples of 3,000 

points were randomly selected for estimation. To obtain a more accurate estimate, 

50,000 points (about 15% of the total available) were chosen according to a 

spatially uniform distribution on each scene here. The number of total pairs N = 

50,00049,999/2  1.2510
9
 
 
[88].  

For compatibility with [153], the specification with default values for chromatic 

adaptation was used for calculating the CIECAM02 coordinates J, aC, bC as 

mentioned in Chapter 8, Section 8.1. Colour differences between samples within 

CIECAM02 were calculated according to the corresponding Euclidean distance 

[69, 154] because of the approximately perceptual uniformity of CIECAM02. 

Table 6.1 summarizes the estimates of the relative frequency and the conditional 

relative frequency of metamerism in the 50 natural scenes within CIECAM02. 

As shown in Table 6.1, smaller changes in illuminant lead to lower relative 

frequencies and conditional relative frequencies of metamerism in natural scenes. 

This is because larger changes in illuminant produce more distinguishable pairs. 

When the degree of metamerism n = 1 or 2, the larger colour difference threshold 

of ∆E
thr

 = 1 resulted in a higher relative frequency of metamerism than the 

smaller threshold of ∆E
thr

 = 0.5. But when n = 3 or 4, the larger colour difference 

threshold resulted in a lower relative frequency. This result is a consequence of 
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the distribution of the colour difference between pairs. When ∆E
thr

 increases, the 

number of indistinguishable pairs N0 under the first illuminant will increase. This 

may lead to an increase in the number of distinguishable pairs N1 under the 

second illuminant. But when the degree of metamerism n increases, if ∆E
thr

 is too 

large, there will be fewer pairs with colour difference bigger than n∆E
thr

, as 

explained in [71].  

Table 6.1: Relative frequency and conditional relative frequency of metamerism 

in natural scenes, calculated with the Euclidean distances within CIECAM02. 

Entries show the means (SDs) of 10log frequency and conditional frequency. 

Threshold 

∆E
thr

 
 
 

Criterion 

degree
 a
 n 

1
st
 daylight 

CCT, K 

2
nd 

daylight 

CCT, K 

log N1/N log N1/N0 

0.5 1 4000 25000 −3.67 (0.45) −0.11 (0.05) 

  4000 6500 −3.85 (0.46) −0.29 (0.11) 

  6500 25000 −3.93 (0.40) −0.24 (0.13) 

 2 4000 25000 −4.04 (0.38) −0.49 (0.26) 

  4000 6500 −4.95 (0.54) −1.29 (0.56) 

  6500 25000 −4.74 (0.43) −1.05 (0.50) 

 3 4000 25000 −4.50 (0.41) −0.94 (0.48) 

  4000 6500 −5.82 (0.73) −2.27 (0.87) 

  6500 25000 −5.54 (0.64) −1.85 (0.79) 

 4 4000 25000 −4.92 (0.50) −1.37 (0.64) 

  4000 6500 −6.70 (0.98) −3.14 (1.17) 

  6500 25000 −6.25 (0.83) −2.56 (1.01) 

1.0 1 4000 25000 −2.90 (0.14) −0.19 (0.07) 

  4000 6500 −3.14 (0.44) −0.42 (0.14) 

  6500 25000 −3.19 (0.39) −0.35 (0.16) 

 2 4000 25000 −3.55 (0.39) −0.83 (0.33) 

  4000 6500 −4.78 (0.78) −2.06 (0.80) 

  6500 25000 −4.61 (0.60) −1.77 (0.69) 

 3
 b
 4000 25000 −4.41 (0.59) −1.70 (0.71) 

  6500 25000 −6.07 (1.04) −3.24 (1.19) 

 4
 b
 4000 25000 −5.18 (0.80) −2.46 (0.96) 

a
 Multiple of ∆E

thr
 for colour differences under second daylight, giving N1 pairs out of N0 

b
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 
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As the criterion degree of metamerism increased, the variance of the relative 

frequency of metamerism over different scenes generally increased, which is 

consistent with previous findings [71]. To illustrate the variation over different 

scenes, the ranges defined by the logarithm of the ratio of the maximum to the 

minimum relative frequency are summarized in Table 6.2. For a criterion degree 

of metamerism of n = 1, the average log range over the 50 natural scenes was 

1.73, which is greater than 50. For larger degrees of n, the ratios were even 

greater.  

But notably the main cause of the variation in the observed frequency is different 

for different criterion degrees of metamerism. The observed frequency N1/N can 

be decomposed to two factors: N0/N and N1/N0. For degree of n = 1, the average 

range of log N0/N was 1.84 and of log N1/N0 was 0.55, which means that the 

probability of finding indistinguishable pairs under the first daylight accounts for 

more variation in the relative frequency of metamerism than the conditional 

probability of these pairs becoming distinguishable under the second daylight 

[88]. Theoretically, if the probability of finding indistinguishable pairs under the 

first daylight can be described by one quantity, this quantity should have the 

power to predict the relative frequency of metamerism with n = 1. This predictive 

power will be discussed and explained in Chapter 6, Section 6.2. 
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Table 6.2: Difference between maximum and minimum of relative frequency and 

conditional relative frequency of metamerism in natural scenes within 

CIECAM02. 

Threshold
a
 

∆E
thr

 
 
 

Criterion 

degree
a
 n 

1
st
 daylight 

CCT, K 

2
nd 

daylight 

CCT, K 

Range
c
 

log N0/N 

Range
d
  

log N1/N0 

Range
e
  

log N1/N 

0.5 1 4000 25000 1.94  0.24  1.81  

  4000 6500 1.95  0.56  1.90  

  6500 25000 1.90  0.68  1.71  

 2 4000 25000 1.94  1.15  1.59  

  4000 6500 1.94  3.17  2.40  

  6500 25000 1.88  2.29  1.91  

 3 4000 25000 1.94  2.35  2.05  

  4000 6500 1.94  4.15  3.52  

  6500 25000 1.90  3.45  2.88  

 4 4000 25000 1.95  2.87  2.49  

  4000 6500 1.95  4.88  4.66  

  6500 25000 1.90  4.42  3.76  

1.0 1 4000 25000 1.76  0.33  1.59  

  4000 6500 1.77  0.68  1.80  

  6500 25000 1.74  0.83  1.57  

 2 4000 25000 1.76  1.51  1.77  

  4000 6500 1.75  3.85  3.40  

  6500 25000 1.72  2.95  2.85  

 3
b
 4000 25000 1.76  3.14  2.84  

  6500 25000 1.74  5.56  5.38  

 4
b
 4000 25000 1.76  4.03  3.70  

a
 Multiple of ∆E

thr
 for colour differences under second daylight, giving N1 pairs out of N0 

b
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 

c
 Difference between maximum and minimum of log N0

 
/N 

d
 Difference between maximum and minimum of log N1/

 
N0 

e
 Difference between maximum and minimum of log N1/N
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6.1.2 Frequency of metamerism within CIELAB 

To compare with previous estimates [148], smaller samples of 3,000 points were 

also taken for estimation within CIELAB. Because of the limited uniformity 

within CIELAB, the colour differences between samples were calculated 

according to CIEDE2000 [64, 150]. Table 6.3 summarizes the estimates of the 

relative frequency and the conditional relative frequency of metamerism in the 

50 natural scenes within CIELAB. The results are consistent with both previous 

estimates [71] and showed a similar pattern as the estimates within CIECAM02. 

Table 6.3: Relative frequency and conditional relative frequency of metamerism 

in natural scenes, calculated with the CIEDE2000 [91] within CIELAB. Entries 

show the means (SDs) of 10log frequency and conditional frequency. 

Threshold 

∆E
thr

 
 
 

Criterion 

degree n 

1
st
 daylight 

CCT, K 

2
nd 

daylight 

CCT, K 

log N0/N log N1/N0 

0.5 1 4000 25000 −3.47 (0.42) −0.34 (0.16) 

  4000 6500 −3.73 (0.41) −0.60 (0.22) 

  6500 25000 −3.65 (0.43) −0.54 (0.19) 

 2
 a
 4000 25000 −4.27 (0.50) −1.14 (0.51) 

  6500 25000 −5.07 (0.61) −1.95 (0.78) 

 3
 a
 4000 25000 −4.95 (0.55) −1.82 (0.77) 

1.0 1 4000 25000 −2.94 (0.34) −0.58 (0.24) 

  4000 6500 −3.25 (0.35) −0.90 (0.26) 

  6500 25000 −3.17 (0.35) −0.82 (0.25) 

 2
 a
 4000 25000 −4.35 (0.57) −1.99 (0.66) 

a
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 

 

6.2 Predict metamerism 

As mentioned in Chapter 6, Section 6.1.1, if one quantity can predict the 

probability of finding indistinguishable pairs under the first daylight, this 

quantity may have the power to predict the relative frequency of metamerism 

with n = 1. But to predict the relative frequency and conditional relative 

frequency of metamerism with different criterion degrees of metamerism, more 

comprehensive models are needed. In this section, models based on the 
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combinations of the estimated Shannon differential entropies of the colours of 

the scene under the same two daylights were used to predict the relative 

frequency and the conditional relative frequency of metamerism. 

 

6.2.1 Predicting the frequency of metamerism 

6.2.1.1 Models of prediction 

For two continuous random variables,U1 and U2, let h(U1) and h(U2) be the 

differential entropies of the colours under the corresponding daylights, and let 

h(U2, U1) be the joint differential entropy of the pair (U2, U1) [88]. In practice, 

the conditional entropy h(U2, U1) was calculated by using 

2 1 2 1 1( | ) ( , ) ( )h U U h U U h U   [77]. 

The relationship between differential entropy and the relative frequency of 

metamerism depends on the decomposition N1/N = (N0/N)(N1/N0). Because the 

more unpredictable U1 is, the more likely that colour differences will be greater 

than ∆E
thr

, and, therefore, the lower the value of N0/N. Thus, the observed value 

of logN0/N for each scene and pair of daylights might be modelled, to first order, 

by the estimate of h(U1), with a negative coefficient of proportionality, as shown 

in Equation 6.1. 

  0 1 1 1E log( / ) ( ) ,N N h U     6.1 

where E is the expectation, 1 and 1 are scalars, and 1 > 0 [88].  

Another factor N1/N0, which estimates the probability of indistinguishable pairs 

under the first daylight becoming distinguishable under the second daylight, has 

a certain dependence on the degree of uncertainty of U2 given U1, namely the 

conditional differential entropy h(U2, U1). In other words, the more unpredictable 

U2 is given U1, the more likely that colour differences will be greater than n∆E
thr

, 

and, therefore, the higher the value of N1/N0 [88]. Similarly, the observed value 

of log N1/N0 for each scene and pair of daylights might be modelled, to first order, 
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by the estimate of  h(U2 | U1), with a positive coefficient of proportionality, as 

shown in Equation 6.2. 

  1 0 2 2 1 2E log( / ) ( | ) ,N N h U U    6.2 

where 2 > 0 [88]. 

Because log N1/N = log N0/N + log N1/N0, the observed value of log N1/N for 

each scene and pair of daylights might be modelled, to first order, by the 

combination of Equation 6.1 and 6.2. That is, 

  1 1 1 2 2 1 0E log( / ) ( ) ( | ) ,N N h U h U U       6.3 

where 1 and 2 are same as those in Equation 6.1 and 6.2, and 0 = 1 + 2 [88]. 

The Equation 6.3 can be rewritten as 

    1 0 1 1 2 2 1 0E log( / ) ( ) ( | ) ,N N h U h U U         6.4 

where 2 2 1/2

1 1 1 2/ ( )      , 2 2 1/2

2 2 1 2/ ( )       and 2 2 1/2

0 1 2( )    . When 

2 0  , the full model defined by Equation 6.4 is reduced to a restricted model 

defined by Equation 6.5, that is, 

  1 1 1 1E log( / ) ( ) .N N h U     6.5 

And when 1 0  , the full model is reduced to a model defined by Equation 6.6, 

that is, 

  1 2 2 1 2E log( / ) ( | ) .N N h U U    6.6 

 

6.2.1.2 Prediction within CIECAM02 

To test the predictive power of the full model and the two restricted models, the 

observed values of log N1/N were regressed on the different combinations of 

estimates of h(U1) and h(U2 | U1) over the 50 scenes, respectively [88]. Some 

regressions failed because the number of indistinguishable pairs under the second 
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illuminant N1 = 0. The goodness of fit of the regression was described by R
2
, 

unless the regression failed. All values of R
2
 were adjusted for the degrees of 

freedom associated with different numbers of explanatory variables [110]. 

Estimates of the standard error (SE) for R
2
 were obtained by a bootstrap with at 

least 1000 iterations [155].  

The values of R
2
 within CIECAM02 are summarized in Table 6.4. The results 

based on the full model defined by Equation 6.4 are shown in the last column of 

Table 6.4. For n = 1, the regression was very strong for all changes in illuminant 

and both thresholds, with mean R
2
 = 0.90 (mean SE = 0.02). The regression was 

less strong for n ≥ 2, with mean R
2
 = 0.66 (mean SE = 0.09). When n increased, 

the regression became weaker. But the criterion degree of metamerism n is not 

the only predictor of the loss in dependence. The difference in the ranges of log 

N0/N and log N1/N0 also indicate the loss. Figure 6.1 illustrates R
2
 for the full 

model (last column in Table 6.4) plotted against the difference in ranges of log 

N0/N (fifth column in Table 6.2) and log N1/N0 (sixth column in Table 6.2). The 

red line shows a linear regression with adjusted R
2
 = 0.74 (SE = 0.08) [88]. 
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Table 6.4: Regression over 50 scenes of log observed relative frequency of 

metamerism on estimated differential entropy within CIECAM02 [149] for 

various nominal colour difference thresholds, criterion degrees of metamerism, 

and daylights with different correlated colour temperatures [88]. 

Threshold
a
 

∆E
thr

   

Criterion 

degree
b
 n 

1st 

daylight 

CCT, K 

2nd 

daylight 

CCT, K 

R
2
     

Eq. 6.5
c 

R
2
    

Eq. 6.6
d 

R
2
     

Eq. 6.4
e 

0.5 1 4000 25000 0.92  0.43  0.92  

  4000 6500 0.86  0.31  0.88  

  6500 25000 0.89  0.31  0.90  

 2 4000 25000 0.74  0.10  0.90  

  4000 6500 0.12  0.02  0.62  

  6500 25000 0.17  0.03  0.64  

 3 4000 25000 0.23  0.00  0.76  

  4000 6500 0.00
g
  0.29  0.63  

  6500 25000 0.00
g
  0.30  0.61  

 4
f 

4000 25000 0.03  0.16  0.72  

  4000 6500 0.04  0.45  0.60  

  6500 25000 0.02
g
  0.44  0.61  

1.0 1 4000 25000 0.93  0.35  0.94  

  4000 6500 0.82  0.25  0.87  

  6500 25000 0.84  0.22  0.86  

 2 4000 25000 0.46  0.00
g
  0.84  

  4000 6500 0.01  0.07  0.42  

  6500 25000 0.01  0.18  0.57  

 3
f
 4000 25000 0.01

g
  0.26  0.73  

  6500 25000 0.01  0.44  0.59  

 4
f 

4000 25000 0.01
g
  0.42  0.70  

a
 Nominal threshold for colour differences under first daylight, giving N0 pairs out of N  

1.2510
9
 pairs chosen randomly from each of the 50 scenes  

b
 Multiple of ∆E

thr
 for colour differences under second daylight, giving N1 pairs out of N0 

c
 Proportion of variance accounted for by restricted linear model Equation 6.5.  

d
 Proportion of variance accounted for by restricted linear model Equation 6.6.   

e
 Proportion of variance accounted for by restricted linear model Equation 6.4.  

f
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 

g
 Adjustment for degrees of freedom omitted, as invalid 
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Figure 6.1: Dependence of goodness of fit of the full model on the difference in 

relative frequency ranges. Proportion R
2
 of variance accounted for by Equation 

6.4 is plotted against the difference in ranges of log N0/N and log N1/N0. The red 

line over the ascending portion represents a linear regression. 

 

As shown in the third column from last of Table 6.4, the regression based on the 

restricted model defined by Equation 6.5 was very strong with n = 1. For all 

changes in illumiannt and both thresholds, mean R
2
 = 0.88 (mean SE = 0.03). But, 

by contrast with the full model, the strong regression of this restricted model 

disappeared for n ≥ 2, with mean R
2
 = 0.12 (mean SE = 0.06) [88]. 

For the restricted model defined by Equation 6.5, the difference in the ranges of 

log N0/N and log N1/N0 also predicted the loss in dependence. Figure 6.2 

illustrates R
2
 for this restricted model plotted against the difference in ranges of 

log N0/N and log N1/N0. A piecewise linear regression was shown in the red line 

with the first segment of the model forced to zero. For this regression, R
2
 = 0.98 

(SE = 0.01) [88].  
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Figure 6.2: Dependence of goodness of fit of the restricted model on the 

difference in relative frequency ranges. Proportion R
2
 of variance accounted for 

by Equation 6.5 is plotted against the difference in ranges of log N0/N and log 

N1/N0. The red line represents a linear regression. 

 

The regression based on another restricted model defined by Equation 6.6 was 

weak, as shown in the second column from last of Table 6.4. For all n, all three 

pairs of daylights, and both thresholds, mean R
2
 = 0.24 (mean SE = 0.11) [88]. 

  

6.2.1.3 Prediction within CIELAB 

The goodness of fit of the regression within CIELAB is summarized in Table 6.5. 

Due to the smaller number of samples (3000 points) selected for simulation, the 

probability of N1 = 0 was higher. Therefore, there were fewer entries than in 

Table 6.4. 

As expected, the performance within CIELAB is poorer than those within 

CIECAM02. For instance, with n = 1, mean R
2
 = 0.73 (mean SE = 0.11) for the 

full model defined by Equation 6.4; for the restricted model defined by Equation 

6.5, mean R
2
 = 0.62 (mean SE = 0.11); and for the restricted model defined by 

Equation 6.6, mean R
2
 = 0.12 (mean SE = 0.10). 
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Table 6.5: Regression over 50 scenes of log observed relative frequency of 

metamerism on estimated differential entropy within CILAB with colour-

difference formula CIEDE2000 [150] for various nominal colour difference 

thresholds, criterion degrees of metamerism, and daylights with different CCTs 

[88]. 

Threshold
a
 

∆E
thr

 
 
 

Criterion 

degree
b
 n 

1
st
 daylight 

CCT, K 

2
nd 

daylight 

CCT, K 

R
2
     

Eq. (7)
c
 

R
2
    

Eq. (8)
d 

R
2
     

Eq. (6)
e
 

0.5 1 4000 25000 0.75  0.24  0.78  

  4000 6500 0.67  0.13  0.74  

  6500 25000 0.77  0.22  0.82  

 2
f 

4000 25000 0.34  0.00
g
  0.67  

  4000 6500 0.03  0.08  0.51  

 3
f
 4000 25000 0.01  0.10  0.47  

1.0 1 4000 25000 0.54  0.05  0.68  

  4000 6500 0.49  0.01  0.67  

  6500 25000 0.53  0.04  0.71  

 2
f
 4000 25000 0.01  0.12  0.49  

a
 Nominal threshold for color differences under first daylight, giving N0 pairs out of N  1.2510

9
 

pairs chosen randomly from each of the 50 scenes  

b
 Multiple of ∆E

thr
 for color differences under second daylight, giving N1 pairs out of N0 

c
 Proportion of variance accounted for by restricted linear model Equation 6.5.  

d
 Proportion of variance accounted for by restricted linear model Equation 6.6.   

e
 Proportion of variance accounted for by restricted linear model Equation 6.4.  

f
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 

g
 Adjustment for degrees of freedom omitted, as invalid 

 

There are two possible reasons behind this poorer performance. First, although 

the colour-difference formula CIEDE2000 helped improve the uniformity within 

CIELAB, the formula can only be used for estimating the relative frequency of 

metamerism, not for entropy. Second, the extent of the chromatic adaptation was 

different within two colour spaces [88]. 
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6.2.2 Predicting the conditional frequency of metamerism 

The logarithm of the observed conditional relative frequency of metamerism was 

also regressed on the different combinations of estimates of h(U1) and h(U2 | U1) 

over the 50 scenes, respectively [156]. The goodness of fit of the regression is 

summarized in Table 6.6.  

The results based on the full model defined by Equation 6.4 are shown in the last 

column of Table 6.6. For n ≥ 2, the regression was strong for all changes in 

illuminant and both thresholds, with mean R
2
 = 0.70 (mean SE = 0.20). The 

regression was less strong for n = 1, with mean R
2
 = 0.53 (mean SE = 0.09). 

When n increased, the regression was slightly stronger.  

As shown in the third column from last of Table 6.6, the regression based on the 

restricted model defined by Equation 6.5 was very weak. For all conditions, 

mean R
2
 = 0.18 (mean SE = 0.09). This is unsurprising because a model based 

solely on h(U1) is not able to describe two random variables U1 and U2 that have 

some degree of independence. 

By contrast, the regression based on another restricted model defined by 

Equation 6.6 was stronger, as shown in the second column from last of Table 6.6. 

For all conditions, mean R
2
 = 0.62 (mean SE = 0.08). 

The dependence between the conditional relative frequency of metamerism and 

the different combinations of entropies is as strong as the dependence between 

the relative frequency of metamerism and the different combinations of entropies. 

This is mainly because the conditional entropy h(U2 | U1) describes the 

uncertainty of all colours under the second daylight given the knowledge of the 

colours under the first daylight, rather than of only those becoming 

distinguishable after a change in daylight.  
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Table 6.6: Regression over 50 scenes of log observed conditional relative 

frequency of metamerism on estimated differential entropy within CIECAM02 

[149] for various nominal colour difference thresholds, criterion degrees of 

metamerism, and daylights with different correlated colour temperatures. 

Threshold
a
 

∆E
thr

   

Criterion 

degree
b
 n 

1st 

daylight 

CCT, K 

2nd 

daylight 

CCT, K 

R
2
     

Eq. 6.5
c 

R
2
    

Eq. 6.6
d 

R
2
     

Eq. 6.4
e 

0.5 1 4000 25000 0.15  0.64  0.69  

  4000 6500 0.06  0.47  0.59  

  6500 25000 0.06  0.41  0.43  

 2 4000 25000 0.22  0.69  0.71  

  4000 6500 0.19  0.63  0.67  

  6500 25000 0.19  0.64  0.64  

 3 4000 25000 0.26  0.71  0.72  

  4000 6500 0.27  0.73  0.75  

  6500 25000 0.23  0.71  0.71  

 4
f 

4000 25000 0.28  0.75  0.76  

  4000 6500 0.34  0.73  0.73  

  6500 25000 0.25  0.72  0.72  

1.0 1 4000 25000 0.15  0.64  0.69  

  4000 6500 0.00  0.31  0.47  

  6500 25000 0.03  0.27  0.29  

 2 4000 25000 0.20  0.70  0.73  

  4000 6500 0.11  0.44  0.48  

  6500 25000 0.16  0.61  0.63  

 3
f
 4000 25000 0.25  0.75  0.76  

  6500 25000 0.21  0.66  0.67  

 4
f 

4000 25000 0.26  0.74  0.76  

a
 Nominal threshold for color differences under first daylight, giving N0 pairs out of N  1.2510

9
 

pairs chosen randomly from each of the 50 scenes  

b
 Multiple of ∆E

thr
 for color differences under second daylight, giving N1 pairs out of N0 

c
 Proportion of variance accounted for by restricted linear model Equation 6.5.  

d
 Proportion of variance accounted for by restricted linear model Equation 6.6.   

e
 Proportion of variance accounted for by restricted linear model Equation 6.4.  

f
 Results for other daylight pair or pairs omitted as N1 = 0 for one or more scenes 
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6.3 Discussion 

It has been shown that the frequency and the conditional frequency of 

metamerism in natural scenes can be predicted. But the performance of 

prediction of the frequency of metamerism was much stronger than those of the 

conditional frequency of metamerism. In this section, two questions about the 

prediction of the frequency of metamerism are addressed. First, why does the 

combination of differential entropies of colours have such predictive power? 

Second, given a change in the procedure for obtaining a numerical specification 

of colours, how robust is this dependence between the frequency of metamerism 

and the different combinations of entropies? 

 

6.3.1 Explanation of predictive power 

Despite the fact that the full model defined by Equation 6.4 has only three 

explanatory variables, for n = 1, the mean proportion R
2
 of variance accounted 

for by the full model was 0.90 within CIECAM02, and for n ≥ 2, it was 0.66. The 

loss in dependence with larger n was expected. It is because as n increases, the 

frequency N1/N became more and more influenced by the tails of the distribution 

of colours [88].  

Nevertheless, it was unexpected that with even fewer explanatory variables, the 

restricted model defined by Equation 6.5 would retain such strong predictive 

power. For n = 1, the mean proportion R
2
 of variance accounted for by this 

restricted model was 0.88, which was very close to that for the full model. But 

for n ≥ 2, this restricted model failed completely, with mean R
2
 falling to 0.12 

[88].  

As mentioned in Chapter 6, Section 6.1.1, for a criterion degree of metamerism 

of n = 1, most of the variation in the relative frequency of metamerism is 

determined by the probability of finding a pair of indistinguishable surfaces 

under the first daylight, rather than by the conditional probability of their 

becoming distinguishable under the second daylight. There was a high 

dependence between the differential entropy of colour h(U1) under the first 
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daylight and the number of indistinguishable pairs N0 under the first daylight 

(explained in Chapter 6, Section 6.3.1.1). Therefore, for n = 1, when the variation 

of N1/N was influenced mainly by the variation of N0/N, the regression of the 

relative frequency was very strong. As n increased, the variation of N0/N became 

less influential, and the regression became weaker [88]. 

 

6.3.1.1 Differential entropy and indistinguishable surfaces 

Assume there are two random variables X and Y, both representing one colour 

attribute, such as hue. Suppose random variable X is uniformly distributed over 

the range [−a, a], and zero elsewhere (i.e. all hue values equally likely in the 

scene). Suppose random variable Y is constant over a region of size a 

( 2a a ) centred at the origin, and zero elsewhere (i.e. only one hue value in 

the scene) [88].  

For X, The relative frequency of finding two points at random within a is 

approximately a/a, which is the lowest for all distributions over the interval [−a, 

a]. For Y, the relative frequency of finding two points at random within a of 

each other is exactly 1, which is the highest. 

On the contrary, the differential entropy ( ) log2h X a , which is the highest 

over the interval [−a, a], and the differential entropy ( ) logh Y a  , which tends 

to minus infinity, as a tends to zero [77]. 

This inverse relationship was also true for the differential entropy of colours 

under the first daylight and the number of indistinguishable pairs under the first 

daylight. Figure 6.3 illustrated the dependence of the frequency of metamerism 

on the entropy of colours under the first illuminant within CIECAM02. The 

illuminant changed from daylights with CCTs 4000 K to 25,000 K. The nominal 

colour-difference threshold ∆E
thr

 was 0.5. 
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Figure 6.3: Regression of the number of indistinguishable pairs under the first 

daylight on the differential entropy of colours within CIECAM02. 

 

6.3.1.2 Limitation of differential entropy 

Although for present purposes differential entropy is a better description of the 

randomness of colour distributions than variance or colour gamut [88], the 

predictive power of the restricted models based on h(U1) is inadequate with 

extreme criterion degrees of metamerism. Only the full model with the 

combination of entropies was able to reliably predict the frequency of 

metamerism. But there was still small proportion of the variation in the 

frequency of metamerism that could not be accounted for. 

 

6.3.2 Robustness of strong dependence 

Reversing the direction of illuminant changes resulted in small changes in 

relative frequency of metamerism [71].  But do these changes affect the strong 

relationship between the relative frequency and the combination of entropies? In 
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fact, the effects were small. Within CIECAM02, reversing the direction made the 

mean R
2
 of the regression based on the full model fall by 0.08 for n = 1, and fall 

by 0.06 for n ≥ 2. Within CIELAB, reversing the direction made mean R
2
 rise by 

0.07 for n = 1, and rise by 0.09 for n ≥ 2. 

It might be argued that if the observer does not adapt to D65, the effective colour 

distribution would be different, and consequently the differential entropy and the 

relative frequency of metamerism. To test the dependence under this condition, 

the coordinates J, aC and bC within CIECAM02 were obtained without chromatic 

adaptation at the reference illuminant D65. For ∆E
thr

 = 0.5 with degree of 

metamerism of n = 1, the regression remained very strong for all three pairs of 

daylights, with mean R
2
 = 0.89 (mean SE = 0.03). For ∆E

thr
 = 1 with n = 1, mean 

R
2
 = 0.83 (mean SE = 0.04). 

If more scenes from other sources were included, would this affect the strong 

dependence? Two hyperspectral images from [157] were included to test the 

predictive power of different combination of differential entropies. Within 

CIECAM02, the goodness of fit of the full model defined by Equation 6.4 

remained strong. For n = 1, the regression was very strong for all three pairs of 

daylights and both thresholds, with mean R
2
 = 0.89 (mean SE = 0.02). The 

regression became less strong, for n ≥ 2, with mean R
2
 = 0.65 (mean SE = 0.09). 

The performance of the restricted model defined by Equation 6.5 was also 

consistent. For n = 1, mean R
2
 = 0.87 (mean SE = 0.03), and for n ≥ 2, mean R

2
 = 

0.11 (mean SE = 0.05). 

Despite the technical changes made earlier, therefore, the different combinations 

of entropies of colours retain their predictive power of estimating the frequency 

of metamerism.  
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Chapter 7. Conclusion 

There were three objectives of this thesis. The first was to construct models for 

predicting the frequency and the conditional frequency of metamerism in natural 

scenes, which was addressed in Chapter 6. The second was to determine whether 

colour gamut is a good description of the distribution of surface colours in 

natural scenes, which was addressed in Chapter 4. The third was to analyse the 

spectral reflectances of surfaces in natural scenes, which was addressed in 

Chapter 5. 

The key results of this thesis and possible future work based on these results are 

described in this chapter. 

 

7.1 Key results 

The key findings of thesis were mainly obtained from the 50 natural scenes. 

Although the dataset is finite, it includes rural and urban images with different 

viewing distances, and different range of land-cover surfaces were represented in 

the data. 

7.1.1 Predicting the frequency of metamerism 

The frequency of metamerism offers a quantitative measurement of the reliability 

of material identity based on colours in natural scenes. More generally, it tells us 

whether the trichromacy is a good comprise for encoding the spectral reflectance 

in natural scenes. It was shown that the frequency of metamerism can be 

predicted. There was strong dependence of the frequency of metamerism on the 

combination of two entropies of colours: the differential entropy of the colours 

under one illuminant and the conditional differential entropy of those colours 

under another illuminant. It was found the differential entropy of colours alone 

has strong predictive power in estimating the frequency of metamerism when the 

criterion degree of metamerism was not extreme. There are two main possible 

contributory factors. First, when the criterion degree of metamerism was not 
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extreme, the most variation in the frequency of metamerism in natural scenes 

was determined by the probability of finding a pair of indistinguishable surfaces 

under the first daylight. Second, there was an inverse relationship between the 

differential entropy of colours and the number of indistinguishable colours under 

one illuminant. It means that when the criterion degree of metamerism is not 

extreme, higher uncertainty the colour has at a random point under one 

illuminant, less metamerism happens after a change in illuminant. 

 

7.1.2 Using colour gamut as a description of colour information 

Two different methods were used to estimate the volumes of the colour gamuts 

of natural scenes. The method based on convex-hull algorithms was not suited to 

estimating the volume accurately because colour distributions within a colour 

space of a natural scene can be concave. On the other hand, with certain colour 

difference thresholds, the logarithm of the volume of the colour gamut within 

CIECAM02 calculated by the cube-counting algorithm showed very strong linear 

dependence on the estimated differential entropy over 50 natural scenes. It is 

because these volumes can be treated as an approximation of the discrete entropy, 

apart from a scaling factor, that they have a strong dependence on the 

corresponding differential entropy. This result means that given a reasonable 

colour difference threshold for the colour cubes, and within an approximately 

perceptually uniform colour space, the gamut volume can provide a good 

description of the uncertainty of colour appearance in natural scenes. It must fail, 

however, when the distribution of colours with the gamut is very non-uniform. 

 

7.1.3 Analysis of reflectances in natural scenes 

The spectral the reflectances of the surfaces with relevance to human vision in 

natural scenes were analysed to determine the minimum number of basis 

functions needed for an accurate approximation of spectral reflectances in natural 

scenes. The accuracy of the approximations was measured by mathematical 

quantities and colorimetric differences between the original and the 
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approximated reflectances. For colour vision, the results from PCA mean that a 

three-dimensional linear model is unlikely to recover most of the spectral 

information in natural scenes. In addition, the basis functions revealed by PCA 

cannot be related to real pigments because PCA is intended to explain the largest 

global variance.  

The reflectances of the surfaces underlying metamerism in natural scenes were 

found to be similar. It may indicate that the majority of metamerism comes from 

surfaces which consist of the same material, such as grasses and leaves.  

 

7.2 Future work 

7.2.1 More comprehensive model for predicting frequency of 

metamerism 

The models for predicting the frequency of metamerism in natural scenes are 

imperfect. Even based on the full model, some of the variation in the frequency 

of metamerism was not accounted for. Furthermore, the proportion of the 

variation in the conditional frequency of metamerism which cannot be accounted 

for by the models was even larger. More explanatory variables or higher orders 

might be needed in order to predict the frequency and the conditional frequency 

of metamerism more accurately. 

 

7.2.2 Threshold of distinguishability in colour spaces 

The threshold of visual distinguishability between different colours played an 

important role both in the estimation of the volume of colour gamut and the 

estimation of the frequency of metamerism in natural scenes. Although a range 

of thresholds were used in this thesis, a more precise definition of the 

distinguishability in different colour spaces will make the estimation of gamut 

volumes and frequency of metamerism more relevant to human vision. 
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7.2.3 Non-linear model for approximations of reflectances 

As mentioned in Chapter 5, independent component analysis was used to analyse 

the spectral reflectances because, unlike principal component analysis, it does not 

require orthogonality between basis functions. But there are practical difficulties 

about ranking the significance of independent components from ICA. If a 

criterion related to distinguishability of human vision can be used for ranking the 

significance, it might help reduce the dimensionality of accurately approximating 

the spectral reflectances in natural scenes. 

 

7.2.4 More accurate estimator of differential entropy 

Although the robustness of the application of the offset version of Kozachenko-

Leonenko estimator on colour appearance was examined in this thesis, this 

estimator is still imperfect, especially for the samples with small size. The 

accuracy might be improved if the bias introduced by the nearest-neighbours 

algorithm can be reduced. 
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Chapter 8. Appendix 

8.1 Parameters of transformation from CIEXYZ to 

CIECAM02 

There were three different settings for transformation from CIEXYZ to 

CIECAM02 [65] in this thesis. The main differences were the degree of 

adaptation and the choice of the reference daylight for adaptation.  

The values of the three adopted white [67] are [99.5972, 100.0000, 60.8812] for 

the daylight with CCT of 4,000 K, [95.0470, 100.0000, 108.8830] for the 

daylight with CCT of 6,500 K, and [97.9655,100.0000, 194.0558] for the 

daylight with CCT of 25,000 K. 

According to the specification of CIECAM02 [65], the luminance of adapting 

field LA was set to 20 cd/m
2
; background luminance Yb was set to be equal to the 

mean of the luminance component of the tristimulus values over a scene under a 

certain illuminant; and the surround was assumed to be ‘average’. If the observer 

was assumed to be fully adapted to the illuminant, the degree of adaptation was 

kept to 1. 
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