975 research outputs found

    Gravity-Aware Monocular {3D} Human-Object Reconstruction

    Get PDF

    Gravity-Aware Monocular {3D} Human-Object Reconstruction

    Get PDF
    This paper proposes GraviCap, i.e., a new approach for joint markerless 3D human motion capture and object trajectory estimation from monocular RGB videos. We focus on scenes with objects partially observed during a free flight. In contrast to existing monocular methods, we can recover scale, object trajectories as well as human bone lengths in meters and the ground plane's orientation, thanks to the awareness of the gravity constraining object motions. Our objective function is parametrised by the object's initial velocity and position, gravity direction and focal length, and jointly optimised for one or several free flight episodes. The proposed human-object interaction constraints ensure geometric consistency of the 3D reconstructions and improved physical plausibility of human poses compared to the unconstrained case. We evaluate GraviCap on a new dataset with ground-truth annotations for persons and different objects undergoing free flights. In the experiments, our approach achieves state-of-the-art accuracy in 3D human motion capture on various metrics. We urge the reader to watch our supplementary video. Both the source code and the dataset are released; see http://4dqv.mpi-inf.mpg.de/GraviCap/

    4D Human Body Capture from Egocentric Video via 3D Scene Grounding

    Full text link
    We introduce a novel task of reconstructing a time series of second-person 3D human body meshes from monocular egocentric videos. The unique viewpoint and rapid embodied camera motion of egocentric videos raise additional technical barriers for human body capture. To address those challenges, we propose a simple yet effective optimization-based approach that leverages 2D observations of the entire video sequence and human-scene interaction constraint to estimate second-person human poses, shapes, and global motion that are grounded on the 3D environment captured from the egocentric view. We conduct detailed ablation studies to validate our design choice. Moreover, we compare our method with the previous state-of-the-art method on human motion capture from monocular video, and show that our method estimates more accurate human-body poses and shapes under the challenging egocentric setting. In addition, we demonstrate that our approach produces more realistic human-scene interaction

    Neural Monocular {3D} Human Motion Capture with Physical Awareness

    Get PDF

    GANerated Hands for Real-time 3D Hand Tracking from Monocular RGB

    Full text link
    We address the highly challenging problem of real-time 3D hand tracking based on a monocular RGB-only sequence. Our tracking method combines a convolutional neural network with a kinematic 3D hand model, such that it generalizes well to unseen data, is robust to occlusions and varying camera viewpoints, and leads to anatomically plausible as well as temporally smooth hand motions. For training our CNN we propose a novel approach for the synthetic generation of training data that is based on a geometrically consistent image-to-image translation network. To be more specific, we use a neural network that translates synthetic images to "real" images, such that the so-generated images follow the same statistical distribution as real-world hand images. For training this translation network we combine an adversarial loss and a cycle-consistency loss with a geometric consistency loss in order to preserve geometric properties (such as hand pose) during translation. We demonstrate that our hand tracking system outperforms the current state-of-the-art on challenging RGB-only footage

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    Active and Physics-Based Human Pose Reconstruction

    Get PDF
    Perceiving humans is an important and complex problem within computervision. Its significance is derived from its numerous applications, suchas human-robot interaction, virtual reality, markerless motion capture,and human tracking for autonomous driving. The difficulty lies in thevariability in human appearance, physique, and plausible body poses. Inreal-world scenes, this is further exacerbated by difficult lightingconditions, partial occlusions, and the depth ambiguity stemming fromthe loss of information during the 3d to 2d projection. Despite thesechallenges, significant progress has been made in recent years,primarily due to the expressive power of deep neural networks trained onlarge datasets. However, creating large-scale datasets with 3dannotations is expensive, and capturing the vast diversity of the realworld is demanding. Traditionally, 3d ground truth is captured usingmotion capture laboratories that require large investments. Furthermore,many laboratories cannot easily accommodate athletic and dynamicmotions. This thesis studies three approaches to improving visualperception, with emphasis on human pose estimation, that can complementimprovements to the underlying predictor or training data.The first two papers present active human pose estimation, where areinforcement learning agent is tasked with selecting informativeviewpoints to reconstruct subjects efficiently. The papers discard thecommon assumption that the input is given and instead allow the agent tomove to observe subjects from desirable viewpoints, e.g., those whichavoid occlusions and for which the underlying pose estimator has a lowprediction error.The third paper introduces the task of embodied visual active learning,which goes further and assumes that the perceptual model is notpre-trained. Instead, the agent is tasked with exploring its environmentand requesting annotations to refine its visual model. Learning toexplore novel scenarios and efficiently request annotation for new datais a step towards life-long learning, where models can evolve beyondwhat they learned during the initial training phase. We study theproblem for segmentation, though the idea is applicable to otherperception tasks.Lastly, the final two papers propose improving human pose estimation byintegrating physical constraints. These regularize the reconstructedmotions to be physically plausible and serve as a complement to currentkinematic approaches. Whether a motion has been observed in the trainingdata or not, the predictions should obey the laws of physics. Throughintegration with a physical simulator, we demonstrate that we can reducereconstruction artifacts and enforce, e.g., contact constraints

    PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

    Get PDF
    Marker-less 3D human motion capture from a single colour camera has seen significant progress. However, it is a very challenging and severely ill-posed problem. In consequence, even the most accurate state-of-the-art approaches have significant limitations. Purely kinematic formulations on the basis of individual joints or skeletons, and the frequent frame-wise reconstruction in state-of-the-art methods greatly limit 3D accuracy and temporal stability compared to multi-view or marker-based motion capture. Further, captured 3D poses are often physically incorrect and biomechanically implausible, or exhibit implausible environment interactions (floor penetration, foot skating, unnatural body leaning and strong shifting in depth), which is problematic for any use case in computer graphics. We, therefore, present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture with a single colour camera at 25 fps. Our algorithm first captures 3D human poses purely kinematically. To this end, a CNN infers 2D and 3D joint positions, and subsequently, an inverse kinematics step finds space-time coherent joint angles and global 3D pose. Next, these kinematic reconstructions are used as constraints in a real-time physics-based pose optimiser that accounts for environment constraints (e.g., collision handling and floor placement), gravity, and biophysical plausibility of human postures. Our approach employs a combination of ground reaction force and residual force for plausible root control, and uses a trained neural network to detect foot contact events in images. Our method captures physically plausible and temporally stable global 3D human motion, without physically implausible postures, floor penetrations or foot skating, from video in real time and in general scenes. The video is available at http://gvv.mpi-inf.mpg.de/projects/PhysCapComment: 16 pages, 11 figure
    • …
    corecore