5,629 research outputs found

    Prediction of Hourly Cooling Energy Consumption of Educational Buildings Using Artificial Neural Network

    Get PDF
    Predicating the required building energy when it is in the design stage and before being constructed considers a crucial step for in charge people. Hence, the main aim of this research is to accurately forecast the needed building cooling energy per hour for educational buildings at University of Technology in Iraq. For this purpose, the feed forward artificial neural network (ANN) has been selected as an efficient technique to develop such a predication system.  Firstly, the main building parameters have been investigated and then only the most important ones were chosen to be used as inputs to the ANN model. However, due to the long time period that is required to collect actual consumed building energy in order to be employed for ANN model training, the hourly analysis program (HAP), which is a building simulation software, has been utilized to produce a database covering the summer months in Iraq. Different training algorithms and range of learning rate values have been investigated, and the Bayesian regularization backpropagation training algorithm and 0.05 learning rate were found very suitable for precise cooling energy prediction. To evaluate the performance of the optimized ANN model, mean square error (MSE) and correlation coefficient (R) have been adopted. The MSE and R indices for the predication results proved that the optimized ANN model is having a high predication accuracy with 5.99*10-6 and 0.9994, respectively

    Modelling of building performance under the UK climate change projections and the prediction of future heating and cooling design loads in building spaces

    Get PDF
    New climate change projections for the UK were published by the United Kingdom Climate Impacts Programme in 2009. They form the 5th and most comprehensive set of predictions of climate change developed for the UK to date. As one of main products of UK Climate Projections 2009 (UKCP09),the Weather Generator, can generate a set of daily and hourly future weather variables at different time periods (2020s to 2080s) and carbon emission scenarios (low, medium, high) on a 5 km grid scale. In a radical departure from previous methods, the 2009 Projections are statistical- probabilistic in nature. A tool has been developed in Matlab to generate future Test Reference Year (TRY) and Design Reference Years (DRY) weather files from these Projections and the results were verified against results from alternative tools produced by Manchester University and Exeter University as well as with CIBSE's Future Weather Years (FWYs) which are based on earlier (4th generation) climate change scenarios and are currently used by practitioners. The Northumbria tool is computationally efficient and can extract a single Test Reference Year and 2 Design Reference Years from 3000 years of raw data in less than 6 minutes on a typical modern PC. It uses an established ISO method for generating Test Reference Year data and an alternative method of constructing future Design Reference data is proposed

    The impact of construction and building materials on energy consumption on Saudi residential buildings

    Get PDF
    As a result of increasing population and buildings construction in Saudi Arabia, the demand for electricity is growing rapidly. There should be a greater focus on build-ings in the kingdom and several methods should be applied in order to reduce en-ergy consumption and create a lower carbon economy as residential buildings ac-count for about 70 percent of the total consumption. Saudi Arabia therefore ur-gently needs to develop residential buildings which use less energy and are more environmentally-friendly. This study investigates the recent situation of Saudi residential buildings in terms of energy and building materials, using case studies. The main aim of this study is to identify suitable strategies and propose a number of recommendations that are useful in developing residential buildings in the Kingdom of Saudi Arabia. This paper shows the importance of selecting the right, locally available, construc-tion materials for the external wall and thermal insulation in reducing energy con-sumption for the cooling load, by 59% after using the most appropriate construction materials for Saudi climate. Several methods were used in this research including IES energy simulation software in order to compare the most common external walls in the kingdom in terms of energy consumption and cooling load. Then, add-ing and selecting the right place for 0.50 m of polyurethane thermal insulation to the selected external wall to achieve the maximum reduction of cooling load. It uses the example of a typical Saudi house design provided by the Saudi ministry of housing in three main cities in the kingdom: Jeddah, Riyadh and Dammam. Fur-thermore, the paper discusses the challenges facing the kingdom of Saudi Arabia in recent years and those of the future, such as a lack of the awareness amongst the Saudi population, and a lack of building standards and regulations

    Solar thermal heating and cooling. A bibliography with abstracts

    Get PDF
    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics

    Expert Guide:Part 1 Responsive Building Concepts

    Get PDF

    Estimación del desempeño energético de una edificación utilizando un indicador compuesto: un caso de estudio

    Get PDF
    Several studies have analyzed the integration of energy-saving strategies in buildings to mitigate their environmental impact. These studies focused mainly on a disaggregated analysis of such strategies and their effects on the building's energy consumption and thermal behavior, using energy engine simulation software (EnergyPlus, TRNSYS, and DOE2) or graphical interface software (DesignBuilder, eQuest, and ESP-r). However, buildings are complex systems whose energy behavior depends on the interaction of passive (e.g., location and construction materials) and dynamic (e.g., occupation) components. Therefore, this study proposes a composite indicator Building’s Energy Performance (BEP) as an alternative to deal with this complex and multidimensional phenomenon in a simplified way. This indicator considers energy efficiency and thermal comfort. The Electrical Engineering Building (EEB) of the Universidad Industrial de Santander was selected to verify the performance of the BEP indicator. In addition, a sensitivity analysis was performed for different mathematical aggregation methods and weighting values to test their suitability to reproduce the building behavior. Different simulation scenarios modeled with DesignBuilder software were proposed, in which the energy-saving strategies integrated with the building was individually analyzed. The results confirmed that the integration of the building's energy-saving strategies improved the BEP indicator by approximately 16%. It has also been possible to verify that the BEP indicator adequately reproduces the building’s energy behavior while guaranteeing comfort conditions. Finally, the Building Energy Performance indicator is expected to contribute to the integration of sustainability criteria in the design and remodeling stages of buildings.Diversos estudios han analizado la integración de estrategias de ahorro energético en edificaciones para mitigar su impacto ambiental. Estos estudios se centraron en un análisis desagregado de estas estrategias y sus efectos sobre el consumo de energía y el comportamiento térmico del edificio utilizando motores de simulación energética (EnergyPlus, TRNSYS y DOE2) o software de interfaz gráfica (DesignBuilder, eQuest y ESP-r). Sin embargo, los edificios son sistemas complejos cuyo comportamiento energético depende de la interacción de componentes pasivos (p. ej., ubicación y materiales de construcción) y dinámicos (p. ej., ocupación). Por lo tanto, este artículo propone un indicador compuesto de desempeño energético de edificaciones (BEP) como una alternativa para enfrentar este fenómeno complejo y multidimensional de manera simplificada. Este indicador considera la eficiencia energética y el confort térmico. Para ello, se seleccionó un edificio real, el Edificio de Ingeniería Eléctrica (EEB) de la Universidad Industrial de Santander, con el fin de verificar el desempeño del indicador BEP. Además, se realizó un análisis de sensibilidad para diferentes métodos matemáticos de agregación y valores de ponderación para probar su idoneidad para reproducir el comportamiento del edificio. Se propusieron diferentes escenarios de simulación modelados mediante el software DesignBuilder, en los que se analizaron individualmente las estrategias de ahorro energético integradas con el edificio. Los resultados confirmaron que las estrategias de ahorro energético del edificio mejoraron el indicador en aproximadamente un 16 %. Asimismo, fue posible verificar que dicho indicador reproduce adecuadamente el comportamiento energético de la edificación mientras se garantiza condiciones de confort. Por último, se espera que el indicador contribuya en la integración de criterios de sostenibilidad en edificaciones durante las etapas de diseño y remodelación

    Study on Adaptive Thermal Comfort, Natural Ventilation Effect, and Thermal Improvement in Nepalese School Buildings

    Get PDF
    東京都市大学博士(環境情報学)2022年度(令和4年)doctoral thesi

    Resilient cooling of buildings: state of the art review

    Get PDF
    Name of the research project : IEA Annex 80 – Resilient Cooling of Buildings Publisher: Institute of Building Research & Innovation ZT GmbH, AustriaThis report summarizes an assessment of current State-of-the Art resilient cooling strategies and technologies. It is a result of a collaborative work conducted by participants members of IEA EBC Annex 80. This report consists of four chapters. In the first chapter are included relevant technologies and strategies that contribute to reducing heat loads to people and indoor environments. These technologies/strategies include Advanced window/glazing and shading technologies, Cool envelope materials, Evaporative Envelope Surfaces, Ventilated Envelope Surfaces and Heat Storage and Release. In the second chapter are assessed cooling strategies and technologies that are responsible for removing sensible heat in indoor environments: Ventilative cooling, Evaporative Cooling, Compression refrigeration, Desiccant cooling system, Ground source cooling, Night sky radiative cooling and High-temperature cooling systems. In the third chapter various typologies of cooling strategies and technologies are assessed inside the framework of enhancing personal comfort apart from space cooling. This group of strategies/technologies comprise of: Vertical-axis ceiling fans and horizontal-axis wall fans (such fixed fans differ from pure PCS in that they may be operated under imposed central control or under group or individual control), Small desktop-scale fans or stand fans, Furnitureintegrated fan jets, Devices combining fans with misting/evaporative cooling, Cooled chairs, with convective/conductive cooled heat absorbing surfaces, Cooled desktop surfaces, Workstation micro-air-conditioning units, some including phase change material storage, Radiantly cooled panels (these are currently less for PCS than for room heat load extraction), Conductive wearables, Fan-ventilated clothing ensembles, Variable clothing insulation: flexible dress codes and variable porosity fabrics. In the fourth chapter technologies and strategies pertinent to removing latent heat from indoor environments are assessed. This group includes Desiccant dehumidification, Refrigeration dehumidification, Ventilation dehumidification, and Thermos-electric dehumidification.Preprin
    corecore