66 research outputs found

    Applications of artificial neural networks in financial market forecasting

    Get PDF
    This thesis evaluates the utility of Artificial Neural Networks (ANNs) applied to financial market and macroeconomic forecasting. In application, ANNs are evaluated in comparison to traditional forecasting models to evaluate if their nonlinear and adaptive properties yield superior forecasting performance in terms of robustness and accuracy. Furthermore, as ANNs are data-driven models, an emphasis is placed on the data collection stage by compiling extensive candidate input variable pools, a task frequently underperformed by prior research. In evaluating their performance, ANNs are applied to the domains of: exchange rate forecasting, volatility forecasting, and macroeconomic forecasting. Regarding exchange rate forecasting, ANNs are applied to forecast the daily logarithmic returns of the EUR/USD over a short-term forecast horizon of one period. Initially, the analytic method of Technical Analysis (TA) and its sub-section of technical indicators are utilized to compile an extensive candidate input variable pool featuring standard and advanced technical indicators measuring all technical aspects of the EUR/USD time series. The candidate input variable pool is then subjected to a two-stage Input Variable Selection (IVS) process, producing an informative subset of technical indicators to serve as inputs to the ANNs. A collection of ANNs is then trained and tested on the EUR/USD time series data with their performance evaluated over a 5-year sample period (2012 to 2016), reserving the last two years for out of sample testing. A Moving Average Convergence Divergence (MACD) model serves as a benchmark with the in-sample and out-of-sample empirical results demonstrating the MACD is a superior forecasting model across most forecast evaluation metrics. For volatility forecasting, ANNs are applied to forecast the volatility of the Nikkei 225 Index over a short-term forecast horizon of one period. Initially, an extensive candidate input variable pool is compiled consisting of implied volatility models and historical volatility models. The candidate input variable pool is then subjected to a two-stage IVS process. A collection of ANNs is then trained and tested on the Nikkei 225 Index time series data with their performance evaluated over a 4-year sample period (2014 to 2017), reserving the last year for out-of-sample testing. A GARCH (1,1) model serves as a benchmark with the out-of-sample empirical results finding the GARCH (1,1) model to be the superior volatility forecasting model. The research concludes with ANNs applied to macroeconomic forecasting, where ANNs are applied to forecast the monthly per cent-change in U.S. civilian unemployment and the quarterly per cent-change in U.S. Gross Domestic Product (GDP). For both studies, an extensive candidate input variable pool is compiled using relevant macroeconomic indicator data sourced from the Federal Bank of St Louis. The candidate input variable pools are then subjected to a two-stage IVS process. A collection of ANNs is trained and tested on the U.S. unemployment time series data (UNEMPLOY) and U.S. GDP time series data. The sample periods are (1972 to 2017) and (1960 to 2016) respectively, reserving the last 20% of data for out of sample testing. In both studies, the performance of the ANNs is benchmarked against a Support Vector Regression (SVR) model and a Naïve forecast. In both studies, the ANNs outperform the SVR benchmark model. The empirical results demonstrate that ANNs are superior forecasting models in the domain of macroeconomic forecasting, with the Modular Neural Network performing notably well. However, the empirical results question the utility of ANNs in the domains of exchange rate forecasting and volatility forecasting. A MACD model outperforms ANNs in exchange rate forecasting both in-sample and out-of-sample, and a GARCH (1,1) model outperforms ANNs in volatility forecasting

    Econometric forecasting of financial assets using non-linear smooth transition autoregressive models

    Get PDF
    Following the debate by empirical finance research on the presence of non-linear predictability in stock market returns, this study examines forecasting abilities of nonlinear STAR-type models. A non-linear model methodology is applied to daily returns of FTSE, S&P, DAX and Nikkei indices. The research is then extended to long-horizon forecastability of the four series including monthly returns and a buy-and-sell strategy for a three, six and twelve month holding period using non-linear error-correction framework. The recursive out-of-sample forecast is performed using the present value model equilibrium methodology, whereby stock returns are forecasted using macroeconomic variables, in particular the dividend yield and price-earnings ratio. The forecasting exercise revealed the presence of non-linear predictability for all data periods considered, and confirmed an improvement of predictability for long-horizon data. Finally, the present value model approach is applied to the housing market, whereby the house price returns are forecasted using a price-earnings ratio as a measure of fundamental levels of prices. Findings revealed that the UK housing market appears to be characterised with asymmetric non-linear dynamics, and a clear preference for the asymmetric ESTAR model in terms of forecasting accuracy

    Machine learning methods for Equity Time Series forecasting: a compendium

    Get PDF
    Machine learning is a method of building predictive models using a vast amount of data from different sources, capturing non-linear relationships between different variables. As a result, financial mar- kets in general and stock markets in particular, offer a promising ground for the application of such method. This survey examines machine learning methods for equity market forecasting, identify- ing gaps in current knowledge and suggesting potential avenues to pursue further research. Computer science-centred quantitative studies have focused mainly on algorithms, testing results mostly on US data on short time-frames, yet, feature engineering, and testing findings on different markets and different time horizons, appear to be under-explored. This study thus introduces the finan- cial context for non-experts and moves to review different models and tools in the realm of statistical learning, and deep learning. We believe that this approach will prove to be effective in financial practice to an interested reader without much prior knowledge of the finance literature. We survey the end-to-end deployment of machine learning to help readers from industry and academia to understand the peculiarities of applying these methods to equity market forecasting

    Analysis of high-frequency financial data over different timescales: a Hilbert-Huang transform approach

    Get PDF
    This thesis provides a better understanding of the complex dynamics of high-frequency financial data. We develop a methodology that successfully and simultaneously character¬izes both the short and the long-term fluctuations latent in a time series. We extensively investigate the applications of the empirical mode decomposition (EMD) and the Hilbert transform to the analysis of intraday financial data. The applied methodology reveals the time-dependent amplitude and frequency attributes of non-stationary and non-linear time series. We uncover a scaling law that links the amplitude of the oscillating components to their respective period. We relate such scaling law to distinctive properties of financial markets. This research is relevant because financial data contain patterns specific to the observa¬tion frequency and are thus, of interest to different type of market agents (market traders, intraday traders, hedging strategist, portfolio managers and institutional investors), each characterized by a different reaction time to new information and by the frequency of its intervention in the market. Understanding how the investment horizons of these agents in¬teract may reveal significant details about the physical processes that generate or influence financial time series. We use the EMD to estimate volatility, generalising the idea of the popular realised volatility estimator by decomposing financial time series into several timescales compo¬nents which are related to different investment horizons. We also investigate the dynamic correlation at different timescales and at different time-lags, revealing a complex structure of financial signals. Following the multiscale analysis approach, we propose a novel empirical method to es¬timate a time-dependent scaling parameter in analogy to the scaling exponent for self-similar processes. Using numerical simulations, we investigate the robustness of our estimator to heavy-tailed distributions. We apply the scaling estimator to intraday stock market prices and uncover scaling properties which differ from what would be expected from a random walk. We also introduce a novel entropy-like measure which estimates the regularity of a time series. This measure of complexity can be used to identify periods of high and low volatility x which could help investors to choose the appropriate time for investment. Finally, we pro¬pose a multistep-ahead forecasting framework based on EMD combined with support vector regression. The originality of our models is the inclusion of a coarse-to-fine reconstruction step to analyse the forecasting capabilities of a combination of oscillating functions. We compare our models with popular benchmark models which do not use the EMD as a pre¬processing tool, obtaining better results with our proposed framework. Part of the research developed on this thesis is published in Physica A: Statistical Me¬chanics and its Applications [137] and in the European Physical Journal, Special Topics [136]. It was also presented at international conferences, including the 20th annual work¬shop on the Economic Science with Heterogeneous Interacting Agents (WEHIA) 2015 and the 21st Computing in Economics and Finance (CEF) conference 2015

    Evaluating efficiency of ensemble classifiers in predicting the JSE all-share index attitude

    Get PDF
    A research report submitted to the Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirements for the degree of Master of Management in Finance and Investment. Johannesburg, 2016The prediction of stock price and index level in a financial market is an interesting but highly complex and intricate topic. Advancements in prediction models leading to even a slight increase in performance can be very profitable. The number of studies investigating models in predicting actual levels of stocks and indices however, far exceed those predicting the direction of stocks and indices. This study evaluates the performance of ensemble prediction models in predicting the daily direction of the JSE All-Share index. The ensemble prediction models are benchmarked against three common prediction models in the domain of financial data prediction namely, support vector machines, logistic regression and k-nearest neighbour. The results indicate that the Boosted algorithm of the ensemble prediction model is able to predict the index direction the best, followed by k-nearest neighbour, logistic regression and support vector machines respectively. The study suggests that ensemble models be considered in all stock price and index prediction applications.MT201

    A fresh engineering approach for the forecast of financial index volatility and hedging strategies

    Get PDF
    This thesis attempts a new light on a problem of importance in Financial Engineering. Volatility is a commonly accepted measure of risk in the investment field. The daily volatility is the determining factor in evaluating option prices and in conducting different hedging strategies. The volatility estimation and forecast are still far from successfully complete for industry acceptance, judged by their generally lower than 50% forecasting accuracy. By judiciously coordinating the current engineering theory and analytical techniques such as wavelet transform, evolutionary algorithms in a Time Series Data Mining framework, and the Markov chain based discrete stochastic optimization methods, this work formulates a systematic strategy to characterize and forecast crucial as well as critical financial time series. Typical forecast features have been extracted from different index volatility data sets which exhibit abrupt drops, jumps and other embedded nonlinear characteristics so that accuracy of forecasting can be markedly improved in comparison with those of the currently prevalent methods adopted in the industry. The key aspect of the presented approach is "transformation and sequential deployment": i) transform the data from being non-observable to observable i.e., from variance into integrated volatility; ii) conduct the wavelet transform to determine the optimal forecasting horizon; iii) transform the wavelet coefficients into 4-lag recursive data sets or viewed differently as a Markov chain; iv) apply certain genetic algorithms to extract a group of rules that characterize different patterns embedded or hidden in the data and attempt to forecast the directions/ranges of the one-step ahead events; and v)apply genetic programming to forecast the values of the one-step ahead events. By following such a step by step approach, complicated problems of time series forecasting become less complex and readily resolvable for industry application. To implement such an approach, the one year, two year and five year S&PlOO historical data are used as training sets to derive a group of 100 rules that best describe their respective signal characteristics. These rules are then used to forecast the subsequent out-of-sample time series data. This set of tests produces an average of over 75% of correct forecasting rate that surpasses any other publicly available forecast results on any type of financial indices. Genetic programming was then applied on the out of sample data set to forecast the actual value of the one step-ahead event. The forecasting accuracy reaches an average of 70%, which is a marked improvement over other current forecasts. To validate the proposed approach, indices of S&P500 as well as S&P 100 data are tested with the discrete stochastic optimization method, which is based on Markov chain theory and involves genetic algorithms. Results are further validated by the bootstrapping operation. All these trials showed a good reliability of the proposed methodology in this research work. Finally, the thus established methodology has been shown to have broad applications in option pricing, hedging, risk management, VaR determination, etc
    corecore