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Abstract

This thesis provides a better understanding of the complex dynamics of high-frequency
financial data. We develop a methodology that successfully and simultaneously character-
izes both the short and the long-term fluctuations latent in a time series. We extensively
investigate the applications of the empirical mode decomposition (EMD) and the Hilbert
transform to the analysis of intraday financial data. The applied methodology reveals the
time-dependent amplitude and frequency attributes of non-stationary and non-linear time
series. We uncover a scaling law that links the amplitude of the oscillating components
to their respective period. We relate such scaling law to distinctive properties of financial
markets.

This research is relevant because financial data contain patterns specific to the observa-
tion frequency and are thus, of interest to different type of market agents (market traders,
intraday traders, hedging strategist, portfolio managers and institutional investors), each
characterized by a different reaction time to new information and by the frequency of its
intervention in the market. Understanding how the investment horizons of these agents in-
teract may reveal significant details about the physical processes that generate or influence
financial time series.

We use the EMD to estimate volatility, generalising the idea of the popular realised
volatility estimator by decomposing financial time series into several timescales compo-
nents which are related to different investment horizons. We also investigate the dynamic
correlation at different timescales and at different time-lags, revealing a complex structure
of financial signals.

Following the multiscale analysis approach, we propose a novel empirical method to es-
timate a time-dependent scaling parameter in analogy to the scaling exponent for self-similar
processes. Using numerical simulations, we investigate the robustness of our estimator to
heavy-tailed distributions. We apply the scaling estimator to intraday stock market prices
and uncover scaling properties which differ from what would be expected from a random
walk.

We also introduce a novel entropy-like measure which estimates the regularity of a time
series. This measure of complexity can be used to identify periods of high and low volatility



x

which could help investors to choose the appropriate time for investment. Finally, we pro-
pose a multistep-ahead forecasting framework based on EMD combined with support vector
regression. The originality of our models is the inclusion of a coarse-to-fine reconstruction
step to analyse the forecasting capabilities of a combination of oscillating functions. We
compare our models with popular benchmark models which do not use the EMD as a pre-
processing tool, obtaining better results with our proposed framework.

Part of the research developed on this thesis is published in Physica A: Statistical Me-
chanics and its Applications [137] and in the European Physical Journal, Special Topics
[136]. It was also presented at international conferences, including the 20th annual work-
shop on the Economic Science with Heterogeneous Interacting Agents (WEHIA) 2015 and
the 21st Computing in Economics and Finance (CEF) conference 2015.



Table of contents

Table of contents xi

List of figures xv

List of tables xxi

1 Introduction 1
1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review and Theoretical Background 9
2.1 Time-frequency methods applied to the analysis of financial time series . . 9
2.2 Review of time-frequency methods . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fourier analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Wavelet analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Hilbert-Huang analysis . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example of a time series decomposition . . . . . . . . . . . . . . . . . . . 27
2.4 Integrated variance estimators . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Realised volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Two-scale realised volatility . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Wavelet realised volatility . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Self-similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Long-range dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Long-range dependence estimators . . . . . . . . . . . . . . . . . . 34
2.6.2 Example of self-similar and long-range dependent processes . . . . 37

2.7 Autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Support vector regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.1 Kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



xii Table of contents

2.8.2 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Multistep-ahead forecasting strategies . . . . . . . . . . . . . . . . . . . . 41

3 Volatility Estimation at Different Timescales 43
3.1 Estimation of realised volatility using high-frequency data . . . . . . . . . 43
3.2 EMD-based realised volatility . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Realised volatility analysis of the S&P 500 index . . . . . . . . . . . . . . 46

3.3.1 Intraday realised volatility, example on a single time series . . . . . 47
3.3.2 Intraday realised volatility, analysis on the complete data set . . . . 50
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 EMD-Based Correlation Estimators 55
4.1 Correlation structures in financial time series . . . . . . . . . . . . . . . . 55
4.2 Frequency-dependent correlation . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Time-dependent correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Correlation analysis of high-frequency financial data . . . . . . . . . . . . 58

4.4.1 Intraday analysis of correlation, example on a single time series . . 58
4.4.2 Intraday correlation, analysis on the complete data set . . . . . . . 61

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Anomalous Volatility Scaling in Stock Market Indices 67
5.1 Self-similarity and long-range dependence in financial time series . . . . . 67
5.2 EMD-based scaling exponent . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Numerical study of long-memory processes . . . . . . . . . . . . . . . . . 69

5.3.1 FBM simulation analysis . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 α-stable Lévy motion simulation analysis . . . . . . . . . . . . . . 70

5.4 Variance scaling in intraday financial data . . . . . . . . . . . . . . . . . . 72
5.5 Observed scaling properties of stock market indices . . . . . . . . . . . . . 79
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Time-Dependent Scaling Properties of Stock Market Indices 87
6.1 Time-dependent scaling exponent . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Numerical study of self-similar and long-memory processes . . . . . . . . 89
6.3 Time-dependent complexity measure . . . . . . . . . . . . . . . . . . . . . 93
6.4 Time-dependent scaling in financial markets . . . . . . . . . . . . . . . . . 94

6.4.1 Intraday analysis of scaling patterns . . . . . . . . . . . . . . . . . 97



Table of contents xiii

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 EMD-Based Forecasting Models 107
7.1 Forecasting financial time series . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 EMD-SVR forecasting models . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Univariate EMD-SVR . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Multivariate EMD-SVR . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Forecasting intraday financial data . . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Intraday forecasting, example on a single time series . . . . . . . . 111
7.3.2 Intraday forecasting, analysis on the complete data set . . . . . . . 116
7.3.3 Testing statistically significant differences between models . . . . . 123
7.3.4 FTSE 100 forecasting results . . . . . . . . . . . . . . . . . . . . . 127

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusion 133
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

References 139

Appendix A ARIMA and SVR model parameters 153
A.1 ARIMA model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2 Support vector regression parameters . . . . . . . . . . . . . . . . . . . . . 157

Appendix B Forecasting results for the FTSE 100 index 163





List of figures

2.1 Example of an IMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Sifting process. (a) Input time series highlighting the local maxima and the
local minima. (b) Time series with the interpolated upper and lower en-
velopes. (c) Time series with the envelopes and the mean of both envelopes.
(d) First iteration of the sifting process. The extracted function does not
satisfy the IMF’s conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Sifting process. (a) Input time series highlighting the local maxima and the
local minima. (b) Input time series with the interpolated upper and lower
envelopes. (c) Input time series with the envelopes and the mean of both
envelopes. (d) Last iteration of the sifting process, the extracted function is
the first IMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Complex analytical representation. The real plane contains the original time
series. The imaginary plane shows its Hilbert transform, and the complex
plane is the geometrically representation of a rotating phasor. . . . . . . . . 24

2.5 EMD of the time series x(t) = sin(2πt f1)+ sin(2πt f2)+ sin(2πt f3)+0.5t. 27

2.6 Wavelet decomposition of the time series x(t) = sin(2πt f1)+ sin(2πt f2)+

sin(2πt f3)+0.5t using Daubechies (db6) wavelet basis and decomposition
level L = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Wavelet decomposition of the time series x(t) = sin(2πt f1)+ sin(2πt f2)+

sin(2πt f3)+0.5t using Daubechies (db6) wavelet basis and decomposition
level L = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Fourier decomposition of the time series x(t) = sin(2πt f1)+ sin(2πt f2)+

sin(2πt f3)+0.5t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Reconstruction of the input time series. . . . . . . . . . . . . . . . . . . . 30

2.10 Moving cross-validation scheme. . . . . . . . . . . . . . . . . . . . . . . . 41



xvi List of figures

3.1 Realised volatility signature plot. The vertical axis is the RV estimator av-
eraged over all trading days. The horizontal axis is the sampling frequency
expressed in minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Example of a intraday time series of the S&P 500 index. December 9th 2013. 48

3.3 IMFs and residue for the logarithm of the S&P 500 prices taken as an example. 48

3.4 Reconstruction of the logarithm of the S&P 500 prices taken as an example. 50

3.5 Partial reconstruction of the logarithm of the S&P 500 prices. . . . . . . . . 50

3.6 Daily contribution of variance for the period July 2013 to March 2014. . . . 51

3.7 Realised volatility estimators for the S&P 500 index for the period July 2013
to March 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Intraday observations (sampled at 30-second intervals) for the S&P 500, the
IPC and the VIX indices for the period September 2014 to July 2015. . . . 58

4.2 Intraday log-prices for the S&P 500, the IPC and the VIX indices, July 18th

2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 IMFs of the stock market indices and the volatility index. . . . . . . . . . 59

4.4 Frequency-dependent correlation. . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Intraday time-dependent correlation. . . . . . . . . . . . . . . . . . . . . . 61

4.6 Distribution of the frequency-dependent correlation between the IMFs of
the S&P 500 index and the IMFs of the IPC index. . . . . . . . . . . . . . 62

4.7 Distribution of the frequency-dependent correlation between the IMFs of
the S&P 500 index and the IMFs of the VIX index. . . . . . . . . . . . . . 63

4.8 Sample median of the frequency-dependent correlation matrices over the
period September 2014 to July 2015. . . . . . . . . . . . . . . . . . . . . 64

4.9 Sample median of the time-dependent correlation matrices over the period
September 2014 to July 2015. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Log-log plot of the IMF variance as a function of period for an FBM of
H = 0.6 and length N1 = 10,000. The blue line represents the least-square
fit. The scaling exponent H∗ = 0.593 can be recovered from half the slope
of the least-square linear fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Demonstration that the empirical scaling law of Eq. 3 retrieves the ex-
pected scaling exponent for FBM. Mean of the scaling exponent H∗ over
100 simulations of FBM with parameter H = 0.1,0.2, . . . ,0.9 and length,
left: N1 = 10,000 and right: N2 = 100,000. The error bars denote the RMSE
of the estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of figures xvii

5.3 Top: log-price time series of the S&P 500 index for the period 05/05/2014
to 05/11/2014. Bottom: the 17 IMFs and the residue obtained through EMD
of the log-prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Log-price time series of the S&P 500 index (blue line). The red line rep-
resents the ‘trend’ of the data calculated as the sum of the residue plus the
last IMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Log-log plot of the IMF variance as a function of period for the EMD of
the S&P 500 index. The red line represents the best least-square fit. The
goodness of the linear fit is R2 = 0.992. . . . . . . . . . . . . . . . . . . . 76

5.6 Log-log plot of variance as a function of period for the S&P 500 IMFs (red
diamonds) compared with 100 rescaled BM linear fits of slope H∗ = 0.5
(blue lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Percentiles 5th and 95th of the R2
BMi

distribution for the analysed stock mar-
ket indices. The blue dot inside each bar indicates the value of

〈
R2

BM
〉

used
for the stock market index ranking. . . . . . . . . . . . . . . . . . . . . . . 81

5.8 EMD analysis for the NASDAQ index. Captions for figures (a) and (b) are
the same as captions for figures 5.4 and 5.6 respectively. . . . . . . . . . . 82

5.9 EMD analysis for the BOVESPA index. Captions for figures (a) and (b) are
the same as captions for figures 5.4 and 5.6 respectively. . . . . . . . . . . 83

5.10 EMD analysis for the NIKKEI 225 index. Captions for figures (a) and (b)
are the same as captions for figures 5.4 and 5.6 respectively. . . . . . . . . 83

5.11 EMD analysis for the DSM index. Captions for figures (a) and (b) are the
same as captions for figures 5.4 and 5.6 respectively. . . . . . . . . . . . . 84

6.1 Illustration that for FBM the local amplitudes ak(t) and the periods τk(t)
follow Equation (6.1): ak(t) ∝ τ

H∗(t)
k (t). Plots report instantaneous ampli-

tude as a function of period for the following four randomly chosen times:
t = 1326,2252,3421,5405. The simulated process is an FBM with self-
similar exponent H = 0.6 and length N = 10,000 points. The straight lines
represent the best-fit linear regressions. . . . . . . . . . . . . . . . . . . . . 88



xviii List of figures

6.2 a) Illustration that for FBM the scaling exponent H∗(t) is on average close
to the self-similar exponent H. The plot reports the sample mean of H∗(t),
denoted as ⟨H∗(t)⟩ and computed over M = 1,000 simulations of FBM with
self-similar exponent H = 0.1,0.2, . . . ,0.9 (bottom to top) and length N =

10,000 points. b) Sample mean of H∗(t) over time and over the number
of simulations, denoted as ⟨⟨H∗⟩⟩, standard deviation of H∗(t) and sample
mean of the coefficient of determination,

〈〈
R2〉〉. The values of GHE(1)

denote the generalized Hurst exponent with q = 1. . . . . . . . . . . . . . 90

6.3 a) Illustration that for SLM the scaling exponent H∗(t) is on average close
to the value H = 1

α
. The plots report the sample mean of H∗(t), denoted

as ⟨H∗(t)⟩ and computed over M = 1,000 simulations of SLM with self-
similar exponent H = 0.5,0.55, . . . ,0.95 (bottom to top) and length N =

10,384 points. b) Sample mean of H∗(t) over time and over the number
of simulations, denoted as ⟨⟨H∗⟩⟩, standard deviation of H∗(t) and sample
mean of the coefficient of determination,

〈〈
R2〉〉. . . . . . . . . . . . . . . 91

6.4 a) Illustration that for ARFIMA(0,1,0) the scaling exponent H∗(t) is on av-
erage close to the value H = d + 0.5. The plots report the sample mean of
H∗(t), denoted as ⟨H∗(t)⟩ and computed over M = 1,000 simulations of
ARFIMA(0,d,0) with self-similar exponent H = 0.1,0.2, . . . ,0.9 (bottom to
top) and length N = 10,000 points. b) Sample mean of H∗(t) over time and
over the number of simulations, denoted as ⟨⟨H∗⟩⟩, standard deviation of
H∗(t) and sample mean of the coefficient of determination,

〈〈
R2〉〉. . . . . 92

6.5 30-second sampled log-prices for different stock market indices for the pe-
riod January 15th, 2014 to June 16th, 2014. (a) S&P 500, (b) IPC, (c) Nikkei
225 and (d) XU 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Time-dependent scaling exponent for different stock market indices for the
period January 15th, 2014 to June 16th, 2014. The scaling exponent H∗(t) is
depicted by a dark-blue line. The light-blue line represents H̄∗(t), a rolling-
window average over the length of a trading day. The red line indicates the
value H = 0.5. (a) S&P 500, (b) IPC, (c) Nikkei 225 and (d) XU 100. . . . 96

6.7 Time-dependent complexity measure, C∗(t), for four different stock market
indices for the period January 15th, 2014 to June 16th, 2014. (a) S&P 500,
(b) IPC, (c) Nikkei 225 and (d) XU 100. . . . . . . . . . . . . . . . . . . . 98



List of figures xix

6.8 Intraday analysis of the S&P 500 index. (a) Intraday dynamics of the scaling
exponent H∗(t) as a function of day and time. The colour bar indicates the
value of H∗(t). (b) Mean of H∗(t) over the 105 days, denoted as ⟨H∗(t)⟩days.
The pink band corresponds to the 5th and 95th percentile of the distribution
of ⟨H∗

BM(t)⟩. The distribution is estimated using 100 simulations of Brown-
ian motion. (c) Likelihood of H∗(t) to fall outside the 5th and 95th percentile
band for Brownian motion (pink band of Figure (b)). The colour bar indi-
cates ⟨H∗(t)⟩days, the value shown in Figure (b). (d) Mean of the windowed
complexity measure, denoted as ⟨C∗(t)⟩days. . . . . . . . . . . . . . . . . 100

6.9 Intraday analysis for the IPC index. Caption for sub-figures (a), (b), (c) and
(d) same as Figure 6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.10 Intraday analysis for the Nikkei 225 index. Caption for sub-figures (a), (b),
(c) and (d) same as Figure 6.8. The white vertical band in each sub-figure
corresponds to the lunch break in this stock exchange. . . . . . . . . . . . . 102

6.11 Intraday analysis for the XU 100 index. Caption for sub-figures (a), (b),
(c) and (d) same as Figure 6.8. The white vertical band in each sub-figure
corresponds to the lunch break in this stock exchange. . . . . . . . . . . . 103

7.1 S&P 500 index for the trading day, August 7th 2014 . . . . . . . . . . . . . 112

7.2 Actual and forecasted IMFs and residue extracted from the S&P 500 index
shown in Figure 7.1. The forecasted values were obtained using the univari-
ate EMD-SVR model, both the recursive and the direct strategies. . . . . . 114

7.3 Actual and forecasted values for the S&P 500 index shown in Figure 7.1.
Forecasted values were obtained using partial reconstructions of the univari-
ate EMD-SVR model, both the recursive and the direct strategies. . . . . . 115

7.4 Actual and forecasted values for the S&P 500 index shown in Figure 7.1.
Forecasted values were obtained using the multivariate EMD-SVR model. . 116

7.5 MAE as a function of the forecast horizon for the considered forecasting
models: naive, ARIMA, univariate and multivariate EMD-SVR with input
vector m = 1 lagged values. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 MAE as a function of the forecast horizon for the considered forecasting
models: naive, ARIMA, univariate and multivariate EMD-SVR with input
vector m = 5 lagged values. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.7 MAE as a function of the forecast horizon for the considered forecasting
models: naive, ARIMA, univariate and multivariate EMD-SVR with input
vector m = p+d lagged values. . . . . . . . . . . . . . . . . . . . . . . . 126



xx List of figures

A.1 Number of autoregressive terms p for the ARIMA model fitted to the indi-
cated time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Order of the moving average term, q, for the ARIMA model fitted to the
indicated time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3 Number of differencing d, for the ARIMA model fitted to the indicated time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.4 Regularization constant C for the SVR model fitted to the indicated time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.5 Insensitive coefficient ε for the SVR model fitted to the indicated time series. 159
A.6 Kernel width parameter γ for the SVR model fitted to the indicated time series.160
A.7 Number of support vectors for the SVR model fitted to the indicated time

series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.1 MAE as a function of the forecast horizon for the considered forecasting
models: naive, ARIMA, univariate and multivariate EMD-SVR with input
vector m = p+d lagged values. . . . . . . . . . . . . . . . . . . . . . . . 165



List of tables

3.1 Oscillating period expressed in minutes, variance and contribution to the
total variance for the IMFs and the residue extracted from the S&P 500
prices taken as an example. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Average oscillating period (minutes) and average contribution of compo-
nents to the total variance. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Oscillating period for the IMFs shown in Figure 4.3 and calculated by di-
viding the total number of points by the number of peaks. . . . . . . . . . . 60

4.2 Average of the number of lags and the size of the rolling-window used for
the time-dependent correlation analysis. . . . . . . . . . . . . . . . . . . . 64

5.1 Confirmation that the empirical scaling law of Eq. 3 retrieves the expected
scaling exponent for FBM. Mean of the scaling exponent H∗ over 100
simulations of FBM with parameter H = 0.1,0.2, . . . ,0.9 and length, left:
N1 = 10,000 and right: N2 = 100,000. For comparison, we included the
mean and the RMSE of the generalized Hurst exponent estimator with q = 2
and denoted as HG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Demonstration that the empirical scaling law of Eq. 3 retrieves the ex-
pected scaling exponent for SLM. Mean of the scaling exponent H∗ over
100 simulations of SLM with parameter H = 1

α
= 0.5,0.55, . . . ,0.95 and

length N = 10,384. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Studied stock market indices, including the length of the time series. . . . . 72

5.4 Oscillating period of the IMFs obtained from the S&P 500 index. . . . . . . 75

5.5 Stock market indices including the number of IMFs obtained when applying
EMD to the logarithm of the price. The second column report the index
of orthogonality (×104). Stock market indices are reported in descending
order of R2, which represents the goodness of the linear fit of Equation (5.2).
Last column reports the estimated exponent H∗ of the same equation. . . . 77



xxii List of tables

5.6 Stock market indices ranked in descending order of
〈
R2

BM
〉
. The last column

indicates the ordering of the markets with respect to R2. . . . . . . . . . . . 80

6.1 Number of days and length of each financial time series. . . . . . . . . . . 94

6.2 Average goodness-of-fit coefficient (R2) for the amplitude versus period log-
linear model. First, the average is calculated for all the times t, then, it is
calculated separately for those time instances where H∗(t) < 0.45, 0.45 <

H∗(t)< 0.55 and H∗(t)> 0.55. . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Order of the ARIMA models fitted to each IMF and to the residue. The
number of lagged values m = p+d is used to construct the input vectors for
the EMD-SVR models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 MAE and std for the considered forecasting models: naive, ARIMA, uni-
variate and multivariate EMD-SVR with input vector m = 1 lagged values.
The smallest MAE of each forecast horizon is set in boldface. . . . . . . . . 120

7.3 MAE and std for the considered forecasting models: naive, ARIMA, uni-
variate and multivariate EMD-SVR with input vector m = 5 lagged values.
The smallest MAE of each forecast horizon is set in boldface. . . . . . . . . 121

7.4 MAE and std for the considered forecasting models: naive, ARIMA, uni-
variate and multivariate EMD-SVR with input vector m = p+d lagged val-
ues, the same input vector as the ARIMA model. The smallest MAE of
each forecast horizon is set in boldface. The values marked with a dagger
(†) indicate the smallest MAE of each horizon for the models with different
input vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that
the naive model is as accurate as the studied models: ARIMA, univariate
and multivariate EMD-SVR with input vector m = 1. Top, direct strategy,
bottom, recursive strategy. * Statistically significant at the 5% confidence
level ** Statistically significant at the 1% confidence level. . . . . . . . . . 128

7.6 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that
the naive model is as accurate as the studied models: ARIMA, univariate
and multivariate EMD-SVR with input vector m = 5. Top, direct strategy,
bottom, recursive strategy. * Statistically significant at the 5% confidence
level ** Statistically significant at the 1% confidence level. . . . . . . . . . 129



List of tables xxiii

7.7 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the
naive model is as accurate as the studied models: ARIMA, univariate and
multivariate EMD-SVR with input vector m = p+ d. Top, direct strategy,
bottom, recursive strategy. * Statistically significant at the 5% confidence
level ** Statistically significant at the 1% confidence level. . . . . . . . . . 130

B.1 MAE and std for the considered forecasting models: naive, ARIMA, uni-
variate and multivariate EMD-SVR with input vector m = p+d lagged val-
ues, the same input vector as the ARIMA model. The smallest MAE of each
forecast horizon is set in boldface. . . . . . . . . . . . . . . . . . . . . . . 164

B.2 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the
naive model is as accurate as the studied models: ARIMA model, univari-
ate and multivariate EMD-SVR models with input vector m = p+ d. Top,
direct strategy, bottom, recursive strategy. * Statistically significant at the
5% confidence level ** Statistically significant at the 1% confidence level. . 166





Nomenclature

Acronyms / Abbreviations

ARFIMA Autoregressive Fractionally Integrated Moving Average

ARIMA Autoregressive Integrated Moving Average

BM Brownian Motion

CWT Continuous Wavelet Transform

DFA Detrended Fluctuation Analysis

DWT Discrete Wavelet Transform

EMD Empirical Mode Decomposition

EMH Efficient Market Hypothesis

FBM Fractional Brownian Motion

FGN Fractional Gaussian Noise

FMH Fractal Market Hypothesis

FT Fourier Transform

HHT Hilbert-Huang Transform

HMH Heterogeneous Market Hypothesis

HT Hilbert Transform

IMF Intrinsic Mode Function

MODWT Maximal Overlap Discrete Wavelet Transform



xxvi Nomenclature

RV Realised Volatility

SLM α-stable Lévy motion

S&P Standard and Poor’s

STFT Short Time Fourier Transform

SVM Support Vector Machine

SVR Support Vector Regression

TSRV Two-Scale Realised Volatility



Chapter 1

Introduction

Over the last few years financial markets have witnessed the availability and widespread
use of data sampled at high frequencies. The use of high-frequency data allows to iden-
tify the intraday structure of financial markets [57]. Data generated at these frequencies
have properties which are not caused by a single process but by several components that are
superimposed onto each other in a hierarchical form. These components are not immedi-
ately apparent, but once identified, they can be meaningfully categorized as noise, cycles at
different timescales and trends [57].

Scaling behaviour in financial data was first studied by Mandelbrot [124, 126] and it
is found across financial markets with complex properties that are significantly related to
economic and financial characteristics of markets [64]. Self-similarity or scale-invariance
is an attribute of many natural laws and it is the underlying concept of fractals. It is related
to the occurrence of similar patterns at different timescales. In this sense, probabilistic
properties of self-similar processes remain invariant when the process is viewed at different
resolutions [41].

A classic example of self-similar process is fractional Brownian motion (FBM), a Gaus-
sian process characterized by a positive scaling exponent 0<H < 1 [127]. When 0<H < 1

2 ,
FBM is said to be anti-persistent with negatively autocorrelated increments. For the case
1
2 < H < 1, FBM reflects a persistent behaviour and its increments exhibit long-range de-
pendence. When H = 1

2 , FBM is reduced to a process with independent increments known
as Brownian motion.

For FBM, all timescales contribute proportionally and there is a specific relation that
links statistical properties at different timescales [73]. However, real financial time series
have more complex scaling patterns, with some timescales contributing disproportionally;
these patterns characterize multiscaling processes whose statistical properties vary at each
timescale [63, 64]. Two different sources of multifractality have been documented in the
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literature: the heavy-tailed probability distribution and the autocorrelation structure of the
data [27, 106], considering stochastic processes which reproduce these characteristics may
improve the modelling of financial data.

Multiscale properties of financial time series gave rise to two behavioural market the-
ories, the heterogeneous market hypothesis (HMH) [135] and the fractal market hypothe-
sis (FMH) [146]. The former theory considers multiple investment horizons, affirming that
market participants are not a single homogeneous group of investors all possessing the same
information and objectives, and therefore they react to the market at different times. Market
participants are highly heterogeneous and have investment horizons that vary from seconds
to years (market makers, noise traders, hedge funds). As consequence, financial markets
became highly mixed and irregular systems, with complex financial time series exhibiting
non-linearity, non-stationarity and long memory.

Similarly, the FMH asserts that financial participants are heterogeneous and market sta-
bility exists if there are investors with different time-horizons whose interactions create
liquidity. These investors treat the arriving information differently and affect the price dy-
namics in various ways depending on their trading timescale [174]. The HMH and the FMH
challenge the classic approach known as the efficient market hypothesis (EMH) [70], a the-
ory which states that financial markets are efficient if they reflect all available information,
thus arbitrage conditions are non-existent or quickly eliminated. Based on the strength of
its assumptions, the EMH is stated in three forms: the weak-form affirms that historical
prices cannot be used to gain excess of returns on the stock market. The semi-strong form
refers not just to the historical prices but to all publicly available information, affirming that
all these data are already reflected in prices. The strong-form of the EMH implies that all
information, including inside information, is already reflected in prices, meaning that no
information can give the investor consistent excess of returns on the stock market.

Financial prices exhibit some universal characteristics persistent across various time
periods, markets, assets, etc., and known as stylized facts. These characteristics include
volatility clustering, autocorrelation, fat tails, high kurtosis, and could be interpreted as a
contradiction to the prevalent EMH [44].

Non-stationarity and non-linearity in financial time series are also considered stylized
facts [1, 93, 94, 154, 161, 177]. Testing for non-linearity in financial time series verifies
the adequacy for linear models. If the underlying generating process is non-linear in nature,
it would be inappropriate to employ linear models including Black–Scholes–Merton option
pricing model, autoregressive models and stochastic volatility models [93, 95]. Chen et al
[47] provide an overview and a critique of the performance of different tests for non-linearity
in detecting different types of artificially generated non-linear structures.
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The purpose of this research is to investigate the interactions between the different mar-
ket participants and their investment horizons. We aim to reveal the underlying forces driv-
ing financial time series. The presence of fluctuations with larger magnitudes than the ones
accounted for by the Gaussian distribution creates the need for new models and tools to
study financial time series. Time-frequency representations, including Fourier and wavelet
transforms, provide a powerful way to analyse time series by determining which frequen-
cies are present, how strong the frequencies are, and how they vary over time. In particular,
spectral analysis allows to infer information about the length of a cycle or to filter noise to
reveal the data generating process.

The most common tool for spectral analysis is the Fourier transform, which represents
the frequency components contained in a stationary time series through an orthogonal basis
of sine and cosine functions. However, as these functions are analysed over the whole time
domain at once, any time-related localization is lost. In this way, Fourier analysis is effective
to study periodic and stationary time series whose properties do not change much over time.

Spectral analysis has been an important tool for time series analysis. Traditional meth-
ods are based on the assumption of second-order stationarity. However, this assumption is
rarely fulfilled in real data or it is only approximately valid for time series of very short
duration. The stationarity assumption can be lessen to a locally stationary property in which
the spectrum is assumed to be changing slowly over time, and the time series can be ap-
proximated by a piecewise stationary time series. This approach can be considered as a
local Fourier basis approximation using a time-varying transfer function to estimate the
spectrum [3, 58, 59]. Several methods have been derived to model some stylized facts of
financial log-returns by locally stationary process, see references [82, 121, 161]. For ex-
ample, Fryzlewicz et al. [82] propose a non-stationary model for log-returns in which the
time-varying volatility is a piecewise-constant function of time, allowing the modelling for
abrupt changes in the return distribution.

In order to preserve the temporal local properties of the data, wavelet analysis was in-
troduced to finance and econometrics. Wavelet analysis offers a non-parametric and concise
way of studying the heterogeneity of financial markets under non-stationary conditions. By
using wavelets, a decomposition into scales of different resolutions (the so called multiscale
decomposition) is obtained. The basis functions used for the time-frequency representation
are oscillations which decay rapidly with time and are termed as wavelets [61].

Although wavelet analysis has been widely used in finance, see for example [29, 71, 86],
the main drawback of this technique is the need for an explicit selection of the mother
wavelet able to achieve a meaningful decomposition which does not influence the interpre-
tation of the results. Furthermore, the Heisenberg uncertainty principle limits the resolution
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that can be attained to the time-frequency representation of the Fourier and the wavelet
transforms [120].

The Hilbert-Huang transform (HHT) [96] was introduced as a data decomposition tool
aiming to eliminate the need for an a-priori basis selection. This transform does not assume
any knowledge of the underlying dynamics and uses an adaptive basis which is extracted
from the data itself. The HHT consists of two main steps:

1. Empirical mode decomposition (EMD). An algorithm which separates data into a
small number of independent and nearly periodic functions called intrinsic mode func-
tions (IMFs). These functions, being based on local characteristic scales defined as
the distance between two successive local extrema, provide a tool to perform a more
extensive and detailed analysis.

2. Hilbert transform. After obtaining the IMFs, their Hilbert transformation allows to
obtain a localized time-frequency spectrum with physically meaningful instantaneous
frequencies and amplitudes. These instantaneous attributes could be used to identify
hidden structures embedded in the data.

1.1 Research objectives

Our research is motivated by the heterogeneous and the fractal market hypotheses and aims
to understand market dynamics when different investment horizons interact. We question
if the Hilbert-Huang transform, a completely adaptive and empirical decomposition frame-
work, could be used to reveal hidden patterns in high-frequency financial data. We aim to
identify the impact of the different investment horizons as explanatory factors driving the
unknown generating process of financial time series. We also question if prices dynamics
are generated by fluctuations at various timescales and how the variance of those fluctuations
behaves with respect to the oscillating period.

In this thesis, we introduce a novel non-parametric analysis which consists of decom-
posing high-frequency financial data into a finite set of IMFs. These components are charac-
terized by an oscillating frequency and are dominated by simpler generating processes. By
studying the statistical properties of the flow of information between frequencies, we aim to
identify properties that propagate across different timescales and to reveal the heterogeneous
market structure.

Given the non-stationary nature of financial time series [161], time-dependent statis-
tics which describe the changing dynamics of the data are needed, the HHT provides a
new approach to achieve such localization. Among the studied stylized facts are: volatility
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clustering, dependence structures, anomalous scaling laws [137] and multifractal properties
[136].

The main distinguishing feature of multifractal time series is the non-linear variation in
the scaling behaviour of its moments. Multifractal structures appear to be a very practical
and promising way to capture the hierarchical multicomponent structure of financial time
series. Furthermore, multifractality seems to be able to account for rare events and to de-
scribe the intermittent properties of time series which display periods of high and volatile
activity mixed with relatively calm periods. Using the HHT, we aim to describe the chang-
ing oscillatory behaviour and the heterogeneity of financial time series. We test if the level
of fluctuation differs from the usual self-similar behaviour exhibited by a Gaussian distri-
bution, where the fluctuations at fine scales are uniform and all of them follow the same
scaling law.

By focusing exclusively on given timescale, we cannot explain the nature of the data
generating process. A model which successfully explains daily price changes, is unable to
characterize the nature of hourly price changes [57]. On the other hand, statistical properties
of monthly price changes are often not fully covered by a model based on daily price changes
[157].

In this work, we also investigate whether the extracted fluctuations can be used to con-
struct non-linear models which could target short and long-term horizon, improving in this
way forecasting results and producing above average risk-returns.

Publications

Part of this thesis is published in Physica A: Statistical Mechanics and its Applications [137]
and in the European Physical Journal, Special Topics [136]. Part of the research was also
presented at international conferences, including the 20th annual workshop on the Economic
Science with Heterogeneous Interacting Agents (WEHIA) 2015 and the 21st Computing in
Economics and Finance (CEF) conference 2015.

1.2 Data description

Across this thesis, we use a data set consisting of intraday observations of 22 different stock
market indices which are reported in Table 5.3. We also use intraday data of the S&P 500
implied volatility index known as the VIX index. This volatility index is the trade mark of
the Chicago Board Options Exchange and it is the markets’ expectation of the future market
volatility over a 30 day horizon [52].
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All observations are recorded at 30-second intervals, with the exception of the Warsaw
stock exchange index which observations were only available at every minute frequency.
The data were obtained from Bloomberg and cover a period from July 2013 to November
2014. The number of working days and the number of observations for every trading day
depend on the opening hours of each stock market exchange. Different subsets of the com-
plete data set were considered for the studies reported in the different chapters of this thesis.
Furthermore, we generally apply the proposed methodology to intraday observations of a
single trading day, to subsequently repeat the analysis on each day of the data set and make
deductions from the average behaviour of the analysed data.

1.3 Thesis structure

In each chapter, we propose, describe and discuss an application of the HHT to the analysis
of high-frequency financial data. We used the HHT implementation in MATLAB available
online at http://perso.ens-lyon.fr/patrick.flandrin/emd.html.

In Chapter 2, we present the literature review and the theoretical background of this
research. We review some relevant theories and concepts used in the timescale analysis of
financial time series. We discuss some attributes of financial time series, including volatil-
ity clustering, intraday seasonalities, correlation patterns and scaling properties. We also
discuss the most commonly used spectral methods, describing in detail the Hilbert-Huang
transform. Moreover, we provide a comparative example between the studied spectral meth-
ods, summarizing advantages and disadvantages.

In Chapter 3, we propose an alternative estimator of realised volatility which is based
on the different oscillating components latent in a time series and obtained via the EMD. The
scale-by-scale study of volatility assumes that market data contain patterns specific to some
frequencies of observations and are thus of interest for different types of market agents. The
proposed estimator provides information on the contribution of the different frequencies to
the total variance of the underlying process.

In Chapter 4, we propose two approaches to investigate the dynamic correlation be-
tween a pair of time series. The multiscale analyses provided by the EMD allows to study
timescale dependent correlations. The dependencies are quantified via the Pearson correla-
tion applied to the IMFs. The time varying characteristics of these correlations are investi-
gated by using a rolling-window approach. This method results in the estimation of both the
strength of the correlation and the time-lag when the maximum correlation occurs. Under
the EMH such relationships should not exist as all the information is incorporated in the
prices, however, in real financial markets such dependencies exist for short periods of time.

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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In Chapter 5, we uncover a scaling law that relates the variance of the IMFs to a power
law of the oscillating period. The scaling exponent is related to the Hurst exponent. We
verify the scaling relationship with numerical simulations of well known long memory pro-
cess. As an application of the proposed methodology, we investigate the scaling properties
of intraday stock market indices. Analysing 22 different stock market indices, we observe
deviations from the FBM and Brownian motion scaling behaviours.

In Chapter 6, we study the relative weight of the oscillating components present in
financial time series coupled with their characteristic timescale. These components are ex-
tracted via the HHT. We propose two novel time-dependent measures of complexity: 1) an
amplitude scaling exponent and 2) an entropy-like measure. The proposed measures are
tested on simulations of fractional Brownian motion and α-stable Lévy motion. By using
these measures on high-frequency financial data, we are able to identify intraday cycles,
trends and intermittent behaviour. Our measures do not assume any particular parameter,
the temporal behaviour and variations are found directly from the data, considering only the
timescales obtained via the EMD.

In Chapter 7, we propose some multistep-ahead forecasting models based on EMD
and support vector regression. The obtained IMFs are less noisy and conform more closely
to the assumptions made by dominant forecasting models. Every IMF can be treated as a
particular pattern, forecasting techniques based on different IMFs could be viewed as mod-
elling different investment horizons. The novelty of our proposed method is the inclusion
of a coarse-to-fine reconstruction step to analyse the forecasting capabilities of a combina-
tion of IMFs. We use our models for intraday multistep-ahead forecast. The fast-frequency
components are used for the immediate steps (short-term horizons), while low-frequency
components forecast long-term horizons.

Lastly, Chapter 8 is the overall conclusion of this research along with remarks for future
work. We develop a methodology that successfully and simultaneously characterizes both
the short and the long-term horizons of a time series. The research of this thesis shows that
many issues previously studied in financial time series may gain new insight with the HHT
by separating processes into different timescales and repeating the traditional analysis on
each of them. The characteristics of the HHT fit the features of financial time series which
are attributed to the interaction of multiple processes at different timescales.





Chapter 2

Literature Review and Theoretical
Background

In this chapter, we present an overview of several studies relevant to our work which con-
sider the properties of financial data the result of the interactions of many heterogeneous
participants. We discuss attributes of financial time series, including volatility clustering,
intraday seasonalities, correlation patterns and scaling properties.

The first part of this chapter summarises some time-frequency methods, focusing on the
Hilbert-Huang transform, the methodology that is extensively used in this thesis. We include
a comparison example which discusses some advantages and drawbacks of the presented
methods. We continue by reporting several conventional estimators of realised volatility
and revising dependency structures found in financial time series, including long-memory
and self-similarity. We finalise the chapter with a summary of various models and strategies
to forecast financial time series.

2.1 Time-frequency methods applied to the analysis of fi-
nancial time series

The general objective of spectral analysis is the decomposition of a time series into its fre-
quency components in order to detect and investigate any cyclical behaviour of its generating
process. A well established concept in the study of financial time series is the existence of
multiscaling patterns, an observed time series may be produced by several interacting pro-
cesses, each occurring on a different timescale. The presence of heterogeneous agents with
different investment horizons may generate very complex patterns [135]. In this way, study-
ing the properties of a time series using only a single frequency (the sampling frequency)
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can be misleading when trying to understand the market structure. Important information
could be lost due to the naive aggregation of the different frequency components into a
single component [131].

The most common tool for spectral analysis is the Fourier transform, which represents
the latent frequency components contained in the time series through sine and cosine func-
tions. However, as these functions are analysed over the whole time series at once, any
time-related information is lost. Various attempts to preserve the temporal locality property
of the data introduced wavelet analysis into finance. Wavelet analysis offers an approach
to study the heterogeneity of financial markets under non-stationary conditions. By using
wavelets, one obtains a decomposition into scales of different resolutions (the so called
multiscale decomposition). The analysing basis functions are oscillations that decay rapidly
with time and are termed as wavelets. These functions are very attractive as they possess
the unique ability to provide a complete representation of a time series from both the time
and the frequency domains. Wavelet analysis has been adopted in many studies in the fi-
nance literature, for example: estimation of volatility and jump variation [71], analysis of
foreign exchange [148], analysis of scaling properties of foreign exchange volatility [85],
multi-resolution forecasting of futures prices [186], to mention a few.

Aiming to develop a complete adaptive time-frequency representation, the Hilbert-Huang
transform (HHT) was introduced [96]. The HHT is a two-step algorithm which combines
the empirical mode decomposition and the Hilbert spectral analysis. In contrast to Fourier
and wavelet transform, the HHT uses an empirical basis extracted from the analysed data
itself. Furthermore, it provides time-varying amplitude and frequency attributes. Some ap-
plications of the HHT to financial data include: a measure of changeability as a proxy for
volatility [97], phase correlation of foreign exchange time series [181], analysis of oil prices
using EMD [187]. More recently, the EMD has been used to identify fluctuation tendencies
that simplify the forecasting task into several simple forecasting subtasks [103].

The Hilbert transform as an independent tool has also been successfully applied for
pricing different types of derivative contracts (plain vanilla, single and double barrier, look-
back options) when the underlying asset process evolves according to a Lévy process [74,
129].
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2.2 Review of time-frequency methods

2.2.1 Fourier analysis

The Fourier analysis is a spectral method attributed to the mathematician Joseph Fourier [81]
which provides a link between the time-domain and the frequency-domain of a function.
This analysis includes both the Fourier series and the Fourier transform (FT). The former is
used to analyse periodic functions while the latter is applicable to functions that are defined
on the real set [87].

Fourier Series

The Fourier series representation of a real-valued periodic function f (t) is given by:

f (t) =
a0

2
+

∞

∑
k=1

ak cos(kω0t)+
∞

∑
k=1

bk sin(kω0t) , (2.1)

where ω0 = 2π

T is the fundamental frequency [87]. The real quantities a0, ak and bk are
defined as:

a0 =
2
T

T∫
0

f (t)dt, (2.2)

ak =
2
T

T∫
0

f (t)cos(kω0t)dt, (2.3)

bk =
2
T

T∫
0

f (t)sin(kω0t)dt, (2.4)

with k = 1,2, . . . ,∞.

Fourier transform

The Fourier transform of a function f (t) ∈ L2(R) of a real variable t is defined by the inte-
gral:

F(ω) =

+∞∫
−∞

f (t)e−iωtdt. (2.5)

This equation states that for a frequency ω1, the function f̂ (ω1) represents the component of
f (t) at ω1 [87]. If we can determine all the frequency components of f (t), a superposition
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of all these components should reconstruct the original function:

f (t) =
1

2π

+∞∫
−∞

F(ω)eiωtdω. (2.6)

Previous integral is referred to as the inverse Fourier transform. If the variable t represents
time, f̂ (ω) is called the spectrum of f (t) [87]. The weakness of this transform is that
the Fourier spectrum does not provide any time-domain information, a local analysis is
needed to combine both the time and the frequency representation. A possible solution
is the application of the short-time Fourier transform, where the transformation is locally
calculated [87].

Short-time Fourier transform

The short-time Fourier transform (STFT) is composed of two steps, firstly, the time series
is divided into segments and then, the spectrum of each segment is obtained via the Fourier
transform [87]. The STFT of a function f (t) with respect to the window function φ(t) and
evaluated around the location b is defined as:

SF(ω,b) =
1

2π

+∞∫
−∞

f (t)φ(t −b)e−iωtdt. (2.7)

The signal can be reconstructed from its transform by the formula:

f (t) =
1

2π

+∞∫
−∞

+∞∫
−∞

SF(ω,b)φ(t −b)eiωtdbdω, (2.8)

where the window function φ(t) is allowed to be complex and must have a non-zero spec-
trum at ω = 0, behaving like a low-pass filter [87]. Classical choices for φ(t) include the
rectangular, the Hanning, the Hamming or the Gaussian windows [87]. The length of the
window determines the time and the frequency resolution of the representation and this
resolution is kept constant over the time-frequency plane. A short window leads to a rep-
resentation which is fine in time but coarse in the frequency domain. Conversely, a long
window leads to a representation which is coarse in time but fine in the frequency domain.
This time-frequency resolution trade-off is formalized by the Heisenberg-Gabor uncertainty
principle, stating that we can not obtain precision in both the time and the frequency domain
simultaneously [87]. As a way to improve time-frequency localization, wavelet analysis was
introduced [89] .
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2.2.2 Wavelet analysis

Wavelets can be loosely described as oscillatory basis functions, constructed with some
attractive features not possessed by other global functions such as sines and cosines waves.
The term wavelet refers to an oscillatory vanishing wave with time-limited duration and with
the advantage of representing a variety of functions in a sparse manner with simultaneous
localisation in the time and the frequency domain [89].

Mathematically, a wavelet function ψ(t) ∈ L2(R) has an average value equal to zero,∫+∞

−∞
ψ(t)dt = 0 and the square of ψ(t) integrates to unity,

∫+∞

−∞
ψ2(t)dt = 1 [172]. The

function ψ(t) is also known as the “mother wavelet”. A family of wavelet functions can be
derived from a mother wavelet by translation of a factor k and dilation of scale λ , that is:

ψk,λ (t) =
1√
λ

ψ

(
t − k

λ

)
, (2.9)

where k,λ ∈R. In this way, the wavelet transform of a time series evolving in time depends
on two variables, scale and time.

Time localization is achieved by using translated versions of the mother wavelet and
frequency localization is accomplished by scaled versions of it. The scaled and translated
version of the mother wavelet are used to measure the correlation with the time series to be
analysed. When the signal correlates to large scales, the coarse features of the input time
series are highlighted. Contrary, high correlation with small scales disclose the fine features
of the input time series.

The difference between the wavelet and the STFT lies in the shapes of the analysing
functions, the STFT uses functions with the same width, contrary to the wavelet transform
which uses width adapted functions. High-frequency wavelets are very narrow while low
frequency wavelets are much broader [172]. For the sake of clarity, let us start the wavelet
transform study with the description of the continuous wavelet transform.

Continuous wavelet transform

The continuous wavelet transform (CWT) of a function f (t)∈ L2(R) is defined as a function
of two variables, k and λ , time and scale respectively [172] and it is defined as:

Wψ, f (k,λ ) =
1
λ

∫ +∞

−∞

f (s)ψ̄k,λ (t)ds, (2.10)

where ψ̄ denotes the complex conjugate of the wavelet function ψ . When λ is increased,
the wavelet function is dilated and when k is varied, the wavelet is translated in time. Hence,
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by changing (k,λ ), the function Wψ, f can be computed on the entire time-frequency plane
[172].

In order to reconstruct the function f (t) from its continuous wavelet transform, the
mother wavelet should satisfy the admissibility condition [172]. A wavelet is said to be
admissible if its Fourier transform Ψ(ω) satisfies:

Cψ =
∫ +∞

−∞

| Ψ(ω) |2

ω
dω < ∞. (2.11)

In this way, the function f (t) can be reconstructed from its wavelet transform as:

f (t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞

1
λ 2Wψ, f (k,λ )ψ̄k,λ (t)dk dλ . (2.12)

The parameters λ and k vary continuously over R (with the constraint λ ̸= 0), making
the continuous wavelet transform a redundant transformation. In order to minimize the
amount of correlation information, discrete values of k and λ can be selected, introducing
the discrete wavelet transform.

Discrete wavelet transform

The discrete wavelet transform (DWT) can be thought of as a subsampled version of the
CWT. The DWT selects values of the parameters λ and k using a critical sampling that
keeps the transformation invertible. The critical sampling will provide the minimal basis by
selecting λ of the form 2− j, and k = m2− j, j,m ∈ Z. Any coarser discretization will not
produce a unique inverse transformation [172].

Mallat, S. [119] originally demonstrated that the computation of the discrete wavelet
transform can be accomplished with a hierarchical structure of filter banks which produce
two types of wavelet coefficients: approximation coefficients and detailed coefficients. The
approximation coefficients describe the global features of the data and are obtained by fil-
tering the input time series with a low-pass filter. The detail coefficients describe the local
features of the data and are obtained by high-pass filtering. The approximation coefficients
are used in the filter structure as the input for the next iteration. Each decomposition level
corresponds to a specified resolution which decreases with the number of decomposition
levels [172].

The DWT is a shift-variant transform, meaning that the DWT of a function shifted in
time is quite different from the transform of the input function. The maximum overlap
discrete wavelet transform (MODWT) is a non-orthogonal and shift-invariant modification
of the DWT [145]. Unlike the DWT which down-samples the approximation coefficients
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and detail coefficients at each decomposition level, the MODWT does not perform a down-
sampling [145]. Therefore, the approximation coefficients and the detail coefficients at each
level have the same length as the input time series. Another advantage of the MODWT is
that it can be used to analyse a time series of any arbitrary size.

The main drawback of the wavelet transform is that its performance depends on the
explicit and a priori selection of the mother wavelet. This selection may influence the fre-
quency analysis. Aiming for a completely adaptive tool, the Hilbert-Huang transform was
proposed by Huang et al. [96].

2.2.3 Hilbert-Huang analysis

The Hilbert-Huang transform was designed to analyse non-linear and non-stationary time
series. It was originally developed to study water-wave evolution, but it has proven to be
a useful tool for other complex signals. The HHT consists of two steps: firstly, the em-
pirical mode decomposition (EMD) and secondly, the Hilbert transform (HT) [96]. The
EMD separates the time series into a set of narrow-band functions and the Hilbert transfor-
mation of these functions provides local frequency and amplitude attributes. The ability to
capture non-linear characteristics with respect to amplitude and frequency and the fact that
the HHT is a decomposition based on the local characteristics of the data, have made this
transformation very appealing to many research areas.

Empirical mode decomposition

The EMD is a fully data-driven decomposition that can be applied to non-stationary and
non-linear data [96]. Differently from the Fourier and the wavelet transforms, the EMD
does not require any a priori filter function [143]. The purpose of the method is to identify
a finite set of oscillations with scale defined by the local maxima and the local minima of
the data itself. Each oscillation is empirically derived from the data and is referred to as an
intrinsic mode function (IMF). An IMF must satisfy two criteria [96]:

1. The number of extrema and the number of zero crossings must either be equal or
differ at most by one.

2. At any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

The first condition forces an IMF to be a narrow-band signal with no riding waves. The
second condition ensures that the instantaneous frequency will not have fluctuations arising
from an asymmetric wave form [96]. In Figure 2.1, we show an example of an IMF.
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Fig. 2.1 Example of an IMF.

The IMFs are obtained through a process called sifting process which uses local extrema
to separate oscillations starting with the highest frequency. Given a time series x(t), t =
1,2, ...,N, the process decomposes it into a finite number of functions, denoted as IMFk(t),
k = 1, ...,n, and a residue rn(t). The residue is the non-oscillating drift of the data. If the
decomposed data consist of uniform scales in the frequency space, the EMD acts as a dyadic
filter and the total number of IMFs is approximately equal to n= log2(N) [80]. At the end
of the decomposition process, the original time series can be reconstructed as:

x(t) =
n

∑
k=1

IMFk(t)+ rn(t). (2.13)

The EMD comprises the following steps [96]:

1. Initialize the residue to the original time series r0(t) = x(t) and set the IMF index
k = 1.

2. To extract the kth IMF:

(a) initialize h0(t) = rk−1(t) and the iteration counter i = 1;

(b) find the local maxima and the local minima of hi−1(t), see Figure 2.2(a);

(c) create the upper envelope Eu(t) by interpolating between the local maxima (lower
envelope El(t) by interpolating the local minima, respectively), refer to Figure
2.2(b);

(d) calculate the mean of both envelopes as mi−1(t) =
Eu(t)+El(t)

2 , see Figure 2.2(c);

(e) subtract the envelope mean from the input time series, obtaining hi(t)= hi−1(t)−
mi−1(t), see Figure 2.2(d);

(f) verify if hi(t) satisfies the IMF’s conditions:
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• if hi(t) does not satisfy the IMF’s conditions, increase i = i+ 1 and repeat
the sifting process from step (b), Figure 2.2(d);

• if hi(t) satisfies the IMF’s conditions, set IMFk(t) = hi and define rk(t) =
rk−1(t)− IMFk(t), see Figure 2.3(d).

3. When the residue rk(t) is either a constant, a monotonic slope or contains only one
extrema stop the process, otherwise continue the decomposition from step 2, setting
k = k+1.

(a) Local maxima and minima. (b) Upper and lower envelopes.

(c) Envelope mean. (d) Time series after one sifting step.

Fig. 2.2 Sifting process. (a) Input time series highlighting the local maxima and the local minima.
(b) Time series with the interpolated upper and lower envelopes. (c) Time series with the envelopes
and the mean of both envelopes. (d) First iteration of the sifting process. The extracted function does
not satisfy the IMF’s conditions.

In Figure 2.2, we exemplify some steps of the sifting process. After one iteration of the
sifting process, the function h1(t) observed in Subfigure 2.2(d) is obtained. The resulting
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function is not symmetric and does not have zero mean, hence it is not an IMF yet. More
iterations of the sifting process need to be applied to extract the first IMF of the input time
series. Figure 2.3(a), 2.3(b) and 2.3(c) illustrate the last sifting iteration which extracts the
first IMF displayed in Subfigure 2.3(d).

(a) Local maxima and minima. (b) Upper and lower envelopes.

(c) Envelope mean. (d) IMF example.

Fig. 2.3 Sifting process. (a) Input time series highlighting the local maxima and the local minima.
(b) Input time series with the interpolated upper and lower envelopes. (c) Input time series with the
envelopes and the mean of both envelopes. (d) Last iteration of the sifting process, the extracted
function is the first IMF.

The IMFs are nearly orthogonal to each other and the variance of the input time series is
approximated by the sum of the variance of the components plus the variance of the residue.
However, it must be noted that the EMD is based on the timescale separation and not on
the demand of orthogonality. For some non-linear data, orthogonality may not be satisfied
implying that in general the sum of the variance of the components and the residue differs
from the variance of the input time series [96].
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The sifting process eliminates the riding waves and smooth uneven amplitudes to obtain
meaningful values of instantaneous frequency [96]. This process terminates when the local
mean of the extracted IMF is zero. The difficulty is that this condition can only be approxi-
mated and in order to avoid over-sifting and converting meaningful IMFs into meaningless
fluctuations with constant amplitude, a stopping criterion needs to be implemented.

Stopping criterion for the sifting process

Several stopping criteria have been adopted, the original work of Huang et al. [96] proposes
a stopping criterion based on a Cauchy type convergence test, making the sifting process
to terminate when the normalized difference between two consecutive iterations is smaller
than a predetermined threshold δ , specifically:

σ
2
k =

N

∑
t=1

|hk−1(t)−hk(t)|2

h2
k−1(t)

< δ . (2.14)

Huang et al. [96] proposed values of δ between 0.2 and 0.3 which guarantee that the
IMFs components retain enough information of both amplitude and frequency modulations.
However, this criterion does not depend on the definition of the IMFs since σ2

k might be
small, but there is no guarantee that the function will have the same numbers of zero cross-
ings and extrema [99].

Rilling et al. [151] proposed a variation of the stopping criterion by taking into con-
sideration the local mean and the local amplitude of the envelope functions. These authors
introduced a new criterion based on two thresholds parameters, θ1 and θ2, and aimed at
guaranteeing globally small fluctuations in the mean while taking into account locally large
amplitudes. Denoting by Eu and El the upper and the lower envelope functions respectively,
a new function σ(t) is defined as:

σ(t) =
|Eu(t)+El(t)|
|Eu(t)−El(t)|

. (2.15)

The sifting process is iterated until σ(t) < θ1 for some prescribed fraction (1−α) of
the total duration, while σ(t)< θ2 for the remaining fraction. Rilling et al. [151] proposed
parameters values of α ≈ 0.05, θ1 ≈ 0.05 and θ2 ≈ 10θ1.

This stopping criterion assumes that the variations of an IMF, i.e., (Eu(t)−El(t)) are
large compared to its mean envelope value (Eu(t)+El(t)) for most of the time, while are
roughly of the same order for the remaining time. This stopping criterion is implemented in
all the analyses presented in this thesis.
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Properties of the EMD

The EMD is an algorithm completely determined by the input data and no mathematical
formulation exists to describe the extracted functions. However, this decomposition empiri-
cally satisfies some major requirement for a time series decomposition method, specifically,
completeness and orthogonality.

• Completeness. As indicated by Equation (2.13), the IMFs are sufficient to describe
and to recover the input time series. The difference between the sum of the IMFs and
the input data is considered the reconstruction error. Huang et al. [96] found this error
to be of the order of:

ε = x(t)−
n

∑
k=1

IMFk − rn < 10−14. (2.16)

• Orthogonality. Although orthogonality is not theoretically guaranteed, it is satisfied
in practical terms and it can be numerically estimated a-posteriori [96]. Including the

residue as the last component and rewriting Equation (2.13) as x(t) =
n+1
∑

i=1
Ci(t), the

square of the values of x(t) can be expressed as:

x2(t) =
n+1

∑
i=1

C2
i (t)+

n+1

∑
j ̸=i

n+1

∑
i=1

Ci(t)C j(t). (2.17)

If the decomposition is orthogonal, the cross-terms should be zero. In this way, an
index of orthogonality can be defined as:

IO =
N

∑
t=1

n+1
∑
j ̸=i

n+1
∑

i=1
Ci(t)C j(t)

x2(t)
. (2.18)

Orthogonality prevents energy leakage between the IMFs, that is, it prevents the prob-
lem of mistakenly identified latent frequencies. In some cases, for example, when
analysing non-linear time series, the orthogonality condition cannot be guaranteed
since it is not a necessary criterion for the basis selection. The principle of the IMF
selection is merely based on the physical timescales that characterize the initial time
series [96].
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Shortcomings and proposed improvements of the EMD

The EMD is a completely adaptive method which has been widely applied in many research
areas, however its theoretical foundations and limitations remain uncertain. The main defi-
ciencies of this method can be listed as:

• Uniqueness. Given the lack of analytical representation, uniqueness in the decompo-
sition cannot be guaranteed. Depending on the set of parameters applied to the sifting
process (interpolation, boundaries, stopping criterion) the extracted IMFs may differ.

Improvement: Huang et al. [98] studied the effect of the stopping criterion by cal-
culating an ensemble mean and a standard deviation of an IMF set obtained using
different stopping criteria. The sample mean was taken as the final IMFs and a confi-
dence limit for the EMD was defined as a range of standard deviations. A shortcoming
for the uncontrolled sifting process is that for each stopping criterion, the number of
obtained IMFs might be different, making an average value a complicated solution.

• Stopping criterion. The sifting process creates a trade-off between producing an in-
complete and incorrectly defined set of IMF due to insufficient sifts (under-sifting)
and producing less physically meaningful IMFs with almost constant amplitudes (over-
sifting). Thus, the challenge is to propose a reasonable stopping criterion.

Improvement: Various stopping criteria have been proposed, for more details refer to
Section 2.2.3.

• Spline interpolation. Generally, the envelope estimation is implemented by interpo-
lating the local maxima and the local minima using cubic splines. The extracted IMFs
are highly dependent on the interpolation outcome. Although the spline algorithm
seems to produce acceptable results [80, 96], an overshoot problem can occur, shift-
ing the mean value of the upper and the lower envelopes and degenerating the IMFs
[141]. This deficiency may be magnified by the iterative nature of the sifting process.

Improvement: A modification of the EMD replaces the local mean obtained by the
difference of two cubic spline interpolations by a local mean obtained as the moving
average of B-splines [46]. This approach gives a more analytical representation to the
EMD since B-splines may lead to a proof of convergence [99].

• End effects. The first step of the EMD is to obtain the local maxima and the local
minima of the analysed time series. The first and last point of the time series cannot
be determined to be a maximum or a minimum, making the envelope to diverge and
affecting the decomposition process. Moreover, these errors propagate to the next
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iteration creating some false IMFs. The end effects will also manifest as spectral
leakage in the Hilbert transform.

Improvement: In order to minimize error propagations due to finite observations, the
end points of the time series have to be treated differently and the data have to be
extended beyond the existing range. The first technique for dealing with the end
conditions was proposed by [96] and it consists of padding the beginning and the end
of the time series with additional “characteristic waves” which are defined by the two
consecutive extrema. Flandrin et al. [151] offer one of the simplest yet very robust
method that uses a mirror symmetry with respect to the extrema closest to the end.

• Mode mixing. This problem appears when a single IMF either consists of widely
variant frequencies, or a similar frequency resides in different IMFs. Mode mixing is
a consequence of signal intermittency, which occurs when a component of a particular
frequency either comes into existence or disappears completely in an inconsistent time
series.

Improvement: Wu et al. [183] proposed the ensemble empirical mode decomposition
(EEMD), a noise-assisted data analysis method. Essentially, this method adds white
noise of finite amplitude to the original time series. Thus, noise-adjusted time series
are decomposed into IMFs by the EMD. The means of the corresponding IMFs gener-
ated from each time series are subsequently treated as the IMFs of the EEMD method.
If the amplitude of the added noise is too small relative to the original signal, the noise
may not affect the extrema that the EMD method relies on. As a result, no effect on
mode mixing prevention can be achieved. On the other hand, if the amplitude of the
added noise is too large, it would result in redundant IMFs. Thus, while the EEMD
could eliminate the problem of mode mixing, how to choose an appropriate ampli-
tude for the added noise and how to determine the number of ensemble trials is still a
topic of discussion. Moreover the computational cost of the decomposition is highly
increased.

Certainly, the most serious drawback of the EMD is its lack of theoretical foundation.
In our view, the proposed improvements increase performance only marginally and tend to
reduce the advantage of the EMD which is a completely adaptive method with no further
assumptions imposed to the analysed data. Furthermore, it is difficult to measure the impact
of the improvements, since there is no way to determine which set of IMFs is the best. Some
enhancement may only work for specific data and can create an overcomplicated method
that may require some previous knowledge before it can be used. For this reason, through
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the analysis presented in this thesis, we did not implement the improvements, taking the
EMD as proposed by [96] with the modified stopping criterion proposed by [151].

Hilbert transform

The Hilbert spectral analysis is an alternative method to represent a time series in the time-
frequency domain. Some instantaneous attributes of a time series (amplitude, phase and
frequency) are obtained via the Hilbert transform. This one dimensional integral transfor-
mation convolves the time series x(t) with the filter 1/(πt) to obtain the function y(t) [108],
that is:

y(t) =
1
πt

∗ x(t) =
1
π

+∞∫
−∞

x(τ)
t − τ

dτ, (2.19)

where the integral has a singular point at τ = t and it is defined as a Cauchy principal value,
i.e., defined via symmetric limits:

y(t) =
1
π

PV
+∞∫

−∞

x(τ)
t − τ

dτ (2.20)

=
1
π

lim
ε→0

 t−ε∫
−1/ε

x(τ)
t − τ

dτ +

1/ε∫
t+ε

x(τ)
t − τ

dτ

 . (2.21)

The Fourier transform of the filter 1/(πt) is given by:

F
(
(πt)−1)=−i sgn( f ) =

{
−i if f > 0
i if f < 0

(2.22)

where f is the frequency. In this way, the positive frequencies of the spectrum of x(t) are
shifted by 90◦ and the negative frequencies are shifted by 90◦. The Hilbert transform can
then be viewed as a filter of amplitude unity and phase 90◦ depending on the sign of the
frequency of the input signal spectrum.

The time series x(t) and its Hilbert transform y(t) form an analytic signal in the com-
plex plane. This analytical function is denoted as z(t) and has the same positive frequency
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spectrum as x(t) but has zero negative frequencies,

z(t) = x(t)+ iy(t). (2.23)

Theoretically, there are infinitely many ways of defining the imaginary part, but the Hilbert
transform provides a unique way so that the result is an analytic signal [96].

In Figure 2.4, we show an example of a complex analytical signal of a periodic time
series with increasing amplitude. The projection of the analytic signal onto the plane defined
by the real axis and the time axis is the initial time series. The projection onto the plane
defined by the imaginary axis and the time axis is the Hilbert transform of the time series.
The projection onto the complex plane is the geometrical representation of a rotating phasor.
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Fig. 2.4 Complex analytical representation. The real plane contains the original time series. The
imaginary plane shows its Hilbert transform, and the complex plane is the geometrically representa-
tion of a rotating phasor.

The function z(t) can be re-expressed in its exponential form, representing the time
series x(t) as an harmonic fluctuation modulated by the amplitude and the phase of its os-
cillations,

z(t) = a(t)expiθ(t), (2.24)

where the instantaneous amplitude is given by:

a(t) =
√

x2(t)+ y2(t), (2.25)
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and the instantaneous phase is defined as:

θ(t) = tan−1 y(t)
x(t)

. (2.26)

The shape of the variation of the instantaneous amplitude is called the wave envelope [72].
This envelope takes the overall shape of the time series x(t), taking the maxima and the
minima but never crossing the time series itself. Moreover, the instantaneous amplitude
function represents the combined oscillations of all frequencies involved in the component
but removes all the frequency information. The instantaneous phase θ(t) is the angle relative
to a fixed direction of the rotating phasor in the complex plane [72].

The instantaneous frequency ω(t) is defined as the derivative of the unwrapped phase
function with respect to time, that is:

ω(t) =
dθ(t)

dt
. (2.27)

In this way, the instantaneous frequency is just the varying speed of the rotating phasor in the
complex plane. In the time domain, if some negative instantaneous frequencies take place,
they correspond to the appearance of complicated riding cycles of an alternating signal [72].

Mathematically, it is correct to define instantaneous frequencies for any signal, but in
practice, it is only appropriate for mono-component time series which can reveal slow vary-
ing instantaneous characteristics. Other types of wide-band time series or a composition of
several oscillating components will result in complicated fast varying instantaneous char-
acteristics that could be more difficult to analyse than the input time series itself [72]. The
EMD was proposed as a way to pre-process time series before applying the Hilbert trans-
form. The EMD generates components of the time series whose Hilbert transformation
could lead to meaningful definitions of instantaneous amplitude and frequency. Hence, the
combination of the EMD and the Hilbert transform gave origin to the Hilbert-Huang trans-
form.

The analytic signal for a time series x(t) has a one-sided Fourier transform, i.e. the trans-
form is zero for negative frequencies. It can be approximated by calculating the fast Fourier
transform of x(t), replacing the Fourier coefficients corresponding to negative frequencies
with zero and calculating the inverse of the result [130]. A more accurate algorithm is based
on a sinc function expansion, which is able to provide exponential convergence of the error
[162], while the first “naive” method only achieves quadratic convergence. In finance the
sinc function algorithm for the Hilbert transform has been used e.g. to price discretely mon-
itored exotic options [74, 83], where the error was reduced to machine precision in order to
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validate and compare the pricing methods. In our case, where empirical data is used, such a
high accuracy becomes superfluous.

Other applications of the Hilbert transform in finance include the detection of log-
periodicity preceding crashes in financial markets [189]. The Hilbert transform has been
widely used also in signal processing tasks, including envelope detection and demodula-
tion, analytical signal construction, magnitude and phase identification of the time varying
spectrum [108, 112].

Hilbert-Huang transform

After applying the EMD to a time series x(t) and obtaining its respective IMFs, the Hilbert
transform is applied to each individual IMF for a time frequency analysis. More precisely,
each IMF is associated with its Hilbert transform via:

ÎMFk(t) =
1
π

+∞∫
−∞

IMFk(τ)

t − τ
dτ, (2.28)

and the combination of IMFk(t) and ÎMFk(t) gives the analytical representations zk(t) =
IMFk(t)+ ÎMFk(t) = ak(t)eiθk(t), where ak(t) denotes the instantaneous amplitude and θk(t)
the instantaneous phase for the kthIMF. The input time series can be expressed in its analyt-
ical form as:

x(t) =
n

∑
k=1

ak(t)eiθk(t)+ rn(t). (2.29)

The residue, rn(t), is not expressed in terms of its amplitude and phase since it is a func-
tion with only one extrema not containing enough information to confirm whether it is an
oscillatory component whose frequency is physically meaningful [96].

The Hilbert-Huang spectrum represents the amplitudes latent in a time series as a func-
tion of time and frequency, eliminating the restriction of the Fourier transform to have con-
stant amplitude and fixed frequencies. A common method to display the Hilbert spectrum
is to generate a two-dimensional plot with time and frequency axes. The amplitude is then
plotted as a colour spectrogram in the time-frequency plane. By plotting the Hilbert spectra
of all the IMFs together, one can obtain a complete time-frequency representation of the
input time series [96].
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2.3 Example of a time series decomposition

In order to illustrate the functionality and adaptiveness of the EMD, let us here exemplify
this algorithm by using a simple harmonic time series. For all the Hilbert-Huang transform
analysis performed in this thesis we used the MATLAB implementation available in [139].

Denote by x(t) a time series created as the sum of three sinusoidal components with
different frequencies, f1 = 0.5, f2 = 1 and f3 = 3 and a linear trend,

x(t) = sin(2πt f1)+ sin(2πt f2)+ sin(2πt f3)+0.5t. (2.30)

Setting the sampling frequency Fs= 100, and t ∈ [0,10], the length of x(t) is N = 1,000. In
Figure 2.5(a), we illustrate the harmonic time series x(t).
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(a) Input time series composed of three sinusoidal functions and a linear trend.
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(b) Extracted IMFs. The blue lines represent the extracted IMFs and the red dotted lines indicate
the original sinusoidal components. Some distortions created by the end effects of the EMD are
observed in the extracted IMFs.

Fig. 2.5 EMD of the time series x(t) = sin(2πt f1)+ sin(2πt f2)+ sin(2πt f3)+0.5t.

By applying the EMD to the time series x(t), we are able to recover the sinusoidal
components and the linear trend. Figure 2.5(b) illustrates the output of the EMD. The solid
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blue lines represent the extracted IMFs or the residue. For comparison reasons, we also
plotted the pure sinusoidal components which are represented by the red dotted lines. The
first IMF extracts the highest frequency component, f3 = 3. The second IMF describes the
oscillations with frequency f2 = 1. Finally, the third IMF refers to sinusoidal components
with the lowest frequency f1 = 0.5. Using the EMD, we are able to recover the linear
trend 0.5t which is represented by the residue. Some disturbances can be observed at the
boundaries of the IMFs.

We compared the obtained decomposition against its wavelet and Fourier transform
counterparts. For the wavelet transform, a Daubechies (db6) wavelet basis and a decom-
position level L = 3 were selected. The decomposition level determines the scale of the
extracted components. As can be seen from Figure 2.6, with L = 3, only the high-frequency
details, denoted as D1,D2,D3, are extracted and most of the information is kept in the ap-
proximation coefficients which are denoted by A3.
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Fig. 2.6 Wavelet decomposition of the time series x(t) = sin(2πt f1)+sin(2πt f2)+sin(2πt f3)+0.5t
using Daubechies (db6) wavelet basis and decomposition level L = 3.

A larger decomposition level which includes the lower frequency components is re-
quired. In Figure 2.7, we show the wavelet decomposition with L = 8. As can be observed
from Figures 2.6 and 2.7, the wavelet transform does not recover the input oscillating com-
ponents, but instead reveals the correlation between the input data and the selected mother
wavelet. We observe that many of the resultant components are physically meaningless os-
cillations. Furthermore, the disadvantage of the wavelet transform is that its performance
depends on an a-priori selection of the mother wavelet and the decomposition level.

On the other hand, the Fourier transform of the time series x(t) could identify the si-
nusoidal components, but the presence of the linear component 0.5t contaminates the fre-
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Fig. 2.7 Wavelet decomposition of the time series x(t) = sin(2πt f1)+sin(2πt f2)+sin(2πt f3)+0.5t
using Daubechies (db6) wavelet basis and decomposition level L = 8.

quency spectrum and creates false components. Figure 2.8(a) displays the Fourier amplitude
spectrum which shows peaks not only at the expected frequencies, but also at some lower
frequencies. These low frequency components are attributed to the linear trend that cannot
be considered a periodic component. Figure 2.8(b) shows the inverse of the Fourier trans-
form for the eight components with the largest amplitudes. The red dotted lines in this figure
represent the original sinusoidal components of the analysed times series.
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nents with the largest amplitudes. The red dotted
lines indicate the original sinusoidal components.

Fig. 2.8 Fourier decomposition of the time series x(t) = sin(2πt f1)+sin(2πt f2)+sin(2πt f3)+0.5t.

Let us now illustrate the completeness of the EMD. By summing up the IMFs shown
in Figure 2.5(b), we are able to recover the initial time series x(t). Figure 2.9 illustrates
the reconstruction of the input time series by adding to the residue, denoted by R, the IMFs
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from the lowest frequency to the highest frequency.
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Fig. 2.9 Reconstruction of the input time series.

2.4 Integrated variance estimators

Following Andersen et al. [13], we consider a stochastic process Xt which describes the
logarithmic price of a financial asset and evolves in continuous time over the interval [0,T ].
According to the standard assumptions that the return process has finite instantaneous mean
and does not allow arbitrage opportunities [13], the logarithmic price process Xt follows a
special semi-martingale process that is uniquely decomposed into a local martingale and
a predictable finite variation process [147]. The stochastic process Xt is described by the
stochastic differential equation

dXt = µtdt +σtdWt 0 ≤ t ≤ T, (2.31)

where Wt is a standard Brownian motion, the drift term µt is locally predictable and of finite

variation. The variable σ2
t is a càdlàg process such that

t∫
0

σ2
s ds < ∞ a.s. for any t > 0. In

particular, the continuously compound return over a time ∆t is

rt = Xt −Xt−∆t =

t∫
t−∆t

µsds+
t∫

t−∆t

σsdWs. (2.32)
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The integrated variance
t∫

t−∆t
σ2

s ds is not directly observable but can be estimated through

the quadratic variation of the log price process. We define the partition t−∆t = t0, . . . , tN = t
of the interval [t −∆t, t] and we consider the discretely sampled process Xti whose quadratic
variation is given by

[X ]t = ∑
0≤i≤N

(Xi −Xi−1)
2 (2.33)

where Xi = Xti are observations of the return process in the interval [t −∆t, t]. Under the
specifications of model (2.31), the integrated variance can be approximated by an ex-post
volatility measure known as realised volatility [11].

We assumed the process described in Equation (2.31) does not include jumps, however
the observed prices contain jumps and are contaminated with noise that is not Gaussian
white noise as described in model (2.31). There is an extensive literature considering jump
processes where the quadratic variation is decomposed into two parts: integrated variance of
the latent price process and a jump variation part, see for example references [10, 23, 25, 29].

2.4.1 Realised volatility

The concept of realised volatility has been developed as a result of the availability of intra-
day transaction data. Given the discretely sampled returns rti =Xti −Xti−1 , the corresponding
realised variance is defined by the summation of the N intraperiod squared returns [11, 13]:

RVt,∆t =
N

∑
i=1

r2
ti , (2.34)

This estimator is simply the second sample moment of the return process over a fixed inter-
val. Semi-martingale theory ensures realised variance is a consistent estimator of quadratic
variation when enough data are accessible, i.e., when N → ∞ [22]. Realised volatility is
defined as the square root of the realised variance.

It is generally accepted that the return process is contaminated by micro-structure noise
and that the realised variance does not converge as the sampling frequency increases [111].
In order to mitigate the impact of this noise, an estimator that considers a more sparse
sampling of the return process was considered in [111]. This estimator is known as two-
scale realised volatility estimator.

2.4.2 Two-scale realised volatility

Zhang et al. [111] proposed to model the micro-structure noise observed in financial markets
as observational errors, specifically, as an i.i.d. Gaussian white noise, independent of the
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process Xt . In this way, the observed price process Yt is of the form:

Yt = Xt + εt . (2.35)

The process Xt is the true or efficient logarithm of the price process that follows Equation
(2.31) and the ε ′t s are the independent errors around the true log-price process [111].

The two-scale realised volatility (TSRV) estimator is based on a sub-sampling and av-
eraging procedure. This method takes advantage of the tick-by-tick data but corrects the
adverse effect of micro-structure noise by combining the sum of squared estimators from
two different timescales. The first one, RV all

t,h is the realised volatility of Equation (2.34)
calculated from returns on a fast timescale. Similarly, RV sparse

t,h is calculated from the returns
on a slow timescale.

The idea is to partition the original grid of observation times, G = t1, t2, . . . , tN into non-
overlapping sub-grids G k, k = 1, . . . ,K of size N̄ = N/K. For example G 1, starts at the first
observation and takes the next ones every s observations; G 2 starts at the second observation
and takes the next ones every s observations, etc., where s is any slow sampling scale. The
TSRV estimator uses all the available data defining the average estimator as:

RVaverage
t,h =

1
K

K

∑
k=1

RV sparse,k
t,h ,

where RV sparse,k
t,h is the realised variance obtained on the k grid. The estimator RV average

t,h is
still a biased estimator, though the bias increases with the average size of the sub-samples
N̄ = N/K [6]. The bias adjusted TSRV estimator is defined as:

TSRVt,h = RV average
t,h − N̄

N
RV all

t,h . (2.36)

2.4.3 Wavelet realised volatility

Wavelet decomposition has the ability to separate the energy of a time series across scales
and it offers a multiscale approach to estimate realised volatility, see Section 2.2.2 for a de-
tailed description of the wavelet transform. The MODWT is a conserving energy transform
which provides an asymptotically efficient wavelet variance [144] .

By applying the MODWT to the return time series, we obtain the wavelet coefficients
Wj,i, i = 1,2, . . . ,N at scale j and the detail coefficients VJn,i , where Jn ≤ log2 N denotes the
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maximum level of decomposition. The wavelet realised variance is defined as:

RV Wav
t,h =

N

∑
i=1

(r(h)t−1+ih)
2 =

Jn

∑
j=1

∥Wj∥2 +∥VJn∥2, (2.37)

where ∥Wj∥2 = ∑
N
i=1W 2

j,i, ∥VJn∥2 = ∑
N
i=1V 2

Jn,i
[145] . Each jth summand of equation (2.37)

can be regarded as the contribution to the total energy due to variations at scale 2 j−1. The
inclusion of the boundary coefficients can bias the variance estimator [144].

If one assumes that the return process is square-integrable, that there is no micro-
structure noise and that the drift term µ , in equation (2.32) is equal to zero, then the RV Wav

is an unbiased estimator of realised variance. However, given all the micro-structure effects
present in high-frequency financial data, the wavelet estimator only decomposes the realised
variance into different timescales and it is still a biased estimator of quadratic variation when
N → ∞ [29].

2.5 Self-similarity

Self-similarity or scale invariance is an attribute of many laws of nature and it is the un-
derlying concept of fractals. It is related to the occurrence of similar patterns at different
timescales. A stochastic process X(t) is statistically self-similar, with scaling exponent
H > 0, if for any real a > 0 it follows the scaling law:

X(at) d
= aHX(t) t ∈ R, (2.38)

where the equality (
d
=) is in probability distribution [41].

Each of the properties of self-similar process is controlled by a single exponent H, how-
ever for some of the observed data, it is unlikely that a single parameter can convey all
the information to describe the dynamics of the process, instead a continuous spectrum of
exponents is required. A stochastic process X(t) is called multiscaling if it has stationary
increments and satisfies the scaling relation:

E(|Xq(t)|) = c(q)tH(q)+1 for all t ∈ T, q ∈ Q, (2.39)

where T and Q are intervals on the real line such that 0 ∈ T , [0,1] ∈ Q. The functions H(q)
and c(q) have domain in Q [125]. The scaling function H(q) is non-linear and must be
concave, it takes into account the influence of time on the absolute moment of order q and
relates all the information about the rate of growth of the moments of X(t) as t varies.
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2.6 Long-range dependence

The concept of long-range dependence is closely related to self-similarity. If a self-similar
process has stationary increments, these increments form a stationary time series which
can display long-range dependence [67]. Conversely, a central limit type theorem affirms
that a stationary time series with long-range dependence yields a self-similar process with
stationary increments. The intensity of the long-range dependence is related to the scaling
exponent of the self-similar process [67].

A common definition of long-range dependence is the slow, power-law like decrease at
large lags of the autocovariance function [31]. Let Y (t) be a stationary stochastic process,
denoting by γ(k) its autocovariance function and assuming c> 0, the long-range dependence
condition is given by:

γ(k)∼ ck−β as k → ∞ β ∈ (0,1). (2.40)

Equivalently, long-range dependence can be defined as a divergence at the origin of its
spectral density function f , that is:

f (λ )∼ c f λ
β−1 as λ → 0 c f > 0. (2.41)

The parameter H = 1− β

2 is sometimes used instead of β [31]. Fractional Brownian mo-
tion with H > 1/2 is a typical example of self-similar process whose increments exhibit
long-range dependence [31]. When H = 1

2 , FBM is reduced to a process with independent
increments known as Brownian motion.

For self-similar process with stationary increments and infinite variance, the scaling
exponent H > 1/2 does not necessarily imply that the increments manifest long-range de-
pendence. There are so called α-stable processes with 0 < α < 2 that are self-similar with
parameter H = 1/α > 1/2 and independent increments, see [156].

2.6.1 Long-range dependence estimators

Let {Y (t),1 ≤ t ≤ N} denote the observations of a stationary time series with finite second
moments. There exist numerous methods to detect long memory in a time series, refer to
[31, 67] for an extensive review, here we briefly describe some of the classical approaches:

• Rescaled Range [31]. Estimate the partial sum of Y (t) as Xk = ∑
k
i=1Y (i) , k > 1 and
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its sample variance as S2(k) = 1
k ∑

k
i=1(Yi − k−1Xk)

2. The R/S statistic is defined as:

R
S
(k) = max

0≤t≤k

(
Xt −

t
k

Xk

)
− min

0≤t≤k

(
Xt −

t
k

Xk

)
. (2.42)

Many naturally occurring time series seem to present the relation E
[R

S (k)
]
∼ ckH ,

c > 0 as k → ∞, with typical values of the Hurst parameter H in the interval (0.5,1)
[128]. If the observations come from a short-range dependent model E

[R
S (k)

]
∼ ck0.5

as k → ∞ [14].

The R/S statistic is robust to heavy-tailed distributions, in this way, if Y (t) were a
time series with long-range dependence and with infinite variance, the R/S statistic
would still estimate the autocorrelation in the process [18, 28].

• Variance plot [31]. Let k be an integer, for different integers k in the range 2≤ k ≤N/2
and mk subseries of length k, calculate the sample means Ȳ1(k),Ȳ1(k), . . . ,Ȳmk(k) and
the overall mean as:

Ȳ (k) =
1

mk

mk

∑
j=1

Ȳj(k). (2.43)

For each k, calculate the sample variance of the sample means Ȳ j(k):

S2(k) =
1

mk

mk

∑
j=1

(
Ȳj(k)− Ȳ (k)

)2
. (2.44)

The long-memory parameter H can be obtained from the proportionality between
the window size and the sample variance by plotting log

(
S2(k)

)
against log(k). For

large values of k, the values of the plot lie around a straight line with negative slope
2H −2. In the case of short-range dependence or independence, the slope is equal to
2H −2 =−1. For infinite variance processes, this method provides an estimate of the
long-memory parameter H [166].

• Detrendred fluctuation analysis (DFA) [142]. Define a profile time series as X(t) =

∑
N
t=1Y (t) which is divided into Ns non-overlapping segments of equal length s. For

each segment, the local trend is subtracted by a polynomial least-square fit which
could be linear (DFA1), squared (DFA2), etc. The variance of each segment is cal-
culated and denoted as F2

s (v). The average over all the segments is computed and a
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fluctuation function is defined as:

F(s) =

√√√√ 1
Ns

Ns

∑
v=1

F2
s (v). (2.45)

This fluctuation function follows the scaling law, F(s)∼ sζ , where the exponent ζ =

1−β/2 is called the scaling exponent and represents the correlation properties of the
time series. Power law behaviour with ζ > 0.5 indicates long-range dependence in
the time series.

This method has been extended to consider different moments of the fluctuation func-
tion and can thus be applied to multifractal data [106]. When analysing stochastic
processes with heavy tails, the exponent obtained from the multifractal detrended
fluctuation satisfies:

H(q)≈

{
1
q for q > α

1
α

for q ≤ α,
(2.46)

where α is the parameter of the analysed stable distribution [106].

• Wavelet method [67]. Denote by Wj the wavelet coefficients at scale j extracted from
the time series Y (t), see section 2.2.2 for more details about wavelet analysis. A
power-law relationship between the variance of the wavelet coefficients and the scale
parameter j exists, such that:

Var(Wj) = c2 j(2H−1), (2.47)

with c > 0. Taking the logarithm of both sides of previous equation results in a linear
function of j with slope 2H−1. Moreover, if the decomposed time series is FBM-like
(non-stationary), a similar relationship can be obtained but with a different exponent

Var(Wj) = c2 j(2H+1). (2.48)

As reported in [2], the wavelet estimator can be applied to heavy-tailed distributions,
obtaining an estimate of the self-similarity parameter of the time series.
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2.6.2 Example of self-similar and long-range dependent processes

Fractional Brownian motion

A Gaussian self-similar continuous process XH(t)t∈R with stationary increments and 0 <

H < 1 is called fractional Brownian motion (FBM) [67]. When H = 1/2 the FBM is the
usual Brownian motion. The paths of FBM are characterized by anti-persistent behaviour
when 0 < H < 1/2, and persistent behaviour when 1/2 < H < 1. The increment process of
FBM, i.e., Y (k) = X(k+1)−X(k), k ∈ Z is called fractional Gaussian noise (FGN) and it
is a stationary process which exhibits long-range dependence if 1/2 < H < 1.

Fractional Brownian motion is the only Gaussian self-similar process with stationary
increments. There are other self-similar processes with stationary increments and infinite
variance, for example, α-stable Lévy motion.

α-stable Lévy motion

A stochastic process X(t), t > 0 is called (standard) α-stable Lévy motion (SLM) if:

1. X(0) = 0 a.s.

2. X has independent increments.

3. X(t)−X(s)∼ Sα

(
(t − s)1/α ,β ,0

)
for any 0 ≤ t < ∞ and for some 0 < α ≤ 2, −1 ≤

β ≤ 1. With Sα denoting an α-stable distribution with scale parameter (t − s)1/α ,
skewness parameter β and shift parameter equal to zero.

The process X has stationary increments and it is 1/α-self-similar, i.e., H = 1/α . The case
α = 2 corresponds to Brownian motion. For more details about stable distributions refer to
[156].

ARFIMA process

The autoregressive fractionally integrated moving average (ARFIMA) process X(t), t ∈ Z,
is usually denoted as ARFIMA(p,d,q) where p,q ∈N∪0, −1/2 < d < 1/2 and defined as:

φp(B)∆dX(t) = Θq(B)ε(t), (2.49)

where φp and Θq are polynomials of order p and q respectively, B denotes the backward
operator and ε(t) are i.i.d. random variables with either finite or infinite variance [67].
This model is an extension of the ARIMA(p,d,q) model, refer to section 2.7, allowing the
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differencing exponent d to take fractional values, −1/2 < d < 1/2. The correspondence
between the parameters H and d is given by H = d + 1/2. The interval 0 < d < 1/2 of
long-range dependence corresponds to 1/2 < H < 1 [67].

2.7 Autoregressive models

Autoregressive moving average (ARMA) models [37] are used to predict future values of a
stationary time series using a linear regression between consecutive observations. However,
most financial time series are non-stationary, reducing applicability of such models. For
non-stationary time series, the autoregressive integrated moving average (ARIMA) model
[37] can be used instead. The assumption to apply an ARIMA (p,d,q) model is that after
differencing d times the input time series xt , the obtained values yt = ∆dxt form a sta-
tionary time series with zero mean. It is also assumed that the future values of the time
series yt are a linear function of p past observations yt−1,yt−2, . . . ,yt−p and q random errors
zt ,zt−1, . . . ,zt−q, which are i.i.d. white noise with zero-mean and constant variance σ2. The
ARIMA model is thus expressed as:

yt = θ1yt−1 +θ2yt−2 + . . .+θpyt−p +φ1zt−1 +φ2zt−2 + . . .+φqzt−q. (2.50)

The order of the model is defined by the values of p and q which are identified using patterns
in the autocorrelation function and the partial autocorrelation function of the time series yt

[38]. After selecting p and q, the model parameters, θ and φ , are estimated using the maxi-
mum likelihood estimation method. Model selection criteria such as the Akaike information
criterion (AIC) and the Schwarz’s Bayesian information criterion (BIC) can be used to select
the best fitting model [133].

2.8 Support vector regression

Support vector machines (SVMs) were originally developed to solve classification problems
in pattern recognition. The introduction of the insensitive loss function allowed its use in
non-linear regression estimation problems and the formulation of SVR [171]. The main
advantage of SVR is its global and unique solution, while classical neural networks suffer
from local minima problems [165]. Moreover, SVR has a simple geometric interpretation
and a sparse solution that is obtained implementing the structural risk minimization principle
and aims to minimize an upper bound of the generalization error [167].
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A brief description of SVR is introduced as follows. A regression problem can be de-
fined as to determine a function for approximating the output from a set of training data
X = (x1,y1),(x2,y2), . . . ,(xl,yl) where xi is the input value, xi ∈ X ⊆ Rn, yi is the target
value, yi ∈ Y ⊆ R, and l is the total number of training samples. SVR approximates the
given observations by a linear function f (x) and a non-linear map φ(x), from Rn to a high
dimensional feature space F [171]:

y = f (x) = wφ(x)+b, (2.51)

The coefficients w and b are estimated by minimizing the regularized risk function:

R(C) =
1
2
∥w∥2 +C

1
l

l

∑
i=1

Lε(xi,yi), (2.52)

with insensitive loss function given by:

Lε(xi,yi) =

∥xi − yi∥− ε if ∥xi − yi∥ ≥ ε

0 otherwise
. (2.53)

The constant C is the regularization term and it determines the trade-off between the flat-
ness of f (x) and the approximation accuracy required on the training data which is specified
by the ε parameter [160]. The insensitivity parameter ε acts together with C as a safeguard
against over-fitting. Not penalizing small errors avoids increasing the model complexity.
Both C and ε are parameters determined by the user.

After the quadratic optimization problem is solved, the parameter vector w of Equation
(2.51) is given by:

w =
l

∑
i=1

(αi −α
∗
i )φ(xi), (2.54)

where αi and α∗
i are the Lagrange multipliers [171]. Only a certain number of coefficients

(αi −α∗
i ) will assume non-zero values. The data points associated with them have approxi-

mation errors larger than ε and are referred to as support vectors. These are the data points
lying on or outside the ε-bound of the decision function, and are the only elements of the
data points that are used to determine the decision function. Generally, the larger the ε , the
fewer the number of support vectors and thus the sparser the representation of the solution.
However, a larger ε can also reduce the approximation accuracy placed on the training data.
In this sense, ε is a trade-off between the sparseness of the representation and closeness to
the data.
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Finally, the SVR function is given by:

f (x) =
l

∑
i=1

(αi −α
∗
i )K(x,xi)+b, (2.55)

where K(x,xi) is the kernel function. The type of kernel function implicitly defines the
non-linear map from the input space to some high-dimensional feature space.

2.8.1 Kernel function

The advantage of using a kernel function is that one can deal with feature spaces of arbitrary
dimensionality without having to compute the map φ(x) explicitly. The most widely used
kernel function is the Gaussian radial basis function (RBF), defined as K(x,y) = e−γ(x−y)2

,
where γ denotes the width of the RBF [50].

2.8.2 Parameter selection

Parameter selection plays an important role in obtaining a function that produces robust and
accurate estimates. SVR performance depends on a good setting of parameters, such as reg-
ularization constant C, insensitive coefficient ε and kernel width parameter γ . A relatively
simple parameter optimization is a grid-search [30]. The optimal parameters are based on
which combination of parameters performs the best; the grid point that achieves the small-
est average validation error is chosen as the model parameters. The main drawback of this
method is that high accuracy requires a fine grid, making the method more computational
expensive.

2.8.3 Cross-validation

Training an algorithm and assessing its statistical performance on the same data may cre-
ate over-optimistic results. Cross-validation is a re-sampling technique for model selection
which uses multiple training and validation subsamples to avoid such optimistic results [84].
When applying cross-validation on time series data, the time dependence structure of the
data needs to be considered in order to prevent the use of future observations in the fore-
casting process. A moving cross-validation scheme [105] involves dividing the data into a
series of overlapping training and validation sets. Each set is moved forward through the
time series k times (the folds), keeping constant the length of both sets, see Figure 2.10. The
k results from the folds are averaged to produce a single estimation. The variance of the



2.9 Multistep-ahead forecasting strategies 41

resulting estimate is reduced as k is increased. The disadvantage of this validation is that
the algorithm has to be trained k times [16].

Fig. 2.10 Moving cross-validation scheme.

2.9 Multistep-ahead forecasting strategies

Multistep-ahead forecast can either be produced recursively, by iterating a one-step-ahead
model or directly, by estimating a different model for each forecast horizon. We denote
by xt the input time series, and by h the target time-horizon. In the following section, we
describe in some detail both strategies.

Recursive strategy

This strategy constructs a prediction model f (·) which minimizes the in-sample one-step-
ahead prediction error [51]:

x̂t+1 = f
(
xt ,xt−1,xt−2, . . . ,xt−(m−1)

)
, (2.56)

where m is the maximum embedding order, i.e., the number of past values taken into con-
sideration to predict the future value. The next forecasted value is obtained using the same
model f (·):

x̂t+2 = f
(
x̂t+1,xt , . . . ,xt−(m−2)

)
. (2.57)

The forecasted value of x̂t+1 is used instead of the true value which is unknown. For the
h-step-ahead forecast, the values x̂t+1 to x̂t+h−1 are forecasted recursively,

x̂t+h = f
(
x̂t+h−1, x̂t+h−2, . . . ,xt−(m−h)

)
. (2.58)

When h becomes larger than m, all the input values are outputs of the forecasting model,
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a factor which may deteriorate the accuracy of the prediction. The main advantage of this
forecasting strategy is that only one model has to be trained.

Direct strategy

The direct strategy improves the forecasting accuracy but increases the complexity of the
algorithm. With this strategy, a different model fh(·) has to be trained for each forecast
horizon. The various forecasting models are independently estimated, for the h-step-ahead
forecast, the forecasting model is expressed as:

x̂t+h = fh
(
xt ,xt−1,xt−2, . . . ,xt−(m−1)

)
.

The previous forecasted values are not used as inputs, therefore the errors are not accumu-
lated to the next step.



Chapter 3

Volatility Estimation at Different
Timescales

The central point of this chapter is the scale-by-scale analysis of variance. Market data
contain patterns specific to the observation frequency and are thus, of interest to different
type of market agents (intraday speculators, daily traders, portfolio managers and institu-
tional investors), each having their characteristic period of reaction to news and frequency
of intervention to the market. In this chapter, we propose an EMD-based realised volatility
estimator which identifies the oscillating components with the largest contributions to the
total volatility. We apply the proposed estimator to intraday data of the S&P 500 index and
we compare the results with the wavelet realised volatility estimator.

3.1 Estimation of realised volatility using high-frequency
data

Estimation and prediction of volatility are key factors in finance and they are essential to
the theory and practice of asset pricing, portfolio selection, hedging strategies and risk man-
agement. The main difficulty is that volatility is not an observable quantity; therefore it has
to be estimated. Common parametric approaches to estimate volatility include stochastic
volatility models [159] and the (generalized) autoregressive conditional heteroskedasticity
model, commonly referred as (G)ARCH model [33, 68]. These autoregressive models were
proposed to capture the observed properties of the distribution of returns, such as heavy tails
and temporal dependencies in its second moment. However, these models fail to capture the
asymmetry in volatility [33].

The recent availability of high-frequency financial data has expanded the volatility mod-
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elling literature. In the early work of Merton, R. [132], the asset’s volatility over a fixed
period of time was estimated as the sum of squared returns for sufficiently finely sam-
pled observations. High-frequency financial data have promoted the formulation of realised
volatility estimators, which are non-parametric estimators based, for example, on squared
returns over a relevant time-horizon [11], refer to Section 2.4 for more details about realised
volatility estimators.

Realised volatility has gained a lot of popularity due to its practical estimation with-
out the assumption of any model and its effectiveness to analyse the market with all avail-
able information. Unfortunately, squared returns are contaminated by micro-structure noise,
which could be attributed to many factors, including bid-ask bounces, discreteness of price
changes, trades occurring across different markets, non-uniformity in trade sizes, gradual
responses of prices to large block trades, etc. The higher the frequency at which the prices
are sampled at, the larger the effect of micro-structure noise, causing a higher volatility
estimation [5, 111].

Zhou, B. [188] was one of the pioneers to estimate realised volatility using high-frequency
data and to correct for the bias by explicitly subtracting the autocorrelation of the returns
sampled at high frequencies. Other volatility estimators were proposed trying to overcome
the problem of micro-structure noise by moderating the sampling frequency and choosing
an optimal one [5, 19, 90]. The drawback of the previous estimators is that they do not make
use of all available data, which could be considered a failure for a robust model.

Zhang et al. [111] suggested the first consistent estimator of integrated variance using all
available data in the sample. Their two-scale realised volatility estimator (TSRV), combines
two measures of realised volatility and reduces the bias created by micro-structure noise. A
detailed analysis of the accuracy of realised kernels as estimators of quadratic variation was
provided by Barndorff et al. [21]. The realised kernel estimators reduce the autocorrelation
observed in prices by using a weighted average. These estimators proved to be robust to
time dependent noise and to asynchronous sampling [140].

Some studies admit the presence of jumps or discontinuities in the definition of the
stochastic volatility model. It appears that many log-price processes are best described by
a combination of a continuous and mean reverting process and a much less persistent jump
component [4, 10]. In this case, the realised volatility is the sum of the integrated volatility
and the jump component. Barndorff-Nielsen [23, 24] proposed the bipower variation esti-
mator which separates both components. Bipower variation compares two measures of the
integrated variance, one containing the jump variation and the other being robust to jumps
and containing only the integrated variation component.

Introducing time-frequency methods to the estimation of realised volatility, Malliavin
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et al. [26, 122] introduced a Fourier based estimator which reconstructs the instantaneous
volatility as a series expansion with coefficients obtained from the Fourier coefficients of
the price variation. This Fourier estimator uses all the available observations eliminating
the need for equally spaced data and is robust to microstructure noise [123]. Fan and Wang
[71] introduced the concept of wavelet realised volatility. Their method is based on the
definition of the TSRV estimator and is robust to both jumps in the price and to market
micro-structure noise in the observed data. Gençay et al. [85] proposed another applica-
tion of wavelets showing that volatility is asymmetric across timescales. By using wavelets,
these authors described a model which explained the information flow between volatilities
across timescales. Baruník, J. and Vácha, L. [29] decomposed realised variance into differ-
ent investment horizons and jumps, generalizing the approach of [71] by using the maximal
overlap discrete wavelet transform (MODWT), as authors prior to this were merely incor-
porating the standard discrete wavelet transform (DWT).

In the following section, we propose a basic estimator of realised volatility that is based
on the EMD. The proposed estimator provides a perspective on the influence of different
timescales on volatility estimation.

3.2 EMD-based realised volatility

Let Xt , be the logarithm of a price asset at time t = 1,2, . . . ,N. Realised variance over a time
interval is calculated as the summation of the squared returns on that interval, see section
2.4.1 for further details about realised variance estimators.

In this section we propose an estimator of realised variance using the EMD. Applying
this decomposition method to the log-price time series Xt , we obtain a set of n IMFs and a
residue, such that:

Xt =
n

∑
j=1

IMF j(t)+ rn(t). (3.1)

A measure of variability for the log-price time series at timescale j can be estimated as
the sum of the squared returns of each IMF j, that is:

RV
(
IMFret

j
)
=

N−1

∑
i=1

IMFret
j (ti)2 =

N−1

∑
i=1

(
IMF j(ti+1)− IMF j(ti)

)2
. (3.2)
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A similar measure of variability is calculated for the residue:

RV
(
rret

n
)
=

N−1

∑
i=1

rret
n (ti)2 =

N−1

∑
i=1

(rn(ti+1)− rn(ti))
2 . (3.3)

The total realised variance of the input time series is estimated as the sum of all the variances
at different timescales:

RV EMD =
n

∑
j=1

RV
(
IMFret

j
)
+RV

(
rret

n
)
. (3.4)

The proposed realised variance estimator RV EMD does not take into account the micro-
structure noise in the data or the jumps in the price process. This simple estimator provides
a variance decomposition into different investment horizons. Contrary to the wavelet esti-
mator given in Equation (2.37), the time-horizons are not predetermined but extracted from
the data itself considering only the local maximum and minimum of the data.

Ignoring the potential presence of jumps in the log-price process may cause a large
bias in the estimation of realised volatility [9]. This neglect can also bias the estimation
of the periodic components. Similarly, accounting for periodicity improves the accuracy
of intraday jump identification. It increases the power to detect the relatively small jumps
occurring at times when volatility is periodically low and reduces the number of false jump
detections when volatility is high [10, 36]

With wavelet transform, the information on jump locations and jump sizes is stored at
high-resolution wavelet coefficients, whereas useful information for integrated volatility is
stored at the low-resolution ones [29, 71]. In the same way, the EMD could be used to
localize the jumps in the log-price process and to allocate them to the highest frequency
IMFs without the corruption of subsequent IMFs which represent longer cycles.

3.3 Realised volatility analysis of the S&P 500 index

In order to estimate the daily integrated variance, we applied the proposed realised volatility
estimator to intraday observations of the S&P 500 index. The complete data set consists
of 178 intraday time series, from July 11th 2013 to March 31st 2014. The observations are
collected from the starting of the trading session 9:30 a.m. to the closing time 4:00 p.m.
EST. Observations are sampled at every 30 seconds. This sampling frequency provides a
reasonable balance between the effects of market micro-structure frictions at the highest
sampling frequencies on the one hand, and the analytics on a wide frequency range on the
other.
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At higher sampling frequencies, market micro-structure effects have a larger impact. At
the tick timescale, the data differ from the theoretical diffusion process, and the volatility
computed with very short time intervals is no longer an unbiased and consistent estimator
of the integrated variance. This effect can be observed by studying the realised volatility,
Equation (2.34), as a function of the sampling frequency [12, 55, 90]. In Figure 3.1, we
show the realised volatility signature plot for the analysed S&P 500 data, the microstructural
factors cause a positive serial correlation at high frequencies, resulting in a smaller estimate
of realised volatility.
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Fig. 3.1 Realised volatility signature plot. The vertical axis is the RV estimator averaged over all
trading days. The horizontal axis is the sampling frequency expressed in minutes.

3.3.1 Intraday realised volatility, example on a single time series

For the sake of clarity, let us first consider the decomposition and realised variance analysis
of a single intraday time series, bearing in mind that the same analysis was performed on
all the 178 intraday time series. Figure 3.2 shows the S&P 500 prices for the day taken
as an example, December 9th 2013. In Figure 3.3, we display the timescale decomposition
obtained via the EMD on the logarithm of the previous time series. Note that the sifting
process produces six IMFs and a residue.

We estimated the realised variance for a period of one day. The relative variance con-
tribution of each IMF and the residue to the total realised variance is reported in Table
3.1. The second column of this table shows the IMF oscillating period expressed in min-
utes and calculated by dividing the total number of points by the number of peaks of each
IMF. The third column shows the variance associated to each IMF and finally, the fourth
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Fig. 3.2 Example of a intraday time series of the S&P 500 index. December 9th 2013.
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Fig. 3.3 IMFs and residue for the logarithm of the S&P 500 prices taken as an example.
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column shows the relative contribution (as a percentage) with respect to the total variance.
The residue is defined as the non-oscillating part of the input time series, hence, we do not
calculate an oscillating period.

IMF Period RV EMD Variance Contribution

IMF1 1.70 3.3×10−6 51.8%
IMF2 3.68 1.6×10−6 24.9%
IMF3 8.67 8.9×10−7 14.0%
IMF4 21.67 3.7×10−7 5.8%
IMF5 43.33 1.5×10−7 2.4%
IMF6 97.50 6.3×10−8 1.0%

Residue – 5.3×10−9 0.1%
Total EMD realised variance 6.4×10−6 100%

Table 3.1 Oscillating period expressed in minutes, variance and contribution to the total variance for
the IMFs and the residue extracted from the S&P 500 prices taken as an example.

The highest frequency component, IMF1, has an oscillating period of 1.7 minutes and
contributes to the total variance by 51.8%. The second component, IMF2 has a period of
3.68 minutes and it adds 24.9% to the total variance, etc. The three highest frequency
components account for 90% of the total variance.

Before moving to the realised variance analysis of the complete data set, let us briefly
illustrate the completeness of the EMD, which guarantees a perfect reconstruction of the
input time series. Figure 3.4 shows the reconstruction process. The residue of the time
series is represented by a red line. We continue adding the IMFs from the lowest to the

highest frequency until we include all the IMFs, this sum is denoted as R+
6
∑

i=1
IMFi. The

sum of all the components and the residue completely overlaps with the initial S&P 500
time series.

The decomposition into different frequencies allows to create a partial reconstruction of
the input time series, either by creating a denoised version of it or by identifying its time-
varying trend. The denoised time series can be obtained by excluding the components with
the highest frequencies or by setting a threshold parameter that minimizes the contribution
of some IMFs. On the other hand, the trend of a time series is represented by the lowest
frequency components, specifically, the residue or the residue plus one or more of the low
frequency IMFs.

Subfigure 3.5(a) provides a simple example of a denoised time series that was obtained
by excluding the two IMFs with the highest frequencies. Subfigure 3.5(b) illustrates a possi-
ble trend for the input time series which is constructed by the residue of the sifting process.
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Fig. 3.4 Reconstruction of the logarithm of the S&P 500 prices taken as an example.
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(a) Denoised time series obtained by excluding
the two highest frequency IMFs.
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Fig. 3.5 Partial reconstruction of the logarithm of the S&P 500 prices.

3.3.2 Intraday realised volatility, analysis on the complete data set

We repeated the realised variance analysis described in the previous section on the remain-
ing 177 intraday time series of the S&P 500 index. The average variance contribution of
each IMF over the 178 days is reported in Table 3.2(a). The average oscillating period (in
minutes) is also reported in this table.

The results reaffirm that the highest frequency components contribute the most to the
total realised variance. We compared the EMD variance decomposition against its wavelet
counterpart using the MODWT with the Daubechies family of wavelets, specifically the D4
wavelet basis with filter length L=4. We decomposed each time series into the maximum
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level of decomposition Jn = 8. 1

In Table 3.2(b), we report the average of the variance contribution obtained with the
wavelet transform. We also report the scale and oscillating period associated to each level
of decomposition j = 1,2, . . . ,8. We observe differences in the detected oscillating periods
identified by the EMD and the wavelet methods. These difference could be attributed to the
fundamental nature of the decompositions. The wavelet period is preselected and the EMD
period is derived intrinsically from the data.

IMF Period % Variance

IMF1 1.7 56.4%
IMF2 4.1 23.7%
IMF3 9.3 11.5%
IMF4 21.4 5.0%
IMF5 51.3 2.0%
IMF6 137.9 0.9%
IMF7 311.5 0.4%
IMF8 375.4 0.1%

Residue — 0.04%

(a) EMD variance contribution.

Component Scale Period (min) % Variance

D1 1 1-2 42.16%
D2 2 2-4 27.31%
D3 4 4 -8 15.56%
D4 8 8-16 8.14%
D5 16 16-32 4.02%
D6 32 32-64 1.74%
D7 64 64-128 0.76%
A7 128 > 128 0.31%

(b) Wavelet variance contribution.

Table 3.2 Average oscillating period (minutes) and average contribution of components to the total
variance.
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Fig. 3.6 Daily contribution of variance for the period July 2013 to March 2014.

In Figure 3.6(a), we show the graphical representation of the daily variance contribution
1The maximum number of possible level of decomposition is bounded by log2N and was selected by

considering the level for which there exists at least one interior wavelet coefficient, i.e., a coefficient not
subject to circular filter operations.
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obtained via the EMD. The x axis indicates the analysed date and the y axis the percentage
of the contribution for the different IMFs and the residue. The coloured dots represent
each IMF. For comparison, Figure 3.6(b) displays the variance distribution obtained using
wavelet transform. Both methods agree on the large contribution of the high-frequency
components to the total variance. However, the EMD identifies a higher contribution of
the fastest component. This difference could be attributed to the difference in timescales.
A similar structure in the variance distribution is also observed when decomposing white
noise, see reference [182]. In Chaper 5, we continue the analysis of the variance distribution
and introduce a method to test the information content of the IMFs obtained from financial
time series. Specifically, we compare the variance distribution between the IMFs obtained
from Brownian motion and the IMFs obtained from financial time series. This approach
identifies the component which do not follow the Brownian motion scaling behaviour.

To further analyse the proposed EMD-based realised variance estimator, we compared
the RVEMD estimator, with some other estimators described in section 2.4.1. In Figure 3.7
we report the daily volatility estimation using: Realised volatility, RV, Equation (2.34);
two-scale realised volatility2, TSRV, Equation (2.36); wavelet realised volatility RVWAV,
Equation (2.37).
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Fig. 3.7 Realised volatility estimators for the S&P 500 index for the period July 2013 to March 2014.

Since the MODWT is an energy preserving transform [145], the RV and the RVWAV co-
incide. However for the EMD, orthogonality is not guaranteed and some energy leakage
can occur [96]. Nevertheless, as one can note from the closeness of the RVEMD estimator to

2The TSRV is estimated using a slow timescale of 5 minutes and a fast scale of 30 seconds.
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the RV estimator, the energy leakage is small. This is confirmed by the index of orthogonal-
ity, described in Section 2.2.3, which has an average value (average over the 178 days) of
IO = 2.51×10−5, corroborating that the IMFs and the residue are close to orthogonal.

The RVWAV and RVEMD estimators are biased and they simply replicate the values of
the naive RV estimator. The advantage of these estimators is that they provide information
about the variance distribution across the oscillating components.

3.3.3 Summary

In this chapter, we proposed a realised volatility estimator based on the EMD. With the
scale-by-scale analysis, we are able to identify the time-horizons that lead the intraday vari-
ance of the considered S&P 500 time series. The high-frequency oscillations extracted from
the EMD are attributed to actions of fast traders, in a similar way that low-frequency os-
cillations are accredited to longer term investors. Our results demonstrate that the shortest
time-horizons (average 1.7 minutes) produce more than 50% of the total variation. In gen-
eral volatility can be attributed to the fastest investors, indicating that higher volatility is a
reflection of faster trading activity.

We compared the EMD against the wavelet decomposition, despite their theoretical dif-
ferences, both methods agree that the high volatility in financial time series can be attributed
to the highest frequency components. The main difference between the methods is that the
EMD performs an adaptively time series decomposition with oscillating periods extracted
from the data, whereas wavelet transform uses a set of predefined filters.





Chapter 4

EMD-Based Correlation Estimators

The multiscale analyses provided by the EMD allows to study the temporal dependence of
financial time series. In this chapter, we propose two approaches to estimate the correlation
between a pair of time series. The first approach uses the Pearson correlation to estimate
frequency-dependent correlation. The second approach considers a time-dependent corre-
lation based on the rolling-window approach of Chen et al. [48] . The motivation behind
the window approach is the assumption that time series are relatively stationary on the
timescale of the window length. When applied to high-frequency financial data, the time-
dependent estimator captures the intraday correlation and uncovers lead-lag relationships
which could be attributed to different levels of trading activity. We apply the proposed
estimators to two well known correlated pairs of stock market indices, revealing the time-
varying correlation patterns at different frequencies.

4.1 Correlation structures in financial time series

Correlation between financial time series is an important characteristic which describes fi-
nancial market dynamics. A deep understanding of correlation is of vital relevance for port-
folio risk assessment. When estimating correlation, it is necessary to obtain not just a global
static measure but a more robust estimator which considers the different timescales and os-
cillating components latent in a time series. It has been documented that the correlation of
stock returns varies over time [116, 153, 170]. Hence, we have to propose time-dependent
estimators capable of assessing the dynamic risk exposures. Furthermore, if the degree of
correlation between two assets varies across frequencies, short and long-term market par-
ticipants will have different risk exposures and will analyse different parts of the correlation
spectrum.

The study of time-dependent correlation provides some understanding on the collective
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behaviour of traders with varying strategies [116]. Papadimitriou et al. [138] proposed a
time-dependent correlation by comparing the local autocovariance matrices of each time
series via its eigenvectors. A rolling-window to localize correlation is proposed, although it
is not clear how to choose the appropriate size of the window.

Another technique to measure time-varying correlation is the wavelet coherence [153,
170]. Wavelet analysis allows to study co-movements in the time-frequency domain. The
wavelet squared coherence is essentially the ratio of the squared cross-wavelet spectrum to
the product of two wavelet spectra. Smoothing the spectral estimates allows the coherence to
vary in the range [0,1], with a bias related to the degree of smoothing performed. However,
it is not straightforward which type of smoothing should be implemented and whether or
not this should be done in both the time and the frequency domains [169].

Recently, Chen et al. [48] proposed to use the EMD to estimate the time-dependent
intrinsic correlation (TDIC). In this approach, two time series are first decomposed into
IMFs, and the Pearson correlation is calculated in an adaptive window whose length depends
on the instantaneous period of the correlated IMFs. In particular, through wavelets and
EMD we can assess simultaneously the strength of the comovement at different frequencies
and how such strength evolves over time. In this way it is possible to identify regions in
the time–frequency space where the comovement is higher are the risk diversification is
essential [153].

A common method for estimating the association between two time series is the lagged
correlation, the Pearson correlation between two time series shifted in time relative to one
another [56]. Lagged correlation is important in studying the relationship between time se-
ries since one series may have a delayed response to the other time series or the response of
one time series may propagate in time. The existence of lead-lag relations in intraday finan-
cial time series have been documented in for example [77, 101]. These authors described
how fast one time series reflects new information with respect to the other and concluded
that less liquid assets follow the behaviour of more liquid ones.

4.2 Frequency-dependent correlation

Denote by Xt and Yt , t = 1,2, . . . ,N two time series of equal size N and with equal intervals
of time s between observations. The proposed frequency-dependent correlation uses the
IMFX

i , IMFY
j , i, j = 1, . . . ,n obtained from the decomposition of the time series Xt and Yt ,

respectively.

For the oscillating frequencies i, j, we define the frequency-dependent correlation esti-
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mator ρi, j, as the Pearson correlation between IMFi and IMF j, specifically:

ρi, j =
1
N

N

∑
t=1

(
IMFX

i (t)− IMFX
i

)(
IMFY

j (t)− IMFY
j

)
σX

i σY
j

(4.1)

where IMFX
i denotes the sample mean over time and σX

i denotes the standard deviation of
IMFX

i .

Although the IMFs are not theoretically stationary, the IMFs satisfy the condition of
having local mean equal to zero and can then be considered to be at least locally stationary
[96]. Contrary, the residue does not need to satisfy the IMF conditions, and particularly,
for an initial non-stationary time series, the extracted residue will contain the trend of the
time series, making it a non-stationary component. Thus, a correlation coefficient between
residues is just a measure of linear dependency of the trends indicating if they move in the
same direction. This correlation coefficient is likely to be high, and could give misleading
results for the interpretation of the dependence structure.

4.3 Time-dependent correlation

We define the time-dependent correlation between a pair of IMFs with the same index (or
equivalent frequency) as the Pearson correlation on overlapping windows of size W and
lagged by τ observations:

ρ
T
i,τ =

1
W − τ

W−τ

∑
t=1

(
IMFX

i (t)− IMFX
i

)(
IMFY

i (t + τ)− IMFY
i

)
σX

i σY
j

(4.2)

where IMFX
i denotes the sample mean and σX

i and σX
i denotes the standard deviation of

IMFX
i over the analysed window.

The time-lag τ is measured in units of the sampling frequency and it is calculated as
τ = max(PXi,PYi), with PXi and PXi denoting the oscillating period of IMFX

i and IMFY
i , re-

spectively. Choosing τ larger than the oscillating period will result in repetitive patterns in
the correlation structure. On the other hand, a shorter time-lag may not reveal any synchro-
nization.

The window size is calculated as W = τ ≥ 20 and corresponds to the timescale that we
are interested in, but requiring at least 20 observations to calculate a correlation statistic.
The window approach has the advantage of only assuming local stationarity rather than
stationarity over the entire time series. Although this method is based on a simple measure
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of correlation (Pearson correlation), it adapts to the nature of the data and provides a measure
of correlation in the time frequency space.

4.4 Correlation analysis of high-frequency financial data

For the application of the two proposed correlation measures, we consider intraday data
sampled at 30-second intervals for two stock market indices and a volatility index, namely,
the S&P 500 index (USA), the IPC index (Mexico) and the VIX index (implied volatility
index). The observation period includes 184 days, ranging from September 2014 to July
2015 and it only considers the trading days available for the three indices, see Figure 4.1.
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Fig. 4.1 Intraday observations (sampled at 30-second intervals) for the S&P 500, the IPC and the
VIX indices for the period September 2014 to July 2015.

We calculated intraday correlation between the S&P 500 and the IPC indices and be-
tween the S&P 500 and the VIX indices. As shown in Figure 4.1 and as documented for
example in [15, 17], the S&P 500 and the IPC indices are positively correlated. Contrary, the
risk-price relationship between the S&P 500 and the VIX indices shows negative correlation
[175], a behaviour which could be attributed to the leverage effect [155].

4.4.1 Intraday analysis of correlation, example on a single time series

Let us exemplify the intraday analysis of correlation on a randomly chosen day, July 18th

2014. Figure 4.2 displays the logarithm of prices for the three indices. Applying the EMD
to each time series, we obtained five IMFs and a residue, see Figure 4.3. The oscillating
period of each IMFs is calculated by dividing the total number of points by the number of
peaks, the rounded values are reported in Table 4.1.
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Fig. 4.2 Intraday log-prices for the S&P 500, the IPC and the VIX indices, July 18th 2014.
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Fig. 4.3 IMFs of the stock market indices and the volatility index.

Frequency-dependent correlation, example

The frequency-dependent correlation obtained from Equation (4.1) can be represented as a
matrix of pairwise correlations between the IMFs where the magnitude of the correlation is
represented by colours. Figure 4.4(a) shows the correlation matrix between the S&P 500
and the IPC indices. We observe almost zero correlation for the IMFs outside the diagonal,
but positive correlation across the diagonal elements whose magnitude decreases as the
frequency of the IMF increases, see Figure 4.4(a).

On the other hand, a negative correlation between the S&P and the VIX indices is ob-
tained for the diagonal IMFs, see Figure 4.4(b). We also observe that the correlation de-
creases as the frequency of the IMFs increases. In this way, although previous time series
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Index IMF1 IMF2 IMF3 IMF4 IMF5 Residue

S&P 4 8 20 44 88 –
IPC 4 8 16 40 88 –
VIX 4 8 20 40 88 –

Table 4.1 Oscillating period for the IMFs shown in Figure 4.3 and calculated by dividing the total
number of points by the number of peaks.

are known to be highly correlated, they are less correlated at higher frequencies.
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(a) S&P 500 index versus IPC index.
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(b) S&P 500 index versus VIX index.

Fig. 4.4 Frequency-dependent correlation.

Time-dependent correlation, example

We also estimate the time-dependent correlation between the S&P 500 and the IPC indices
using Equation (4.2), see Figure 4.5(a). The correlation is represented as a coloured matrix
in which each column represents a successive window and each row represents a specific
time-lag. The magnitude of the correlation is indicated by colours. The intraday correlation
values are reported after W observations, with W the size of the rolling-window. In this way,
the size of the correlation matrix is reduced according to the applied window.

From Figure 4.5(a), it is difficult to identify correlations patterns for the highest fre-
quency IMFs. However, for IMFs with lower frequency, IMF2, . . . , IMF5, we observe in-
tervals of stronger correlation characterized by the nature of the oscillating IMFs, i.e, we
observe lapses of positive correlation lagged in time by negative values of correlation, mak-
ing the lead-lag relation between the IMFs almost symmetric with respect to the zero lag.

Figure 4.5(b) shows the correlation matrices for the S&P 500 and the VIX indices. Con-
trary to the correlation between the S&P 500 and the IPC indices, the correlation between
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the S&P and the VIX indices is negative at all frequencies and during the entire trading
day. At the highest frequency, IMF1, we observe a clear pattern of negative correlation at
lag τ = 2 (1 min), indicating that the S&P 500 leads the VIX index by 1 minute. When
correlating the residue components, we observe a dominant blue band (a similar red band
is observed for the correlation between the S&P 500 and the IPC indices) which could be
attributed to the linear and non-stationary characteristics of the residues.

(a) S&P 500 index versus IPC index. (b) S&P 500 index versus VIX index.

Fig. 4.5 Intraday time-dependent correlation.

4.4.2 Intraday correlation, analysis on the complete data set

In order to identify clearer patterns in the intraday correlation, we estimated the frequency-
dependent correlation and the time-dependent correlation for each of the 184 days available
in the data set. We decomposed each daily time series into five IMFs and a residue. In the
following sections, we report the average patterns of the proposed estimators.

Average frequency-dependent correlation

We report the frequency dependent correlation for each of the trading days using histograms
and only considering the diagonal elements of the correlation matrix, i.e., the IMFs with the
same sub-index and which also display the highest correlation. Figure 4.6 shows the his-
togram for the frequency-dependent correlation between the S&P 500 and the IPC indices.
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For most of the IMF pairs, we observe distributions centred around zero and correlations
statistically non different from zero, except for the residue function which is highly skewed,
given its non-stationarity and the fact that at values close to one the distribution of the corre-
lation is generally skewed [78]. The phenomenon of observing smaller correlation at higher
frequencies is well documented and known as the Epps effect [69]. It could be attributed
to microstructure effects that are more evident at higher frequencies, including lagged cor-
relations, asynchronous trading and decimalization of the tick-size (lowest possible price
change) [35, 150].

Figure 4.7 shows the corresponding histograms for the correlation between the S&P 500
and the VIX indices. We observe a negative correlation which depends on the analysed
frequency. There are two popular theories associated with the reported negative return -
risk correlation, namely the leverage hypothesis and the volatility feedback hypothesis [35].
The leverage effect occurs when the value of a firm drops, then the debt-to-equity radio
increases. Since the assets of the firm restrain the risk of the firm, the volatility of the equity
increases. The other major explanation for the return-risk relation considers a time varying
risk premium, or volatility feedback effect where an anticipated increase of future volatility
by market operators triggers sell orders, which therefore decreases the asset price [34].
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Fig. 4.6 Distribution of the frequency-dependent correlation between the IMFs of the S&P 500 index
and the IMFs of the IPC index.
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Fig. 4.7 Distribution of the frequency-dependent correlation between the IMFs of the S&P 500 index
and the IMFs of the VIX index.

To analyse the average behaviour of the frequency dependent correlation, we propose to
use the sample median of the distribution since this statistic is not influenced by outliers. In
Figure 4.8, we present the sample median correlation matrix for the analysed time series.
The case S&P and IPC is reported in Figure 4.8(a), where we observe an almost zero corre-
lation for the non-diagonal elements. And although from the histograms displayed in Figure
4.6, we observe that for most of the IMFs the correlation is statistically non different from
zero, the correlation for the residue is indeed more significant. We observe the same pattern
for the S&P and the VIX correlation with non-homogeneous correlations across different
frequencies, as reported in other studies including [118, 153, 170].

Average time-dependent correlation

We analysed the median of the time-dependent correlation matrices. In order to have com-
patible correlation intervals, each intraday matrix was calculated using the same value for
the window size and the time-lag. The applied values were computed as the sample mean
of the parameters over the 184 days. The obtained values are reported in Table 4.2.

The median correlation matrix between the S&P 500 and the IPC indices is displayed
in Figure 4.9(a). This matrix shows clearer patterns for the intraday dynamics, it does not
show lead-lag relationships between the IMFs, but it emphasizes some stronger patterns of
correlation at the beginning and at the end of the trading session.

For the correlation between the S&P 500 and the VIX indices, Figure 4.9(b), we found
stronger correlations at high frequencies (IMF1, IMF2 and IMF3) which are lagged by one
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(a) S&P 500 index and the IPC index.
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(b) S&P 500 index and the VIX index.

Fig. 4.8 Sample median of the frequency-dependent correlation matrices over the period September
2014 to July 2015.

Component S&P vs IPC S&P vs VIX

Lag Window Lag Window
IMF1 4 20 4 20
IMF2 9 20 9 20
IMF3 19 20 21 21
IMF4 44 44 48 48
IMF5 110 110 124 124

Residue 110 110 124 124

Table 4.2 Average of the number of lags and the size of the rolling-window used for the time-
dependent correlation analysis.

minute (τ = 2) and are stable across the day. Our results show that at higher frequencies,
changes of the S&P 500 index are more likely to lead changes of the VIX index.

4.5 Summary

The multiscale analyses provided by the EMD allows to study the dynamic correlation be-
tween two non-stationary time series. In this chapter, we proposed two approaches to es-
timate the frequency and time dependent correlation. With the proposed estimators, we
studied the intraday co-movements between two pairs of time series. Our empirical findings
confirmed the positive correlation between the S&P 500 index and the IPC index [15], and
the negative correlation between the risk-price relation between the S&P 500 index and the
VIX index [75, 92]. More importantly, the results show that the correlation patterns are time
and frequency dependent. Similarly to the coherence measure obtained using wavelet trans-
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(a) S&P 500 index versus IPC index. (b) S&P 500 index versus VIX index.

Fig. 4.9 Sample median of the time-dependent correlation matrices over the period September 2014
to July 2015.

form [170], our proposed correlation measures could be used to analyse transient dynamics
of a time series and distinguish between long-run trends and cycles. Given the adaptiveness
and the simplicity of the EMD, the proposed correlation measures offer a more comprehen-
sible analysis.

In order to generalize the results for our intraday analysis, we considered the distribution
of correlations and the sample average over the analysed days. The time-dependent corre-
lation shows clearer patterns for the intraday dynamics of correlation. For the correlation
between the S&P and the VIX indices, we found strong correlations at high frequencies
that are lagged by one minute and that are stable across the day. Our results show that at
higher frequencies, the change of S&P 500 index is more likely to lead the change of the
VIX index.

The lead-lag analysis produces more insight into the dynamics of co-movements and
could be used in forecasting models, for example in regression models. It offers a better
understanding about the speed of different assets processing and reflecting information, and
the degree to which the information contained in one time series could be used to make
predictions on the other.





Chapter 5

Anomalous Volatility Scaling in Stock
Market Indices

In this chapter, we study the scaling properties of intraday stock market indices computed
at various time horizons. We demonstrate that when EMD is applied to fractional Brownian
motion and to α-stable Lévy motion (a heavy-tailed stochastic process), we retrieve a scal-
ing law that relates the variance of the components to a power law of the oscillating period.
The obtained scaling exponent is comparable the long-range dependence exponent obtained
with the wavelet methodology. In contrast, when analysing 22 different stock market indices,
we observe deviations from the fractional Brownian motion and Brownian motion scaling
behaviour. Part of this chapter is published in the paper “Anomalous volatility scaling in
high-frequency financial data” [137].

5.1 Self-similarity and long-range dependence in financial
time series

The concepts of self-similarity, scaling behaviour, fractional processes and long memory
have been widely used to describe properties of financial time series [54]. The idea that stock
returns could exhibit long-range dependence was first suggested by Mandelbrot [124], who
observed self-similar behaviour in the logarithm of returns and proposed the use of stable
distributions to model them [124]. Empirical finance research has emphasized the presence
of long memory in stock markets, which is observed across various time periods and in dif-
ferent markets, FX [86, 134], equity [11, 178], stock indices [64, 65]. The autocorrelation of
returns is typically insignificant at lags between a few minutes and days, however at higher
frequencies, some autocorrelation patterns can be identified and are sometimes attributed
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to the micro-structure noise latent in high-frequency financial data [54]. Contrary, squared
returns or absolute returns are highly autocorrelated processes exhibiting long-range depen-
dence [53].

Another argument is whether the observed long-memory property is constant over time.
Time-dependent scaling behaviour has been reported in for example [8, 32], the local varia-
tions of roughness can be described by allowing the Hurst exponent to vary with time [39].
Carbone et al., [43] calculated the local scaling exponent over partially overlapping subsets
of the analysed time series, finding a much more pronounced time-variability in the local
scaling exponent of financial time series than in Brownian motion.

Entropy has been proposed as an alternative measure to capture not just linear dependen-
cies in financial time series [60] and it is also consider a measure of complexity [109, 191].
In general, a low value of entropy indicates the presence of more predictable patterns which
are therefore associated with periods of financial inefficiency. Conversely, when the time
series exhibit more irregular and less predictable patterns, the uncertainty level is higher and
such periods are described by larger values of entropy.

5.2 EMD-based scaling exponent

Although the EMD is a completely adaptive technique which makes no assumptions of the
true data generating process, when applied to Gaussian noise, the EMD acts as a wavelet
filter bank able to isolate different frequency bands [80]. Flandrin et al. [79] empirically
showed that when decomposing fractional Gaussian noise (fGn), the EMD could be used to
estimate its scaling exponent H, if H > 1

2 . The authors ascertained that the variance pro-
gression across the IMFs satisfies, Var(IMF f Gn

k ) ∝ τ
2(H−1)
k , where the function τk denotes

the period of the kth IMF 1.
In this chapter, we follow a similar approach to [79], but instead of applying the EMD to

FGN, we consider its integrated process, FBM. We empirically show that a similar scaling
law holds for the variance of the IMFs:

Var(IMFFBM
k ) ∝ τ

2H
k . (5.1)

The EMD estimator of H can be determined by the slope of a linear regression fit on the
logarithm of the variance as a function of the logarithm of the period

log
(
Var(IMFFBM

k )
)
= 2H log(τk)+ log(c0), (5.2)

1The oscillating periods τk can be approximated as the total number of data points divided by the total
number of zero crossings of each IMF.
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where c0 is the intercept constant of the linear regression.

To visualize the linear relationship of Equation (5.2), we explicitly show the relation
between log(Var(IMFFBM

k )) and log(τk) for an FBM simulation of scaling exponent H = 0.6
and length N1 = 10,000 points, see Figure 5.1. In this example, the resulting estimator is
H∗ = 0.593 which accurately approximates the scaling exponent of the simulated process.
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Fig. 5.1 Log-log plot of the IMF variance as a function of period for an FBM of H = 0.6 and length
N1 = 10,000. The blue line represents the least-square fit. The scaling exponent H∗ = 0.593 can be
recovered from half the slope of the least-square linear fit.

5.3 Numerical study of long-memory processes

In order to verify the filter bank properties of the EMD and the scaling law of Equation (5.1),
we extended the simulation set of the FBM and we also considered α-stable Lévy motion
(SLM), a self-similar process with independent increments and heavy-tailed distribution, for
more details about these processes refer to Section 2.6.2. By estimating a scaling exponent
for models with known scaling laws, we demonstrate that our measure varies consistently
around the expected values set in the models.

5.3.1 FBM simulation analysis

We generated M = 100 FBM paths for the following values of the scaling exponent H =

0.1,0.2, . . . ,0.9. The simulated processes have two different lengths, N1 = 10,000 and N2 =
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100,000.2

We applied the EMD to each FBM simulation and we calculated its respective H∗ expo-
nent. In Table 5.1, we report ⟨H∗⟩, the mean over the 100 estimators. We also report the root

mean square error (RMSE) of the estimators, RMSE =

√
M
∑

i=1
(H∗

i −H)
2

M . We observe that the
longer the analysed time series, the better the estimation of H is. For length N2 = 100,000,
⟨H∗⟩ is indeed very close to the scaling exponent H (for all values of H). In Figure 5.2, we
plot the mean values of the H∗ exponent as presented in Table 5.1. The error bars represent
the RMSE of the estimator. For comparison, we also estimated the Hurst exponent using
the generalized exponent approach with q = 2 [63], obtaining consistent results. Table 5.1
reports the mean and the RMSE of this estimator which is denoted as HG.

10,000 100,000
H ⟨H∗⟩ RMSEH∗ ⟨HG⟩ RMSEHG ⟨H∗⟩ RMSEH∗ ⟨HG⟩ RMSEHG

0.1 0.05 0.06 0.15 0.05 0.11 0.03 0.15 0.05
0.2 0.15 0.07 0.22 0.03 0.21 0.03 0.22 0.03
0.3 0.26 0.06 0.31 0.01 0.31 0.03 0.31 0.01
0.4 0.38 0.05 0.40 0.01 0.41 0.02 0.40 0.01
0.5 0.49 0.05 0.50 0.01 0.51 0.03 0.50 0.01
0.6 0.59 0.04 0.60 0.01 0.60 0.03 0.60 0.01
0.7 0.70 0.04 0.70 0.01 0.69 0.03 0.70 0.01
0.8 0.80 0.04 0.79 0.01 0.78 0.04 0.79 0.02
0.9 0.90 0.05 0.88 0.03 0.87 0.04 0.87 0.03

Table 5.1 Confirmation that the empirical scaling law of Eq. 3 retrieves the expected scaling ex-
ponent for FBM. Mean of the scaling exponent H∗ over 100 simulations of FBM with parameter
H = 0.1,0.2, . . . ,0.9 and length, left: N1 = 10,000 and right: N2 = 100,000. For comparison, we in-
cluded the mean and the RMSE of the generalized Hurst exponent estimator with q = 2 and denoted
as HG.

5.3.2 α-stable Lévy motion simulation analysis

To perform the simulation analysis, we generated stable random variates using the Chambers
algorithm [104] and from these we construct sample trajectories of the SLM. We used the
toolbox provided by [164], sample paths are of length N = 10,384, with parameters for the
generation m = 128 and L = 6000, making m(L+N) to be a power of 2, see [164] for more
details. We considered the case H = 1/α for values of H = 0.5,0.55, . . . ,0.95.

In Table 5.2, we report ⟨H∗⟩, the mean over the 100 estimators. We also report the
RMSE of these estimators. We observe that for all the values of H = 1/α , the mean of H∗

consistently estimates the independence of the increments, providing values around 0.5. For

2All the FBM paths were generated using MATLAB® wavelet toolbox.
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Fig. 5.2 Demonstration that the empirical scaling law of Eq. 3 retrieves the expected scaling exponent
for FBM. Mean of the scaling exponent H∗ over 100 simulations of FBM with parameter H =
0.1,0.2, . . . ,0.9 and length, left: N1 = 10,000 and right: N2 = 100,000. The error bars denote the
RMSE of the estimator.

comparison, we also estimated the Hurst exponent using the generalized exponent approach
[63] with q = 2, obtaining consistent results. In Table 5.2, we include the mean and the
RMSE of this estimator denoted as HG.

Let us emphasize that we do not propose the EMD as a way to estimate the Hurst ex-
ponent that can be more accurately estimated by other methods like the ones reported in
[20, 106]. The advantage of the proposed estimator is its ability to analyse the interactions
between the different timescales latent in the data.

H ⟨H∗⟩ RMSEH∗ ⟨HG⟩ RMSEHG

0.50 0.49 0.05 0.50 0.01
0.55 0.48 0.05 0.50 0.01
0.60 0.48 0.05 0.50 0.01
0.65 0.48 0.05 0.50 0.01
0.70 0.48 0.06 0.50 0.02
0.75 0.48 0.06 0.50 0.01
0.80 0.48 0.06 0.50 0.01
0.85 0.48 0.07 0.50 0.01
0.90 0.47 0.07 0.50 0.01
0.95 0.46 0.07 0.50 0.01

Table 5.2 Demonstration that the empirical scaling law of Eq. 3 retrieves the expected scaling
exponent for SLM. Mean of the scaling exponent H∗ over 100 simulations of SLM with parameter
H = 1

α
= 0.5,0.55, . . . ,0.95 and length N = 10,384.
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5.4 Variance scaling in intraday financial data

We analysed intraday prices for 22 different stock market indices. The data set covers a
period of 6 months from May 5th, 2014 to November 5th, 2014. Prices are recorded at 30
second intervals. The list of analysed stock market indices is reported in Table 5.3.

Country Index Length
Brazil BOVESPA 105,000
China SSE 60,480
France CAC 40 136,080
Greece ASE 106,470
Hong Kong HSI 98,154
Hungary BUX 122,880
Italy FTSE MIB 133,056
Japan NIKKEI 225 75,600
Malaysia KLSE 115,320
Mexico IPC 100,620
Netherlands AEX 130,680
Poland WIG 64,680
Qatar DSM 52,080
Russia RTSI 133,120
Singapore STI 123,840
South Africa JSE 117,500
Spain IBEX 135,527
Turkey XU 100 91,760
UAE UAED 60,000
UK FTSE 130,560
USA S&P 500 99,840
USA NASDAQ 100,620

Table 5.3 Studied stock market indices, including the length of the time series.

We applied the EMD to the logarithm of each stock market index. For the sake of clarity,
in this section we only focus on the decomposition of the S&P 500 index, but a similar
analysis has been done for the other stock market indices. For the S&P 500 log-price time
series, we extracted 17 IMFs and a residue which describe the local cyclical variability of
the original signal and represent it at different timescales. The original log-price time series
and its IMFs are displayed in Figure 5.3. In this figure, we observe temporary clusters of
volatility that characterize some of the components, for example the high volatility at the
end of the time series can evidently be seen in components 2,3,4,6 and 7.

The IMF periods, calculated as the total number of data points divided by the total num-
ber of zero crossings, are reported in Table 5.4. These periods are converted into minutes,
hours and days. The fastest component has a cycle of 1.6 minutes, contrasting the slowest
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cycle of 11.6 days. Notice that the first 12 IMFs represent the intraday activity (6.5 hours
of trading), while the remaining IMFs (from 13th to 17th) are associated with the inter-day
cycles. The last component is the residue of the EMD.
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Fig. 5.3 Top: log-price time series of the S&P 500 index for the period 05/05/2014 to 05/11/2014.
Bottom: the 17 IMFs and the residue obtained through EMD of the log-prices.
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Fig. 5.4 Log-price time series of the S&P 500 index (blue line). The red line represents the ‘trend’
of the data calculated as the sum of the residue plus the last IMF.

IMF Period/min IMF Period/hr IMF Period/days
1 1.6 9 1.1 14 1.1
2 2.8 10 1.9 15 2.2
3 4.9 11 3.0 16 4.3
4 8.4 12 5.9 17 11.6
5 13.0 13 11.7 18 Residue
6 19.3
7 28.8
8 41.7

Table 5.4 Oscillating period of the IMFs obtained from the S&P 500 index.

The overall trend of the time series is given by the residue, and each component can be
seen as an oscillating trend of the previous component on a shorter timescale. The effective-
ness of EMD as a detrending and smoothing tool is illustrated in Figure 5.4. In this Figure,
the original time series (blue line) is compared with a ‘trend’ (red line), calculated as the
sum of the residue plus the last component.

In previous section we discussed that for FBM, the EMD produces a linear relationship
between the logarithm of the variance of the IMFs and their respective period of oscillation
(Equation (5.2)). We tested whether this relationship also holds for financial time series.
In Figure 5.5, we show the log-log plot of the variance as a function of the period for the
IMFs obtained from the S&P 500 index (red diamonds). The estimated scaling exponent
has a value of H∗ = 0.55. The goodness of the linear fit was estimated by the coefficient of
determination3 which is R2 = 0.992. We can conclude that this stock market index satisfies
the linear relationship of Equation (5.2).

We performed the same analysis for the other stock market indices, finding both signif-

3This coefficient of determination is the square of correlation between the dependent and independent
variable. Values of this coefficient range from 0 to 1, with 1 indicating a perfect fit between the data and the
linear model, see for example [149].
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Fig. 5.5 Log-log plot of the IMF variance as a function of period for the EMD of the S&P 500 index.
The red line represents the best least-square fit. The goodness of the linear fit is R2 = 0.992.

icant deviations from Brownian motion (H∗ ̸= 0.5 ) and deviations from the scaling law of
Equation (5.2). We note that given the heuristic nature of our proposed EMD estimator, val-
ues of H∗ ̸= 0.5 do not necessarily imply deviations from Brownian motion. It is necessary
to consider the standard errors of the estimator. As reported in Table 5.1, the RMSE of the
EMD estimator could be as high as 0.3. In the following section we provide a test using
some confidence interval for the Brownian motion scaling behaviour. In this way, we can
identify which stock market indices deviate the most from the Browniam motion scaling
behaviour.

In Table 5.5, we report further details about the decomposition and scaling law found
on each stock market index. We include the number of IMFs and the index of orthogonality
which is described by Equation (2.18). We observe small values of the IO, indicating an
almost orthogonal decomposition. Furthermore, we report the estimated scaling exponent
and the goodness of the linear fit. Although, we note that the coefficient of determination for
all the stock market indices is above 0.94, we shall discuss shortly that significant deviations
from linearity (FBM behaviour) are observed, especially in less developed markets. We also
note that the S&P 500 index follows more closely the scaling properties of FBM.

Deviations from Brownian motion

Let us now discuss the deviations of the scaling laws found in stock market indices from the
scaling expected in Brownian motion (BM). With this aim, we generated M = 100 paths of
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Index # IMFs IO ×104 R2 H∗

S&P 500 17 3.7 0.992 0.564
BOVESPA 18 6.3 0.989 0.561
FTSE MIB 18 8.6 0.987 0.571

XU 100 19 3.5 0.985 0.563
RTS 20 11 0.985 0.581

CAC 40 17 8.8 0.984 0.564
UAED 16 6.3 0.978 0.616
FTSE 23 2.9 0.977 0.529
ASE 15 29 0.974 0.587
IBEX 18 5.7 0.973 0.531
WIG 16 8.2 0.973 0.591
SSE 14 1.6 0.971 0.534
DSM 18 7.6 0.971 0.618
IPC 18 0.68 0.971 0.555

BUX 19 4.2 0.970 0.542
HSI 19 1.0 0.969 0.554
AEX 21 13 0.968 0.558

NASDAQ 20 5.1 0.960 0.530
NIKKEI 225 22 8.4 0.959 0.544

JSE 19 2.9 0.956 0.518
KLSE 22 0.77 0.943 0.540

STI 21 2.6 0.942 0.522
Table 5.5 Stock market indices including the number of IMFs obtained when applying EMD to the
logarithm of the price. The second column report the index of orthogonality (×104). Stock market
indices are reported in descending order of R2, which represents the goodness of the linear fit of
Equation (5.2). Last column reports the estimated exponent H∗ of the same equation.

BM with length N equal to the analysed stock market index (see Table 5.3). We applied the
EMD to each simulation and obtained its respective intrinsic oscillations denoted as IMFBMi

k ,
i = 1,2, . . . ,100, k = 1,2, . . . ,ni, with ni the number of IMFs for each BM simulation. In
order to compare the variance of the IMFs extracted from the financial index X , Var(IMFX

k ),
against the Var(IMFBMi

k ), we rescaled the latter as:

̂Var(IMFBMi
k ) = ci Var(IMFBMi

k ), (5.3)

where

ci =

1
n

n
∑

k=1
(Var(IMFX

k )/τX
k )

1
ni

ni
∑

k=1
(Var(IMFBMi

k )/τ
BMi
k )

. (5.4)

In Figure 5.6, we present all the 100 linear fits as light blue lines. In the same figure,
we plotted the variance of the IMFs extracted from the S&P 500 index, same as reported in
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Fig. 5.6 Log-log plot of variance as a function of period for the S&P 500 IMFs (red diamonds)
compared with 100 rescaled BM linear fits of slope H∗ = 0.5 (blue lines).

Figure 5.5. We observe that the Brownian motion linear fits (blue lines) and the linear fit
of the S&P 500 index (red line) are close to each other, suggesting this stock market index
exhibits a scaling behaviour similar to the one observed in Brownian motion.

The goodness of the linear fit between the financial data points (red diamonds) and each
of the Brownian motion linear fit (blue lines) was calculated as follow:

R2
BMi

= 1−

n
∑

k=1

[
log

(
Var

(
IMFX

k

))
− log

(
ci c0iτ

X
k

)]2

n
∑

k=1

[
log

(
Var

(
IMFX

k

))
−
〈
log

(
Var

(
IMFX

k

))〉]2
. (5.5)

where ⟨·⟩ indicates the mean over the n IMF variances obtained from the stock market index.
The deviations from Brownian motion were calculated by the mean over the goodness of
the linear fits, i.e., we calculated:

〈
R2

BM
〉
=

1
n

100

∑
i=1

R2
BMi

. (5.6)

For the S&P 500 index, we obtained a coefficient equal to
〈
R2

BM
〉
= 0.979, demonstrat-

ing the similarity between the scaling properties of this stock market index and Brownian
motion.
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5.5 Observed scaling properties of stock market indices

In previous section, we introduced two measures that quantify the deviations from the scal-
ing behaviour of fractional Brownian motion and Brownian motion. These measures are
given by:

1. R2, coefficient of determination (square of correlation) between the logarithm of pe-
riod and logarithm of variance of IMFs obtained from stock market indices.

2.
〈
R2

BM
〉
, mean of the relative squared residuals between the IMF variances obtained

from financial data and each of the linear fits for Brownian motion simulations.

In Table 5.6, we report the values of
〈
R2

BM
〉

for the 22 stock market indices. For comparison
purposes, we repeated the R2 values reported in Table 5.5. The last column of Table 5.6
indicates the ordering of the markets if R2 were used as the ranking measure.

The S&P 500 index is ranked the highest in both scales. Developed markets tend to be
at the top of the table, with some exceptions that may arise from the specific characteristics
of the analysed period of time, May 5th, 2014 to November 5th, 2014. In Figure 5.7, we plot
the R2

BMi
ranking of the stock market indices. The horizontal bars represent the 5th and the

95th percentiles of the R2
BMi

distribution. The blue dot inside each bar indicates the mean
value

〈
R2

BM
〉

as reported in Table 5.6. Despite the fact that some financial stock indices
have similar values of R2

BMi
, we can recognize statistically significant differences between

developed and emerging markets, observing a clear tendency for the developed markets to
present larger values of

〈
R2

BM
〉

with narrower distributions.

In order to visualize the anomalous scaling in some stock markets indices and to un-
derstand the origin of the differences in the results, we compare the cases of the NASDAQ
(USA), BOVESPA (Brazil), NIKKEI 225 (Japan) and DSM (Qatar) indices in more detail.

For the NASDAQ index (USA), we obtained 20 IMFs and a residue. In Figure 5.8(a),
we display the log-prices (blue line) and the ‘trend’ consisting of the residue plus the last
IMF (red line). In Figure 5.8(b), we observe that the deviation from the linear relationship
of Equation (5.2) is significant. Thus, the log-log relationship between period and variance
is not completely satisfied. The resultant coefficient of determination is R2 = 0.960, rank-
ing this stock market index at the 18th position. Moreover, when compared with BM, we
identify that most of the components deviate from the BM linear fits (blue lines). We also
note that the total number of components (21) is considerable larger than what would be ex-
pected from a process with uniform scales, i.e., log2(100620)=16.6. The presence of these
extra oscillations with reduced variance suggests a more complex structure than BM. The
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Country Index
〈
R2

BM
〉

Rank⟨R2
BM⟩ R2 RankR2

USA S&P 500 0.979 1 0.992 1
Brazil BOVESPA 0.977 2 0.989 2
UK FTSE 0.973 3 0.977 8

Turkey XU 100 0.972 4 0.985 4
Italy FTSE MIB 0.971 5 0.987 3

France CAC 40 0.970 6 0.984 6
Spain IBEX 0.969 7 0.973 10
China SSE 0.967 8 0.971 12
Russia RTSI 0.964 9 0.985 5

Hungary BUX 0.963 10 0.970 15
Mexico IPC 0.960 11 0.971 14

Hong Kong HSI 0.958 12 0.969 16
USA NASDAQ 0.954 13 0.960 18

Netherlands AEX 0.953 14 0.968 17
South Africa JSE 0.952 15 0.956 20

Japan NIKKEI 225 0.949 16 0.959 19
Greece ASE 0.948 17 0.974 9
Poland WIG 0.947 18 0.973 11
UAE UAED 0.939 19 0.978 7

Singapore STI 0.934 20 0.942 22
Malaysia KLSE 0.933 21 0.943 21

Qatar DSM 0.928 22 0.971 13
Table 5.6 Stock market indices ranked in descending order of

〈
R2

BM
〉
. The last column indicates the

ordering of the markets with respect to R2.
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deviations from the BM scaling behaviour, quantified by the coefficient
〈
R2

BM
〉
= 0.958,

rank this index at the 13th position.
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Fig. 5.8 EMD analysis for the NASDAQ index. Captions for figures (a) and (b) are the same as
captions for figures 5.4 and 5.6 respectively.

The variance scaling properties of the BOVESPA index (Brazil) are presented in Figure
5.9. For this stock market index, the EMD identifies long-period cycles with larger variance
than what would be expected from BM, see Figure 5.9(b). However, the linear fit between
the logarithm of IMF variances and periods is in general good with R2 = 0.989. The good-
ness of the linear fit between the BM simulations is

〈
R2

BM
〉
= 0.977, placing this index at

the second position. Such a good ranking for this market may be unexpected, but we must
stress that it only reflects the six-month period of observations. From Figure 5.9(a), we can
see that this was a rather random but calm period.

For the NIKKEI 225 index (Japan), we obtained 22 IMFs and a residue. Similar as
the NASDAQ index, the number of components is considerable larger than what would be
expected from BM, i.e., log2(75600)=16.2. These many oscillations, specially the high-
frequency components, generate a non-linear behaviour that deviates from BM. Given the
anomalous scaling behaviour of this stock market index, see Figure 5.10(b), we obtained〈
R2

BM
〉
= 0.949, ranking it at the 16th position.
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Fig. 5.9 EMD analysis for the BOVESPA index. Captions for figures (a) and (b) are the same as
captions for figures 5.4 and 5.6 respectively.
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Fig. 5.10 EMD analysis for the NIKKEI 225 index. Captions for figures (a) and (b) are the same as
captions for figures 5.4 and 5.6 respectively.
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Finally, the DSM index (Qatar) is displayed in Figure 5.11. The log-price time series
and its respective ‘trend’ are displayed in Figure 5.11(a). In Figure 5.11(b), we observe
the poor liner fit of Equation (5.2) that is characterized by a considerable steep slope. We
obtained R2 = 0.971, ranking this index at the lowest position. Furthermore, if we compare
its IMF variances against the BM linear fits, we observe that most of the variance values
(red diamonds) follow outside the band expected from BM. The large variance of the low
frequency components suggests the presence of important long-period cycles. Given its
deviations from BM behaviour, this index is also ranked the lowest with respect to the
measure

〈
R2

BM
〉
= 0.928.
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Fig. 5.11 EMD analysis for the DSM index. Captions for figures (a) and (b) are the same as captions
for figures 5.4 and 5.6 respectively.

5.6 Summary

We empirically showed that FBM and α-stable Lévy motion obey a scaling law that relates
linearly the logarithm of the variance and the logarithm of the period of the IMFs. We
demonstrated that the extracted scaling exponent equals the Hurst exponent H multiplied
by two. The proposed estimator is robust to heavy-tailed distributions and can be used to
estimate the long-range dependence of a time series.

When applied to stock market indices, the EMD reveals instead different scaling laws
that can deviate significantly from both Brownian motion and fractional Brownian motion
behaviour. In particular, we noted that the EMD of high-frequency financial data results
in a larger number of IMFs than what would be expected from Brownian motion. These
many components, specially high-frequency components, create a curvature that disobeys
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the linearity found in the log-log relation between the IMF variance and the period of FBM.
This is a direct indication of anomalous scaling that reveals a more complex structure in
financial time series than in self-similar processes.

In this study, we applied the EMD to 22 different stock market indices and observed that
developed markets (European and North American markets) tend to have scaling properties
closer to Brownian motion properties. Conversely, larger deviations from uniscaling laws
are observed in some emerging markets such as Malaysian and Qatari.

These findings are in agreement with the discernible characteristics of developed and
emerging markets, the former type being more likely to exhibit an efficient behaviour, see for
example [64, 65]. Compared to previous approaches, the EMD method has the advantage to
directly quantify the cyclical components with strong deviations, giving a further instrument
to understand the origin of market inefficiencies.

Our results confirm the need for multifractal models which have recently been intro-
duced as a new type of data-generating process [41]. The main distinguishing property of
these models is the non-linear variation in the scaling behaviour of its moments. Calvet
et al. [40, 42] proposed a multi-frequency model in which innovations in dividend volatil-
ity depend on shocks that decay with different frequencies. We proposed a method using
high-frequency data which identifies the interactions of these frequencies and reveals scal-
ing laws in financial time series. Essentially, the multifractal structure appears to be a very
parsimonious and robust way to capture a hierarchical multicomponent structure of the price
process.





Chapter 6

Time-Dependent Scaling Properties of
Stock Market Indices

In this chapter, we investigate the influence of different timescales on the dynamics of finan-
cial market data. This is obtained by decomposing financial time series into a set of sim-
ple oscillations associated with distinctive timescales and with time-dependent attributes,
such as amplitude and period. In the first part of this chapter, we introduce a novel time-
dependent scaling exponent that quantifies the relative hierarchical variations of the ampli-
tudes of the components with respect to their associated timescales. The proposed exponent
is related to the scaling properties of self-similar processes. In the second part of this chap-
ter, we propose an entropic measure which quantifies the dispersion of the amplitudes of the
components. We apply the time-dependent measures to four different stock market indices,
aiming to reveal their intraday scaling behaviour.
Part of this chapter is published in the paper: “Time-dependent scaling patterns in high-
frequency financial data” [136].

6.1 Time-dependent scaling exponent

In Section 5.1, we discussed some literature related to the importance of time-dependent
scaling parameters. The first step to estimate the proposed time-dependent scaling exponent
is to apply the HHT to the input time series Xt , t = 1,2, . . . ,N, to obtain its time time-varying
amplitude and period attributes.

The proposed estimator, denoted as H∗(t), is constructed by observing the way the local
amplitudes ak(t), Equation (2.25), change with respect to the local periods τk(t) = ωk(t)−1,
Equation (2.27), for all k = 1,2, . . . ,n.

We first applied the method to FBM and observed that the time-dependent amplitude
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follows a power-law behaviour with respect to the instantaneous period:

ak(t) ∝ τ
H∗(t)
k (t). (6.1)

where the exponent H∗(t) describes the local scaling properties of the IMF amplitudes and
takes values distributed around the self-similar exponent H of FBM. The exponent H∗(t) is
based on the scaling properties of the absolute value of the fluctuations, therefore compar-
isons with other estimators such as the generalized Hurst exponent [63] must be done for
the first order moments i.e. q = 1 [107].
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Fig. 6.1 Illustration that for FBM the local amplitudes ak(t) and the periods τk(t) follow Equation
(6.1): ak(t) ∝ τ

H∗(t)
k (t). Plots report instantaneous amplitude as a function of period for the following

four randomly chosen times: t = 1326,2252,3421,5405. The simulated process is an FBM with
self-similar exponent H = 0.6 and length N = 10,000 points. The straight lines represent the best-fit
linear regressions.

In Figure 6.1, we report a particular instance of Equation (6.1) showing the linear fit
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between logak(t) and logτk(t) for four randomly chosen times of an FBM with self-similar
exponent H = 0.6 and length N = 10,000. The values of H∗(t) reported in the plots are
obtained from the slope of the regression fit. We observe that they are all consistently close
to the self-similar value H = 0.6. For the chosen values of t, we calculated the goodness
of the linear fit by estimating the coefficient of determination R2 [149] (values of this co-
efficient range from 0 to 1, with 1 indicating a perfect fit between the data and the linear
model). Results for the four randomly chosen times: t = 1326,2252,3421,5405 are as fol-
low: R2(1326) = 0.99, R2(2252) = 0.90, R2(3421) = 0.98, R2(5405) = 0.99, indicating
therefore that for those time instances, the data are well represented by the log-linear model
of Equation (6.1). Similar linear scaling results are obtained across all times, but the scaling
exponent is different at each time step, making H∗(t) a time-dependent estimator.

A value of H∗(t)> 0.5 is obtained when around time t, the amplitude of long cycles is
larger than in a pure random walk. This can be interpreted as a persistent behaviour in the
amplitudes of the process, meaning that in a neighbourhood around time t the process is in
a cycle indistinguishable from a trend. On the contrary, values of H∗(t) < 0.5 represent a
rougher and more chaotic behaviour around time t. These processes are composed of oscil-
lations with more similar amplitudes across timescales than in Brownian motion, creating a
complex and uncertain behaviour. In this case, high-frequency components are more active
and their contribution to the total variance is more significant than in a random walk process.

6.2 Numerical study of self-similar and long-memory pro-
cesses

In order to test the power-law relation of Equation (6.1), we extended the simulation set of
FBM and we considered other two different self-similar processes, namely α-stable Lévy
motion (SLM) [156] and autoregressive fractionally integrated moving average (ARFIMA)
processes [88], refer to Section 2.6.2 for more details about these stochastic processes.

For each stochastic process, we simulated M = 1,000 paths of length N = 10,000
points1. We estimated H∗(t) and calculated the time-dependent sample mean over the num-
ber of simulations, i.e., we calculated ⟨H∗(t)⟩= 1

M ∑
M
i=1 H∗

i (t).
We also estimated the sample mean of H∗(t) over time and over the number of simula-

tions, ⟨⟨H∗⟩⟩= 1
N ∑

N
t=1 ⟨H∗(t)⟩. The standard deviation of H∗(t) is calculated as:

σH∗ =

√
∑

N
t=1 ∑

M
i=1

(
H∗

i (t)−⟨⟨H∗⟩⟩
)2
/(NM−1).

For each process, the average over time and over the number of simulations of the coeffi-

1The length of the SLM is set to N = 214 −6000, following the algorithm proposed in [164]
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0.6 0.60 0.09 0.86 0.60 0.01
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Fig. 6.2 a) Illustration that for FBM the scaling exponent H∗(t) is on average close to the self-similar
exponent H. The plot reports the sample mean of H∗(t), denoted as ⟨H∗(t)⟩ and computed over
M = 1,000 simulations of FBM with self-similar exponent H = 0.1,0.2, . . . ,0.9 (bottom to top) and
length N = 10,000 points.
b) Sample mean of H∗(t) over time and over the number of simulations, denoted as ⟨⟨H∗⟩⟩, standard
deviation of H∗(t) and sample mean of the coefficient of determination,

〈〈
R2

〉〉
. The values of

GHE(1) denote the generalized Hurst exponent with q = 1.

cient of determination is also estimated and denoted as
〈〈

R2〉〉. We compared the estimated
H∗(t) with the generalized Hurst exponent [63] with q = 1, here denoted as HG.

• Fractional Brownian motion. Stochastic processes with scaling exponent varying
from H = 0.1,0.2, ...,0.9 were simulated. All the simulations were done using the
Matlab® wavelet toolbox. Results for different values of H are reported in Figure
6.2(a). We observe that ⟨H∗(t)⟩ consistently varies around the input self-similar value
of H.

In Table 6.2(b), we report ⟨⟨H∗⟩⟩ and the standard deviation of H∗(t). We observe
a good agreement with the self-similar parameter H, but large values for σH∗ that
could be attributed to the local characteristics of H∗(t). We notice that for FBM with
scaling exponent H < 0.3, the

〈〈
R2〉〉 coefficients are small, indicating significant

deviations from the scaling law of Equation (6.1). We obtained consistent results
when comparing the estimated H∗(t) with the generalized Hurst exponent.

Moreover, we also considered FBM paths with shorter length, N = 1,000 and N = 500
points, we do not report these results, but we noted that the longer the time series, the
better the estimation of the scaling exponent H. Likewise, the standard deviation and
the goodness of the linear fit improve with the length of the time series. However, all
results are consistent with the ones reported here for length N = 10,000.
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0.7 0.68 0.17 0.82 0.69 0.04
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Fig. 6.3 a) Illustration that for SLM the scaling exponent H∗(t) is on average close to the value
H = 1

α
. The plots report the sample mean of H∗(t), denoted as ⟨H∗(t)⟩ and computed over M = 1,000

simulations of SLM with self-similar exponent H = 0.5,0.55, . . . ,0.95 (bottom to top) and length
N = 10,384 points.
b) Sample mean of H∗(t) over time and over the number of simulations, denoted as ⟨⟨H∗⟩⟩, standard
deviation of H∗(t) and sample mean of the coefficient of determination,

〈〈
R2

〉〉
.

• α-stable Lévy motion (SLM). We generated SLM processes using the toolbox pro-
vided by [164], sample paths are of length N = 10,384, with parameters for the gen-
eration m = 128 and L = 6000, making m(L+N) to be a power of 2, see [164] for
more details. We considered the case H = 1/α for values of H = 0.5,0.55, . . . ,0.95.

The time-dependent sample mean over the number of simulations is displayed in Fig-
ure 6.3(a). We observe a noisier estimator than the one obtained for FBM. In Table
6.3(b), we report ⟨⟨H∗(t)⟩⟩, noticing a fair approximation to the self-similar param-
eter H, with better results for processes with H < 0.7. The means of the coefficient
of determination suggest that the scaling relation of Equation (6.1) is indeed satisfied.
We compared the proposed estimator with the generalized Hurst exponent with q = 1,
obtaining consistent results, i.e., HG = 1/α [106].

• ARFIMA. We tested the log-linear relationship of Equation (6.1) in ARFIMA(p,d,q)
processes with Gaussian innovations, p,q ∈ N, autoregressive and moving average
coefficients respectively [88]. We considered the simple case of ARFIMA(0,d,0) with
fractional order d =−0.4,−0.3, . . . ,0.4 and length N = 10,000. We calculated H∗(t)
for the integrated ARFIMA time series.

From Figure 6.4(a), we observe that the estimator ⟨H∗⟩ is a good approximation of the
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Fig. 6.4 a) Illustration that for ARFIMA(0,1,0) the scaling exponent H∗(t) is on average close to the
value H = d+0.5. The plots report the sample mean of H∗(t), denoted as ⟨H∗(t)⟩ and computed over
M = 1,000 simulations of ARFIMA(0,d,0) with self-similar exponent H = 0.1,0.2, . . . ,0.9 (bottom
to top) and length N = 10,000 points.
b) Sample mean of H∗(t) over time and over the number of simulations, denoted as ⟨⟨H∗⟩⟩, standard
deviation of H∗(t) and sample mean of the coefficient of determination,

〈〈
R2

〉〉
.

exponent H. In Table 6.4(b), we report ⟨⟨H∗⟩⟩, the standard deviation of H∗(t) and the
sample mean of the coefficient of determination,

〈〈
R2〉〉. Similarly to the FBM case,

the estimation is more accurate for larger H with larger coefficient of determination.

From the analysis of these three different stochastic processes, we observe that our pro-
posed method produces a fair estimate of the self-similar parameter H. The chosen models
concern two different properties which contribute to the self-similarity of the processes. The
first property is the long-range autocorrelation of the increments. The second property is the
high variability or the heavy tails in the distribution of the increments of the α-stable Lévy
motion. We have demonstrated empirically that the analytics of the relative amplitude of the
oscillating components of the signal capture both of these properties. Let us remark that this
scaling exponent is not intended as an alternative method to estimate H, which can instead
be obtained with more reliable tools [65, 76, 163]. The aim of this method is instead to
compute the time-dependent amplitude contribution of the prevalent fluctuations present in
a time series, distinguishing between periods when high or low frequencies are contributing
more than what could be expected from Brownian motion.

As observed from Figures 6.2(a), 6.3(a) and 6.4(a) some boundary effects of the EMD
affect the estimation of the time-dependent scaling exponent. These effects emerge when
the end points are not extrema. The interpolated envelope diverges and there are wild swings
which could propagate trough the time series. Furthermore, the Hilbert transform is based
in on the Fourier transform, which may produce some errors due to the Gibbs phenomena
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[72].
In order to minimize error propagations due to finite observations, the end points of the

time series have to be treated differently and the data have to be extended beyond the exist-
ing range. The first technique for dealing with the end conditions was proposed by [96] and
it consists of padding the beginning and the end of the time series with additional “charac-
teristic waves” which are defined by the two consecutive extrema. Flandrin et al. [151] offer
one of the simplest yet very robust method that uses a mirror symmetry with respect to the
extrema closest to the end. Recently, some forecasting methods based on machine learning
algorithms have been proposed to extend the original time series and reduce the impact of
the end effects [91, 114]

6.3 Time-dependent complexity measure

We define a time-dependent Shannon entropy-like measure based on the square of the am-
plitude of the IMFs. This measure provides a time-varying quantification of complex spec-
trum which offers an alternative to the scaling exponent to measure the strength of the cycles
present in financial time series. Making use of the functions ak, described in Equation (2.25),
we define a timescale relative distribution of amplitudes as:

pk(t) =
a2

k(t)
n
∑

k=1
a2

k(t)
, (6.2)

where n is the number of IMFs excluding the residue. Similarly to Shannon entropy [158],
we define the time-dependent complexity measure as:

C∗(t) =−
n

∑
k=1

pk(t) ln pk(t). (6.3)

Equation (6.3) provides a measure of the distribution of amplitudes between the oscillat-
ing components. If the total amplitude at time t is concentrated in one oscillation mode,
we observe a low complexity value, implying that around time t the process is following a
prevalent trend. On the contrary, if at time t all the oscillation modes have similar ampli-
tudes, we obtain a large complexity value that indicates a more erratic and unpredictable
behaviour.

Thus, C∗(t) provides a time-varying estimation of disorder and adapts closely to our
visual perception of complexity. Moreover, Equation (6.3) offers a more general measure
of uncertainty than the variance since the latter measures the dispersion around the mean,
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while C∗(t) measures the dispersion of energy around the different IMFs. Similar to an
entropy measure, the value of the proposed complexity at time t varies between zero, if one
IMFs dominates the energy of the process, and log(n) if the energy is uniformly distributed
between the n IMFs.

The choice of the weights equal to the square of the amplitudes in Equation (6.2) is arbi-
trary, although it is in agreement with other measures of entropy that have been defined, for
example in [152]. We tested alternative choices, such as the linear weight ak(t), obtaining
analogous results to the ones reported here.

Let us note that, although not independent, the two measures convey different informa-
tion. The estimator C∗(t) is an information quantifier of uncertainty, it is obtained from the
distribution of the amplitudes regardless of their timescales and it only quantifies the homo-
geneity of the components. On the other hand, the scaling exponent, H∗(t), measures the
change in the amplitudes across timescales, testing the scaling law of Equation (6.1). In this
respect, H∗(t) is a more restrictive measure that assumes a log-linear relationship between
amplitudes and periods.

6.4 Time-dependent scaling in financial markets

We applied the proposed measures to intraday prices of four stock market indices: (1) S&P
500 (USA), (2) IPC (Mexico), (3) Nikkei 225 (Japan) and (4) XU 100 (Turkey). We inten-
tionally chose two financial markets that are classified as developed (USA and Japan) and
two emerging markets (Mexico and Turkey) with the additional feature that the Japanese
and Turkish stock exchanges have two trading sessions separated by a lunch break.

The data set consists of prices recorded at 30-second intervals. It covers a period of 5
months, from January 15th, 2014 to June 16th, 2014. The logarithm of the prices for the
stock market indices are plotted in Figure 6.5. Table 6.1 shows the number of days and the
length of each analysed time series.

Country Index No. of Days Length
USA S&P 500 105 81,900
Japan Nikkei 225 104 62,400

Mexico IPC 101 78,780
Turkey XU 100 106 78,440

Table 6.1 Number of days and length of each financial time series.

The time evolution of H∗(t) over the 5-month period for the four financial indices is
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Fig. 6.5 30-second sampled log-prices for different stock market indices for the period January 15th,
2014 to June 16th, 2014. (a) S&P 500, (b) IPC, (c) Nikkei 225 and (d) XU 100.

shown in Figure 6.6 (dark-blue line). We note that H∗(t) has large intraday variations which
obscure any possible trend over longer periods. For this reason, we report a moving average
version of H∗(t) denoted as H̄∗(t) (light-blue line in the same Figure). More specifically,
H̄∗(t) is calculated from the relation, āk(t) ∝ τ̄

H̄∗(t)
k (t), where āk(t) and τ̄k(t) are the aver-

ages over a rolling window of the size of a trading day. The dashed red line in this Figure
indicates the value H = 0.5.

By comparing the values of H∗(t) and H̄∗(t) for the four different stock market indices,
we observe that the S&P 500 index is the one closest to the value H = 0.5 as expected for
Brownian motion, with values of H̄∗(t) fluctuating around 0.5 exposing only some brief
departures from it, see Figure 6.6(a). For instance, we can detect a period around February
2014 where the scaling parameter results in significantly larger values. In this period of
time, the S&P 500 index was indeed in a rising trend, see Figure 6.5(a). This suggests that
the identified persistent behaviour could be attributed to a long timescale cycle with larger



96 Time-Dependent Scaling Properties of Stock Market Indices

15/01/14 13/02/14 17/03/14 15/04/14 15/05/14 16/06/14

H
∗
(t
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

∗(t)
H̄

∗(t)

(a) S&P 500

15/01/14 14/02/14 14/03/14 14/04/14 15/05/14 16/06/14

H
∗
(t
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

∗(t)
H̄

∗(t)

(b) IPC

15/01/14 13/02/14 14/03/14 15/04/14 16/05/14 16/06/14

H
∗
(t
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

∗(t)
H̄

∗(t)

(c) Nikkei 225

15/01/14 13/02/14 14/03/14 14/04/14 15/05/14 16/06/14

H
∗
(t
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

∗(t)
H̄

∗(t)

(d) XU 100

Fig. 6.6 Time-dependent scaling exponent for different stock market indices for the period January
15th, 2014 to June 16th, 2014. The scaling exponent H∗(t) is depicted by a dark-blue line. The
light-blue line represents H̄∗(t), a rolling-window average over the length of a trading day. The red
line indicates the value H = 0.5. (a) S&P 500, (b) IPC, (c) Nikkei 225 and (d) XU 100.

amplitudes than the ones found in a pure random walk.

In Figure 6.6(c), we report the scaling dynamics for the Nikkei 225 index. We observe
that H̄∗(t) has values constantly above 0.5, specially at the end of the analysed period. It
should be noted that this market has lunch breaks that affect the intraday values of H̄∗(t).

For the IPC index the values of H∗(t) and H̄∗(t) are consistently closer to H = 0.6 than
to the Brownian motion value H = 0.5, see Figure 6.6(b). This suggests that the IPC index
shows intervals where the amplitude displays a persistent behaviour. Similarly, the Turkish
scaling exponents take values larger than H = 0.5, see Figure 6.6(d).

We tested the validity of Equation (6.1) when applied to financial data by computing for
every time t, the coefficient of determination R2(t). The mean over the whole period is re-
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ported in the second column of Table 6.2. We also considered the three cases: H∗(t)< 0.45,
a window around 0.45 < H∗(t)< 0.55 and H∗(t)> 0.55. We observe that the goodness-of-
fit is generally better for H∗(t)> 0.5, the interesting case when financial data show trending
behaviour, see Table 6.2.

Index
〈
R2〉

All

〈
R2〉

H∗<0.45

〈
R2〉

0.45<H∗<0.55

〈
R2〉

H∗>0.55
S&P 500 0.8753 0.825 0.8716 0.8916

IPC 0.8812 0.7971 0.8703 0.8915
NIKKEI 225 0.8072 0.7345 0.7829 0.8198

XU100 0.9196 0.7987 0.8737 0.9209
Table 6.2 Average goodness-of-fit coefficient (R2) for the amplitude versus period log-linear model.
First, the average is calculated for all the times t, then, it is calculated separately for those time
instances where H∗(t)< 0.45, 0.45 < H∗(t)< 0.55 and H∗(t)> 0.55.

For a comparative analysis, we calculated the complexity measure C∗(t) described by
Equation (6.3). The obtained values for each stock market index are illustrated in Figure 6.7.
We observed that the complexity values for the S&P 500 index, Figure 6.7(a), are overall
the largest among the four indices.

The IPC index shows an increasing evolution of C∗(t), suggesting a more uniform dis-
tribution of amplitudes at the beginning of 2014, Figure 6.7(b). On the contrary, the Nikkei
225 index presents a decreasing measure of complexity, indicating a period of higher com-
plexity at the beginning of the sample period, Figure 6.7(c). Finally, the XU100 index
presents alternate intervals of high and low complexity, displaying regularly large values in
the last two months of the sample period. This higher randomness is also visible from the
scaling exponent which displays relatively lower values of H̄∗(t), Figure 6.7(d).

Overall, the functions H∗(t) and C∗(t) vary in opposite directions. For each stock market
index, the correlation between these two measures is negative with values ρS&P = −0.21,
ρIPC =−0.23, ρNikkei =−0.28, ρXU =−0.15. We note these correlations values are small,
indicating a weak linear dependence between these variables. This is to be expected as the
underlying measures are associated with rather different properties.

6.4.1 Intraday analysis of scaling patterns

We investigated the intraday patterns by separating the paths of H∗(t) and C∗(t) into daily
windows. Taking for example the time series H∗(t) for the S&P 500 index, Figure 6.6(a),
we separated this time series into the 105 days which compose the data set, see Table 6.1.
In Figure 6.8(a), we display these daily time series (one day on top of the other). The colour
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Fig. 6.7 Time-dependent complexity measure, C∗(t), for four different stock market indices for the
period January 15th, 2014 to June 16th, 2014. (a) S&P 500, (b) IPC, (c) Nikkei 225 and (d) XU 100.

bar represents the value of H∗(t). This graphical representation allows us to compare the
trading sessions dynamics and to identify patterns at specific times of the day.

We estimated the statistical mean of H∗(t) across the days, resulting in an average value
for each time t of the trading session. This average, denoted as ⟨H∗(t)⟩days, describes the
regular behaviour of H∗(t) on a trading session, see Figure 6.8(b).

In order to validate that the observed dynamics of ⟨H∗(t)⟩days are statistically significant,
we compared these dynamics with scaling exponents obtained from several simulations of
Brownian motion of length equal to the analysed financial time series, see Table 6.1. We
denote the Brownian motion scaling exponents as H∗

BM(t). The time series of H∗
BM(t) were

fragmented into l windows of equal length and equal to a trading day of the analysed stock
market index. The mean over these l windows is denoted as ⟨H∗

BM(t)⟩. The pink band
reported in Figure 6.8(b) corresponds to the 5th and the 95th percentiles of the empirical
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distribution of ⟨H∗
BM(t)⟩ computed from 100 simulations.

We compared the values of H∗(t) obtained for each stock market index with the ⟨H∗
BM(t)⟩

band. At each time t during the trading session, we estimated the relative fraction of H∗(t)
values that falls outside the pink band. In Figure 6.8(c), we report these results as a ratio
of number of days outside the band divided by the total number of days. This ratio is la-
belled as likelihood. The colour bar of this figure represents the value of the average scaling
exponent, i.e., ⟨H∗(t)⟩days (value plotted in Figure 6.8(b)). From this Figure, we observe
that across the day there are periods of time with very high empirical probability of observ-
ing values of the scaling exponents significantly different from the corresponding values
extracted from pure Brownian motion.

The mean of the complexity measure, C∗(t), at each time t of the trading session is
shown in Figure 6.8(d). Equally as with the H∗(t) exponent, the mean of C∗(t) is com-
puted across the 105 days and it is denoted as ⟨C∗(t)⟩days. The same daily analysis for the
remaining three stock market indices is reported in Figures 6.9, 6.10 and 6.11, respectively.
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Fig. 6.8 Intraday analysis of the S&P 500 index.
(a) Intraday dynamics of the scaling exponent H∗(t) as a function of day and time. The colour bar
indicates the value of H∗(t).
(b) Mean of H∗(t) over the 105 days, denoted as ⟨H∗(t)⟩days. The pink band corresponds to the 5th

and 95th percentile of the distribution of ⟨H∗
BM(t)⟩. The distribution is estimated using 100 simula-

tions of Brownian motion.
(c) Likelihood of H∗(t) to fall outside the 5th and 95th percentile band for Brownian motion (pink
band of Figure (b)). The colour bar indicates ⟨H∗(t)⟩days, the value shown in Figure (b).
(d) Mean of the windowed complexity measure, denoted as ⟨C∗(t)⟩days.
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Fig. 6.9 Intraday analysis for the IPC index. Caption for sub-figures (a), (b), (c) and (d) same as
Figure 6.8.
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Fig. 6.10 Intraday analysis for the Nikkei 225 index. Caption for sub-figures (a), (b), (c) and (d)
same as Figure 6.8. The white vertical band in each sub-figure corresponds to the lunch break in this
stock exchange.
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Fig. 6.11 Intraday analysis for the XU 100 index. Caption for sub-figures (a), (b), (c) and (d) same
as Figure 6.8. The white vertical band in each sub-figure corresponds to the lunch break in this stock
exchange.
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Overall, from the intraday scaling and complexity measures we observed the following
patterns:

• For each stock market index, the daily average ⟨H∗(t)⟩days displays an inverted U-
shaped form that reflects a more chaotic behaviour at the beginning and at the end of
the trading session. The opposite behaviour is observed for the complexity measure,
⟨C∗(t)⟩days, which reveals a U-shaped form.

• The S&P 500 index displays the largest values of H∗(t) (a stronger amplitude per-
sistent behaviour) during the middle of the trading session. From Figure 6.8(a), we
observe that most of the days present large values of H∗(t) around midday. At this
time, the average exponent ⟨H∗(t)⟩days reaches a value of 0.6, see Figure 6.8(b). These
values are significantly different from what would be expected from Brownian motion
with more than 80% of the observations outside the 5th and the 95th percentiles, see
Figure 6.8(c). Consistently, the complexity measure reaches its minimum at the same
time of the trading session, see Figure 6.8(d).

• The Mexican stock exchange is characterized by some large scaling values at the
middle of the day. However the most noticeable pattern is the large values just before
the end of the trading session, see Figure 6.9(a). The mean of the windowed values
reaches a maximum of 0.65, creating an upswing shape at this time, see Figure 6.9(b).
This could be associated with an increase of the trading activity in the last few minutes
of the session, creating an extreme change in the amplitudes. This pattern is only
present in the Mexican stock exchange.

From Figure 6.9(c), we observe that some minutes before the closing of the mar-
ket, more than 90% of the local scaling exponents fall outside the 5th and the 95th

percentile band for Brownian motion. The complexity measure also reflects a steep
increase of disorder at the end of the trading session, see Figure 6.9(d).

• The Japanese and Turkish stock exchanges display two regions of large values for
the scaling exponent. These regions are separated by the lunch break, see Figures
6.10(a) and 6.11(a) respectively. The mean of the scaling exponent reflects a quasi-
double inverted U-shaped form that is associated with the opening and closing of the
morning and afternoon sessions, Figures 6.10(b) and 6.11(b). It is worth noting that
the two trading sessions do not display exactly the same profile. For the Japanese
stock market index, the inverted U-shaped form of the first trading session is slightly
skewed to the right, in comparison with the more symmetric shape of the second
trading session, see Figure 6.10(b).
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• For the Turkish stock exchange, we observe that the first part of the trading session
shows larger values of H∗(t). More than 90% of the analysed days present local
scaling exponents which exceed the value of 0.6, see Figure 6.11(c). The dominance
of one IMF amplitude in the first trading session is also reflected in the lower values of
the complexity measure, which reaches the lowest value when compared to the other
stock market indices, see Figure 6.11(d).

Overall the intraday patterns of H∗(t) and C∗(t) confirm the well known fact that activity
on financial markets is not constant throughout the day. The uncovered patterns corrobo-
rate the hectic buy and sell activity affecting different markets at the opening and closing
of trading sessions [9, 44]. Smaller values of H∗(t) (large values of C∗(t)) imply a non-
persistent and rougher behaviour which is reflected in higher volatility. The exposed daily
patterns of ⟨H∗(t)⟩days and ⟨C∗(t)⟩days are in agreement with the results which document
the existence of a distinct U-shaped pattern in market activity and volatility over a trading
day, i.e., volatility is higher at the opening and at the closing of the trading session and low
in the middle of the day, see for example references [7, 36, 180].

By comparing the intraday complexity values across the four markets, we observe that
the S&P 500 index displays the largest values across all the trading session. Nikkei 225
index is the second most complex, followed by the IPC index and lastly the XU100 index,
which has the smaller complexity values. This is in agreement with the results reported for
developed and emerging markets [65, 109, 190].

Part of the observed dynamics could be explained by the intraday volatility patterns re-
lated to the periodic arrival of information to the market, news arrive at precise moments
during the trading session. This cyclical pattern has an obvious influence over the long
memory displayed by the stock market indices. It is also well documented that financial
time-series exhibit intermittent behaviour as well as other statistical properties collectively
known as stylized facts, including multifractal behaviour. Calvet et al. [41] laid the theo-
retical and practical formulation of multifractal analysis applied to financial time-series and
propose a model able to explain most of the stylized facts observed in financial time-series.

6.5 Summary

We proposed two new time-dependent measures: 1) an amplitude scaling exponent and 2)
an entropy-like complexity measure. Our measures are non-parametric and they do not
assume any a priori stochastic process. The scaling exponent only assumes the existence
of a power-law relation between the instantaneous amplitudes and the instantaneous periods
which was empirically shown to be present. By applying our methodology to different mod-
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els with known scaling laws, we demonstrated that the time-dependent values of our scaling
exponent vary consistently around the known exponent of the models. When applied to
real financial data, our measures uncover significant variations of the scaling properties of
the market during the trading day and provide evidences of non-stationary patterns. We
verified that the scaling exponent and the complexity measure are related, with larger scal-
ing exponents associated with lower complexity values. However, the proposed measures
convey different information about the properties of the oscillating components of the sig-
nal. Specifically, we applied the scaling and the entropy-like measures to the study of four
financial markets, two developed (US and Japan) and two emerging markets (Mexico and
Turkey). We contrasted and compared the decomposition of their financial indices. With
the use of intraday data, we recognized some patterns and identified periods of low and high
complexity.

Compared to the other analysed stock market indices, the S&P 500 index results the
most complex. The intraday analysis reveals a distinctive anti-persistent behaviour at the
opening and at the closing of the trading session, contrasting with the persistent behaviour
at the middle of the session. Similar intraday results are obtained for the other stock market
indices. The variations observed in the scaling measure are well outside the 5th and the 95th

percentiles expected for Brownian motion, suggesting strong deviations from this model
that could be attributed to the presence of long-range dependence or/and heavy tails.

With the proposed measures, we are able to describe the dynamics of financial time
series whose regularity changes over time. Our results suggest that financial time series
have dynamic scaling properties that change during the trading day following identifiable
patterns that are characteristic of each market. The origin of the scaling laws could be
attributed to the autocorrelation of the process, the presence of heavy tails and the non-
stationarity of the time series. It is beyond the purpose of this paper to investigate this
aspect (which is discussed in [27] by using a different approach). Our aim here was to
uncover non-stationary scaling patterns which we showed to be significant, reproducible
and characteristic of specific stock markets. These non-stationary scaling patterns must be
considered when modelling financial time series and building trading strategies.



Chapter 7

EMD-Based Forecasting Models

In this chapter, we introduce some multistep-ahead forecasting models based on EMD com-
bined with support vector regression (SVR). By separating the input time series into a finite
set of intrinsic mode functions, we reduce the complexity of the forecasting task. The novelty
of the proposed models is the inclusion of a coarse-to-fine reconstruction step to analyse the
forecasting capabilities of a combination of IMFs. Denoised time series are used to forecast
short-term horizons and the trend of the time series is used to forecast long-term horizons.
We include an example which provides specific details of how intraday forecasting is per-
formed. We generalize the results for a data set consisting of six months of intraday data.
Our models are compared with benchmark models commonly used in the literature, testing
the null hypothesis of no difference in the accuracy of two competing models.

7.1 Forecasting financial time series

Forecasting financial data is regarded as a challenging task and it remains a very active
research area. Over the last decades, efforts to improve forecasting techniques have included
the EMD as a preprocessor tool. This timescale decomposition has proved to be an efficient
methodology following the “divide and conquer” philosophy [184], which consists of three
main steps:

1. The EMD is used to separate the initial time series into a finite set of IMFs and a
residue.

2. Forecasting techniques such as autoregressive models, artificial neural networks (ANN),
and support vector machines are applied to forecast each IMF and the residue.

3. The forecasted components are combined to forecast the initial time series.
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The “divide and conquer” philosophy has been widely used in different areas, to mention
a few: crude oil spot prices [184], foreign exchange rates [113], market stock indices [49],
wind speed [173], computer sales [117], tourism demand [45]. Within the mentioned stud-
ies, it is common practice to divide the time series into a training set and a testing set. The
former is used to calibrate the model, the latter to measure the performance of the model.
However, in the cited studies, authors applied the EMD to the undivided data, including
future observations in the training set. We consider this approach inadequate, due to the fact
that the EMD is a data based algorithm which is highly influenced by the local maxima and
the local minima. The use of future observations as the training set could explain the good
performance of some of the proposed EMD-based models.

Liu et al. [115] proposed a hybrid EMD-ANN model to forecast one, two and three
steps ahead of wind speed time series. The approach taken in this study is improved since
the EMD is applied every time a new observation is included and a new forecasting model
is retrained. This computationally more expensive model outperforms benchmark autore-
gressive models and ANN models which are trained on the initial time series without pre-
processing the data using the EMD.

Zeng and Qu [185] showed the forecasting effectiveness of the EMD by analysing the
Baltic Dry Index (BDI). The initial BDI time series is decomposed into several independent
functions using the EMD. These functions are grouped into three components, namely, high-
frequency, low-frequency and long-term trend component. An ANN is used to model each
of the components and the prediction results of all the sets are combined to formulate the
prediction output for the initial BDI time series. The proposed model is compared with
existing ANN models and traditional econometric models such as vector autoregression
(VAR), obtaining better results with the EMD-based method.

In the following sections we provide a brief review of two benchmarks models that are
widely used in the forecasting literature: autoregressive models and support vector regres-
sion.

7.2 EMD-SVR forecasting models

Decomposition is a critical step to analyse complex data, information contained in each
component is analysed separately to reduce the complexity and improve the forecasting ac-
curacy. Literature related to the applications of the EMD as a forecasting tool was discussed
in Section 7.1

Based on EMD and SVR, we introduce some novel multistep-ahead forecasting models
using the direct and the recursive strategies. For more details about SVR and forecasting
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strategies refer to Section 7.1. Making use of the extracted IMFs, we propose two forecast-
ing schemes: the univariate EMD-SVR and the multivariate EMD-SVR.

Given the time series Xt , t = 1,2, . . . ,N, our aim is to predict h steps ahead.

7.2.1 Univariate EMD-SVR

The proposed univariate EMD-SVR approach forecasts each IMF and the residue indepen-
dently using SVR. The forecasted values are combined to obtain the final forecast for the
input time series. This forecasting approach consists of the following steps:

1. Apply the EMD to the training time series Xt , t = 1, ,2, . . . ,N and extract a set of n
IMFs and a residue.

2. Scale the IMFs and the residue. Linear transformation to adjust the data to the interval
[0,1] is used. Denote by y the input time series (each IMFs and the residue), the scaled
version of it is calculated as:

ys =
y− ymin

ymax − ymin
, (7.1)

where ymin and ymax denote the minimum and maximum values, respectively. This
adjustment is a prerequisite for fast convergence of the algorithm. The main advantage
of scaling is to avoid attributes in greater numeric ranges dominating those in smaller
numeric ranges. Another advantage is to prevent numerical difficulties during the
calculation.

3. Select the input vector to train the SVR. The input vector consists of previous values
of the time series to be forecasted, i.e., the n IMFs and the residue. In order to achieve
a better model accuracy, we need to construct input vectors with the most information
and capable of fitting the training data.

4. Train the n+ 1 SVR models. Consider both the direct and the recursive strategies
when training an SVR model for each IMFi, i = 1, . . . ,n and for the residue. The
regularization constant C, the insensitive coefficient ε and the kernel width parameter
γ are selected using a grid search and cross-validation.

5. Forecast each IMF and the residue separately. Use both the direct or the recursive
strategy.

6. Combine the forecasted IMFs and the residue to forecast the initial time series up to
the value xt+h, i.e., for the forecast horizon h. In this step, the forecasted IMFs are
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used to generate multiple partially reconstructed models. We define a coarse-to-fine
forecasting scheme by using the cumulative sum of sequential IMFs, i.e., adding more
details to the low frequency modes. We define n+1 coarse-to-fine models as:

M1(t) = R(t),

M2(t) = R(t)+
n

∑
i=n

IMFi(t),

M3(t) = R(t)+
n

∑
i=n−1

IMFi(t),

...

Mn+1(t) = R(t)+
n

∑
i=1

IMFi(t).

7. Measure the performance of each model at the forecast horizon h.

7.2.2 Multivariate EMD-SVR

The proposed multivariate EMD-SVR scheme is very similar to the univariate EMD-SVR,
the main difference resides in the construction of the input vector. For the multivariate
EMD-SVR scheme, a vector combining historical data from all the IMFs and the residue is
generated to train a single SVR model, hence, the forecasted value is a function of all the
IMFs and the residue.

x̂t+h = f (IMF1(t), . . . , IMF1(t −mi +1), . . . , IMFn(t), . . . ,

IMFn(t −mi +1),R(t), . . . ,R(t −mR +1)),
(7.2)

The embedded dimension mi is specific to each IMFi and to the residue. The advantage of
this method is that a single forecasting model needs to be trained, and therefore it is a faster
algorithm. The algorithm steps can be summarized as follow:

1. Apply the EMD to the training time series Xt , t = 1, ,2, . . . ,N and extract a set of n
IMFs and a residue.

2. Scale the IMFs and the residue to the interval [0,1] .

3. Select the input vector. The input vector consists of a combination of previous values
of all the IMFs and the residue.
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4. Train an SVR model for each forecast horizon h using the direct strategy. For the
multivariate scheme we can not easily implement the recursive strategy. This would
imply knowing forecasted values of each IMF that can only be obtained by individu-
ally forecasting each IMF (univariate scheme).

5. Forecast the value xt+h.

6. Measure the performance of this model at the forecast horizon h.

7.3 Forecasting intraday financial data

In order to test the proposed EMD-SVR forecasting models, we use two well known stock
market indices, the S&P 500 index and the FTSE 100 index. For both indices, the complete
data set consists of 128 days of intraday data sample at 30-second intervals. We forecast
intraday data for each single day, analysing a training sample of N = 500 prices at the start
of the trading session and forecasting up to h = 50 steps ahead of the last part of the trading
session. Given the sampling frequency of the data, h = 50 steps ahead means the following
25 minutes.

7.3.1 Intraday forecasting, example on a single time series

For the sake of clarity, let us first exemplify our forecasting process on one randomly chosen
time series of the S&P 500 index (August 7th 2014), keeping in mind that we performed
the same analysis on the remaining time series of both stock market indices. Figure 7.1
illustrates the time series used as an example. We did not include the first 5 minutes of the
daily prices.

We analysed a training sample of N = 500 prices and aim to forecast up to h = 50
steps ahead. The first step of the forecasting algorithms is the application of the EMD to
the training data. We obtained five IMFs and a residue. To create the input vectors for
the univariate EMD-SVR and the multivariate EMD-SVR schemes, we tested three input
vectors of different length m, as follows:

1. m = 1 lagged values of each IMF and the residue.

2. m = 5 lagged values of each IMF and the residue.

3. m = p+d, where p denotes the number of autoregressive terms and d is the number
of differentiations of an ARIMA model that was fitted to each of the IMFs and to
the residue. For the implementation of the ARIMA models, the auto.arima function
available in software R was used [102].
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Fig. 7.1 S&P 500 index for the trading day, August 7th 2014

To perform all the SVR analysis, we used the LIBSVM software system1. We applied
support vector regression with Gaussian kernel and performed grid search to find the optimal
parameters: regularization parameter C, the Gaussian kernel’s bandwidth γ and the precision
parameter ε . The grid consisted of a three-dimensional parameter space log10(C)∈ (−4,4),
log10(γ) ∈ (−4,4), and log10(ε) ∈ (−4,0). A six-fold moving validation is used in each
iteration of the grid search to avoid over-fitting, see Section 2.8.3.
Let us describe separately the univariate EMD-SVR and the multivariate EMD-SVR frame-
works.

Univariate EMD-SVR results

For the univariate EMD-SVR forecasting scheme, the five IMFs and the residue are inde-
pendently forecasted. We considered three input vectors with different lengths m, but for
this example we only report the results for the ARIMA-based input vector, m= p+d, which
produced the best results. To estimate the values of p and d, we fitted an ARIMA model
to each IMFs and to the residue. The obtained number of autoregressive terms, p and the
number of differentiations, d are reported in Table 7.1.

The univariate EMD-SVR approach can be implemented using both the recursive and
the direct strategies. For the recursive strategy, we forecasted h = 1,2, . . . ,50 steps ahead,
but we only report eight values of h, h ∈ [1,2,3,5,10,20,30,50] in order to compare them
with the direct strategy. Note that for the direct strategy a model is trained for each step
ahead, thus, eight different models are trained for each IMF and eight models are trained for

1Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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AR (p) MA (q) Differencing (d) m

IMF1 2 1 0 2
IMF2 2 5 0 2
IMF3 5 1 0 5
IMF4 5 3 0 5
IMF5 0 3 1 1

Residue 2 2 2 4

Table 7.1 Order of the ARIMA models fitted to each IMF and to the residue. The number of lagged
values m = p+d is used to construct the input vectors for the EMD-SVR models.

the residue.

In Figure 7.2, we compare the forecasted IMFs using the recursive and the direct strate-
gies. Subfigure 7.2(a) corresponds to the first IMF. Subfigure 7.2(b) illustrates the results
of the second IMF, and so on, until Subfigure 7.2(f) which shows the forecasted residue.
The black line in each plot represents the input IMF, the blue line represents the recursive
strategy used to forecast up to 50 steps ahead. Finally, the red line corresponds to the direct
strategy for steps h ∈ [1,2,3,5,10,20,30,50]. We observe that both strategies capture some
of the oscillating patterns of the IMFs.

The forecasted values of the IMFs and the residue are used to generate a coarse-to-fine
reconstruction which generates six forecasting models. The results of these models are
illustrated in Figure 7.3. The first coarse model only considers the residue and it is denoted
as R, see Figure 7.3(a). The second model uses the forecasting of the residue plus the fifth
IMF (R+ IMF5), see Figure 7.3(b). We continue this process until we have included all the
IMFs, (R+∑

5
i=1 IMFi), see Figure 7.3(f). The observed stock market index is shown in a

black line. The forecasted values are represented by a blue line, recursive strategy and by a
red line, direct strategy.

Multivariate EMD-SVR results

For the multivariate EMD-SVR, we created an input vector combining the lagged values
of all the IMFs and the residue. We tested three input vector with different lenghts m = 1,
m = 5 and m = p+d, but in this example we only report the results for the ARIMA-based
input vector, m= p+d which produced the best results. Using the direct strategy, we trained
an SVR model for each of the forecast horizons h ∈ [1,2,3,5,10,20,30,50].

In Figure 7.4, we present the results of the multivariate EMD-SVR models. The black
line represents the observed stock market index and the red line the forecasted values.
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Fig. 7.2 Actual and forecasted IMFs and residue extracted from the S&P 500 index shown in Figure
7.1. The forecasted values were obtained using the univariate EMD-SVR model, both the recursive
and the direct strategies.
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(a) Forecasted values using only the residue R
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(b) Forecasted values using R+∑
5
i=5 IMFi.
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(c) Forecasted values using R+∑
5
i=4 IMFi
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(d) Forecasted values using R+∑
5
i=3 IMFi
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(e) Forecasted values using R+∑
5
i=2 IMFi
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(f) Forecasted values using R+∑
5
i=1 IMFi

Fig. 7.3 Actual and forecasted values for the S&P 500 index shown in Figure 7.1. Forecasted values
were obtained using partial reconstructions of the univariate EMD-SVR model, both the recursive
and the direct strategies.
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Fig. 7.4 Actual and forecasted values for the S&P 500 index shown in Figure 7.1. Forecasted values
were obtained using the multivariate EMD-SVR model.

7.3.2 Intraday forecasting, analysis on the complete data set

We did the same intraday forecasting for each of the 128 daily time series of the S&P
500 index. The first step is the application of the EMD and in order to fairly compare the
forecasting capabilities of the trend and the gradually reconstructed time series, each time
series was decomposed into five IMFs and a residue. We fitted ARIMA and SVR models to
each intraday time series and its respective IMFs. A summary of the parameters obtained
for the ARIMA models is reported in Appendix A.

For the error valuation we used the mean absolute error (MAE), a conventional metric
to measure forecasting performance of a model and which is defined as:

MAE =
1
M

M

∑
i=1

|x̂i − xi|, (7.3)

where xi denotes the original measured data, x̂i denotes the forecasted data, and M repre-
sents the number of data points. Another commonly used error measure is the root mean
squared error, however, this measure is more sensitive to the occasional large errors due to
the squaring process [179].

To estimate the performance of the proposed models at each forecast horizons h ∈
[1,2,3,5,10,20,30,50], we calculated the MAE over the 128 time series. The proposed
EMD-SVR models are compared with other commonly used benchmark models which are
applied to the initial time series (without the EMD). The benchmark models can be listed
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as:

• Naive model. Keeps constant the last observed value in the time series.

• ARIMA model.

• SVR model. We used a RBF kernel, and a three-dimensional grid to look for the
optimal parameters: log10(C) ∈ (−4,4), log10(γ) ∈ (−4,4), and log10(ε) ∈ (−4,0).
A six-fold moving validation is used in each iteration of the grid search for parameter
tuning. In Appendix A, we report the obtained parameters for this SVR model.

In Table 7.2, we report the MAE and its standard deviation (parentheses) for the EMD-
SVR models with input vector of length m = 1. We include the MAE for the naive, the
ARIMA and the SVR models applied to the initial time series. The MAE for the EMD-
SVR models with input vector of length m = 5 and m = p+d are reported in Table 7.3 and
Table 7.4, respectively. For comparison reasons, in each table we repeated the results of
the benchmark models. For each forecast horizon, the smallest error across the compared
models is set in boldface. The smallest error across the three tables is indicated with a
dagger (†).

In Figures 7.5, 7.6, 7.7, we show the graphical representation of previous tables. The
MAE versus the forecast horizon for the EMD-SVR models with m = 1 lagged values as in-
put vector are displayed in Figure 7.5. This figure also includes the errors for the benchmark
models.

Subfigures 7.5(a) and 7.5(b) show the MAE for the univariate EMD-SVR models, direct
and recursive strategies, respectively. The dotted lines indicate the MAE of the coarse-to-
fine reconstruction models. The light blue dotted line indicates the errors of the forecasting
model which uses the residue only. The green dotted line indicates the error of the models
using the residue plus the fifth IMF, R+∑

5
5 IMFi, and so on, until the model which includes

the residue and all the IMFs, R+∑
5
1 IMFi.

Subfigure 7.5(c) illustrates the MAE for the multivariate EMD-SRV model.
Figures 7.6 and 7.7 illustrate the errors for models with input vector of length m = 5 and

m = p+d, respectively. The MAE for naive and ARIMA models are merely repeated.
As for comparison across the forecasting models, the experimental results reveal some

interesting facts that could be used for common forecasting practice.

• The MAE increases as the forecast horizon does.

• The direct strategy achieves more accurate forecasts than the recursive strategy in
almost all the tested models. It is possible that the inferiority of the recursive strategy
is due to the accumulation of errors, deteriorating the accuracy of the forecast.
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• Providing a basic input vector of length m = 1 produces EMD-SVR models with lim-
ited capabilities. Unexpectedly, the recursive strategy outperforms the direct strategy,
see Figure 7.5. We attribute the poor performance of the direct strategy to the limited
information contained in the input vector with m = 1 lagged values. Differently, the
recursive strategy keeps building up by using previous information to forecast the tar-
get horizon. The SVR model is badly trained and does not outperform the naive or the
ARIMA models. None of the proposed EMD-SVR models consistently outperform
the naive model, see Figure 7.5.

• For the input vector of length m= 5, the direct strategy outperforms the recursive strat-
egy. For the recursive strategy, the EMD-SVR models that include all the IMFs and
residue have smaller errors for one step ahead forecast, see Figure 7.6(a). However,
better results are obtained with the univariate EMD-SVR, direct strategy. For short-
term horizons (1-10 steps-ahead) using all the IMFs, (R+∑

5
i=1 IMFi), or denoising

the time series by not considering the high-frequency component in the reconstruction
process (R+∑

5
i=2 IMFi), produce the smallest MAE, see Figure 7.6(b). For long-term

forecasting (20-50 steps ahead), the coarse approximations (R or R+∑
5
i=5 IMFi) pro-

duce smaller errors than the benchmark models and than the models that include all
the IMFs.

The multivariate EMD-SVR model outperforms the benchmark models, see Figure
7.6(c).

• For an input vector of length m = p+d, we observe that the smallest errors (marked
with a dagger in Table 7.4) are produced with this number of lagged values. Although
similar results are obtained for models with input vector m = 5 since m = p+ d is
close to five, refer to Appendix B.

For the univariate EMD-SVR model, recursive strategy, smaller errors are produced
by a model that includes all the IMFs and the residue but only for short-term horizons,
see Figure 7.7(a). For the univariate EMD-SVR model, direct strategy, we observe
the same pattern where the coarse reconstruction produces smaller errors for the long-
term horizons and outperforms the benchmark models. For short-term forecasting, the
complete reconstruction and the denoised time series are the most accurate models,
see Figure 7.7(b).

The multivariate EMD-SVR models produces similar errors as the pure SVR, see
Figure 7.7(c).

• A coarse-to fine-reconstruction confirms that the trend possesses enough information
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to forecast the long-term horizons and that we may neglect some of the highest fre-
quency IMFs.
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7.3.3 Testing statistically significant differences between models

In order to further evaluate the performance of the proposed EMD-SVR models, we use
a test for the null hypothesis of equal forecast accuracy. We used the Wilcoxon signed
rank test [176], a non-parametric test which estimates the statistically significant difference
among a pair of models. We applied Wilcoxon test to the rank of the difference of the
absolute errors and evaluated the null hypothesis that the two related error samples have the
same distribution.

We denote by E1,i and E2,i i = 1,2, . . . ,M, the number of observed absolute errors of
model 1 and 2 respectively. The Wilcoxon test uses the rank of di = |E1,i −E2,i| to create
the following statistic:

W =
M

∑
i=1

[I+(di)Ri], (7.4)

where Ri is the rank from the smallest absolute difference to the largest absolute difference,
and the function I+(di) is given by:

I+(di) =

{
1 if di > 0
0 otherwise.

(7.5)

The distribution of W has been tabulated for various values of M < 25, [176]. For
larger values of M, the standard normal distribution provides a good approximation of the
standardized version of the statistic W , which is referred as the Z statistic [66]:

Z =
W −M(M+1)/4√

M(M+1)(2M+1)
24

. (7.6)

We applied the Wilcoxon test to each forecast horizon with M = 128, denoting the num-
ber of analysed time series. All tests were performed at the 5% and 1% significance level.
The benchmark model is always the naive model, and it is compared against the proposed
EMD-SVR models. In Tables 7.5, 7.6 and 7.7, we present the Z-statistic values of the two-
tail Wilcoxon signed rank test. A positive value of the Z-statistic indicates that the tested
model has smaller errors than the naive model. Contrary, a negative value indicates that
the naive model outperforms the tested model. The values label with ∗ and ∗∗ indicate the
rejection of the null hypothesis at the 5% and 1% significance level, respectively.

In Table 7.5, we report the Z-statistic for the EMD-SVR models with input vector of
length m = 1. With this input vector, we mainly observe negative numbers, implying that
none of the proposed EMD-SVR models outperform the naive model.
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(c) MAE for multivariate EMD-SVR model.

Fig. 7.5 MAE as a function of the forecast horizon for the considered forecasting models: naive,
ARIMA, univariate and multivariate EMD-SVR with input vector m = 1 lagged values.
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(c) MAE for multivariate EMD-SVR model.

Fig. 7.6 MAE as a function of the forecast horizon for the considered forecasting models: naive,
ARIMA, univariate and multivariate EMD-SVR with input vector m = 5 lagged values.



126 EMD-Based Forecasting Models

Steps ahead
1 2 3 5 10 20 30 50

M
A

E

0

0.5

1

1.5

2

2.5
Naive

Arima

SV R

R+
5∑

i=1

IMFi

R+
5∑

i=2

IMFi

R+
5∑

i=3

IMFi

R+
5∑

i=4

IMFi

R+
5∑

i=5

IMFi

R

(a) MAE for univariate EMD-SVR, recursive strat-
egy.

Steps ahead
1 2 3 5 10 20 30 50

M
A

E

0

0.5

1

1.5

2

2.5
Naive

Arima

SV R

R+
5∑

i=1

IMFi

R+
5∑

i=2

IMFi

R+
5∑

i=3

IMFi

R+
5∑

i=4

IMFi

R+
5∑

i=5

IMFi

R

(b) MAE for univariate EMD-SVR, direct strategy.
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(c) MAE for multivariate EMD-SVR.

Fig. 7.7 MAE as a function of the forecast horizon for the considered forecasting models: naive,
ARIMA, univariate and multivariate EMD-SVR with input vector m = p+d lagged values.
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In Table 7.6, we show the Z-statistic for the EMD-SVR models with input vector of
length m = 5. Results are very similar than for input vector m = p+ d since on average
m = p+d = 5, refer to Appendix A.

Table 7.7 reports the Wilcoxon test results for the models with the input vector which
produces the smallest MAE, m = p+ d lagged values. The EMD-SVR model with direct
strategy applied to the denoised reconstruction R+∑

5
i=1 IMFi and R+∑

5
i=2 IMFi, is sig-

nificantly better than the naive model. For short-term forecast horizons, the naive model
outperforms the coarse R model. However, for long-term horizons, the errors of the coarse
model R are smaller, outperforming the naive model. We note that the direct strategy on
SVR applied to the initial time series performs significantly better than the naive model but
only for some of the forecasted horizons. The multivariate EMD-SVR model significantly
outperforms the naive model, except for the 1-step ahead forecast.

7.3.4 FTSE 100 forecasting results

So as to verify the generalization of the proposed EMD-SVR models, we did the complete
same analysis for the Financial Times Stock Exchange (FTSE) 100 index. A summary of
the results is presented in Appendix B. We obtained the same conclusions with respect to the
accuracy of the proposed models and we confirmed the good performance of the proposed
EMD-SVR models.

7.4 Summary

In this chapter we introduced a multistep-ahead forecasting scheme for non-linear and non-
stationary time series based on EMD and SVR. The EMD can fully capture the local fluc-
tuations of the analysed time series and can be used as a preprocessor to decompose non-
stationary data into a finite set of IMFs and a residue. The extracted IMFs have simpler
structures and defined oscillating frequencies than can simplify the forecasting process.

We proposed a univariate and a multivariate EMD-SVR forecasting schemes. For the
univariate scheme, we forecasted each IMFs and the residue separately and forecasted the
input time series as the sum of the components. We defined coarse-to-fine reconstruction
models using the cumulative sum of sequential IMFs, i.e., adding more details to the low
frequency components. We used two multistep-ahead prediction strategies, the recursive
and the direct strategies. Moreover, we proposed a multivariate EMD-SVR, that combines
information of all the IMFs and the residue into one input vector. As benchmark models, we
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Model \ Steps ahead 1 2 3 5 10 20 30 50

ARIMA -0.22 0.16 0.89 0.30 -1.45 -1.59 -0.49 -1.47

SVR -4.72** -3.05** -2.54* -3.24** -3.47** -2.75** -3.35** -3.39**

D
ir

ec
t

Multivariate -1.83 -0.80 -0.39 0.94 0.22 1.37 -0.18 1.41

R+
5
∑

i=1
IMFi -4.07** -3.07** -3.11* -2.96** -2.72** -2.11* -3.70** -2.32*

R+
5
∑

i=2
IMFi -4.21** -3.12** -2.84** -2.88** -2.73** -2.12* -3.71** -2.32*

R+
5
∑

i=3
IMFi -5.62** -3.18** -2.99** -2.60** -2.69** -2.12* -3.74** -2.37*

R+
5
∑

i=4
IMFi -7.25** -5.73** -4.65** -3.48** -3.37** -2.33* -3.51** -2.45*

R+
5
∑

i=5
IMFi -8.35** -7.51** -6.36** -4.99** -3.84** -2.46* -3.20** -2.47*

R -9.06** -8.14** -7.84** -7.00** -5.51** -3.10** -3.66** -2.66**

R
ec

ur
si

ve

SVR -4.72** -1.83 -0.44 -0.58 0.03 1.01 1.37 0.27

Multivariate – – – – – – – –

R+
5
∑

i=1
IMFi -4.07** -1.96 -0.41 -0.21 0.63 1.95 0.90 1.55

R+
5
∑

i=2
IMFi -4.21** -2.08* -0.62 -0.13 0.76 1.93 0.92 1.51

R+
5
∑

i=3
IMFi -5.62** -2.82** -1.76 -1.11 -0.09 1.44 0.43 1.34

R+
5
∑

i=4
IMFi -7.25** -5.55** -4.48** -3.38** -2.17* -1.09 -1.05 -0.10

R+
5
∑

i=5
IMFi -8.35** -7.33** -6.28** -4.46** -2.95** -1.18 -1.90 0.11

R -9.06** -8.13** -7.77** -6.78** -5.25** -2.26* -2.84** -0.86

Table 7.5 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the naive model is
as accurate as the studied models: ARIMA, univariate and multivariate EMD-SVR with input vector
m = 1. Top, direct strategy, bottom, recursive strategy.
* Statistically significant at the 5% confidence level
** Statistically significant at the 1% confidence level.



7.4 Summary 129

Model \ Steps ahead 1 2 3 5 10 20 30 50

ARIMA -0.22 0.16 0.89 0.30 -1.45 -1.59 -0.49 -1.47

SVR -0.45 1.08 1.54 0.72 0.57 1.24 0.67 0.14

D
ir

ec
t

Multivariate 0.20 5.58** 4.70** 4.57** 5.67** 8.43** 7.70** 7.66**

R+
5
∑

i=1
IMFi 3.33** 6.71** 6.41** 3.17** 2.79** 2.79** 1.61 2.39**

R+
5
∑

i=2
IMFi 2.49* 5.94** 6.24** 3.21** 2.64** 2.72** 1.70 2.37*

R+
5
∑

i=3
IMFi -1.94 1.88 3.93** 1.75 1.94 2.54* 1.66 2.31*

R+
5
∑

i=4
IMFi -5.66** -2.31* -0.47 0.59 2.57* 4.02** 3.99** 3.55**

R+
5
∑

i=5
IMFi -7.45** -5.54** -3.82** -1.76 0.61 3.56** 3.42** 3.98**

R -8.59** -7.12** -6.28** -4.12** -2.12* 3.37** 3.19** 4.10**

R
ec

ur
si

ve

SVR -0.45 1.53 1.15 0.87 0.36 1.79 1.59 2.29*

Multivariate – – – – – – – –

R+
5
∑

i=1
IMFi 3.33** 1.43 -0.51 -2.26* -1.31 -0.15 -0.95 -1.24

R+
5
∑

i=2
IMFi 2.49* 1.45 -0.49 -1.98* -1.23 -0.08 -1.02 -1.19

R+
5
∑

i=3
IMFi -1.94 1.03 0.11 -1.32 -1.38 -0.22 -1.33 -1.31

R+
5
∑

i=4
IMFi -5.66** -2.30* -1.72 -2.38* -0.73 0.07 -1.18 -1.28

R+
5
∑

i=5
IMFi -7.45** -5.59** -3.86** -2.01* -0.03 2.14* 0.34 -1.00

R -8.59** -7.13** -6.06** -3.86** -2.11* 1.55 1.04 1.22

Table 7.6 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the naive model is
as accurate as the studied models: ARIMA, univariate and multivariate EMD-SVR with input vector
m = 5. Top, direct strategy, bottom, recursive strategy.
* Statistically significant at the 5% confidence level
** Statistically significant at the 1% confidence level.
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Model \ Steps ahead 1 2 3 5 10 20 30 50

ARIMA -0.22 0.16 0.89 0.30 -1.45 -1.59 -0.49 -1.47

SVR 0.57 2.81** 2.58** 1.94 1.37 2.41* 1.69 1.56

D
ir

ec
t

Multivariate 1.27 4.27** 2.93** 5.43** 6.07** 8.31** 7.77** 8.52**

R+
5
∑

i=1
IMFi 3.40** 6.24** 6.00** 3.61** 3.14** 3.12** 2.51* 3.12**

R+
5
∑

i=2
IMFi 2.80** 6.05** 6.28** 3.67* 3.08* 3.16** 2.54** 3.06**

R+
5
∑

i=3
IMFi -1.28 2.61** 4.51** 2.50* 2.54* 3.15** 2.51* 3.01**

R+
5
∑

i=4
IMFi -5.34** -1.67 0.20 1.30 3.41** 4.79** 4.08** 4.20**

R+
5
∑

i=5
IMFi -7.22** -5.10** -3.32** -1.28 0.93 4.16** 3.63** 4.53**

R -8.45** -6.88** -5.82** -3.65** -1.44 2.73** 2.38* 3.38**

R
ec

ur
si

ve

SVR 0.57 3.12** 2.58** 3.24** 2.66** 3.57** 3.67** 4.18**

Multivariate – – – – – – – –

R+
5
∑

i=1
IMFi 3.40** 1.83 0.75 -1.47 0.49 1.22 0.18 -0.40

R+
5
∑

i=2
IMFi 2.80** 1.69 0.57 -1.33 0.45 1.26 0.19 -0.38

R+
5
∑

i=3
IMFi -1.28 1.26 0.68 -0.41 0.57 1.55 -0.26 -0.57

R+
5
∑

i=4
IMFi -5.34** -1.93 -0.84 -1.23 0.78 2.02* -0.09 -0.36

R+
5
∑

i=5
IMFi -7.22** -5.17** -3.44** -1.30 1.08 3.07** 1.87 0.93

R -8.45** -6.89** -5.71** -3.25** -1.41 2.10* 1.84 2.15*

Table 7.7 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the naive model is
as accurate as the studied models: ARIMA, univariate and multivariate EMD-SVR with input vector
m = p+d. Top, direct strategy, bottom, recursive strategy.
* Statistically significant at the 5% confidence level
** Statistically significant at the 1% confidence level.
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used a naive model, the ARIMA model and SVR applied to the initial time series (without
a priori EMD).

We evaluated the performance of our multistep-ahead forecasting models on intraday
data, considering two stock market indices, the S&P 500 and the FTSE 100 indices. The
results suggest that for an input vector of length m = 5 or m = p+ d (p and d obtained
from a fitted ARIMA model), the multivariate EMD-SVR models perform better than the
benchmark models. However, the best results were obtained with the direct strategy applied
to the univariate EMD-SVR. We notice that for short-term forecasting, the model using the
full reconstruction (all IMFs) performs better. For long-term forecasting, a coarse-to-fine
reconstruction confirms that we may neglect some of the highest frequency modes. The
residue captures the most important features of the original data and adding on the higher,
noisier frequency modes thereafter reduces generalisation and does not improve forecasting
accuracy.

In most cases, the direct strategy outperforms the recursive strategy but it is more com-
putationally expensive since a model needs to be trained for each forecast horizon. We
conclude that the EMD improves the forecasting performance of the SVR method, either by
including all the high-frequency IMFs to forecast short-term horizons or by using the trend
and low-frequency IMFs to forecast long-term horizons. The limited improvement for short
term horizons may be due to the boundary effects of the EMD which produce swings in
the extreme of the IMFs and perturb the first forecasting steps. Although the proposed inte-
grated system has a satisfactory predictive performance, certainly, there is scope for further
improvement, for example, the selection of the input vector and the choice of parameters
for the SVR.





Chapter 8

Conclusion

This chapter summarizes the main findings of this thesis and discusses some further research
which could extend the proposed framework.

8.1 Summary

This thesis provides a framework to analyse high-frequency financial data based on the
Hilbert-Huang transform (HHT), a technique which reveals the time-dependent characteris-
tics of non-stationary and non-linear time series. We questioned if a totally adaptive decom-
position as the HHT could shed light into the generating process of financial time series. The
central argument of this thesis is that the HHT provides a tool to simultaneously characterize
both the short and the long-term fluctuations latent in a time series.

We argued that financial market data contain patterns specific to the observation fre-
quency and are thus, of interest to different type of market agents (market traders, intraday
traders, hedging strategist, portfolio managers and institutional investors), each character-
ized by a reaction time to new information and by the frequency of its intervention to the
market. The high-frequency oscillations extracted from the EMD are attributed to actions
of fast traders, in a similar way that low-frequency oscillations are accredited to longer term
investors. The time-dependent characteristics of the studied financial time series reveal a
more complex structure than what would be expected from Brownian motion or fractional
Brownian motion.

We compared the HHT against the Fourier and the wavelet transforms, discussing some
drawbacks of the last two, for instance, the need for an a-priori basis selection (sinusoids
and wavelets, respectively). The interpretation of the Fourier and the wavelet transforms
depends on the match between the chosen basis and the input time series. Furthermore, these
transforms are unable to reveal instantaneous attributes, such as amplitude and frequency.
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Since most of the financial time series are non-stationary, time-varying spectral methods
need to be considered.

The main advantages of the introduced framework include the non-parametric approach,
the fully adaptiveness and the localization properties in both the time and the frequency
domain. A clear disadvantage is its lack of a formal mathematical formulation, any study
can only be validated by numerical experiments or by comparison between existing and
similar methods. Nevertheless, the HHT has demonstrated to provide a meaningful analysis
of data. In this research, we demonstrated some applications to high-frequency financial
data which can be listed as:

Variance

We proposed a scale-by-scale analysis of variance that reproduces the results of a simple
realised volatility estimator, but which allows to identify the time-horizons that dominate
the total variance of the input time series. Our results demonstrated that the shortest time-
horizons account for more than 50% of the total variation. In general, volatility can be
attributed to the fastest investors, indicating that higher volatility is a reflection of faster
trading activity. We compared the EMD against the wavelet decomposition, and despite their
theoretical differences, both methods confirmed that most of the volatility can be attributed
to the higher frequency components.

Correlation

The multiscale analyses provided by the EMD allows to study the dynamic correlation be-
tween two non-stationary time series. We proposed two approaches to study dependencies
in high-frequency financial data. The first approach, a frequency-dependent correlation, al-
lows the segregation of correlation at different frequencies, focusing only on the correlation
occurring at a given timescale. We observed that the high-frequency IMFs tend to be less
correlated than the low-frequency components, a result that could be explained by the Epps
effect [69].

The second approach consists of a rolling-window analysis which estimates time-dependent
correlation. This approach captures the intraday dynamics of the analysed time series and
uncovers lead-lag relationships which could be attributed to different levels of trading activ-
ity. The time-dependent correlation offers a better understanding about the speed of different
assets processing and reflecting information and the degree to which the information con-
tained in one time series could be used to make predictions on the other. This analysis could
be used in forecasting models, for example, in regression models.
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Variance scaling patterns

We empirically showed that when EMD is applied to fractional Brownian motion and α-
stable Lévy motion, we obtain a scaling law that relates linearly the logarithm of the vari-
ance and the logarithm of the period of the IMFs. The extracted scaling exponent equals
the Hurst exponent multiplied by two. By estimating a scaling exponent for models with
known scaling laws, we demonstrate that our measure varies consistently around the ex-
pected values set in the models. However, when applied to stock market indices, the EMD
revealed instead different scaling laws that can deviate significantly from both Brownian
motion and FBM behaviour. In particular, we noted that the EMD of high-frequency finan-
cial data results in a larger number of IMFs than what would be expected from Brownian
motion. The anomalous scaling unveiled a more complex structure in financial data than in
artificial self-similar processes. We observed that developed markets tend to have scaling
properties closer to Brownian motion properties. Conversely, larger deviations from unis-
caling laws are observed in some emerging markets. Compared to previous approaches, the
EMD method has the advantage to directly quantify the cyclical components with strong
deviations, giving a further instrument to understand the origin of market inefficiencies.

Time-dependent scaling and complexity measure

Using the localisation properties of the HHT, we proposed two novel time-dependent mea-
sures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure.
These measures allow to identify trends and intermittent behaviour in financial time se-
ries, they do not assume any particular parameter, the temporal behaviour and variations
are found directly from the data, considering only the scales obtained via the EMD. With
the proposed measures, we are able to describe the dynamics of financial time series whose
regularity changes over time. Our results suggest that a time-varying scaling exponent could
better reflect the scaling behaviour of financial data. The intraday analysis of some stock
market indices revealed a distinctive anti-persistent behaviour at the opening and at the
closing of the trading session, contrasting with the persistent behaviour at the middle of the
session.

Forecasting models

Based on EMD and SVR, we proposed a multistep-ahead forecasting scheme. The ad-
vantage of using the EMD is the non-parametric approach which does not overcomplicate
the forecasting process. The obtained IMFs have simpler structures and defined oscillating
frequencies which can be forecasted with more accuracy. We defined a coarse-to-fine recon-



136 Conclusion

struction by using the cumulative sum of sequential IMFs (adding more details to the low
frequency components). We concluded that the EMD improves the forecasting performance
of the SVR method. The best results were obtained with the direct strategy applied to the
univariate EMD-SVR. We observed that for short-term forecasting, the model using all the
IMFs (full reconstruction) produces better results. Though the limited improvement may be
due to boundary effects of the EMD. These effects produce swings in the extreme of the
IMFs perturbing the first forecasting steps.

On the other hand, for long-term forecasting, the residue captures the most important
features of the input data and adding on the higher, noisier frequency modes thereafter
reduces generalisation and does not improve forecasting accuracy.

8.2 Future research

Further research could extend the proposed framework by considering:

• An approach to make the EMD robust to outliers. If the input data have outliers, the
resultant IMFs could be deformed due to the interpolation process involved in the
construction of the envelopes. The impact of outliers could propagate not only to
the high frequency modes but also to lower frequencies, corrupting the information
of each oscillation. It could be advantageous to pre-process the data, to implement a
method that assign the outliers to the highest frequency component or to smooth the
impact of the outliers. This would enhance the properties of the IMFs when describing
the true generating process of the input data, retaining the adaptiveness of the EMD.

• An approach for noise reduction and frequency filtering. The principles of hard and
soft wavelet thresholding [145] could be adapted to develop denoising methods for
the IMFs. A filtering scheme based on the partial reconstruction of the time series
could be implemented. This scheme is premised on the fact that the first several IMFs
consist of noise and sometimes not very significant information. Nevertheless, a more
refined study to select the IMFs is needed. The denoised time series could be used to
estimate volatility or to forecast the true data generating process.

• A method for trend extraction. The EMD offers a natural way to extract a time-
varying mean of the input time series. The residue, the sum of the last IMFs or a
sensible combination of the IMFs can generate a non-linear trend that could be used,
for example, in forecasting tasks.
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• A dependency measure which considers the time-varying phase and amplitude of the
IMFs. We did investigate the topic of correlation, however, we think that more ro-
bust estimators could be achieved and further conclusions could be drawn. A coher-
ence measure, similar to the wavelet coherence [168], could be obtained from the
HHT. Moreover, by separating the amplitude and the frequency information, the de-
pendency measures could be directed to estimate the amplitude or phase correlation.
Dependency measures such as: phase-locking value [110] and Granger causality [62]
could also be estimated using the HHT.

• A scaling parameter that considers multifractal process. We did a comprehensive
study of the use of the HHT to identify scaling patterns, establishing its use for
long-memory and self-similar processes. However, the research could be extended
to multifractal processes. Huang et al. [100] proposed a method to characterize the
scale-invariant properties of time series in the amplitude-frequency space. We could
extend our research on the time dependent scaling exponent to investigate if a general-
ization to arbitrary order could recover the exponent which characterizes multiscaling
processes.

• Improvements to the forecasting scheme proposed in this thesis:

– Refine the implementation of SVR by further investigating the selection of the
parameters: regularization constant, C; insensitive coefficient, ε; and kernel
width, λ .

– A better selection of the input vector. In our proposed forecasting models, the in-
put vector consisted only of past observations of the input time series. It is worth
to investigate if incorporating information from other time series could improve
forecasting accuracy. In this sense, we could consider correlation, causality and
co-integration between financial time series.

– Consider other methods, such as, artificial neural networks, kernel regression,
k-nearest neighbour regression, fuzzy time series, etc., which could capture the
oscillating nature of the IMFs and improve forecasting accuracy.

Overall, the HHT proved to be an efficient tool to analyse high-frequency financial data.
The EMD generates simpler oscillating components which preserve the information of the
heterogeneous financial time series. Well-established methodologies can be improved if
they are applied to these oscillating components. This research shows that new time-varying
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statistics obtained from the HHT contribute to a better understanding of the complex be-
haviour of financial time series.
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Appendix A

ARIMA and SVR model parameters

In this appendix, we report the parameters used in the implementation of the forecasting
models. The analysed data set consists of 128 time series of intraday observations of the
S&P 500 index which were separately used to trained the EMD-SVR models. We report a
summary of the obtained parameters using histograms.

A.1 ARIMA model parameters

One of the benchmark models was the ARIMA model. We fitted this model to each S&P
500 intraday time series and to its respective IMFs. The obtained parameters are worth to
be mentioned since the input vector of the EMD-SVR forecasting models is based on these
parameters. In Figure A.1, we report the histogram for the number of the autoregressive
terms, p. Each Subfigure corresponds to the model fitted to the time series specified in the
plot title.

Figures A.2 and A.3 report the order of the moving average term, q, and the number of
differentiations needed to achieve stationarity, d, respectively.
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Fig. A.1 Number of autoregressive terms p for the ARIMA model fitted to the indicated time series.
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Fig. A.2 Order of the moving average term, q, for the ARIMA model fitted to the indicated time
series.



156 ARIMA and SVR model parameters

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

S&P 500

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

IMF
1

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

IMF
2

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

IMF
3

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

IMF
4

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

IMF
5

d
0 1 2 3

O
cu

rr
en

ce
s

0

50

100

R

Fig. A.3 Number of differencing d, for the ARIMA model fitted to the indicated time series.
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A.2 Support vector regression parameters

For the SVR models, we only report parameters for the 1-step ahead forecast and for models
with input vector of length m = p+d. The SVR models were trained on the S&P 500 time
series and their respective IMFs.

Figure A.4 reports the values obtained for the penalization constant C. A greater value
of C corresponds to a greater error penalty, indicating that the objective is only to minimize
the empirical risk creating a more complex model. A smaller value may cause the errors
too be excessively tolerated, resulting in a poor approximation. If the data are noisy, then
smaller values of C may be preferred.

Figure A.5 reports the values of ε , the insensitive tube radius. This parameter affects
the smoothness or complexity of the approximation function, controls the accuracy of the
approximation function and determines the number of support vectors. Smaller values of ε

may lead to more support vectors and result in a complex model. Larger values of ε may
cause the ε-insensitive tube to include too many data that are unseen by the model.

Figure A.6 reports the values of γ , the kernel width, which determines the flexibility of
the resulting SVR model. Over-fitting occurs when this parameter is too large.

Figure A.7 reports the number of support vectors for each model. These vectors “sup-
port” the definition of the approximation function. Cherkassky and Ma [50] reported that
a model performance is optimized when the percentage of support vectors is about 50% of
the training data.
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Fig. A.4 Regularization constant C for the SVR model fitted to the indicated time series.
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Fig. A.5 Insensitive coefficient ε for the SVR model fitted to the indicated time series.
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Fig. A.6 Kernel width parameter γ for the SVR model fitted to the indicated time series.
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Fig. A.7 Number of support vectors for the SVR model fitted to the indicated time series.





Appendix B

Forecasting results for the FTSE 100
index

The data set for the FTSE 100 index consists of 128 days of intraday data sample at 30-
second intervals from the period May 2015 to September 2015. The London stock exchange
opens at 8:00 am and closes at 4:30 pm EST, thus, a full trading day consists of 1020
prices. We excluded weekends and public holidays and we avoided market opening effects
by eliminating the first 5 minutes in every day. We used a training set consisting of N = 500
prices and forecasted up to h = 50 steps ahead (25 minutes ahead). We tested three input
vector with different lengths, m = 1, m = 5, and m = p+ d. The following table reports
the results for the input vector with the best results, that is, m = p+ d (p and d obtained
from the ARIMA fitted model). In Table B.1, we report the MAE and its standard deviation
(parentheses). In Figure B.1, we compare the MAE with respect to the forecasting horizon.
Finally, in Table B.2, we report the results for the Wilcoxon test.
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Steps ahead
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(a) MAE for univariate EMD-SVR, recursive strat-
egy.
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(b) MAE for univariate EMD-SVR, direct strategy.
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(c) MAE for multivariate EMD-SVR.

Fig. B.1 MAE as a function of the forecast horizon for the considered forecasting models: naive,
ARIMA, univariate and multivariate EMD-SVR with input vector m = p+d lagged values.
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Model 1 2 3 5 10 20 30 50

ARIMA -1.023 2.173* 2.026* 1.461 0.614 1.311 0.313 -0.602

D
ir

ec
t

SVR 0.636 1.432 1.511 2.656** 1.724 2.140* 2.228* 2.798**

Multivariate 3.023 6.157 6.014 6.890 6.647 8.335 7.272 8.521

R+
5
∑

i=1
IMFi 3.815** 7.363** 7.515** 5.356** 3.303** 2.628** 2.730** 0.977

R+
5
∑

i=2
IMFi 3.403** 6.599** 7.068** 5.073** 3.165** 2.654** 2.742** 0.989

R+
5
∑

i=3
IMFi -1.329 4.276** 5.510** 4.169** 2.737** 2.554* 2.604** 0.920

R+
5
∑

i=4
IMFi -6.124** -1.201 -0.128 1.339 3.610** 3.976** 4.404** 3.153**

R+
5
∑

i=5
IMFi -7.239** -3.408** -2.086* -0.913 1.296 3.377** 4.352** 3.893**

R -8.752** -6.737** -5.680** -4.134** -0.882 1.969* 3.620** 4.554**

R
ec

ur
si

ve

SVR 0.636 3.671** 2.843** 1.848 1.253 2.171* 2.835** 3.467**

Multivariate – – – – – – – –

R+
5
∑

i=1
IMFi 3.815** 3.413** 1.046 -0.357 -0.654 -0.925 -0.069 -0.017

R+
5
∑

i=2
IMFi 3.403** 3.655** 1.118 0.195 -0.347 -0.718 -0.052 0.131

R+
5
∑

i=3
IMFi -1.329 2.621** 1.403 1.398 0.005 -0.839 -0.140 -0.050

R+
5
∑

i=4
IMFi -6.124** -1.903 -1.394 0.297 1.161 -0.697 -0.366 -0.162

R+
5
∑

i=5
IMFi -7.239** -3.344** -2.024* -0.854 0.666 0.583 -0.335 -0.785

R -8.752** -6.794** -5.650** -4.209** -2.018* 0.014 0.680 0.511

Table B.2 Z-statistic for the Wilcoxon signed-rank test for the null hypothesis that the naive model
is as accurate as the studied models: ARIMA model, univariate and multivariate EMD-SVR models
with input vector m = p+d. Top, direct strategy, bottom, recursive strategy.
* Statistically significant at the 5% confidence level
** Statistically significant at the 1% confidence level.
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