83 research outputs found

    Autonomous In-Orbit Satellite Assembly from a Modular Heterogeneous Swarm

    Get PDF
    This paper presents a decentralized, distributed guidance and control scheme to combine a heterogeneous swarm of component satellites into a large satellite structure. The component satellites for the heterogeneous swarm are chosen to promote flexibility in final shape inspired by crystal structures and Islamic tile art. After the ideal fundamental building blocks are selected, basic nanosatellite-class satellite designs are made to assist in simulations involving attitude control. The Swarm Orbital Construction Algorithm (SOCA) is a guidance and control algorithm to allow for the limited type heterogeneity and docking ability required for in-orbit assembly. The algorithm consists of two parts, a distributed auction which uses barrier functions to ensure the proper agent selection for each target, and a trajectory generation portion which leverages model predictive control and sequential convex programming to achieve optimal collision-free trajectories to the desired target point even with nonlinear system dynamics. The optimization constraints use a boundary layer to determine whether the collision avoidance or the docking constraints should be applied. The algorithm was tested in a simulated perturbed 6-DOF spacecraft dynamic environment for planar and out-of-plane final structures and on two robotic platforms, including a swarm of frictionless spacecraft simulation robots

    HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array

    Get PDF
    With the rise of artificial intelligence in recent years, Deep Neural Networks (DNNs) have been widely used in many domains. To achieve high performance and energy efficiency, hardware acceleration (especially inference) of DNNs is intensively studied both in academia and industry. However, we still face two challenges: large DNN models and datasets, which incur frequent off-chip memory accesses; and the training of DNNs, which is not well-explored in recent accelerator designs. To truly provide high throughput and energy efficient acceleration for the training of deep and large models, we inevitably need to use multiple accelerators to explore the coarse-grain parallelism, compared to the fine-grain parallelism inside a layer considered in most of the existing architectures. It poses the key research question to seek the best organization of computation and dataflow among accelerators. In this paper, we propose a solution HyPar to determine layer-wise parallelism for deep neural network training with an array of DNN accelerators. HyPar partitions the feature map tensors (input and output), the kernel tensors, the gradient tensors, and the error tensors for the DNN accelerators. A partition constitutes the choice of parallelism for weighted layers. The optimization target is to search a partition that minimizes the total communication during training a complete DNN. To solve this problem, we propose a communication model to explain the source and amount of communications. Then, we use a hierarchical layer-wise dynamic programming method to search for the partition for each layer.Comment: To appear in the 2019 25th International Symposium on High-Performance Computer Architecture (HPCA 2019

    Computing layouts with deformable templates

    Get PDF

    Hierarchical categorisation of tags for delicious

    Get PDF
    In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. In this technical report, we approach one of the practical aspects when it comes to represent users' interests from their tagging activity, namely the categorization of tags into high-level categories of interest. The reason is that the representation of user profiles on the basis of the myriad of tags available on the Web is certainly unfeasible from various practical perspectives; mainly concerning the unavailability of data to reliably, accurately measure interests across such fine-grained categorisation, and, should the data be available, its overwhelming computational intractability. Motivated by this, our study presents the results of a categorization process whereby a collection of tags posted at Delicious #http://delicious.com# are classified into 200 subcategories of interest.Preprin

    Hierarchical categorisation of web tags for Delicious

    Get PDF
    In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. The benefits of social tagging are clear – tags enhance Web content browsing and search. However, since these tags may be publicly available to any Internet user, a privacy attacker may collect this information and extract an accurate snapshot of users’ interests or user profiles, containing sensitive information, such as health-related information, political preferences, salary or religion. In order to hinder attackers in their efforts to profile users, this report focuses on the practical aspects of capturing user interests from their tagging activity. More accurately, we study how to categorise a collection of tags posted by users in one of the most popular bookmarking services, Delicious (http://delicious.com).Preprin

    Automatic synthesis of reconfigurable instruction set accelerators

    Get PDF
    • …
    corecore