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Figure 1: Our framework is able to generate layouts that meet both accessibility and aesthetic criteria for arbitrarily shaped (e.g., non-axis
aligned) domains. Here, we show several floorplan layouts for a pentagon-shaped building. The accessibility criteria specify that all rooms
are connected to the elevators via a singly connected corridor. The aesthetic criteria specify the admissible deformations for the rooms.
Upper-left: A set of tile templates to build the corridor: (1) predefined locations of the corridor, (2) first-level branches of the corridor, and
(3) second-level branches of the corridor. Observe how these topological constraints are enforced by the the edge-color constraints of the
tiles. Bottom-left: A set of deformable room templates. The doors are constrained to be at the red edges (alternative locations are marked
with a star). Certain rooms are deformable to be quads with two right angles. Right: We show three distinct floorplan designs for different
floors of the building. The different designs are achieved by different predefined locations of the corridor (grey parts in the sub-figures in
the upper-right corners). The corridor branches and the rooms are then found by our discrete tiling algorithm in a way such that rooms are
placed with a higher priority. Finally, the mesh geometry is optimized to minimize the deviations of the rooms from their admissible shapes
and the straightness of the room boundaries..

Abstract

In this paper, we tackle the problem of tiling a domain with a set
of deformable templates. A valid solution to this problem com-
pletely covers the domain with templates such that the templates do
not overlap. We generalize existing specialized solutions and for-
mulate a general layout problem by modeling important constraints
and admissible template deformations. Our main idea is to break
the layout algorithm into two steps: a discrete step to lay out the
approximate template positions and a continuous step to refine the
template shapes. Our approach is suitable for a large class of appli-
cations, including floorplans, urban layouts, and arts and design.
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1 Introduction

Layout computation is an essential aspect of computational design.
Recent papers tackle various layout problems, such as the layout of
texture atlases, streets and parcels, buildings, cartographic maps,
floorplans, facades, mosaics, furniture, golf courses, and artistic
packings.

We can distinguish two main categories of layouts. The first type
allows gaps between templates, but restricts object deformations
(typically only rigid deformations are allowed). Examples for this
type of layout include furniture [Yu et al. 2011], collage [Huang
et al. 2011], mosaics [Kim and Pellacini 2002], and artistic pack-
ings [Reinert et al. 2013]. The second type of layout requires that
the domain be fully covered without overlap, but tolerates a more
general class of template deformations. There exist several special-
ized versions of this layout problem, most notably tiling a domain
or mesh surface with triangles or quads. Other examples are axis-
aligned floorplans [Merrell et al. 2010] and urban layouts [Yang
et al. 2013]. In this paper, we contribute to the computation of the
second type of layouts (called water-tight layouts in this paper).

Our first contribution is to model the problem. We generalize exist-
ing specialized problem formulations and propose an optimization
framework that can be applied to a larger class of applications, al-
lowing for more general templates, and providing more flexibility in
specifying desirable solutions. We analyze a set of example appli-
cations and propose a way to model the most important constraints
and admissible tile deformations in an optimization framework.

Our second contribution is to propose a technical solution to the
water-tight layout problem. It is important to note that the first cat-
egory of layouts is typically much easier to compute because empty
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space is allowed. That enables solutions that are built on local mu-
tations (adding, deleting, shifting of templates), e.g., simulated an-
nealing [Yu et al. 2011] and rjMCMC [Yeh et al. 2013], because one
valid layout can easily be transformed into another valid layout. By
contrast, water-tight layouts do not admit local transformations that
can explore the space of valid layouts. Existing approaches use
top-down subdivision [Yang et al. 2013] or greedy placement [Park
et al. 2007]. Both approaches can be randomized by backtracking or
attempting many randomized layouts from scratch. However, none
of these approaches can be generalized to our problem formulation.
Top-down subdivision cannot sufficiently control the shapes in the
resulting domain partition and greedy placement often cannot cover
the complete domain. In general, it is actually very difficult to find
a single valid solution to a water-tight layout problem. Our idea is
to use a two-stage approach. First, we discretize the domain and
tile templates into meshes. We can then formulate the approximate
placement and deformation of templates in a global optimization
framework. Second, we refine the shapes of the templates using
continuous optimization.

The third contribution of our work is to show how several layout
applications can be formulated by our framework to achieve novel
results that cannot be computed with existing layout algorithms.

1.1 Related Work

There are multiple ways to characterize layout algorithms. In our
discussion, we classify the work based on the allowable deforma-
tion of the elements and the allowed gaps between elements.

The first class of layout algorithms we consider includes algorithms
that do not require the domain to be fully covered, i.e., gaps between
elements are allowed. For example, in furniture arrangement [Yu
et al. 2011; Merrell et al. 2011], shelf filling [Majerowicz et al.
2014], or the design of golf courses [Yeh et al. 2012], the amount of
space can be quite large and the challenge of the layout stems from
the constraints between different elements. Other layout problems,
such as artistic packing layouts [Reinert et al. 2013], decorative
mosaics [Hausner 2001], or texture atlas packing [Lévy et al. 2002],
try to minimize empty space and can therefore be described as pack-
ing problems. Most of these problems can be solved by stochastic
methods, such as simulated annealing, MCMC, or rjMCMC.

The second class of layout algorithms allows gaps and deforma-
tions. An example of this class is jigsaw image mosaics [Kim and
Pellacini 2002] because these mosaic elements are allowed to de-
form slightly. In the broader sense, probabilistic shape synthesis
from part collections could also be considered as layout algorithms
in this class. An excellent representative of this type of work is the
paper by Kalogerakis et al. [Kalogerakis et al. 2012].

The third class of layout algorithms neither allows gaps nor tile
deformations. That usually requires a simple, e.g., rectangular,
boundary that is cut into rectangular or square tiles. In the sim-
plest form, elements are exactly the size of one square. That makes
it easy to fill the domain, but tiling is typically restricted by re-
lationships between elements, e.g., Wang Tiles. Wang Tiles have
been nicely applied in computer graphics for texture synthesis [Co-
hen et al. 2003] and blue noise generation [Kopf et al. 2006]. The
solution space can be further restricted by introducing mandatory
neighborhood relationships between tiles. Yeh et al. [Yeh et al.
2013] used examples in facade and urban modeling to illustrate
their tiling algorithm that can encode hard and soft constraints. A
complexity analysis for tiling was presented by Demaine and De-
maine [2007]. In [Fasano 2004], the packing of Tetris-like items in
3D space is modeled as an MIP problem but solved only heuristi-
cally. Prokopyev and Karademir formulate the task of tiling a reg-
ular grid using polyominos, i.e., singly connected joints of squares,

into an integer programming problem [Prokopyev and Karademir
2012]. An interesting link to the next class is the question of how to
transform a set of elements so that they can tile a domain. Escher-
ization [Kaplan and Salesin 2000] is a fascinating concept related
to this question. We refer to the book by Kaplan [Kaplan 2009]
for a broader discussion of tiling theory from a computer graphics
perspective.

The fourth class of layout algorithms does not allow gaps, but it
does allow elements to deform. One class of such layouts fills a
domain with rectangles of different size. A good example is res-
idential building layouts [Merrell et al. 2010]. While it is easy to
fully cover the domain, required neighborhood relationships con-
strain the problem and make it difficult to solve. It is not clear how
these building layout algorithms can be extended to non-rectangular
rooms, a challenge we want to tackle in this paper. Facade layouts
can also be generated by resizing boxes [Lin et al. 2011; Dai et al.
2013; Bao et al. 2013]. Urban layout design [Aliaga et al. 2008b;
Aliaga et al. 2008a; Yang et al. 2013] is an example problem in
which the boundary of the domain is more complex and the ele-
ments can be deformed in a more general fashion. Because it is
difficult to find a single valid solution, Yang et al. used hierarchical
splitting and backtracking. Our method can improve upon this pre-
vious work by allowing for better control of the distribution of and
neighborhood relationships between tiles. Splitting techniques are
also useful for computing parcel layouts [Vanegas et al. 2012]. The
most popular layout problem with deformable elements is actually
quad and triangle meshing. Early work, e.g., [Blacker and Stephen-
son 1991], tried to fill the domain by incrementally adding quads.
These paving-style algorithms illustrate how difficult the problem
actually is. The geometric quality usually suffers when two fronts
collide with each other and gaps of odd shapes have to be filled.
We refer to the survey by Bommes et al. [Bommes et al. 2012] for
a broader discussion on quad meshing.

2 Framework Overview

We begin by describing the problem statement as follows. The
problem domain is given as a 2D polygon with arbitrary numbers of
boundaries defined as closed simple piecewise linear curves. The
goal of this framework is to completely cover the 2D domain with
smaller polygons that have a disk-like topology, each we call a tile,
such that the geometry of each tile is as close to one prescribed
template as possible.

The definition of a tile template is important to our paper. In short, a
tile template is defined as one base polygon (with a disk-like topol-
ogy) under certain admissible transformations. For example, a tile
template presenting arbitrary rectangles can be defined as a unit
square under two scalings along the square’s two edge directions.
A detailed definition is given in Section 3.

As mentioned previously, finding valid solutions to the water-tight
layout problem in the continuous sense is difficult. Our solution is
to break the problem into a discrete part and a continuous part. First,
we tessellate both the problem domain and the base polygons of the
tile templates into two-manifold polygon meshes. In this way, the
continuous complete cover problem is transformed into a discrete
tiling problem, which is formulated as linear integer (Boolean) pro-
gramming (Section 4). Second, given a discrete tiling found in the
previous step, we consider the positions of the vertices on the tes-
sellated problem domain as continuous variables and solve an op-
timization problem to further improve the geometrics of the tiles
(Section 5). See Figure 2 for an overview.

Quad Mesh Tessellation: We choose (pure) quad meshes as the
type of meshes for the discretization. This decision is mainly based
on the chosen example applications, e.g., street patterns and floor



Figure 2: Overview of our framework. (a) and (b) The problem domain and its quadrangulation. (c) The given tile templates. Each template
is shown as its base polygon and its admissible transformations (upper left: rectangles with arbitrary ratios of side lengths, upper right:
trapezoids with parallel top and bottom sides, middle left: squares, middle right: J-shaped tiles with arbitrary ratios of lengths of the two
ends, bottom left and right: these triangle and pentagon tiles can be arbitrarily transformed. Arrows denote the anchors. (d) A complete
tiling with a small average shape registration error is generated by linear integer (Boolean) programming with shape factors included in
the weighting scheme. Note that the shapes of the triangle and pentagon tiles are irrelevant (zero shape factors). The shape registration
errors are visualized in the upper-right corners. (e) The mesh geometry is optimized to further reduce the shape registration errors. (f) A
custom tiling design with user-specified tile boundary constraints (red lines) and regular-junction constraints added to reduce the number of
T-junctions.

plans. We consider tiling on other kinds of meshes, such as trian-
gle meshes and quad-dominant meshes, as interesting directions for
future work.

We use the following definitions for a quad mesh. A vertex with
valence 4 is considered as regular; otherwise, it is irregular. For
each edge, we distinguish two half-edges that are opposite to each
other. A half-edge is a border half-edge if it does not have a face;
otherwise, it is a non-border half-edge. We assume that the half-
edges circulate around the faces in counter-clockwise order.

3 Tile Templates

A tile template, τx, 0 ≤ x < N, where N is the number of tile tem-
plates, defines the admissible shapes for a tile. It is defined as a
base polygon with a disk-like topology, Bx, and a specification of
its admissible transformations, defined later in this section. We first
discuss the definition of base polygons.

Recall that we quadrangulate the problem domain and the base
polygons into quad meshes prior to the discrete tiling. An essential
task of the discrete tiling is to recognize identical copies of the base
polygons in the quadrangulated problem domain. This is a graph
isomorphism problem, which becomes non-trivial when irregular
vertices are considered. For simplicity, we assume that a base poly-
gon (a quad mesh) may have up to one irregular vertex in its interior
of which the valence is not a multiple of 4. In this way, the quad-
rangulation is unique (if it exists) given a prescribed boundary loop
configuration. We now define a base polygon as follows:

Definition 3.1 The base polygon of a tile template is a quad mesh
with a disk-like topology, i.e., with exactly one boundary and no
handles. The anchor of a tile template is one particular non-border
half-edge along the base polygon’s boundary.

In practice, a base polygon is specified by its boundary loop alone
(see Figure 4a for an example):

Definition 3.2 The boundary loop of a quad mesh with a disk-like
topology, e.g., a base polygon, is defined as the number of boundary
edges, plus the number of inner edges adjacent to each boundary
vertex in counter-clockwise order, starting at the boundary vertex
pointed to by the anchor.

3.1 Admissible Transformations

An admissible transformation is defined by a sequence of k transfor-
mation steps. A transformation step is either a similarity or a rigid
transformation, a translation, a rotation, a scaling, or a shearing.
The transformation steps only need to be applied to the boundary
vertices of a base polygon. The positions of inner vertices are ir-
relevant and can be found by Laplacian smoothing for visualization
purposes. A unique characteristic of our framework is that trans-
formation steps can be specified such that they affect only a subset
of vertices. In this way, we can build many interesting non-linear
transformations, such as bending.

Next, we describe the individual transformation steps. As a base
polygon undergoes a sequence of transformation steps, the next
transformation is often defined with respect to the base polygon’s
current position. A translation can be unconstrained or constrained
along one direction determined by two particular boundary vertices.
A rotation is done around a center that is determined by one par-
ticular boundary vertex. A scaling or a shearing is done along a
direction and a center, determined by two particular boundary ver-
tices (for the direction) and one particular boundary vertex (for the
center).

Since we use a unique transformation model, we show examples in
Figure 3 to provide intuition on how this model works in practice.

4 Discrete Tiling

Problem Domain Quadrangulation: Given a collection of tile
templates (and their base polygons as quad meshes), we quadran-
gulate the problem domain such that the edge lengths and the aspect
ratios of quads roughly match the base polygons. These criteria en-
sure that we can find graph-isomorphic copies of the base polygons
in the quadrangulated domain without large shape deviations. We
use the patch-wise quadrangulation algorithm in [Peng et al. 2014]
for its capability to produce semi-regular, i.e., most vertices are reg-
ular, quadrangulations for domains of arbitrary boundaries.

We now assume the problem domain has been quadrangulated into
a quad mesh, M. A tile on M is defined as follows.

Definition 4.1 A tile, Ti,x, is a simply connected set of faces on M,



Figure 3: Transformations for tile templates. (a) Two global scal-
ings along the two edge directions (red and green arrows). The
centers for scalings and shearings are at the ends of the arrows. (b)
A global shearing along the red edge direction. (c) Two translations
for two subsets of vertices (red and green), each is constrained to
be along one edge direction. (d) A shearing for a subset of ver-
tices (red) along the red edge direction, followed by a translation
along the green edge direction and then a scaling along the blue
edge direction for the same subset of vertices. (e) A free translation
for a vertex (red), followed by two global scalings along the red
and green edges directions. (f) A global similarity transformation.
(g) A counter-clockwise bending that preserves the right angles of
the corners is approximated by two consecutive counter-clockwise
rotations for the red and the green vertices in respective order.

which is enclosed by a closed loop the same as the boundary loop
of Bx (τx’s base polygon), starting at a half-edge, ei.

Tile Ti,x can be understood as identifying a graph-isomorphic copy
of Bx (τx’s base polygon) on M while aligning τx’s anchor edge
with edge ei. We say that a tile is degenerate if its boundary loop
traverses an edge more than once (Figure 4a). We exclude degener-
ate tiles unless otherwise specified. We now define a tiling on M in
the following.

Definition 4.2 A tiling on M is a complete or partial cover of M’s
faces into non-overlapping tiles.

Finding a tiling can be understood as finding a non-overlapping
subset of all possible potential tile placements on M. Similar to
the maximal and maximum matchings in graph theory, a tiling is
maximal if any simply connected subsets of uncovered faces can-
not be covered by any tiles. A maximal tiling can be easily found by
flooding M with tiles in an arbitrary order. A tiling is maximum if it
has the smallest possible number (ideally zero) of uncovered faces
among all possible tilings on M. A maximum tiling is also maxi-
mal, but the reverse is not necessarily true. A tiling is complete if
all faces are covered.

Integer Programming: We formulate the tiling problem as a lin-
ear integer (Boolean) program. We first enumerate all possible tile
placements on M. This is done by enumerating all possible com-
binations of templates and half-edges (as anchors) in the mesh that
lead to valid tiles. Note that the positions of templates with inner
irregular vertices are limited by the corresponding irregular vertices
in the mesh. Now, for every potential placement of tile Ti,x, we cre-
ate a Boolean variable of the same name, indicating the presence of
the tile in the tiling. For a tiling to be valid, overlapping tiles can-
not be present concurrently. This is modeled by adding constraints:
∑Ti,x3 fk

Ti,x ≤ 1, for every face, fk, on M. We can replace ≤ with
the = sign if we want to find complete tilings only. The objective
function to maximize is modeled as ∑i,x Wi,xTi,x, where Wi,x is the

weight associated with Ti,x. We assume that tile weights are non-
negative.

We are now ready to model the tiling problem in linear program-
ming form:

Maximize ∑
i,x

Wi,xTi,x (1)

Subject to ∑
Ti,x3 fk

Ti,x ≤ 1, for every face fk on M.

For a maximum tiling, we set Wi,x to be the number of faces in Bx.
In this way, the objective value to maximize amounts to the total
number of faces covered by the tiling.

Weighting Scheme: We generalize the weighting scheme as fol-
lows:

Wi,x =Wx ∗ f actor0(Ti,x)∗ f actor1(Ti,x)... (2)

Wx denotes the weight of tile template τx, which by default is equal
to the number of faces in Bx. Wx can be adjusted to suit user-
preferences for each tile template (see Figure 5 for an example).
The factors are functions to diverse weights of tiles of the same tile
template, to suit application-specific needs, such as:

• A randomization factor, e.g., a random variable ranging from
α to 1, 0 ≤ α ≤ 1 (the lower the number, the stronger the
randomization), to randomize the tilings.

• A shape factor based on the shape registration error of Bx to
Ti,x (Section 5.1) to give tiles with lower registration errors
higher weights and vice versa.

Note that each factor may have different sensitivities to different
tile templates. For example, the shape factor can always return 1
for tile templates of which the shapes are irrelevant.

Occurrence Constraints: It is straightforward to impose a lower
bound and/or an upper bound of the number of occurrences for tiles
of a particular tile template by adding linear constraints: ∑i Ti,K ≥
α , ∑i Ti,K ≤ β , α and β are the lower and upper bounds of the
number of occurrences for tile template τK .

4.1 Adjacency Constraints

To impose functional criteria on layouts, it is useful to be able to
constrain how tiles are adjacent to each other in a tiling. A com-
monly used strategy, e.g., edge color-matching constraints in Wang
tiles [Cohen et al. 2003], is to assign colors to boundary half-edges
of all tile templates’ base polygons and require that, in a tiling, ev-
ery pair of opposing half-edges on M must have the same color. In
addition, we allow the color to be signed in the sense that a pair
of opposing half-edges must have not only the same color but also
the opposite signs. Alternatively, the signed color constraints can
be enforced only for the edges with positive-signed colors. Lastly,
the edge color-matching constraints can also be soft in the sense
that mis-matchings are less preferred but still admissible. The same
concepts can be directly applied to vertices.

It is straightforward to model hard constraints in integer program-
ming, for example, tiles that cannot be present concurrently due to
the adjacency constraints are constrained to have a joint occurrence
of up to one. However, a direct attempt to model soft constraints
would involve higher-order terms, e.g., adding multiplications of
Boolean variables presenting tiles that we prefer to appear at the



(a) (b)

Figure 4: (a) Potential tile placements of a T-shaped template. Ar-
rows denote the anchors. (1), (2), (4), (5), and (7): admissible tile
placements. (3): A degenerate case. (6): Not admissible because
the boundary loop cannot form at the anchor. (5) and (7): Two
tile placements that overlap at the marked face. In a tiling, at most
one of them can be present concurrently. (b) The intuition of using
joints to model soft constraints. Left: For an edge-based joint to be
present in a tiling, the two adjacent tiles (top and bottom) must have
the matching color. Right: For a vertex-based joint to be present in
a tiling, all adjacent tiles’ boundary vertices (four in this case) must
have matching colors.

same time to the objective function. This approach is especially un-
desirable for vertices-based constraints. For example, assuming T0,
T1, T2, and T3 are Boolean variables presenting four tiles having ad-
jacent boundary vertices of matching color, we would add a quartic
term to the objective function, T0T1T2T3, that equals one only when
all four tiles are present concurrently. Inspired by the joints com-
monly used in woodworking, we propose a scheme to model soft
constraints using linear terms as follows.

4.1.1 Soft Edge-Based Constraints

We first define imaginary elements called joints as follows. For
every non-border edge on M, Ei, there exist k joints, Ji, j, where
0 ≤ j < k is the color index of the joint and k is the total number
of colors. With the same intuition as for the woodworking joints,
the necessary condition for Ji, j to be present in a tiling is that the
two tiles adjacent to Ei both have the matching color (Figure 4b,
left). In other words, Ji, j cannot be present concurrently with every
tile that is adjacent to Ei but does not have the matching color. We
then model the edge joints into the integer programming as Boolean
variables of the same name and extend the objective function as:

Maximize ∑
i,x

Wi,xTi,x +∑
i, j

WJJi, j, (3)

where 0 < WJ is the weight for edge joints. Now, the integer pro-
gramming also optimizes the number of edge joints that appeared
in a tiling in a weighted sense (determined by WJ), which is roughly
reversely proportional to the number of mis-matched edge colors.

4.1.2 Soft Vertex-Based Constraints

We can assign a color to every boundary vertex of all tile templates’
base polygons and model soft color-matching constraints for ver-
tices in a similar fashion (Figure 4b, right). The integer programing
now also optimizes the number of vertices on M such that the colors
of all its adjacent tiles’ boundary vertices match. A useful scenario
is described in the following.

Regular Junction-Matching Constraints: A tiling distinguishes
a subset of edges on M that are parts of the tile boundaries, which
we call the boundary network defined by the tiling. Interestingly,
based on our assumptions that the problem domain tessellation is

Figure 5: We can improve the regularity of the resulting boundary
networks of tilings by imposing regular-junction constraints. Here
we show two tilings with the same numbers of tiles, without (left)
and with (right) regular-junction constraints. Note that we use a
higher weight for the 2x2 templates to compute tilings of which 2x2
templates are placed with a higher priority than other templates.

Figure 6: (a) Left: A tiling generated without shape factors in
the weighting scheme, before (left) and after (right) a shape op-
timization. (b) A tiling generated with shape factors included in
the weighting scheme. In summary, by including shape factors into
the discrete tiling calculation, we can compute tilings with smaller
shape registration errors.

two-manifold and that degenerate-case tiles are excluded, a bound-
ary network resembles a coarser polygonal mesh of faces of arbi-
trary degrees (i.e., the tiles) imposing on M. From this perspective,
the connectivity, i.e., the valence of the vertices on the boundary
network, becomes a quality criteria for tilings.

For a tiling, a regular junction is a regular non-border vertex on M
with the number of adjacent tile boundary edges equal to 4. Note
that the vertex resembles a T-junction on the boundary network if
the number equals 3 and a degenerated vertex if the number equals
2 or 1. Depending on the application, we may prefer tilings with
more regular junctions. Since it is often not possible to have a tiling
in which all junctions are regular, we impose this preference in a
soft sense. For this goal, for the base polygon of every tile tem-
plate, we assign a particular color to every convex corner, i.e., a
boundary vertex adjacent to no inner edge on the base polygon. In
this manner, the number of regular junctions, which are formed by
four adjacent convex corners, is also optimized by integer program-
ming. See Figure 5 for an example.

5 Geometric Optimization

Recall that the goal of our framework is to completely tile a domain
with templates, each of which can transform in a specific way de-
fined by a sequence of transformation steps (see Section 3.1). In
practice, a perfect solution may not be feasible. We instead look for
solutions such that the sum of squared distances between vertices
of the transformed templates and the corresponding tiles on M is
minimized, weighted by each tile’s sensitivity to its shape.



We achieve this goal in two stages. First, we include the shape er-
ror of each potential tile placement, found by a method to register
the shape of a template to the corresponding tile under admissible
transformations (Section 5.1), into the weighting scheme of the dis-
crete tiling method. In this way, tilings with lower sums of shape
errors can be computed. See Figure 6 for a comparison. Second,
given a tiling with tiled templates, we further optimize vertex posi-
tions of M, such that the boundary of each tile favors the shape of
its corresponding template under the predefined admissible trans-
formations in a local/global sense (similar to the projection-based
approach in [Bouaziz et al. 2012]).

5.1 Shape Registration

Given a template’s base polygon, its sequence of transformation
steps, and a corresponding tile on M with a one-to-one correspon-
dence of the boundary vertices, we register the base polygon to the
tile under the predefined sequence of transformation steps in such a
way that the sum of squared distances between corresponding ver-
tices is minimized. We register the sequence in the reverse order.
Each transformation is registered by solving a least-squares system
of the squared distances between corresponding vertices. This sys-
tem has a closed-form solution. Details can be found in Appendix
A. We denote the error of a shape registration as the average of the
distances between corresponding vertices in the base polygon and
the corresponding tile.

For transformations consisting of multiple steps, e.g., bending, a
single pass of registration may not achieve the desirable quality.
Since all transformation steps are based on relative coordinate sys-
tems, i.e., centers and directions, we can register the sequence of
transformation steps repeatedly, in which each pass uses the trans-
formed base polygon from the previous pass, until convergence or
a time limit is reached. The resulting transformed base polygons
typically have lower registration errors and still approximate the
ground truths of single-pass transformations nicely, depending on
the specific transformation step sequences. Convergence (in terms
of the shape registration error) is guaranteed because the registra-
tion of each step either decreases or maintains the error. An analysis
is shown in Figure 4 in the additional materials.

In summary, the main gist of our transformation framework is to
build non-linear transformations, which are generally non-convex
and difficult to register, by sequences of transformation steps such
that each can be registered with a convex, closed-form solution.

Size-preserving constraints: The magnitude of each transforma-
tion step, e.g., the distance of a translation, the angle of a rotation,
and the factor of a scaling or shearing, can be constrained to lie
within a specified range. An alternative method is to apply an ad-
ditional non-uniform scaling to the transformed base polygon to
constrain its bounding box to be within an acceptable range. All
our examples are generated with this method.

5.2 Global Shape Optimization

Given a tiling on M, we find the registered shape of the base poly-
gon for each tile by the aforementioned method. We denote the
position of the k-th vertex (beginning at the one pointed to by the
anchor) of the tile’s registered base polygon as Vi,x,k. We say that
Vi,x,k is a registered position for the k-th vertex of tile Ti,x on M.
Each vertex on M, vn, 0≤ n < N, where N is the number of vertices
on M, can correspond to multiple registered positions, one for each
adjacent tile of which vn is a boundary vertex. These registered
positions may not agree. There exist many ways to determine the
position of vn given its registered positions, for example, by moving
to the one that is closest to vn’s current position, i.e., snapping. We

choose a weighted average scheme for its robustness and simplicity,
formulated as a continuous quadratic optimization problem:

Minimize ∑
n,i,x

Wi,x(vn−Rn,i,x)
2 (4)

where Wi,x is the weight for tile Ti,x and Rn,i,x is the registered po-
sition for vertex vn by tile Ti,x. Note that a tile does not contribute
more than one position to a vertex because we exclude degenerate-
case tiles. The per-tile weighting is useful in giving tiles different
influences on the shape optimization. A typical strategy is to give
tiles of flexible shapes smaller weights, e.g., the pentagon and trian-
gle tiles in Figure 2 and the flexible single-quad tiles in Figure 10.

After the vertex positions on M are updated by solving equation 4,
we perform shape registrations for all tiles again to update the reg-
istered positions of the vertices. The procedure is repeated until the
sum of the shape registration errors of all tiles is below a threshold
or has reached a local minimum.

Boundary constraints: Additional constraints are added to pre-
serve the fidelity of the mesh boundaries. For each border vertex,
bm, 0 ≤ m < B, where B is the number of border vertices on M,
we identify its two adjacent border vertices, bm0 and bm1. If bm0,
bm, and bm1 are co-linear by a threshold, we constrain bm to be on
the straight line with its slope defined by bm0 and bm1 and passing
through bm. Otherwise, bm is constrained at its current position. In
this way, border vertices are allowed to move, leading to more de-
grees of freedom for the shape optimization, without sacrificing the
fidelity of the mesh boundaries.

Straightening constraints: Recall that a tiling also defines a
boundary network, i.e., the edges belonging to tile boundaries, of
which the aesthetics is largely determined by the shape optimiza-
tion. In our applications, we prefer lines in the boundary network
that are already close to linear to be straightened. For this goal, for
every vertex on M, vn, we identify pairs of its adjacent vertices, vn0
and vn1, such that vn0, vn, and vn1 are co-linear by a threshold. For
every such triple, a quadratic term that measures the deviation of vn
from the average of vn0 and vn1, Ws(vn− (vn0 +vn1)/2)2, where Ws
is the weight for straightening constraints, is added to equation 4.

6 Results and Applications

We use CGAL [cgal 2012] for the half-edge mesh framework and
Gurobi [Gurobi Optimization 2014], a specialized (mixed) integer
programming solver, for solving the discrete tiling problems. All
tests are done on a 2.1GHZ quad core CPU, 8GB RAM machine.

Comparison to local methods for the discrete tiling problem: A
key advantage of our approach is to formulate the discrete tiling
problem into an integer programming form, which enables us to
solve it with specialized integer programming solvers. To demon-
strate this advantage, we compare our results with those of a typical
stochastic search method that does greedy placement of tiles on an
advancing front, starting at a randomly selected face on the mesh
border, with increasing priorities for tiles that are locally preferable,
i.e., with more adjacent edges to already tiled faces, over time, i.e.,
simulated annealing. We run this method multiple times until a full
tiling is found or a time limit is reached. The results are shown
in Figure 7. In summary, by harnessing the power of specialized
solvers, our approach is magnitudes faster than naive stochastic
methods, enabling us to solve problems that are prohibitively ex-
pensive for local methods.

Floorplans: Our approach is suitable for generating floorplan lay-
outs of large facilities, e.g., offices, hospitals, and parking lots.



Figure 8: Top and bottom rows: two floorplan examples using the corridor and room templates defined in Figure 1.

Figure 9: Parking lot design using a set of templates with edge color constraints to enforce the accessibility criteria: (1) and (2): templates
for a full-sized and a twin compact-sized parking lot. Edges that must access roads are given the positive red color. (3) Road tiles of which
every edge is given a negative red color for parking lot access. (4) Green tiles with flexible shapes. (a) and (b): The tiling before and after
a geometric optimization. Road tiles are specified by the user. We allow only similarity transformations for the parking lot and road tiles.
However, the concave spaces that were difficult to use are accommodated by the green tiles with flexible shapes. (c) A stylization of the tiling
obtained by manually adding trees and replacing tiles by (warped) 2D vector textures.

Compared with floorplans for single-house residential buildings,
the problem domains are often much larger and have predefined
building footprints of arbitrary shapes. The task can be summarized
as putting as many copies of a few given room/lot templates as pos-
sible into a problem domain in a water-tight manner. Each room/lot
template comes with a predefined shape and admissible transfor-
mations. Moreover, the layouts need to be functional in terms of
accessibility; for example, all rooms/lots should be connected to
the exits of the building via a singly connected corridor. Overall,
all these criteria amount to a global optimization problem with both
discrete and continuous components. Our approach is able to find
novel solutions. See Figure 1, 8, and 9 for examples.

Urban pattern layout: In [Yang et al. 2013], urban pattern layouts
are generated in two stages. First, the problem domain is parti-
tioned into sub-regions along cross-field streamlines. Second, each
sub-region is turned into parcels by template matching. While the
resulting patterns are of high geometric quality, there is a lack of

control over the connectivity of the street network, i.e., boundaries
between sub-regions. In Figure 10 and 11, we show that our tiling-
based approach is an important improvement to streamline-based
sub-region partitioning, enabling users to control the connectivity
of the street networks and the occurrences of templates, and to
find non-trivial design solutions with templates of arbitrary, non-
rectangular shapes.

Arts and design: Our approach is a powerful solution-finding tool
for tiling-based designs, e.g., using the Tetris tiling set (Figure 12).
As future work, we would like to explore more design options that
also take advantage of the adjacency constraints. One such example
is shown in Figure 5 in the additional materials.

Performance: The timing statistics of our results are presented in
Table 1. Overall, the Gurobi solver delivers amazing performance.
The execution time depends more on the characteristics of the prob-
lem, e.g., the number of templates and colors for the soft adjacency
constraints, than on the number of quads in the mesh. Hard con-



Figure 10: Urban layout design. (a) The quadrangulations of two problem domains from [Yang et al. 2013]. (b) We create a set of tile
templates that includes more general tiles as can be handled by Yang et al.: 1) a set of bendable tiles, 2) L-shaped, J-shaped, and U-shaped
tiles of which each end can stretch individually, 3) 2x2 square tiles that can scale non-uniformly, 4) triangle-shaped and pentagon-shaped
tiles that can only scale uniformly, and 5) single-quad tiles with lower weights for shape optimization (these tiles are used to model lake
shores and parks with flexible shapes). Each tile may take a further similarity registration. (c) to (e): Three different designs for the first
problem domain. We can create layouts that favor variety (c) and regularity (d), i.e., fewer numbers of T-junctions, by controlling the weights
for the regular-junction constraints. (e) We can precisely control the numbers of occurrences for each tile template. (f) to (i): Four different
designs for the second problem domain. (f) to (h): Designs with increasing regularity, at the cost of decreasing variety. The second one (g) is
a nice example that strikes a balance. (i) A design with user-specified locations of parks.

straints, e.g., hard edge color constraints and boundary constraints,
have little impact on the performance. Note that sub-optimal solu-
tions are also valid (water-tight and non-overlapping) tilings; there-
fore, for difficult problems, we resort to nearly-optimal solutions
computed under reasonable time limits (Figure 7 in the additional
materials). The times to calculate shape factors for all potential
tile placements by shape registrations can be significant. Finally,
it takes about 20 to 30 seconds (around 40 to 60 iterations) for the
geometric optimization in most of our results.

Limitations: Scalability is the main limitation of our approach.
In general, the execution time increases rapidly when the problem
size, e.g., the numbers of templates, colors for the soft adjacency
constraints, and quads in the mesh, becomes large. To partially ad-
dress this problem, there exist several known heuristics to improve
the execution time of solving tiling problems ([Prokopyev and Ka-
rademir 2012]). For example, we can partition the domain into sub-
domains and solve them separately. See Figure 6 in the additional
materials for an analysis.

Another limitation is the dependence on the initial quadrangula-
tions. Indeed, the solution space of possible layouts is limited by
how the domain is quadrangulated in the first place. There exist

several approaches to explore quadrangulations of a given domain
in a combinatorial (e.g., [Peng et al. 2014]) or field-based (e.g., [Liu
et al. 2011]) sense, effectively enabling users to explore layout re-
sults of different quadrangulations. See Figure 13 for examples. On
the positive side, by starting with an initial quadrangulation such
that the edge lengths and the aspect ratios of the quads roughly
match the templates, many “bad” solutions, e.g., of which the ori-
entations of tiles and the distributions of templates with inner irreg-
ular vertices are incompatible with the problem domain, are filtered
out.

7 Conclusion and Future Work

In conclusion, our approach takes a novel tiling-based approach
to tackle the problem of generating water-tight layouts with de-
formable templates. By formulating the tiling problem as a global
optimization problem solved by a specialized solver, we are able to
find non-trivial combinatorial solutions that would be prohibitively
expensive for local search-based methods. Furthermore, by includ-
ing the shape errors of potential tile placements into the optimiza-
tion formulation, tilings with overall better shapes can be computed.



Figure 11: Urban layout design in a regular grid setting. (a) The quadrangulated problem domain. User-specified facility areas are marked
in grey. (b) Tile templates. (c) A stochastic-looking design generated using zero weight for the regular-junction constraints and a small
randomization factor to perturb the tile placements. (d) A regular-looking design generated using a large weight for the regular-junction
constraints; furthermore, each template is constrained to appear at least once (to avoid overly monotonic-looking solutions). (e) A design
using templates of longer (3x1 and 4x1) strips only. (f) A design using templates in the marked sub-group only.

Figure 12: Tetris tiling design with a stochastic distribution by a large randomization factor (a), higher priorities for the 4x1 tiles (b), higher
priorities for the T-shaped tiles (c), and with engraved characters imposed by boundary constraints (d).

Lastly, the geometry can be further improved by a continuous op-
timization that improves the shape fidelity of the tiles and the aes-
thetic of the boundary network.

As future work, we would like to explore other choices of problem
domain tessellations, for examples, quad-dominant meshes and tri-
angles meshes. This leads to more flexibility and interesting appli-
cations. One promising venue for applications is mesh processing,
e.g., quadrangulation of triangle meshes (by placing quad-shaped
tiles on triangle meshes) and requadrangulations (by placing quads
of different shapes on quad meshes). Another interesting direction
is to explore layouts on domains other than 2D polygons. In fact,
our discrete tiling algorithm is immediately applicable for general
surface meshes, e.g., a bunny (a sphere-like object) and a torus (see
Figure 14). Beyond tiling on surface meshes, we can tile volumet-
ric tiles in volumetric meshes. This may be useful for 3D spatial
layout designs such as floorplans in multi-story buildings.

Appendix A: Transformation Step Registration

Recall that a transformation step applies to a subset of the bound-
ary vertices of the template’s base polygon. We denote this sub-
set of vertices in the base polygon and the corresponding tile on
M as vi and Vi (vi corresponds to Vi), 0 ≤ i < n, where n is the
number of vertices in the subset. A similarity transformation is
registered by solving a least-squares system of the distances be-

tween corresponding vertices: Vi 7→ Avi +T , 0 ≤ i < n, where A is
a 2x2 matrix, A11 = A22, A12 =−A21, and T is a translation vector.
A rigid transformation is registered similarity, with the additional
constraint A2

11 +A2
22 = 1. A translation is registered trivially. A

rotation along a center is registered by solving a similarity trans-
formation without translation and extracting the rotation angle as

arcos(A11/
√

A2
11 +A2

12), using positions of vi and Vi translated by
the negative of the center. A scaling along a direction and a center
is registered by solving a least-squares system: Vi 7→ Avi, 0≤ i < n,
where A is a 2x2 matrix, A11 is the scaling factor, A12 = A21 = 0,
and A2,2 = 1, i.e., a scaling along the x-axis, using positions of vi
and Vi translated by the negative of the center and then rotated by
the negative of the angle between the direction and the x-axis. A
shearing is registered similarly. The only difference is that matrix
A now resembles a shearing along the x-axis, i.e., A11 = A22 = 1,
A12 is the shearing factor, and A21 = 0.
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Figure 13: (a) to (c): Layout results of alterntative initial quadrangulations of the same problem domain and tile templates in Figure 2. The
initial quadrangulations are shown in the bottom-right corners and the shape registration errors are shown in the upper-right corners. (a)
A regular tiles-only layout based on a fully regular quadrangulation. However, the triangle and pentagon tiles are excluded and now there
is a slight deviation of tile areas between the top and bottom of the domain. (b) A layout based on a quadrangulation that can only be tiled
with at most one triangle or pentagon tile (because the two irregular vertices are too close). Note that there is no pentagon tile around the
valence-5 vertex. (c) A layout based on a quadrangulation with more irregular vertices.

Figure 7: Performance comparison to local methods. We test the
Tetris tiling on three domains with increasing sizes: 92 faces (a),
592 faces (b), and 2628 faces (c). Tilings shown in (a), (b), and
(c) are generated by our approach without randomization factors.
For (a), it takes 0.14 seconds for our solver to find a full tiling.
For the greedy placement method, it takes 35.55 seconds and 6.60
seconds without and with simulated annealing. For (b), it takes 0.54
seconds for our solver to find a full tiling. For the greedy method
with simulated annealing, the best result we obtained within a 1000
second time limit is shown in (d), which still has 12 missing faces.
For (c), it takes 71.46 seconds for our solver to find a full tiling. The
best result by the greedy placement methods within a 1000 second
time limit has 72 missing faces.
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