21 research outputs found

    Elusive Codes in Hamming Graphs

    Full text link
    We consider a code to be a subset of the vertex set of a Hamming graph. We examine elusive pairs, code-group pairs where the code is not determined by knowledge of its set of neighbours. We construct a new infinite family of elusive pairs, where the group in question acts transitively on the set of neighbours of the code. In our examples, we find that the alphabet size always divides the length of the code, and prove that there is no elusive pair for the smallest set of parameters for which this is not the case. We also pose several questions regarding elusive pairs

    On Optimal Anticodes over Permutations with the Infinity Norm

    Full text link
    Motivated by the set-antiset method for codes over permutations under the infinity norm, we study anticodes under this metric. For half of the parameter range we classify all the optimal anticodes, which is equivalent to finding the maximum permanent of certain (0,1)(0,1)-matrices. For the rest of the cases we show constraints on the structure of optimal anticodes

    Diagonally Neighbour Transitive Codes and Frequency Permutation Arrays

    Get PDF
    Constant composition codes have been proposed as suitable coding schemes to solve the narrow band and impulse noise problems associated with powerline communication. In particular, a certain class of constant composition codes called frequency permutation arrays have been suggested as ideal, in some sense, for these purposes. In this paper we characterise a family of neighbour transitive codes in Hamming graphs in which frequency permutation arrays play a central rode. We also classify all the permutation codes generated by groups in this family

    Twisted Permutation Codes

    Get PDF
    We introduce twisted permutation codes, which are frequency permutation arrays analogous to repetition permutation codes, namely, codes obtained from the repetition construction applied to a permutation code. In particular, we show that a lower bound for the minimum distance of a twisted permutation code is the minimum distance of a repetition permutation code. We give examples where this bound is tight, but more importantly, we give examples of twisted permutation codes with minimum distance strictly greater than this lower bound.Comment: 20 page

    A new table of permutation codes

    Get PDF
    Permutation codes (or permutation arrays) have received considerable interest in recent years, partly motivated by a potential application to powerline communication. Powerline communication is the transmission of data over the electricity distribution system. This environment is rather hostile to communication and the requirements are such that permutation codes may be suitable. The problem addressed in this study is the construction of permutation codes with a specified length and minimum Hamming distance, and with as many codewords (permutations) as possible. A number of techniques are used including construction by automorphism group and several variations of clique search based on vertex degrees. Many significant improvements are obtained to the size of the best known code

    Uncoverings on graphs and network reliability

    Full text link
    We propose a network protocol similar to the kk-tree protocol of Itai and Rodeh [{\em Inform.\ and Comput.}\ {\bf 79} (1988), 43--59]. To do this, we define an {\em tt-uncovering-by-bases} for a connected graph GG to be a collection U\mathcal{U} of spanning trees for GG such that any tt-subset of edges of GG is disjoint from at least one tree in U\mathcal{U}, where tt is some integer strictly less than the edge connectivity of GG. We construct examples of these for some infinite families of graphs. Many of these infinite families utilise factorisations or decompositions of graphs. In every case the size of the uncovering-by-bases is no larger than the number of edges in the graph and we conjecture that this may be true in general.Comment: 12 pages, 5 figure

    Permutation codes

    Get PDF
    AbstractThere are many analogies between subsets and permutations of a set, and in particular between sets of subsets and sets of permutations. The theories share many features, but there are also big differences. This paper is a survey of old and new results about sets (and groups) of permutations, concentrating on the analogies and on the relations to coding theory. Several open problems are described

    Decoding generalised hyperoctahedral groups and asymptotic analysis of correctible error patterns

    Get PDF
    We demonstrate a majority-logic decoding algorithm for decoding the generalised hyperoctahedral group Cm≀SnC_m \wr S_n when thought of as an error-correcting code. We also find the complexity of this decoding algorithm and compare it with that of another, more general, algorithm. Finally, we enumerate the number of error patterns exceeding the correction capability that can be successfully decoded by this algorithm, and analyse this asymptotically
    corecore