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DECODING GENERALISED HYPEROCTAHEDRAL

GROUPS AND ASYMPTOTIC ANALYSIS OF

CORRECTIBLE ERROR PATTERNS

ROBERT F. BAILEY AND THOMAS PRELLBERG

Abstract. We demonstrate a majority-logic decoding algorithm for de-
coding the generalised hyperoctahedral group Cm wr Sn when thought
of as an error-correcting code. We also find the complexity of this de-
coding algorithm and compare it with that of another, more general,
algorithm. Finally, we enumerate the number of error patterns exceed-
ing the correction capability that can be successfully decoded by this
algorithm, and analyse this asymptotically.

1. Introduction

Sets, or groups, of permutations may be used as error-correcting codes,
with permutations in list form as the codewords, and the usual Hamming
distance. This idea goes back to the 1970s, for instance to the papers of Blake
[3] and Blake, Cohen and Deza [4]. Subsequently, there has been a resurgence
of interest in such codes because of a potential application to “powerline
communications,” where electrical power cables are used to transmit data
as well as electricity. For instance, the 2004 paper by Chu, Colbourn and
Dukes [7] gives a description of this, and some constructions for suitable
codes, while a more general survey can be found in Huczynska’s 2006 paper
[11]. More recently, permutation codes have been applied to “flash memory”
data storage devices (see the 2010 paper of Tamo and Schwartz [12]).

In [2], the first author gives a decoding algorithm which works for arbi-
trary permutation groups when used as codes in this way. In [1], he considers
certain families of permutation groups in more detail. In order to describe
the case we are interested in in this paper, we need the following background
material.

Suppose H and K are permutation groups acting on sets Γ and ∆ respec-
tively, where |Γ| = m and ∆ = {1, . . . , n}. The wreath product G = H wr K
is constructed as follows. We consider the action of the Cartesian product
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Hn = H × H × · · · × H on n disjoint copies of the set Γ, labelled by the
elements of ∆. We then form the semidirect product of Hn with K, where
K acts on Hn according to its action on ∆ = {1, . . . , n}; the resulting group
is G = H wr K. Now, we can define an equivalence relation on Γ×∆ where
the equivalence classes are the copies of Γ; this equivalence relation is pre-
served by the action of G, and so forms a system of imprimitivity or block
system for G. (See Cameron [6] for more information about permutation
groups.)

One family considered in [1] were the groupsH wr Sn, whereH is a regular
permutation group of order m. In this paper, we consider the special case
of this where H is a cyclic group of order m, so we have G = Cm wr Sn
acting in its imprimitive action on n copies of {1, . . . ,m}. We call these
groups generalised hyperoctahedral groups, as in the case m = 2 we have
the well-known hyperoctahedral group (the automorphism group of the n-
dimensional hypercube).

In Section 2 we give an alternative decoding algorithm from that given
in [2], that can only be used in this case, and in Section 3 we show that
this algorithm is better-performing (in terms of time and space complexity).
Finally, in Section 4 we show that certain patterns of more than r errors
can be successfully decoded by this algorithm, and in Section 5 we analyse
the asymptotic behaviour of this.

Recall that the minimum distance, d, of a code is the least value of the
Hamming distance over all possible pairs of codewords, and that the cor-
rection capability (i.e. the number of errors that can be guaranteed to be
corrected), r, is given by r = bd−12 c.

Proposition 1. The correction capability of G = Cm wr Sn is r = bm−12 c.

Proof. The Hamming distance between two permutations g and h is precisely
n−|Fix(gh−1)|, where Fix(g) is the set of points fixed by that permutation.
Using the group structure, the minimum distance of a permutation group G
of degree n is therefore equal to

n−max
g∈G
g 6=id

|Fix(g)|

(see [2] for further details). Now suppose G = Cm wr Sn. Each copy of
{1, . . . ,m} forms an imprimitivity block for G, and furthermore if an element
of G fixes one point in a block, it must fix all m points in that block.
Consequently, the maximum number of fixed points is (n − 1)m (it is easy
to construct elements with this many), therefore the minimum distance is
nm− (n− 1)m = m, and so the correction capability is r = bm−12 c. �

2. The decoding algorithm

The decoding algorithm we give below makes use of the relatively straight-
forward combinatorial structure of the group G = Cm wr Sn. Since the
group permutes n imprimitivity blocks of size m, a permutation in G when
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written in list form can be divided into n blocks of length m. The ordering
of the blocks gives the action of Sn on the imprimitivity blocks, and the
(cyclic) ordering of the symbols within a block gives the corresponding ele-
ment of Cm. Thus each position effectively holds two pieces of information
which are constant throughout that block: a block label and a cyclic shift.

Example 2. The following permutation is an element of C5 wr S4:

[7, 8, 9, 10, 6 | 15, 11, 12, 13, 14 | 20, 16, 17, 18, 19 | 5, 1, 2, 3, 4].

As can be seen, the permutation splits into four blocks of length five, con-
taining 1, . . . , 5, 6, . . . , 10, etc.

Recall from Proposition 1 that the correction capability is r = bm−12 c.
Consequently, if we assume there to be a maximum of r errors, there will be
a majority of positions in each block which contain the correct symbol. The
decoding algorithm uses this fact: the majority of the block labels and the
majority of the cyclic shifts will be correct, so this allows the reconstruction
of the transmitted word.

If a list L has a unique most frequently-occurring element, we denote it
by majority(L).

Algorithm 3. Input the received word w = [w1|w2| · · · |wn], where wi =
[wi1, . . . , wim]. For each i and j, we calculate qij and sij where wij = mqij +
sij (where 0 ≤ qij ≤ n − 1 and 0 ≤ sij ≤ m − 1), then map wij to a pair
(bij , cij) as follows:

bij :=

{
qij if sij 6= 0
qij − 1 if sij = 0

cij := sij − j mod m

(where cij ∈ {0, . . . ,m − 1}). Defining b̂i = majority[bi1, . . . , bim] and ĉi =

majority[ci1, . . . , cim] for each i, the list [b̂1, . . . , b̂n] gives a permutation of
{0, 1, . . . , n − 1} corresponding to the element of Sn acting on the blocks,
and the list [ĉ1, . . . , ĉn] gives the cyclic shifts within each block. We can
then reconstruct the original permutation g := [g1|g2| · · · |gn], where gi =

[gi1, . . . , gim], gij = mb̂i+ tij and tij = j+ ĉi mod m. (Note that we assume
tij ∈ {1, . . . ,m}.1)

Example 4. Suppose we transmit the following element g ∈ C5 wr S4:

[7, 8, 9, 10, 6 | 15, 11, 12, 13, 14 | 20, 16, 17, 18, 19 | 5, 1, 2, 3, 4].

Then suppose we receive the following word w:

[17, 1, 9, 10, 6 | 15, 11, 12, 13, 14 | 20, 16, 17, 18, 19 | 5, 1, 2, 3, 4].

This clearly has errors in positions 1 and 2. Having split this into four blocks
of length five, we obtain the data shown in Table 1.

1This is done to reconcile two conventions, namely that permutations are of the set
{1, . . . ,m} while modular arithmetic is performed on the set {0, . . . ,m− 1}.
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Table 1. Data obtained during decoding in Example 4

i j wij (bij , cij) i j wij (bij , cij)

0 1 17 (3,1) 2 1 20 (3,4)

0 2 1 (0,4) 2 2 16 (3,4)

0 3 9 (1,1) 2 3 17 (3,4)

0 4 10 (1,1) 2 4 18 (3,4)

0 5 6 (1,1) 2 5 19 (3,4)

1 1 15 (2,4) 3 1 5 (0,4)

1 2 11 (2,4) 3 2 1 (0,4)

1 3 12 (2,4) 3 3 2 (0,4)

1 4 13 (2,4) 3 4 3 (0,4)

1 5 14 (2,4) 3 5 4 (0,4)

Taking the “majority” elements, we find the block permutation β =
[1, 2, 3, 0] and cyclic shifts of [1, 4, 4, 4]. We have the information needed to
reconstruct the transmitted permutation: for instance with i = 0 and j = 1,

we have b̂0 = 1, ĉ0 = 1, t01 = 1 + 1 mod 5 = 2 and so g01 = 1× 5 + 2 = 7.
Performing these calculations for each i and j, we can recover the transmit-
ted permutation:

[7, 8, 9, 10, 6 | 15, 11, 12, 13, 14 | 20, 16, 17, 18, 19 | 5, 1, 2, 3, 4].

We conclude this section by mentioning that the first author has imple-
mented this algorithm in the computer algebra system GAP [9].

3. Complexity

We recall that Algorithm 3 has three parts: calculating the numbers
(bij , cij), which involves integer arithmetic; determining the most frequently-

occurring elements b̂i and ĉi; and reconstructing the decoding permutation g,
which involves more integer arithmetic. In order to determine the complexity
of this algorithm, there are some assumptions we need to make first.

• integer arithmetic can be done via a look-up table, in constant time;
• comparing the sizes of two integers can be done in constant time;
• finding position i in a list of length k takes O(log k) time.

However, the second step is more complicated and requires the following
lemma.

Lemma 5. Let L be a list of length m with symbols chosen from S =
{1, . . . , k}. Suppose L has a unique most frequently occurring element x ∈ S.
Then the time taken to determine x is O(k +m log k).
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Proof. We begin by producing an auxiliary list K of length k, initially set
to [0, 0, . . . , 0]. This takes k units of time. We then work through each of
the positions of L: in each position, we do as follows:

• read the symbol, i, (taking one unit of time);
• find position i in K (taking O(log k) time);
• increment that entry by 1 (taking one unit of time).

This turns K into a list of the frequencies of each symbol in S in the list
L. Doing this for each of the m entries of L requires a total of O(m log k)
time units. We then work through K to find the position of the maximum
element. This will require O(k) comparisons. Combining this, we have
O(k) + O(m log k) + O(k) = O(k +m log k) as required. �

We observe that the method described above is not necessarily the best
possible; other methods may be faster, and which method is the best may
depend on factors such as the relative sizes of m and k. However, we now
use it to determine the time complexity of Algorithm 3.

Theorem 6. The time required to perform Algorithm 3 is O(mn logm) (if
m ≥ n) or O(n2 +mn log n) (if m ≤ n).

Proof. The first stage is the calculation of the numbers (bij , cij). There are
mn such calculations to perform, and we have assumed that each takes a
constant amount of time, requiring a total of O(mn) time units.

The next stage is, in each block i, to determine the most frequently occur-

ring block label b̂i and most frequently occurring cyclic shift ĉi. This involves
determining the most frequently occurring element in a list of length m with
symbols chosen from a set of size n (for the block labels) and from a list of
length m with symbols chosen from a set of size m (for the cyclic shifts).
By Lemma 5 above, the first of these will take O(n + m log n) time units,
the second O(m+m logm). As this has to be done in each of n blocks, this
gives a total of O(n2 +mn log n+mn+mn logm).

The final stage is the reconstruction of g, which requires m integer arith-
metic operations in each of the n blocks. As we have assumed that integer
arithmetic takes constant time, this requires a total of O(mn) time. So the
total time required is O(mn) + O(n2 +mn log n+mn+mn logm) + O(mn).
If m ≥ n, this reduces to O(mn+mn logm) = O(mn logmn), while if m ≤ n
it reduces to O(n2 +mn log n), as required. �

We should also consider the space complexity of Algorithm 3. This time,
we require a look-up table for our integer arithmetic, and there are also
items that have to be stored whilst the algorithm is being performed.

Proposition 7. The amount of storage space required by the decoding algo-
rithm is O(mn2), and the space required to perform the algorithm is O(mn).

Proof. We need to store a look-up table, where for each of the mn symbols,
for n possible divisors we record a quotient/remainder pair. This requires
a total of 2mn2 = O(mn2) storage units. To perform the algorithm, we
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need to store mn quotient/remainder pairs, then the two auxiliary lists (one
of length m and one of length n) to find their most frequently-occurring
element, and need mn units to store the reconstructed group element. This
gives a total of 2mn+m+ n+mn = O(mn) units. �

In [2], a more general decoding algorithm was given, which works for
arbitrary permutation groups; also in [2] its complexity was analysed in a
similar fashion to the above. In the case where the group is the generalised
hyperoctahedral group Cm wr Sn, bounds on the time and space complexity
for the more general algorithm are given by O(m2n2) and O(m3n3) respec-
tively. Thus, from the point of view of a worst-case analysis, Theorem 6 and
Proposition 7 suggest that Algorithm 3 is an improvement. (Both algorithms
require O(mn) space to perform the algorithm.)

4. Enumerating correctible error patterns

Suppose we have transmitted a permutation g ∈ Cm wr Sn and obtained
the received word w, which contains errors. The error pattern of w is the
subset of the positions {1, . . . ,mn} where the errors are situated. Formally,
a k-error pattern is a subset of {1, . . . ,mn} of size k.

We observe that Algorithm 3 will successfully decode w if there are a
majority of correct elements in each block. Consequently, there will be error
patterns of size at most nr that can successfully be corrected (where r =
bm−12 c), regardless of what the erroneous symbols are. We call an error
pattern correctible if it contains no more than r errors in each block. In this
section, we investigate how many such patterns there are.

Before we do so, we remark that for a given transmitted permutation g
there are received words whose error patterns are not correctible, but which
still can be decoded by Algorithm 3, depending on the nature of the erro-
neous symbols. For instance, consider Example 4, but suppose the received
word w begins [7, 8, 6, 15, 1 | . . . ]. Three positions in that block contain
errors (so the pattern is not correctible), yet Algorithm 3 would determine
the correct block label and cyclic shift. On the other hand, if the received
word w begins [7, 8, 1, 1, 1 | . . . ], the error pattern is the same, but Algo-
rithm 3 would fail. In the remainder of the paper, we are only concerned
with correctible error patterns.

For positive integers k, n and r, define Pn,r(k) to be the set of all partitions
of the integer k into at most n parts, and where each part has size at most
r. For π ∈ Pn,r(k), we denote the number of parts of size i by fi(π) (so that∑
fi(π) ≤ n). We also define a quantity ci(π) to be

ci(π) =
i−1∑
j=1

fj(π)

for i ≥ 2, with c1(π) = 0. That is, ci(π) is the number of parts in π of size
strictly less than i.
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Proposition 8. For a word in Cm wr Sn, and for k ≤ nr, the number of
k-error patterns which are correctible is given by

En,m,r(k) =
∑

π∈Pn,r(k)

r∏
i=1

(
n− ci(π)

fi(π)

)(
m

i

)fi(π)
.

Proof. For a k-error pattern to be correctible, the errors can be spread across
up to n blocks, as long as there are no more than r errors in each block. So
for a given partition π ∈ Pn,r(k), for each part of π we have to choose (i)
which block contains that many errors and (ii) where in that block they lie.
Working through i in increasing order, for each i there are n− ci(π) blocks
remaining, of which we choose fi(π) (corresponding to the fi(π) parts of
size i). Then in each of the fi(π) blocks we have chosen, we choose i error
positions from the m available. �

Note that if k > nr, the set Pn,r(k) is empty, so En,m,r(k) = 0.
While this is a tidy combinatorial expression for the desired quantity

En,m,r(k), its behaviour cannot easily be seen, especially as we wish to com-
pare it with the total number of k-error patterns

(
mn
k

)
. A first step would

be to find a recurrence relation.

Lemma 9. The numbers En,m,r(k) satisfy the recurrence relation

En,m,r(k) =

r∑
l=0

(
m

l

)
En−1,m,r(k − l).

Proof. Suppose there are l errors in the nth block; there are
(
m
l

)
ways of

arranging these. Then there are k − l errors in the remaining n− 1 blocks,
so there are En−1,m,r(k − l) ways of arranging these. Summing over all
possible values of l ≤ r, we obtain the required relation. �

This recurrence relation assists us in studying the generating function for
En,m,r(k). Let En,m,r(x) denote this function, that is

En,m,r(x) =
∑
k≥0

En,m,r(k) xk,

and define

Fm,r(x) =
r∑
l=0

(
m

l

)
xl.

Proposition 10. The generating function En,m,r(x) can be rewritten as

En,m,r(x) = (Fm,r(x))n .
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Proof. Applying Lemma 9 and re-summing, we obtain

En,m,r(x) =
∑
k≥0

En,m,r(k)xk

=
∑
k≥0

r∑
l=0

(
m

l

)
En−1,m,r(k − l)xk−lxl

=

(
r∑
l=0

(
m

l

)
xl

)
En−1,m,r(x).

By iterating this, and with the observation that E0,m,r(x) = 1, we have

En,m,r(x) =

(
r∑
l=0

(
m

l

)
xl

)n
as required. �

The probability that a k-error pattern is correctible is then given by

pn,m,r(k) = En,m,r(k)/
(
nm
k

)
,

as the number of all possible k-error patterns is
(
nm
k

)
, of which En,m,r(k)

are correctible.
From the point of view of applications it is perhaps more useful to consider

the probability Pn,m,r(p) that a received word has a correctible error pattern,
under the assumption that an individual error occurs with probability p. In
other words, we consider a probabilistic model in which the number k of
errors is binomially distributed, k ∼ B(mn, p), so that the expected number
of errors is given by pmn.

Proposition 11. For a word in Cm wr Sn, if an individual error occurs
with probability p then the probability that its error pattern is correctible is
given by

Pn,m,r(p) = (1− p)mnEn,m,r (p/(1− p)) .

Proof. An error pattern is correctible if there are at most r errors in each
block. The probability that exactly l errors occur in a block of size m is
given by

(
m
l

)
pl(1 − p)m−l, so that the probability that there are at most r

errors in each of n blocks is given by

Pn,m,r(p) =

(
r∑
l=0

(
m

l

)
pl(1− p)m−l

)n
,

which gives the desired expression. �

Of course these two probabilistic models are not equivalent.
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5. Asymptotic analysis

5.1. Asymptotics of pn,m,r(k) for Cm wr Sn as n → ∞. Let us focus on
the asymptotics of pn,m,r(k) when the error frequency k/mn is fixed. Here,
we will discuss the case where n→∞ as m is fixed.

We first give an expression for En,m,r(k) which is amenable to asymptotic
treatment.

Lemma 12.

En,m,r(k) =
1

2πi

∮
(Fm,r(z))

n dz

zk+1
,

where the contour of integration is a counterclockwise circle about the origin.

Proof. This follows directly from Proposition 10 and the Cauchy Integral
Formula. �

An asymptotic analysis of the integral in Lemma 12 is obtained from a
saddle-point approximation. (See Flajolet and Sedgewick [8] for background
material on this technique.) For n and k large, the behaviour of the integral
is determined by the exponential of

n logFm,r(z)− k log z .

There is a unique positive saddle ζ given by

0 =
d

dζ

[
logFm,r(ζ)− k

n
log ζ

]
,

and the asymptotics are obtained by approximating the integrand around
the saddle by a Gaussian. This is the content of Theorem VIII.8 of [8],
which we use to obtain the following result.

Proposition 13. Let λ = k/n be a fixed positive number with 0 < λ < r,
let ζ be the unique positive root of the equation

ζ
F ′m,r(ζ)

Fm,r(ζ)
= λ ,

and let

ξ =
d2

dζ2

[
logFm,r(ζ)− k

n
log ζ

]
.

Then, with k = λn an integer, one has, as n→∞,

En,m,r(k) =
Fm,r(ζ)n

ζk+1
√

2πnξ
(1 + o(1)) .

In addition, a full expansion in descending powers of n exists. These esti-
mates hold uniformly for λ in any compact interval of [0, r].

Proof. One easily checks that the conditions of Theorem VIII.8 in [8] are
satisfied. �

Fixing m and the fraction of errors k/mn = λ/m, this allows us to control
the asymptotics of pn,m,r(k) for large n.
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Figure 1. The probability pn,m,r(k) that a k-error pattern
is correctible versus the error frequency k/mn for Cm wr Sn,
when m = 5 (and thus r = b5−12 c = 2). Shown is a compari-
son of the exact values (shown as points) and the asymptotic
result (shown as curves) from Proposition 13 for n = 8, 16,
and 32 (from right to left).

Example 14. Figure 1 shows the probability pn,m,r(k) that a k-error pat-
tern is correctible for Cm wr Sn, for three different values of n and when
m = 5 (and thus r = b5−12 c = 2). To reduce the error in the asymptotic
formula for small values of k, we replace both the numerator En,m,r(k) and
denominator

(
nm
k

)
of pn,m,r(k) by the respective leading terms of the as-

ymptotic expansion given by Proposition 13 (for the denominator we use
r = m). One expects heuristically that first-order corrections to the lead-
ing asymptotics will largely cancel each other. Numerically this seems to
be confirmed, as even for moderate values of n the agreement between the
asymptotic result and the exact values is remarkably good.

5.2. Asymptotics of Pn,m,r(p) for Cm wr Sn as m → ∞. Let us now
consider the asymptotics of Pn,m,r(p), given that the probability p of a single
error is fixed. Here, we will discuss the case of m→∞ as n is fixed.

To deal with the truncated binomial sum Fm,r(x), we will use the following
integral formulation.
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Lemma 15.

Fm,r(x) =
1

2πi

∮
(1 + sx)m

ds

sr+1(1− s)
,

where the contour of integration is a clockwise circle about the origin of
radius less than one.

Proof. Expand the integrand as a power series in s (which is absolutely
convergent for |s| < 1) and integrate term-by-term. �

As in the previous subsection, an asymptotic analysis of the integral in
Lemma 15 is obtained from a saddle-point approximation. For m and r
large, the behaviour of the integral is determined by the exponential of

m log(1 + sx)− r log s .

There is a unique saddle σ given by

0 =
d

dσ

[
log(1 + σx)− r

m
log σ

]
,

namely,

σ =
1

x

r

m− r
.

Importantly, the saddle collides with the amplitude critical point s = 1
when x = r/(m − r). This changes the asymptotic behaviour significantly,
and we need a uniform asymptotic expansion to take this into considera-
tion. The standard procedure here is to re-parameterise the contour by a
quadratic, i.e.,

log(1 + sx)− r

m
log s = − t

2

2
− γt+ δ ,

where γ and δ are determined by matching the location of the saddle point
s = σ with t = −γ, and the location of the critical point s = 1 with t = 0.

In the following result, erfc denotes the complementary error function,
which is defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt.

We shall also need

ρ(β, x) =
√

log(1 + x)− β log x− h(β)

where

h(β) = −β log β − (1− β) log(1− β) ,

and

A(β, x) =
1√

β(1− β)

(
1− β

x(1− β)

) − 1√
2ρ(β, x)

.

Note that the radicand in ρ(β, x) has a quadratic zero at x = β/(1− β), and
that the correct sign has to be chosen to make ρ(β, x) an analytic function
near that point.
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Proposition 16. Let β = r/m be a fixed positive number with 0 < β < 1.
Then, with r = βm an integer, we have, as m→∞,

Fm,r(x) = (1 + x)m
[

1

2
erfc(
√
mρ(β, x)) +

A(β, x)√
2mπ

e−mρ(β,x)
2

]
(1 + o(1)) .

In addition, a full expansion in descending powers of m exists. These esti-
mates hold uniformly for β in any compact interval of [0, 1] and x in any
compact domain of C \ R−.

Proof. This result follows from equation (9.4.22) in Section 9.4 of Bleistein
and Handelsman [5] (with r = 0). �

As an alternative to using Lemma 15, one could have written Fm,r(x) in
terms of an incomplete Beta function and used results of Temme [13].

The main result now follows immediately from Propositions 11 and 16.

Corollary 17. As m→∞, we have

Pn,m,r(p) =

1

2
erfc

(
√
mρ

(
r
m
, p
1−p

))
+
A
(
r
m ,

p
1−p

)
√

2mπ
e
−mρ

(
r
m
, p
1−p

)2

n(1 + o(1)) .

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 2. Shown are six curves: for m = 8, 16 and 32 (from
left to right), the respective curves for Pn,m,r(p) and for the
asymptotic result from Proposition 17 are barely distinguish-
able.
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Example 18. As we consider r = bm−12 c, asymptotically β = 1/2, but
even for small values of m, such as m = 8 and β = 3/8, the expression in
Proposition 16 provides a surprisingly accurate approximation, as can be
seen from Figure 2.

6. Conclusion

In this note we have introduced a new algorithm for decoding the gen-
eralised hyperoctahedral group Cm wr Sn. If n � m, the performance of
the algorithm is better from both the complexity perspective and from the
number of correctible error patterns, when compared to the case n� m.

In particular, for large m the complexity of the algorithm is O(m logm),
whereas it is O(n2) for large n. As is evident from Proposition 11, the
number of correctible error patterns is a monotonically decreasing function
of n (this behaviour is demonstrated in Figure 1). On the other hand, using
the properties of the complementary error function one can deduce from
Corollary 17 that for p < r/m the number of correctible error patterns
increases monotonically as a function of m for m sufficiently large (this
behaviour is demonstrated in Figure 2).

The results of the asymptotic analysis in Section 5 give reasonable approx-
imations even for moderately small values of m and n. Extending Proposi-
tion 16, it is possible to give refined asymptotic estimates which are uniform
in m and n.

As another direction, one could consider replacing the group Cm wr Sn
with another wreath product, and modifying the algorithm to suit. First,
one could replace the symmetric group Sn with another group K; however,
this would give a much smaller number of codewords, and also the decoding
algorithm would need to include a “membership-testing” algorithm (see Holt
et al. [10]) to check whether the decoded permutation was an element of K.
Second, one could replace the cyclic group with another group H; however,
this would require a more sophisticated decoding process.
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