334 research outputs found

    Error Performance Of Super-Orthogonal Space-Time Trellis Codes with Transmit Antenna Selection

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    SUPER ORTHOGONAL SPACE TIME TRELLIS CODES OVER NAKAGAMI FADING MODEL

    Get PDF
    Performance evaluation of super orthogonal space-time trellis codes for non-frequency selective fading channels & frequency selective fading channels. The analysis is done in presence of fast fading, block fading and quasi-static fading in Rayleigh, and Nakhagami fast fading channels along with comparison. While providing full diversity and full rate, the structure of our new codes allows an increase in the coding gain. Not only does our new SOSTTC outperform the space-time trellis codes in the literature, but it also provides a systematic method for designing space time trellis codes at different rates and for different trellises. Since we have used orthogonal designs as the building blocks in our new SOSTTCs, the complexity of the decoding remains low while full diversity is guaranteed. Codes operating at different rates, up to the highest theoretically possible rate, for different number of states, can be designed by using our optimal set partitioning. In general, new SOSTTCs can provide a tradeoff between rate and coding gain while achieving full diversity

    New super-orthogonal space-time trellis codes using differential M-PSK for noncoherent mobile communication systems with two transmit antennas

    Get PDF
    In this paper, we develop super-orthogonal space-time trellis codes (SOSTTCs) using differential binary phase-shift keying, quadriphase-shift keying and eight-phase shift keying for noncoherent communication systems with two transmit antennas without channel state information at the receiver. Based on a differential encoding scheme proposed by Tarokh and Jafarkhani, we propose a new decoding algorithm with reduced decoding complexity. To evaluate the performance of the SOSTTCs by way of computer simulations, a geometric two-ring channel model is employed throughout. The simulation results show that the new decoding algorithm has the same decoding performance compared with the traditional decoding strategy, while it reduces significantly the overall computing complexity. As expected the system performance depends greatly on the antenna spacing and on the angular spread of the incoming waves. For fair comparison, we also design SOSTTCs for coherent detection of the same complexity as those demonstrated for the noncoherent case. As in the case of classical single antenna transmission systems, the coherent scheme outperforms the differential one by approximately 3 dB for SOSTTCs as well

    HybridConcatenated Coding Scheme for MIMO Systems

    Get PDF
    Abstract: Inthis paper, two hybrid concatenated super-orthogonal space-time trellis codes(SOSTTC) applying iterative decoding are proposed for flat fading channels. Theencoding operation is based on the concatenation of convolutional codes,interleaving and super-orthogonal space-time trellis codes. The firstconcatenated scheme consists of a serial concatenation of a parallelconcatenated convolutional code with a SOSTTC while the second consists ofparallel concatenation of two serially concatenated convolutional and SOSTTCcodes. The decoding of these two schemes is described, their pairwise errorprobabilities are derived and the frame error rate (FER) performances areevaluated by computer simulation in Rayleigh fading channels. The proposedtopologies are shown to perform better than existing concatenated schemes with aconstituent code of convolutional andspace-time codes in literature

    Improving the performance of free space optical systems: a space-time orthogonal frequency division modulation approach

    Get PDF
    Free space optical (FSO) communication systems are known for high capacity and information security. The overall system performances of FSO systems are however significantly affected by atmospheric turbulence induced fading. This paper, therefore, proposes a technique to mitigate this effect through the introduction of an additional degree of error correction capacity by exploiting the spectral dimension in the coding space. A space-time trellis coded orthogonal frequency division modulation (OFDM) scheme was developed, simulated and evaluated for optical communication through a Gamma-Gamma channel. The evaluation of the coding gain obtained from the simulation results, the mathematical analysis and the truncation error analysis shows that the proposed technique is a promising and viable technique for improving the error correction performance of space-time codes for free space optical communication links

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Golden Space-Time Trellis Coded Modulation

    Full text link
    In this paper, we present a concatenated coding scheme for a high rate 2Ă—22\times 2 multiple-input multiple-output (MIMO) system over slow fading channels. The inner code is the Golden code \cite{Golden05} and the outer code is a trellis code. Set partitioning of the Golden code is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding. In order to compute the branch metrics a lattice sphere decoder is used. The general framework for code optimization is given. The performance of the proposed concatenated scheme is evaluated by simulation. It is shown that the proposed scheme achieves significant performance gains over uncoded Golden code.Comment: 33 pages, 13 figure

    Super-orthogonal space-time turbo codes in Rayleigh fading channels.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.The vision of anytime, anywhere communications coupled by the rapid growth of wireless subscribers and increased volumes of internet users, suggests that the widespread demand for always-on access data, is sure to be a major driver for the wireless industry in the years to come. Among many cutting edge wireless technologies, a new class of transmission techniques, known as Multiple-Input Multiple-Output (MIMO) techniques, has emerged as an important technology leading to promising link capacity gains of several fold increase in data rates and spectral efficiency. While the use of MIMO techniques in the third generation (3G) standards is minimal, it is anticipated that these technologies will play an important role in the physical layer of fixed and fourth generation (4G) wireless systems. Concatenated codes, a class of forward error correction codes, of which Turbo codes are a classical example, have been shown to achieve reliable performance which approach the Shannon limit. An effective and practical way to approach the capacity of MIMO wireless channels is to employ space-time coding (STC). Space-Time coding is based on introducing joint correlation in transmitted signals in both the space and time domains. Space-Time Trellis Codes (STTCs) have been shown to provide the best trade-off in terms of coding gain advantage, improved data rates and computational complexity. Super-Orthogonal Space-Time Trellis Coding (SOSTTC) is the recently proposed form of space-time trellis coding which outperforms its predecessor. The code has a systematic design method to maximize the coding gain for a given rate, constellation size, and number of states. Simulation and analytical results are provided to justify the improved performance. The main focus of this dissertation is on STTCs, SOSTTCs and their concatenated versions in quasi-static and rapid Rayleigh fading channels. Turbo codes and space-time codes have made significant impact in terms of the theory and practice by closing the gap on the Shannon limit and the large capacity gains provided by the MIMO channel, respectively. However, a convincing solution to exploit the capabilities provided by a MIMO channel would be to build the turbo processing principle into the design of MIMO architectures. The field of concatenated STTCs has already received much attention and has shown improved performance over conventional STTCs. Recently simple and double concatenated STTCs structures have shown to provide a further improvement performance. Motivated by this fact, two concatenated SOSTTC structures are proposed called Super-orthogonal space-time turbo codes. The performance of these new concatenated SOSTTC is compared with that of concatenated STTCs and conventional SOSTTCs with simulations in Rayleigh fading channels. It is seen that the SOST-CC system outperforms the ST-CC system in rapid fading channels, whereas it maintains performance similar to that in quasi-static. The SOST-SC system has improved performance for larger frame lengths and overall maintains similar performance with ST-SC systems. A further investigation of these codes with channel estimation errors is also provided

    Performance analysis of channel codes in multiple antenna OFDM systems

    Get PDF
    Multiple antenna techniques are used to increase the robustness and performance of wireless networks. Multiple antenna techniques can achieve diversity and increase bandwidth efficiency when specially designed channel codes are used at the scheme’s transmitter. These channel codes can be designed in the space, time and frequency domain. These specially designed channel codes in the space and time domain are actually designed for flat fading channels and in frequency selective fading channel, their performance may be degraded. To counteract this possible performance degradation in frequency selective fading channel, two main approaches can be applied to mitigate the effect of the symbol interference due to the frequency selective fading channel. These approaches are multichannel equalisation and orthogonal frequency division multiplexing (OFDM). In this thesis, a multichannel equalisation technique and OFDM were applied to channel codes specially designed for multiple antenna systems. An optimum receiver was proposed for super-orthogonal space-time trellis codes in a multichannel equalised frequency selective environment. Although the proposed receiver had increased complexity, the diversity order is still the same as compared to the code in a flat fading channel. To take advantage of the multipath diversity possible in a frequency selective fading channel, super-orthogonal block codes were employed in an OFDM environment. A new kind of super-orthogonal block code was proposed in this thesis. Super-orthogonal space-frequency trellis-coded OFDM was proposed to take advantage of not only the possible multipath diversity but also the spatial diversity for coded OFDM schemes. Based on simulation results in this thesis, the proposed coded OFDM scheme performs better than all other coded OFDM schemes (i.e. space time trellis-coded OFDM, space-time block coded OFDM, space-frequency block coded OFDM and super-orthogonal space-time trellis-coded OFDM). A simplified channel estimation algorithm was proposed for two of the coded OFDM schemes, which form a broad-based classification of coded OFDM schemes, i.e. trelliscoded schemes and block-coded schemes. Finally in this thesis performance analysis using the Gauss Chebychev quadrature technique as a way of validating simulation results was done for super-orthogonal block coded OFDM schemes when channel state information is known and when it is estimated. The results obtained show that results obtained via simulation and analysis are asymptotic and therefore the proposed analysis technique can be use to obtain error rate values for different SNR region instead of time consuming simulation.Thesis (PhD)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte
    • …
    corecore