19 research outputs found

    Reduced-Complexity Noncoherently Detected Differential Space-Time Shift Keying

    No full text
    Motivated by the recent development of Spatial Modulation (SM) and Differential Space-Time Shift Keying (DSTSK), we propose a reduced-complexity Conventional Differential Detector (CDD) as well as its reduced-complexity Multiple-Symbol Differential Sphere Detector (MSDSD) counterpart for DSTSK. Both schemes operate on a symbol-by-symbol basis in order to reduce the complexity of the classic block-by-block-based CDD and MSDSD, whilst still approaching the optimum performance of the full-search-based Maximum Likelihood (ML) detector. More explicitly, we carefully consider the objective function to be used for decoding the index of the specific antenna activated by taking into account the particular modulation scheme employed. Our simulation results demonstrate that the proposed CDD and MSDSD designed for DSTSK guarantee a significant complexity reduction compared to the classic block-based decoders, especially for high-rate DSTSK schemes, which is achieved without a performance penalty

    Multiple-Symbol Differential Sphere Detection Aided Successive Relaying in the Cooperative DS-CDMA Uplink

    No full text
    The conventional amplify-and-forward cooperative system is capable of achieving a superior performance with the aid of Multiple-Symbol Differential Sphere Detection (MSDSD), when compared to conventional differential detection (CDD) for transmission over time-selective channels. However, the conventional broadcast/cooperative twin-phase based relaying protocol encounters a 50% throughput loss imposed by half-duplex relaying. For combating this problem, in this paper, we create a MSDSD aided successive relaying based cooperative DS-CDMA system. We demonstrate that given the target BER of 10?4 , a diversity gain of up to 10 dB is achieved over the benchmark schemes employed without a throughput loss

    Selection Combiner in Time-Varying Amplify Forward Cooperative Communication

    Get PDF
    This research presents the diversity combining schemes for Multiple Symbol Double Differential Sphere Detection (MSDDSD) in a time-varying amplify-and-forward wireless cooperative communication network. Four diversity combiners, including direct combiner, Maximal Ratio Combiner (MRC), semi MRC and Selection Combiner (SC) are demonstrated and explained in details. A comprehensive error probability and outage probability performance analysis are carried through the flat fading Rayleigh environment for semi MRC and SC. Specifically, error performance analysis is obtained using the PDF for SC detectors. Finally, power allocation expression based on error performance minimization approach is presented for the proposed SC performance optimization. It is observed that the performance analysis matches well with the simulation results. Furthermore, the proposed SC scheme offers better performance among the conventional MRC and direct combiner schemes in the presence of frequency offsets

    Multiple-Symbol Differential Detection for Single-Antenna and Multiple-Antenna Systems over Ricean-fading Channels

    Get PDF
    This paper considers multiple symbol differential detection (DD) for both single-antenna and multiple-antenna systems over flat Ricean-fading channels. We derive the optimal multiple symbol detection (MSD) decision rules for both Mary differential phase-shift keying (MDPSK) and differential unitary space-time modulation (DUSTM). The sphere decoder (SD) is adopted to solve the MSD for MDPSK. As well, an improved SD is proposed by using the Schnorr-Euchner strategy. A suboptimal MSD based decision feedback DD algorithm is proposed for the MSD of DUSTM. We also develop a sphere decoding bound intersection detector (SD-BID) to optimally solve the MSD problem for DUSTM, which still maintains low complexity. Simulation results show that our proposed MSD algorithms for both single-antenna and multiple-antenna systems reduce the error floor of conventional DD but with reasonably low computational complexity

    Multiple Symbol Double Differential Transmission for Amplify-and-Forward Cooperative Diversity Networks in Time-Varying Channel

    Get PDF
    In the cooperative diversity wireless networks, the task to perform cooperation communication amongst neighbouring nodes is very challenging. Subjected to rapidly increasing mobility of the nodes i.e. wireless devices in fast moving vehicles and trains, at the destination end the receiver may not ideally estimate the channel characteristics and frequency offsets. Due to these circumstances which results in time-varying channels, the performance network degrades drastically. In order to enhance the performance in such environment, Double Differential (DD) modulation employing multiple symbol based detection is proposed which takes mobility environment of different nodes into consideration. By utilizing the DD transmission approach, the channel properties and frequency offset estimation is omitted in the amplify-andforward cooperative networks. The MATLAB simulation and numerical analysis on Bit Error Rate (BER) are carried out with consideration on considering flat-fading (i.e. the frequency non-selective) Rayleigh channels and when frequency offsets. The results depict that the proposed method over fading channels without channel estimation requirements and in the presence of frequency offsets performs better as compared to the conventional DD transmission. Optimized power allocation is also carried out to enhance the network performance by minimizing the BER analytical expression. It is demonstrated that the proposed power allocation scheme offers enhancement over the equally distributed power allocation approach

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201
    corecore