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Abstract— This paper introduces the concept of equivalent
channel for mutual information performance analysis of multiple-
symbol differential MPSK (M -phase shift keying) over time-
correlated, time-varying flat-fading communication channels. It is
proven that differential detection scheme theoretically preserves
the channel information capacity when the observation interval
approaches infinity. A state space approach is used to model
time correlation of time varying channel phase. It is shown
that the differential decoding implicitly uses a sequence of
innovations of the channel process time correlation and this
sequence is essentially uncorrelated (i.i.d). It enables utilization
of multiple-symbol differential detection, as a form of block-
by-block maximum likelihood sequence detection for capacity
achieving mutual information performance.

I. I NTRODUCTION

Background and Motivation -This paper uses a model-
based, state-space approach for mutual information perfor-
mance analysis of multiple-symbol differential detection over
time-correlated, time-varying communication channels. In or-
der to calculate the information capacity of the differential
encoding/decoding scheme, this paper defines anequivalent
FSM (finite-state Markov) structure, which is based on the
state-space finite-state channel model and analytical expres-
sions for the differential encoder and decoder.

The differential detection creates dependency between con-
secutive receiver outputs [1], providing possibility to use the
correlation between the phase distortion experienced by differ-
ent transmitted PSK symbols. Conventionalsymbol-by-symbol
differential detection suffers from a performance penalty (ad-
ditional required SNR at a given bit error rate [2]) when
compared to ideal (perfect carrier phase reference) coherent
detection [1]. Howevermultiple-symboldifferential detection
[2]–[4] exploits the phase distortion correlation by using a
sequence ofN + 1 samples to detect jointlyN transmitted
symbols. In [5] it is shown that, assuming a constant channel
phase, there is no a fundamental advantage, in terms of
the achievable information rates, of using multiple-symbol
differential PSK or coherent PSK.

Motivated by the rather encouraging performance of the
multiple-symbol differential detection over the additive white
Gaussian noise (AWGN) channel [2], [3], [5], error perfor-

mance of multiple-symbol differential detection of PSK sig-
naling over time-correlated, time-varying flat-fading Rayleigh
channels is considered in [6], [7]. However, when analyzing
differential detection over time-varying flat-fading channels,
the literature limits attention to two extreme cases of modeling,
either assuming fading channel gain time variations are not
correlated, representing the most rapidly time-varying case [4],
or the time-variations are sufficiently slow that they are
virtually time-invariant over the observation interval as in the
block fading case [4], [8]. While independent fading model
underestimates the channel information capacity, the block
model does not enable an analysis of channel process time
correlation effects upon the mutual information performance.
In addition, given an infinitely long block, the block-model
degenerates to the time invariant channel and, hence, an over-
all information capacity analysis when observation interval
approaches infinity does not make sense. Thus, in order to
analyze mutual information performance related to channel
process time correlation, one needs more realistic models
which capture the time-varying channel time correlation prop-
erties.

This paper introduces and implements an autoregressive
(AR) state space model which is superior in modeling the
time correlation properties of time-varying fading channels
than either the independent fading model or the block fading
model, commonly find in the literature.

Contributons -

1) The concept of equivalent FSM channel is introduced
which enables capacity analysis of multiple-symbol
differential MPSK (M -phase shift keying) over time-
correlated, time-varying communication channels.

2) It is proven that the multiple-symbol differential detection
theoretically preserves the channel information capacity
when the observation time approaches infinity.

3) Simulation analysis confirms theoretical findings by
showing that multiple-symbol differential ML detection
of BPSK and QPSK practically achieves the channel
information capacity with observation times only on the
order of a few symbol intervals.
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II. SIGNAL MODEL

If a flat fading process is slow enough, so that it is
essentially constant over symbol intervals, thekth matched
filter output at the receiver side, for MPSK transmission, can
be represented as [1]

rk = gkuk + nk (1)

where rk is the received signal,gk is a correlated channel
fading process,uk is the transmitted MPSK signal andnk is
an i.i.d. complex-valued Gaussian noise process (AWGN). The
information symbolxk takes values in{0, 1, . . . , M−1} and
is mapped to the transmitted MPSK signal as

uk ,
√
Es exp(j2πxk/M) (2)

where Es is the energy per symbol. In general, the actual
realization of flat-fading gaingk in (1)

gk , Xk + jYk = ak exp(jθk) (3)

is unknown to the receivera priori. ak and θk denote the
channel amplitude and phase, respectively. This leads to a
statistical characterization of the fading channel.

III. STATE SPACETIME-VARYING CHANNEL PHASEMODEL

In order to use more realistic models, which are more con-
sistent with real propagation conditions than independent or
block fading models, our mutual information analysis assumes
an autoregressive finite-state Markov model to capture the
correlated nature of the time variations ofθk. This provides the
following advantages: 1) simplification; 2) ease of computer
modeling; 3) a simplified algebraic description of the channel
phase dynamics; but most importantly 4) the model falls in
a class for which one can facilitate the use of the forward-
backward algorithm enabling significant information theoretic
results to be brought to bare on the problem.

For the amplitude,ak, we assume it is an independent
(uncorrelated) time-varying fading channel amplitude pro-
cess. Our approach is supported by the BER performance
analysis in [9] and mutual information performance in [10]
which show that PSK receivers which rely on a simple
MMSE symbol-by-symbol amplitude estimation combined
with forward-backward phase estimation on the finite-state
Markov phase model, perform only slightly worse then having
perfect amplitude knowledge (amplitude CSI) at the receiver.

The time-varying flat-fading channel phase is partitioned
into M equiprobable, non-overlapping intervals. Each partition
corresponds to an FSM channel state which can be identified
with m ∈ {0, 1, . . . , M − 1} as follows [9]

θk ∈ Ω(m) ,
[2πm− π

M
,
2πm + π

M

)
⇐⇒ sk = m, (4)

whereθk andsk ∈ {0, 1, . . . , M − 1} are channel phase and
corresponding channel state, at time instantk, respectively.

Assuming an AR(1)M -state M -ary symmetric Markov
model for time correlated, time-varying flat-fading channel

phase and based on (1), (2) and (3), the state-space channel
model becomes

yk = sk ⊕ xk ⊕ vk (5a)

sk = sk−1 ⊕ ηk (5b)

where yk is the received signal phase,ηk is an M -ary
i.i.d. process noise,⊕ and ª are modulo-M addition and
subtraction, respectively andvk is M -ary phase noise.

The channel state law for each particular channel state
i ∈ {0, 1, . . . , M − 1}, is modeled as anM -ary symmetric
channel. For a given channel statesk = i at the time instant
k, crossover probabilitiespn,m(i), that yk = m is received if
xk = n is sent,n, m ∈ {0, 1, . . . , M − 1}, is given by

pn,m(i) = p(yk = m|xk = n, sk = i)
= p(i⊕ vk = nªm) = p(vk = nªmª i) (6)

Thereby, (6) is determined by probabilitiesp(vk = i), i ∈
{0, 1, . . . , M − 1}, which depend on statistical model used
for the channel gain amplitudeak in (3).

Statistics of process noise{ηk} is determined by state
transition probabilities of channel phase state process (4) as

qi,j= p(sk = j|sk−1 = i)

= M

∫∫

Ω(i)×Ω(j)

f(θk, θk−1) dθkdθk−1 (7)

The termf(θk, θk−1) in (7) is the probability density function
of flat-fading channel phase at consecutive time instantsk and
k−1, which depends on statistical model used for the channel
gain phase inθk (3).

It is important to notice that the time-varying channel phase
state process (5b) introduces channel phase correlation into the
signal phase observation process (5a).

IV. D IFFERENTIAL ENCODING AND DETECTION

Differential encoding ofM -ary sequencexk is given by

xk = bk ⊕ xk−1, k = 1, 2, 3 , . . . (8)

wherebk is kth raw information symbol andx0 is the reference
symbol.

The differentially encoded sequencexk (8) is transmitted
over the M -state,M -ary symmetric channel, given by the
state-space model (5a), (5b). Differential decoding of the
received signal phaseyk is performed as follows:

dk = yk ª yk−1

= [sk−1 ⊕ ηk ⊕ bk ⊕ xk−1 ⊕ vk]
ª [sk−1 ⊕ xk−1 ⊕ vk−1]

= bk ⊕ vk ª vk−1 ⊕ ηk = bk ⊕ εk ⊕ ηk (9)

Although the channel phase process is assumed to be
correlated (5b), sequencedk from (9) is determined by the
innovationηk = sk−sk−1 of the channel process (5b), which
is essentially i.i.d. (uncorrelated). It enables the adoption of
multiple-symbol differential detection for the case of time
uncorrelated channels, which exploits the phase distortion



correlation from the sequenceεk = vk − vk−1, by using a
sequence ofN + 1 samples to detect jointlyN transmitted
symbols.

V. EquivalentFSM CHANNEL

In order to analyze mutual information performance of the
differential encoding/detection scheme, we define anequiv-
alent FSM channel for a cascade which consists of the
differential encoder (8),M -state M -ary symmetric channel
and differential decoder (9). TheequivalentFSM structure is
based on the state-space model (5a), (5b) forM -state,M -ary
symmetric channel and expression (9).

The equivalentchannel state at time instantk, s
(e)
k can be

defined as

s
(e)
k = c

(e)
i,j = [vk = i, vk−1 = j],

where i, j ∈ {0, 1, . . . , M−1}, with a total number ofM2

states. The transition structure of theequivalentFSM channel
is given by

q
(e)
(M ·i+j),(M ·m+n) = p(s(e)

k = c(e)
m,n|s(e)

k−1 = c
(e)
i,j )

=
{

p(vk = m) for i = n
0 otherwise

(10)

wherei, j, m, n ∈ {0, 1, . . . , M − 1}.
The transition structure (10) (and its memory) is not deter-

mined by the original channel phase process correlation, but
by the phase noise sequence distributionp(vk = m).

Additionally, theequivalentFSM channel state law

p(e)
m,n(c(e)

i,j ) = p(dk = n|bk = m, s
(e)
k = c

(e)
i,j )

= p(ηk = nªmª i⊕ j) (11)

is determined by the distribution of innovationηk = sk−sk−1

of the phase process of the original channel.
Theorem 1:The information capacity of theequivalent

FSM channel is equal to the information capacity of the orig-
inal M -state,M -ary symmetric channel i.e., the differential
encoding/detection scheme is information lossless.

Proof: TheM -stateM -ary symmetric channel is uniformly
symmetric, variable noise channel [11] and assuming an input
distributionsp(X) that is uniform i.i.d., the channel informa-
tion capacity is given by [11]

C = log2 M − lim
N→∞

1
N + 1

H(ZN+1) (12)

Similarly, the equivalentchannel is uniformly symmetric,
variable noise channel and the channel information capacity
is

C(e) = log2 M − lim
N→∞

1
N

H(Z(e)N
) (13)

for an input distributionp(B), that is uniform i.i.d.Z in (12)
andZ(e) in (13) are error functions [11], for the original and
equivalentchannel, respectively andi, j ∈ {0, 1, . . . , M−1}.
H(·) is the entropy function [12].

For a stationary stochastic processZN [12]

lim
N→∞

1
N

H(ZN ) = lim
N→∞

H(ZN |ZN−1) (14)

By the chain rule [12],

(ZN ) =
N∑

i=1

H(Zi|Zi−1) (15)

and

lim
N→∞

H(ZN |ZN−1) = lim
N→∞

(
H(ZN )−H(ZN−1)

)
(16)

Combining (14) and (16), expression (12) becomes

C = log2 M − lim
N→∞

(
H(ZN+1)−H(ZN )

)
(17)

Similarly, (13) can be expressed

C(e) = log2 M − lim
N→∞

(
H(Z(e)N

)−H(Z(e)N−1
)
)

(18)

Lemma 1 in Appendix I proves that

H(ZN+1) = log2 M + H(Z(e)N
). (19)

Consequently,

H(ZN+1)−H(ZN ) = H(Z(e)N
)−H(Z(e)N−1

) (20)

Thus,C = C(e). �
Due to existence of the symbolx0, serving as a reference

for the differential codec,N -symbol observation interval for
the M -state,M -ary symmetric channel implicitly assumes a
N + 1-symbol observation interval for differential detection
and theequivalentchannel. However, the reference symbolx0

represents a negligible amount of information for the actual
information transfer.

The above result means there is a potential fundamental
advantage of using multiple-symbol differential detection over
coherent detection for time-correlated, time-varying commu-
nication channels in the presence of channel noise. Although
explicit or implicit (blind) channel estimation methods for
coherent detection exploit the time-varying channel process
correlation (memory) to improve channel estimation, coherent
detection may not be optimal (in terms of achievable mutual
information rate) in the presence of channel noise [13]. The
reason is that the time varying channel process is not com-
pletely observable in the presence of channel noise [14].

VI. SIMULATION ANALYSIS

Here we provide performance analysis of the maximum mu-
tual information rate versus the average received SNR per bit,
γb, for N -symbol differential detection of BPSK and QPSK.
Probabilitiesp(vk = i) in (5b) (which determines the channel
state law (6)), the probability density functionf(θk, θk−1) in
(7) (which determines the state transition probabilities (7)) and
γb = 2σ2Eb/N0 are calculated assuming Clarke’s model [15]
for the fading channel gain (3) with normalized fading power
2σ2 = 1.
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The maximum mutual information rateC(e)
N , for N -symbol,

multiple-symbol differential MPSK is calculated as

C
(e)
N = log2 M − 1

N
H(Z(e)N

) (21)

In order to calculate the entropyH(Z(e)N
), the distribution

p(Z(e)N |s(e)
0 ) is calculated recursively by using backward

iterative procedure formulated in [16].
Fig. 1 and Fig. 2 depict the mutual information rateC

(e)
N (21)

over average received SNR per bit,γb, for symbol-by-symbol
andN = 2, 3, 4-symbol differential BPSK (M=2) and QPSK
(M=4), respectively, for normalized fading ratefDTs = 0.001.
It is shown that practically, the channel information capacity

is approached with observation times only on the order of a
few symbol intervals.

APPENDIX I

Lemma 1:

H(ZN+1) = H(Z(e)N
) + log2 M (22)

Proof: Due to constellation and channel state symmetry of
the M -stateM -ary symmetric channel one can denotepm ,
pi,j and qm , qi,j for |j − i| = m. By using expressions
(11) and (10), the distribution of the error function sequence
Z(e)N

of the equivalentchannel, afterN time instants can be
expressed

p(Z(e)N
)

=
M−1∑

i=0

M−1∑

j=0

p(Z(e)N |s(e)
0 = c

(e)
i,j )p(s(e)

0 = c
(e)
i,j )

=
M−1∑

i=0

M−1∑

j=0

[M−1∑

k=0

M−1∑

`=0

p(Z(e)N
, s

(e)
N = c

(e)
k,`|s(e)

0 = c
(e)
i,j )

]
pi · pj

=
M−1∑

i=0

pi

[M−1∑

k=0

[M−1∑

`=0

p(Z(e)N
, s

(e)
N =c

(e)
k,`|s(e)

0 = c
(e)
i,0 )

]]
(23)

where the last equality follows from the fact that the transition
from the initial channel states(e)

0 = c
(e)
i,j = c

(e)
i,0 does not

depend onj by (10) and
∑M−1

j=0 pj = 1. Furthermore, applying
probability balancing, one can find

p(s(e)
0 = c

(e)
i,j ) = pi · pj . (24)

However, expression
∑M−1

`=0 p(Z(e)N
, s

(e)
N = c

(e)
k,`|s(e)

0 =
c
(e)
i,0 ) in (23), can be calculated by using backward recursion.

The recursion starts

M−1∑

`=0

p(Z(e)N
, s

(e)
N = ck,`|s(e)

0 = ci,0)

=
M−1∑

`=0

p(Z(e)
N , Z(e)N−1

, s
(e)
N = c

(e)
k,`|s(e)

0 = c
(e)
i,0 )

=
M−1∑

`=0

M−1∑
n=0

M−1∑
t=0

p(Z(e)N−1
, s

(e)
N−1 = c

(e)
n,t|s(e)

0 = c
(e)
i,0 )

· p(Z(e)
N |s(e)

N = c
(e)
k,`) · p(c(e)

k,`|c(e)
n,t) (25)

= pk ·
M−1∑

`=0

q
(Z(e)|c(e)

k,`)
·
M−1∑
t=0

p(Z(e)N−1
, s

(e)
N−1 = c

(e)
`,t |s(e)

0 = c
(e)
i,0 )



and ends by

M−1∑

`=0

p(Z(e)
1 , s

(e)
1 = c

(e)
k,`|s(e)

0 = c
(e)
i,j )

=
M−1∑

`=0

p(Z(e)
1 |s(e)

1 = c
(e)
k,`)p(s(e)

1 = c
(e)
k,`|s(e)

0 = c
(e)
i,j )

= p(Z(e)
1 |s(e)

1 = c
(e)
k,i)p(s(e)

1 = c
(e)
k,i |s(e)

0 = c
(e)
i,j )

= pk · q(Z(e)|c(e)
k,i)

(26)

where q
(Z(e)|c(e)

k,i)
= p(Z(e)|s(e) = c

(e)
k,`) is the equivalent

channel state law for the channel statec
(e)
k,i , given by (11).

Combining expression (23) with (25) and (26), one can write

p(Z(e)N
) =

M−1∑

i=0

pi

M−1∑

k=0

pk

M−1∑

`=0

q
(Z(e)|c(e)

k,`)
· p`

M−1∑
t=0

q
(Z(e)|c(e)

`,t )

· pt · ... ·
M−1∑
v=0

q
(Z(e)|c(e)

m,v)
· pv · q(Z(e)|c(e)

v,i)

=
M−1∑

k=0

pk

M−1∑

`=0

q
(Z(e)|c(e)

k,`)
· p`

M−1∑
t=0

q
(Z(e)|c(e)

`,t )
(27)

· pt · ... ·
M−1∑
v=0

q
(Z(e)|c(e)

m,v)
· pv

M−1∑

i=0

pi · q(Z(e)|c(e)
v,i)

Furthermore, for the M-state, M-ary symmetric channel

M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)

=
M−1∑

i=0

M−1∑

k=0

p(zN+1 = m, ZN , sN = k|s0 = i)

=
M−1∑

i=0

M−1∑

k=0

p(ZN , sN = k|s0 = i) · p(zN+1 = m|sN = k)

=
M−1∑

i=0

M−1∑

k=0

p(ZN , sN = k|s0 = i)

·
M−1∑

`=0

p(zN+1 = m|sN+1 = `) · p(sN+1 = `|sN = k)

=
M−1∑

i=0

M−1∑

k=0

p(ZN , sN = k|s0 = i)
M−1∑

`=0

p|m−`|q|`−k|

=
M−1∑

`=0

p|m−`|
M−1∑

k=0

q|`−k|
[M−1∑

i=0

p(ZN , sN = k|s0 = i)
]

(28)

However, expression
∑M−1

i=0 p(ZN , sN = k|s0 = i) in (28),

can be calculated by using backward recursion. It stars

M−1∑

i=0

p(ZN , sN = k|s0 = i)=
M−1∑

i=0

p(ZN , ZN−1, sN = k|s0 = i)

=
M−1∑

i=0

M−1∑
n=0

p(ZN−1, sN−1 = n|s0 = i)

· p(ZN |sN = k) · p(sN = k|sN−1 = n)

= p(Z,k) ·
M−1∑
n=0

q|k−n|
M−1∑

i=0

p(ZN−1, sN−1 = n|s0 = i) (29)

and ends by

M−1∑

i=0

p(Z1, s1 = k|s0 = i) =
M−1∑

i=0

p(Z1|s1 = k)p(s1 = k|s0 = i)

= p(Z,k)

M−1∑

i=0

q|k−i|

︸ ︷︷ ︸
=1

= p(Z,k) (30)

where p(Z,k) = p(Z|s = k) is the channel law at the state
s = k, defined by (6). Combining expression (28) with (29)
and (30), one can get

M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)

=
M−1∑

`=0

p|m−`|
M−1∑

k=0

q|`−k| · p(Z,k) · ... ·
M−1∑
v=0

q|r−v| · p(Z,v) (31)

for any m ∈ {0, 1, . . . , M − 1}.
However, due to constellation symmetry, (27) and (31) are

the same combinations of the samepi andqj multiplications.
It leads to the following equality

∑

ZN

[ M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)

· log2

( M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)
)]

=
∑

Z(e)N

[
p(Z(e)N

) log2 p(Z(e)N
)
]

(32)

for any m ∈ {0, 1, . . . , M − 1}.



Consequently,

∑

ZN+1

[ M−1∑

i=0

p(ZN+1|s0 = i) · log2

( M−1∑

i=0

p(ZN+1|s0 = i)
)]

=
M−1∑
m=0

∑

ZN

[ M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)

· log2

( M−1∑

i=0

p(zN+1 = m,ZN |s0 = i)
)]

=
M−1∑
m=0

∑

Z(e)N

[
p(Z(e)N

) log2 p(Z(e)N
)
]

= −
M−1∑
m=0

H(Z(e)N
) = −M ·H(Z(e)N

) (33)

Finally, since the initial channel state probabilityp(s0 =
i) = 1/M for any m ∈ {0, 1, . . . , M − 1}, we have:

H(ZN+1) = −
∑

ZN+1

p(ZN+1) · log2(p(ZN+1))

= −
∑

ZN+1

[ 1
M

M−1∑

i=0

p(ZN+1|s0 = i)log2

( 1
M

M−1∑

i=0

p(ZN+1|s0 = i)
)]

= − 1
M

[
log2(

1
M

) ·
M−1∑

i=0

∑

ZN+1

p(ZN+1|s0 = i)

︸ ︷︷ ︸
=1︸ ︷︷ ︸

=M

∑

ZN+1

M−1∑

i=0

p(ZN+1|s0 = i) · log2

( M−1∑

i=0

p(ZN+1|s0 = i)
)]

︸ ︷︷ ︸
−M ·H(Z(e)N ) by (33)

= log2(M) + H(Z(e)N
) �
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