research

Reduced-Complexity Noncoherently Detected Differential Space-Time Shift Keying

Abstract

Motivated by the recent development of Spatial Modulation (SM) and Differential Space-Time Shift Keying (DSTSK), we propose a reduced-complexity Conventional Differential Detector (CDD) as well as its reduced-complexity Multiple-Symbol Differential Sphere Detector (MSDSD) counterpart for DSTSK. Both schemes operate on a symbol-by-symbol basis in order to reduce the complexity of the classic block-by-block-based CDD and MSDSD, whilst still approaching the optimum performance of the full-search-based Maximum Likelihood (ML) detector. More explicitly, we carefully consider the objective function to be used for decoding the index of the specific antenna activated by taking into account the particular modulation scheme employed. Our simulation results demonstrate that the proposed CDD and MSDSD designed for DSTSK guarantee a significant complexity reduction compared to the classic block-based decoders, especially for high-rate DSTSK schemes, which is achieved without a performance penalty

    Similar works

    Full text

    thumbnail-image

    Available Versions