5,907 research outputs found

    Stability and Monotonicity for Some Discretizations of the Biot's Model

    Full text link
    We consider finite element discretizations of the Biot's consolidation model in poroelasticity with MINI and stabilized P1-P1 elements. We analyze the convergence of the fully discrete model based on spatial discretization with these types of finite elements and implicit Euler method in time. We also address the issue related to the presence of non-physical oscillations in the pressure approximation for low permeabilities and/or small time steps. We show that even in 1D a Stokes-stable finite element pair fails to provide a monotone discretization for the pressure in such regimes. We then introduce a stabilization term which removes the oscillations. We present numerical results confirming the monotone behavior of the stabilized schemes

    Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn\mathbb{R}^{n}

    Full text link
    In this paper, we design two classes of stabilized mixed finite element methods for linear elasticity on simplicial grids. In the first class of elements, we use H(div,Ω;S)\boldsymbol{H}(\mathbf{div}, \Omega; \mathbb{S})-PkP_k and L2(Ω;Rn)\boldsymbol{L}^2(\Omega; \mathbb{R}^n)-Pk1P_{k-1} to approximate the stress and displacement spaces, respectively, for 1kn1\leq k\leq n, and employ a stabilization technique in terms of the jump of the discrete displacement over the faces of the triangulation under consideration; in the second class of elements, we use H01(Ω;Rn)\boldsymbol{H}_0^1(\Omega; \mathbb{R}^n)-PkP_{k} to approximate the displacement space for 1kn1\leq k\leq n, and adopt the stabilization technique suggested by Brezzi, Fortin, and Marini. We establish the discrete inf-sup conditions, and consequently present the a priori error analysis for them. The main ingredient for the analysis is two special interpolation operators, which can be constructed using a crucial H(div)\boldsymbol{H}(\mathbf{div}) bubble function space of polynomials on each element. The feature of these methods is the low number of global degrees of freedom in the lowest order case. We present some numerical results to demonstrate the theoretical estimates.Comment: 16 pages, 1 figur

    Numerical stabilization of the Stokes problem in vorticity–velocity–pressure formulation

    Get PDF
    We work on a vorticity, velocity and pressure formulation of the bidimensional Stokes problem for incompressible fluids. In previous papers, the authors have developed a natural implementation of this scheme. We have then observed that, in case of unstructured meshes with Dirichlet boundary conditions on the velocity, the convergence is not optimal. In this paper, we propose to add ‘‘bubble’’ velocity functions with compact support along the boundary to improve convergence. We then prove a convergence theorem and illustrate by numerical results better behaviour of the scheme in general cases

    Stabilized Schemes for the Hydrostatic Stokes Equations

    Get PDF
    Some new stable finite element (FE) schemes are presented for the hydrostatic Stokes system or primitive equations of the ocean. It is known that the stability of the mixed formulation ap- proximation for primitive equations requires the well-known Ladyzhenskaya–Babuˇska–Brezzi condi- tion related to the Stokes problem and an extra inf-sup condition relating the pressure and the vertical velocity. The main goal of this paper is to avoid this extra condition by adding a residual stabilizing term to the vertical momentum equation. Then, the stability for Stokes-stable FE combinations is extended to the primitive equations and some error estimates are provided using Taylor–Hood P2 –P1 or miniele- ment (P1 +bubble)–P1 FE approximations, showing the optimal convergence rate in the P2 –P1 case. These results are also extended to the anisotropic (nonhydrostatic) problem. On the other hand, by adding another residual term to the continuity equation, a better approximation of the vertical derivative of pressure is obtained. In this case, stability and error estimates including this better approximation are deduced, where optimal convergence rate is deduced in the (P 1 +bubble)–P1 case. Finally, some numerical experiments are presented supporting previous results

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results

    A volume-averaged nodal projection method for the Reissner-Mindlin plate model

    Get PDF
    We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and is devoid of shear-locking. The proposed approach uses linear maximum-entropy approximations and is built variationally on a two-field potential energy functional wherein the shear strain, written in terms of the primitive variables, is computed via a volume-averaged nodal projection operator that is constructed from the Kirchhoff constraint of the three-field mixed weak form. The stability of the method is rendered by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark problems are presented to demonstrate the accuracy and performance of the proposed method for a wide range of plate thicknesses
    corecore