9 research outputs found

    Effect of Speech Recognition Errors on Text Understandability for People who are Deaf or Hard of Hearing

    Get PDF
    Recent advancements in the accuracy of Automated Speech Recognition (ASR) technologies have made them a potential candidate for the task of captioning. However, the presence of errors in the output may present challenges in their use in a fully automatic system. In this research, we are looking more closely into the impact of different inaccurate transcriptions from the ASR system on the understandability of captions for Deaf or Hard-of-Hearing (DHH) individuals. Through a user study with 30 DHH users, we studied the effect of the presence of an error in a text on its understandability for DHH users. We also investigated different prediction models to capture this relation accurately. Among other models, our random forest based model provided the best mean accuracy of 62.04% on the task. Further, we plan to improve this model with more data and use it to advance our investigation on ASR technologies to improve ASR based captioning for DHH users

    Error Correction based on Error Signatures applied to automatic speech recognition

    Get PDF

    Error Correction Via A Post-Processor For Continuous Speech Recognition

    No full text
    This paper presents a new technique for overcoming several types of speech recognition errors by post-processing the output of a continuous speech recognizer. The post-processor output contains fewer errors, thereby making interpretation by higher-level modules, such as a parser, in a speech understanding system more reliable. The primary advantage to the post-processing approach over existing approaches for overcoming SR errors lies in its ability to introduce options that are not available in the SR module's output. This work provides evidence for the claim that a modern continuous speech recognizer can be used successfully in "black-box" fashion for robustly interpreting spontaneous utterances in a dialogue with a human

    An investigation of grammar design in natural-language speech-recognition.

    Get PDF
    With the growing interest and demand for human-machine interaction, much work concerning speech-recognition has been carried out over the past three decades. Although a variety of approaches have been proposed to address speech-recognition issues, such as stochastic (statistical) techniques, grammar-based techniques, techniques integrated with linguistic features, and other approaches, recognition accuracy and robustness remain among the major problems that need to be addressed. At the state of the art, most commercial speech products are constructed using grammar-based speech-recognition technology. In this thesis, we investigate a number of features involved in grammar design in natural-language speech-recognition technology. We hypothesize that: with the same domain, a semantic grammar, which directly encodes some semantic constraints into the recognition grammar, achieves better accuracy, but less robustness; a syntactic grammar defines a language with a larger size, thereby it has better robustness, but less accuracy; a word-sequence grammar, which includes neither semantics nor syntax, defines the largest language, therefore, is the most robust, but has very poor recognition accuracy. In this Master\u27s thesis, we claim that proper grammar design can achieve the appropriate compromise between recognition accuracy and robustness. The thesis has been proven by experiments using the IBM Voice-Server SDK, which consists of a VoiceXML browser, IBM ViaVoice Speech Recognition and Text-To-Speech (TTS) engines, sample applications, and other tools for developing and testing VoiceXML applications. The experimental grammars are written in the Java Speech Grammar Format (JSGF), and the testing applications are written in VoiceXML. The tentative experimental results suggest that grammar design is a good area for further study. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .S555. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Richard A. Frost. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    An investigation of the electrolytic plasma oxidation process for corrosion protection of pure magnesium and magnesium alloy AM50.

    Get PDF
    In this study, silicate and phosphate EPO coatings were produced on pure magnesium using an AC power source. It was found that the silicate coatings possess good wear resistance, while the phosphate coatings provide better corrosion protection. A Design of Experiment (DOE) technique, the Taguchi method, was used to systematically investigate the effect of the EPO process parameters on the corrosion protection properties of a coated magnesium alloy AM50 using a DC power. The experimental design consisted of four factors (treatment time, current density, and KOH and NaAlO2 concentrations), with three levels of each factor. Potentiodynamic polarization measurements were conducted to determine the corrosion resistance of the coated samples. The optimized processing parameters are 12 minutes, 12 mA/cm2 current density, 0.9 g/l KOH, 15.0 g/l NaAlO2. The results of the percentage contribution of each factor determined by the analysis of variance (ANOVA) imply that the KOH concentration is the most significant factor affecting the corrosion resistance of the coatings, while treatment time is a major factor affecting the thickness of the coatings. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M323. Source: Masters Abstracts International, Volume: 44-03, page: 1479. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005
    corecore