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stract

With the growing interest and demand for human-machine interaction, much work
concerning speech-recognition has been carried out over the past three decades. Although
a variety of approaches have been proposed to address speech-recognition issues, such as
stochastic {statistical) techniques, grammar-based techniques, techniques integrated with
lingnistic features, and other approaches, recognition accuracy and robustness remain

among the major problems that need to be addressed.

At the state of the art, most commercial speech products are constructed using grammar-
based speech-recognition technology. In this thesis, we investigate a number of features
involved in grammar design in natural-language speech-recognition technology. We
hypothesize that: with the same domain, a semantic grammar, which directly encodes
some semantic constraints into the recognition grammar, achieves better accuracy, but
less robustness; a syntactic grammar defines a language with a larger size, thereby it has
better robustness, but less accuracy; a word-sequence grammar, which includes neither
semantics nor syntax, defines the largest language, therefore, is the most robust, but has
very poor recognition accuracy. In this Master’s thesis, we claim that proper grammar
design can achieve the appropriate compromise between recognition accuracy and

robustness.

The thesis has been proven by experiments using the IBM Voice-Server SDK, which
consists of a VoiceXML browser, IBM ViaVoice Speech Recognition and Text-To-Speech
(TTS) engines, sample applications, and other tools for developing and testing VoiceXML
applications. The experimental grammars are written in the Java Speech Grammar
Format (JSGF), and the testing applications are written in VoiceXML. The tentative

experimental results suggest that grammar design is a good area for further study.
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Chapter 1 Introduction Page 1

While speech recognition has been an active field for several decades, some newly-
developing areas, e.g. computer-telephony integration, are demanding the speech
solutions. In addition, the explosive growth in the use of wireless devices and the World
Wide Web has created an urgency for beiter tools to manipulate speech-related operations,

such as voice data entry and speech navigation of the web.

Although some new products have emerged recently, such as voice portal (McTear, 2002)
(which provides a speech-based interface between a telephone user and web-based
services), and VoiceXML (which is an XMI-based markup language for creating
distributed voice applications, much as HTML is a markup language for creating
distributed visual applications (IBM, 2001)), the core is the speech-recognition
technology, which still has a long way to go before the real value of the new tools can be

harnessed.

Over the last three decades, a number of Artificial Intelligence (AI) researchers have been
striving to build models to interact between humans and machines with natural-language

speech. However, it is only in the past decade that speech technology has achieved
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Chapter 1 Introduction Page 2

advanced progress with the introduction of both research prototypes and commercial
applications, such as SPHINX (the first accurate large-vocabulary continuous speaker-
independent speech-recognition system developed at Carnegie Mellon University (Huang
et al., 1992} (Lee, 1988) (Kita and Ward, 1991)), ATIS (an actual spoken-language Air
Travel Information System (Moore et al., 1995)) , and the JUPITER weather-information
system {developed at MIT, (Glass, 1999)).

Although speech-recognition technology has been addressed from various perspectives, a
number of problems need to be solved, such as recognition accuracy, robustness, and
flexibility. Speech is recognized correctly if and only if the recognition result returned
from the system is correctly corresponding to the user’s speech input. Robustness means
the extent to which a system handles errors or “unexpected” input. A flexible spoken-
dialogue system is able to accept a user’s flexible utterances, allow the user to supply

extra information and make reasonable responses (Milward, 1999).

In this thesis, we investigate the significance of grammar design in speech recognition
from various aspects. This thesis is supported by an experiment with multi-direction
comparisons over three types of grammar (semantic grammar, syntactic grammar, and
word-sequence grammar, which are discussed in detail in chapter 5). We observe that the
size of a language defined by a grammar has a signiﬁcam: influence on speech-
recognition accuracy (and robustness, which is expected). The smaller language, which
can be obtained by including semantic constraints in the syntax, has befter accuracy and
less robustness, with more complicated grammar design. (We explain what a “semantic
constraint” is in sub-section 1.4). The syntactic grammar, using a less-complicated
grammar, defines a larger language to obtain better robustness, but less accuracy. The
trade-off between accuracy and robustness is adjusted by the grammar design. Therefore,

grammar design is an extremely important topic in natural-language speech-recognition.
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Although the preliminary experiments show no contradictive evidence to our claim, we

have encountered some limitations that are discussed in sub-section 8.2.

1.1 The Need for Speech-Recognition

Looking back on human history, language has marked the evolution of humankind: words
recorded the civilization of human society, and speech has been the most common,
convenient, and preferred method of communication for human beings. For the majority
of human beings, speech communication is the easiest way to convey information from
human to human, for it can make hands free, can proceed in the dark, and can even reach

very far distances through radio and telephone.

The question is: can machines make use of all of the advantages of human’s natural-
language speech? If a machine can understand natural language, one can easily interact
with that machine (just like humans communicate with humans) in natural language to
retrieve information, conduct transactions, or perform other problem-solving tasks. For
example, people can direct the machine in spoken language to execute commands; with
the assistance of external equipment (e.g. a telephone), activate remote controls or fulfill
remote commercial transactions; visit the speech web with natoral spoken-language input
and voice output without text or graphic interfaces. Virtual-reality technology can be
strengthened with more realistic natural-speech interactions. Machines can dictate what
one says and save it as a text document; machines can automatically translate one
language into other languages. People with vision disability will suffer less on account of

the help of machines equipped with natural-language ability.

In addition, the World Wide Web has become an important tool in modern people’s daily
life to retrieve information and conduct e-business transactions. But the current popular

structure is mostly based on visual interfaces, which means that information and services
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are delivered to users in graphical and textual formats via computers. Consequently, the
web ignores a large number of people who have visual disabilities or do not have access
to a computer due to time, location, and/or cost constraints. Therefore, we are looking
forward to an alternative way to interact with the web, which provides such people with

the chance to access the information and services by voice, i.e. a speech web.

A complete spoken-dialogue system involves integration of the following components
(McTear, 2002) (Han, 2000) (Glass, 1999): a speech-recognition component, a language-
understanding component, a dialogue-management component, a component for
communication with an external system, a response-generation component, and a speech-
output component. These components work in a sequential stream, in which the first
component receives the user’s input, then the output from that component feeds into the
next component as the input, and so forth, until the consequent voice output is
synthesized for the user. An overview of the interaction of the components in a spoken

dialogue system is as follows (McTear, 2002):

The speech-recognition component receives the user’s input utterance and converts the
continuous-time signal into a sequence of discrete units for the use of the language-
understanding component. As the language component receives the information from the
previous speech-recognition component, it analyzes the discrete units and derives a
meaning representation for the next dialogue control component. The dialogue-
management component controls the dialogue flow by determining whether the user has
provided sufficient information, also communicating with the external application and the
user. Usually, it is a database that acts as the external system component for the requested

information retrieval in the spoken-dialogue system. Finally, the response-generation
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component will construct the message retrieved from the external system component
corresponding to the user’s request and send it to the speech output component to

synthesize the voice output for the user.

1.3 Voice Applications

Voice applications are applications in which the input and/or output are through a spoken,
rather than a graphical, user interface (IBM, 2001). The voice application can be a stand-
alone application, whose files reside on the local machine, or a distributed application,

with application files residing in an intranet, or on the Internet.

Typically, voice applications can be categorized into “queries” and “transactions” (IBM,
2001). The purpose of user access to a “query application” system is to retrieve
information. The system provides users with a series of instructions, such as prompts and
menu choices, the user uses spoken commands to make menu selections and fill in form
fields. Based on the user’s input, the system locates the appropriate information from a

back-end database, and presents the desired information to the user in voice output.

The “transaction” voice-application system provides users with the opportunity to
execute specific transactions using voice. The user is guided to provide the data required
for the transaction, and then responds to the system using spoken commands. Based on
the collected data from the user’s input, the system executes the transaction and updates
the appropriate records in the corresponding back-end database. Also, the system reports
back to the user by playing back prerecorded audio files or by synthesizing speech based

on the information in the database records.
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1.4 The Specific Proble Addressed

Among the problems existing in speech recognition, accuracy and robustness are two
important problems to be addressed. Although human beings seldom make mistakes in
recognizing commonly-used spoken words in their own language, machines are
susceptible to recognition ambiguities or errors owing to a noisy environment, speech
disfluency, and inability to use contextual knowledge. Since it is impractical to expect the
machine to recognize speech 100% correctly, to improve the recognition accuracy

becomes one of the major goals.

Then, if the system cannot recognize the user’s speech input, will it be stuck? Humans
have the ability to tolerate the mistakes in human-human communication fo some extent.
For example, if a person asks “which moon did discovered by Hall?”, we - human beings
- can make the reasonable guess that he/she is asking “which moon was discovered by
Hall”, and give him/her a corresponding response. Therefore, we expect a spoken-
language system to be robust to handle the user’s errors or “unexpected” input to some
extent, so that the system can provide a reasonable response to the user, and the human-

machine interaction can proceed smoothly.

A grammar defines a language by specifying the legal utterances, i.e., the sequences of
words that the user may say (Lucas, ef al,, 1999)}(VXML, 2000). Even with the same
domain, different grammars can define different kinds of languages. For example, if some
semantic constraints are encoded into the syntax, the semantic grammar defines a smaller
language than the corresponding syntactic grammar. For example, a senience can be

defined as a noun phrase followed by a verbphrase, denoted as the following syntax:

<sentence> = <nounphrase> <verbphrase>
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By this syntactic grammar, the sentences “a tree runs” and “a boy loses leaves” are legal,
though they are not accepted in common sense. To avoid such funny seniences, some
semantic constraints can be encoded into the syntax to further keep the correct semantics,

as well as the correct syntax. The corresponding semantic grammar is as follows:

<sentence> = <gnimatenounphrase> <animateverbphrase>

| <inanimatenounphrase> <inanimateverbphrase>

Then, the semantic grammar requires that an animate noun phrase (e.g., 2 boy) should be
followed by an animate verb phrase (e.g, runs), and an inanimate noun phrase (e.g., a tree)
should be followed by an inanimate verb phrase (e.g., loses leaves). So, the sentences “a
tree runs” and “a boy loses leaves™ are not correct in semantic grammar, though they are
correct in syntactic grammar. The accuracy is improved with the reduction of the defining
language, but the robustness is lowered meanwhile. How to balance the accuracy and

robustness is a great challenge for speech-recognition researchers.

1.5 Thesis Statement

This thesis is concerned with grammar design in natural-language speech-recognition.

Several features are examined through initial experiments. In particular, we claim that:

(1) Encoding semantic consfraints in a grammar can improve speech-recognition
accuracy;
(2) Using a combination of grammars with different weights (probabilities) can help

achieve good accuracy and good robustness.
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1.6 The Structure of This Thesis Report

The rest of this thesis report is constructed as follows:

A review of some speech-recognition techniques, such as statistical techniques, grammar-
based techniques, and technigues involving semantics, is presented in chapter two and
chapter three; chapter four discusses the existing problems in the state-of-the-art speech-
recognition technology; chapter five discusses the grammars used in the experiment;
chapter six proposes the investigation of the grammar design from various aspects; the
experiments, results, and analysis are described in chapter seven; finally, conclusions and

future work are summarized in chapter eight.
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Currently, many ways fo construct language models for speech recognition exist. Roughly,
the approaches can be categorized into stochastic (statistical) models (which require a
large corpus of training data) and grammar-based models (which use grammars to specify
the utterances) (Rayner ef al., 2000b). A language model consists of a vocabulary (a set of
words that can be recognized by the system) and grammar (a set of rules by which
sentences are parsed or constructed) (Souto ez al., 2002). The grammar can be a set of
linguistic rules or a stochastic (statistical) model. Generally, if a substantial domain
corpus is available, a stochastic (statistical) language model is better as it is more robust;

otherwise, a Context-Free Grammar-based language model may be more appropriate.

Stochastic (statistical) techniques and grammar-based techniques are two main streams in
language-model constructions. It was reported in (Knight ef @l., 2001) that stochastic
(statistical) language models were popular around 1995, while by 2001, grammar-based

language models took the pre-eminent position in commercial products.

In this thesis report, we give only a brief overview of speech-recognition techniques;

more details can be found in Appendix A, which contains a comprehensive survey of
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research and the use of natural-language features to improve speech-recognition accuracy.

2.1 Stochastic (Statistical) Techniques in Speech-Recognition

A Statistical Language Model (SLM) is simply a probability distribution P(s) over all
possible sentences s, or spoken utterances, documents, or any other linguistic unifs

(Rosenfeld, 2000a).

The typical architecture of the speech language-understanding system that uses a
stochastic model is described in (Knight e al., 2001) as follows: firstly, 2 domain corpus
is collected and used to create the statistical language model; then the statistical language
model is incorporated into the recognizer; after that, a robust phrase-spotting parser is
built to analyze the text output of the recognizer and produce semantic representations in

the form of slot/filler pairs.

Statistical Language Models (SLMs) have the advantages of simplicity, flexibility,
adaptation, higher recognition accuracy, and robust performance. Meanwhile, SLMs
suffer from the unavoidable disadvantage of the costly collection of huge amounts of
training data. In addition, SLMs are not supported by commercial systems, such as

VoiceXML browsers.

2.1.1 N-grams

The N-gram is the most frequently-used SLM technigue in speech recognition. N-gram
means: with enough amount of training data, each word can be predicted from the
previous N-1 words (Souto ez al., 2002). The probability of a word’s occurrence can be
predicted by the preceding N-1 words, and one or more candidate words are output in

some ranked “recognition-hypothesis list”.
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The type of training data to be collected is determined by the task of the model. For
example, if it is a mode! for a medical application, the training data should be focused on
medical reports, papers and other resource instead of sports or fashion. Usually, a trigram
(N=3) is used with large training corpora (millions of words), whereas a bigram (N=2) is

used with a smaller set of training data to create a less-accurate model (Rosenfeld, 2000a).

The primary advantage of the N-gram lies in its robustness.

2.1.2 Multi-class Composite N-gram (Class N-gram)

The sparseness (the infrequency of word sequences in a corpus (Magerman and Marcus,
1990)) is a common problem in the N-gram approach, even with large corpora. For
example, in some training corpora, many triplets (in trigram) appear only once or a few
times, thus, the straightforward estimation of N-gram probabilities from counts is not

viable.

To address the problem of data sparseness, Rosenfeld (2000a) described an effective
“class N-gram” technique, which is also proposed by Yamamoto ez al. (2001), by using
vocabulary clustering to battle the sparseness problem. Multiple words are assigned to
one word class representing either syntactic categories (e.g., noun or verb) or semantic
categories {(e.g., days of the week, names or airports) (McTear, 2002) (Baggia et al,
1999), thus, the transition probabilities from word to word are approximately changed to
that from class to class. Consequently, with the decreased search space (the number of
classes is much smaller than that of the original words), the perplexity is reduced and

recognition accuracy increases.

The key point of this technique lies in the clustering, which determines the quality of the

model. It works better with small domains by manual clustering of semantic categories,
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and it is not as effective in less-constrained domains (Rosenfeld, 2000a).

2.1.3 Decision-Tree Models and Semantic-Classification-tree M

Decision-tree models (Rosenfeld, 2000a) as well as semantic classification-tree models
(Noth et al., 1996) take the advantage of a decision-free structure. “A decision tree can
arbitrarily partition the space of histories by asking arbitrary binary questions about the
history at each of the internal nodes” (Rosenfeld, 2000a). The probability distribution of
the next word is constructed, based on the training data at each leaf. Interpolating the leaf
distribution with the internal-node distribution found along the path can contribute to

reduce the variance of the estimate (Rosenfeld, 2000a).

This kind of model suffers from the huge search space. If the average vocabulary size is
denoted as b (the branching factor of the tree); and the utterance length is denoted as 4,
(the depth of the tree), the decision tree model has space complexity of O(b%). Therefore,

special techniques to prune the large trees are required.
2.1.4 Adaptive Models

Adaptive models in (Rosenfeld, 2000a) are addressed to alleviate the domain-restriction
problem (discussed in sub-section 4.5). The Cross-Domain Adaptation model takes
advantage of a cache to transfer test data to the language model without training. In the
Within-Domain Adaptation model, the test data comes from the same source, but this
particular source consists of many subsets of various topics, styles, or both. Then the
adaptation can proceed among the subsets, and two different domains can be combined to

construct a general model so that the language model can cover a wider domain.

A potential problem with adaptive models is that an increase in training data does not
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guaraniee a corresponding improvement in the accuracy of the language model due to the
fact that the data increases that occur in some domains might have little influence on the

model in other domains.

2.1.5 N-best Filtering or Rescoring

N-best filtering or rescoring is a very simple search technique (Moore, 1999). Just as its
name implies, this technique always chooses the best one in the sorted recognition

hypothesis list according to certain criteria.

While simplicity represents the primary advantage of N-best filtering or rescoring

approach, the high computational cost for large N is its disadvantage.

2.1.6 Learning Technigues

One of the big problems associated with SLMs is how to obtain the huge corpus of
training data. Bootstrapping (Rayner ef al., 2000a)(McCandless and Glass, 1994)(Baggia
et al., 1999) and use of the World Wide Web (Zhu and Rosenfeld, 2000a) are two of the
popular techniques to obtain the training data. Bootstrapping is the simplest and cheapest
way to collect training data. Its basic mechanism is to build an initial version of the
system using a hand-coded model, then put it into practice to collect more data.
Recursively, the data is used to construct a2 new language model and that is used to collect
new data. This cycle can be repeated until satisfactory accuracy is achieved. Also, the
explosion of the information online makes the World Wide Web a good source for

collecting training data.
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2.2 Gra

sed Speech-Recognition

As an alternative to Statistical Language Models (SLMs), which apply word probabilities
(N-gram) as the only form of language knowledge (Rosenfeld, 2000a), grammar-based
speech recognition describes the language features in a set of rules to generalize over a

certain application domain.

According to Knight er al. (2001), the up-to-date grammar-based strategy (which is
usually adopted by commercial organizations) is like this: use Nuance or Speechworks as
a standard commercial platform; then hand-code a grammar in some subset of Context-
Free Grammar (CFG), and extend the grammar with semantic annotations; later on, using
a system-initiative dialogue strategy, code in Nuance’s Speech Objects or Speechworks’

Dialogue Models or VoiceXML.

Compared to statistical techniques, grammar-based speech recognition is more common
and easier to use and has reasonable recognition accuracy for small domains. In addition,
an important advantage over statistical approaches is that grammar-based approaches do

not require a large amount of training data that is difficult and expensive to collect.

However, grammar-based techniques require experts to write high-quality grammars, and
the grammar rules are difficult to maintain and extend. In addition, grammar-based
recognition is not as robust as are statistical techniques. For example, it cannot handle the

utterances that are not covered by the gramimar.
2.2.1 CFGs

A Context-Free Grammar (CFG) is a crude, yet well-understood, model of natural

language. A CFG consists of a vocabulary, a set of non-terminal symbols, and a set of
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production or transition rules. Usually, a CFG can be defined as a set of rules that have a
single atomic grammatical category on the lefi-hand side, and a sequence of atomic
categories and words on the right-hand side (Moore, 1999)(Amaya ez al., 1999). Based
on the fact that all context-free rules can contain only one symbol on the left-hand side,
and it is free to be replaced by the right-side rules, comes the name “Context-Free

Graramar” (Blackburn and Striegnitz, 2002).

A sample CFG grammar that defines a sentence, such as “a boy opened the door”, is
shown in figure 2.2.1:

<§> = <NP> <VP>;

<NP> = <Det> <N>;

<VP>= <V><NP>;

<Det> = the | a;

<N> = boy | door;
<V>= opened | closed;

Figure 2.2.1: a sample CFG grammar

2.1.2 Statistical or Probabilistic Grammars

Probabilistic Context-Free Grammars (PCFG) and Probabilistic Dependency Grammars
(PDG) are two probabilistic (statistical) grammars. PCFGs are CFGs with a probability
distribution defined over all productions that share their lefi-hand side (Rosenfeld, 2000b)
(Moore, 1999) (Weber and Gérz, 1999). For the example, the conditional probability of
the rule S -> NP VP might be 0.5, that means: if there is a sentence S, there is 0.5 chance

that it consists of a NP (noun phrase) followed by VP (verb phrase).

PDGs have some similarity to regular N-grams in that each word is predicted based on a
number of other words. The difference is that, in a conventional N-gram, each word is

predicated from the N-1 words immediately before it; whereas in a PDG, the words acting
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as the predictors depend on a hidden variable, the dependency graph (Rosenfeld, 2600a).
Typically, a sentence s is parsed to generate the most likely dependency graphs Gi ( with
attendant probabilities P(Gi)); then compute each generation probability P(s|Gi) (either
N-gram style or an Maximum Entropy (ME) model); finally, the complete sentence
probability is given by P(s) = %1 P(Gi)*P(s|Gi) (the reason for the approximation is that
the P(Gi) themselves were derived from the sentence s). Sometimes P(s) is further

approximated as P(s|G*), where G* is the single best scoring parse (Rosenfeld, 2000a).

2.2.3 Discourse Grammar

The idea of Discourse Grammar that was proposed by Churcher ef al. (1996) is to break
the large syntax into smaller syntaxes to improve the performance of the language models
with lower perplexity and ambiguity. The supporting idea is that, generally, the smaller
syntax contains fewer words and less complicated structure than the original one, hence is
potentially less ambiguous. A discourse segment can be a set of utterances with some
properties in common, e.g., a certain topic, or even the discourse between a set of

speakers, i.e., a dialogue.

2.2.4 Semantic Grammars

According to Demetriou and Atwell (1994a), semantic grammars are usually represented
as transition networks, and provide stronger constraints than pure syntax by integrating
semantic conditions closely with the syntactic rules of the grammar. A syntactic grammar
is effective in describing the structure of phrases and sentences, whereas semantic
constraints are particularly useful for languages whose phrase orders are not very

constrained, such as Japanese (Takezawa ef al., 1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Overview of Speech-Recognition Technigues Page 17

2.3 Combined Stochastic (Statistical) and Gr ar-Based Techniques

As we have seen, both stochastic (statistical) and grammar-based technigues have their
advantages and disadvantages. A question is whether it is feasible to take their respective
advantages and overcome the disadvantages by integrating the stochastic techniques and

grammar-based techniques.

There are some successful cases that combine these two techniques. The ATIS, Air Travel
Information System (Moore, ef al. 1995) uses a CFG in parsing and produces a sequence
of grammatical fragments, then, applies a trigram (N=3) to obtain a 15% reduction in a
speech-recognition-error rate. Knight ez al. (2001) first set up a CFG grammar-based
system, then used it to collect the training corpus for a SLM. The results show the
effectiveness of grammar-based language for in-coverage sentences, and the SLM for
out-of-coverage examples. Also, Rayner and Carter (1997), Geutner (1996), and Jones et
al. (1993) achieved robust and efficient performance within a linguistically motivated

framework by combining the rule-based and statistical methods.

More detailed discussion of the research described in this chapter is given in Appendix A.
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Language features are very effective in any system for reducing the number of possible

utterances and for prioritizing utterance hypotheses (Hermannsdottir, 1996). Takezawa et
al. (1991) say that “the accuracy of speech recognition heavily depends on what kinds of
linguistic knowledge are used”. At the current state of the art, to achieve high accuracy in
speech recognition with moderate to large vocabularies (hundreds to tens of thousands of
words), language models are necessary (Moore, 1999)(Harper ef al., 2000)(Takezawa et
al., 1991)(Seneff et al., 1995) as discussed earlier, and in Appendix A.

Semantics is that part of linguistic knowledge which is concerned with meaning.
Semantic rules can be used to restrict the expressions of a language defined by a grammar.
For example, the question “which man orbits a blue man” is syntactically correct but not

semantically correct.
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3.1 Use of Large N, N-grams to Try and Capture Sem

A traditional N-gram predicts the current word by the immediately previous N-1 words
(discussed in sub-section 2.1), which assumes that the relevant information lies in the
immediate past. However, the fact is that some syntactic or semantic information does
exist farther back in the utterance. On the other hand, if a larger N in an N-gram model is

used, the free parameters will increase exponentially, which is too difficult to analyze.

Supported by an experiment using long-distance bigrams with reduced number of free
parameters, Huang ef @/. (1992) concludes that there is some relevant information, which

is thinly spread across the history, in the distant past.

Considering the fact that in many languages (e.g. English) multiple words can be unified
together and be treated as a single unit (phrase) in communication, Riccardi and
Bangalore (1996) and Riccardi and Gorin (1998) proposed “phrase-based language
models” to better (compared to word-based language models) capture long-spanning
dependencies between words, without the exponential increase in the number of

parameters.

3.2 Semantic Post-Processing of

ut from Statistical Recognizer

Since the goal of completely eradicating speech-recognition errors at the front-end of the
recognizer is impractical at the state of the art, many approaches using semantic post-
processing for error correction have been investigated to further improve the recognition

accuracy.
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3.2.1 Post-processing to Choose Best Hypothesis

On account of its simplicity and efficiency, N-best search can be used in a post-
processing stage in speech recognition to get better performance. Tran ef al., (1996) first
constructed a recognition-hypothesis word graph, and then extracted the N-best word
sequences from the word graph. Combined with language features, such as syntactic
and/or semantic analysis, the N candidates can be re-scored with highly-reduced
computational cost (Rayner et al, 1994), and even many of the top-N sentence
hypotheses can be eliminated before reaching the end with this type of syntactic and

semantic analyses (Seneff ef al., 1995).

3.2.2 Post-processing to Correct Errors

Loken-kim (1988) developed the Automatic Error Detection and Correction System
(AutoDac), which is able to parse ill-formed sentences with a combination of left-to-right
and right-to-left parsing; learn the history of recognition errors and utilize this
information to subsequently recover from similar recognition errors in future tasks; and
allow a user to manually correct any part of the recognized sentence. Combining
automatic and manual error correction, a total of 142 out of 192 testing sentences were

recovered correctly (Loken-kim, 1988).

3.2.3 Post-processing to Modify System for Future Use

In the voice-interactive natural language system, Fink (1984) added a special module,
called an expectation system, to aid the speech-recognition process. The basic idea is that
the expectation system accepts the user’s utterances and studies repetition and patterns in
the dialogues to create a more general dialogue, then uses this generalized dialogue to

correct errors in future sentences by prediction. The results showed that the average
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sentence error rate was decreased from 53% to less than 8%. Furthermore, it was
concluded that the expectation system is capable of predicting what might happen in any

situation that tends to be repeated.

Belonging to the augmented or annotated Context-Free Grammars, a Unification

Grammar is more expressive and more concise than a traditional CFG in “representing”
semantics in a syntactic notation. A Unification Grammar is a higher-level formalism
than a Context-Free Grammar, and is obtained by applying some restriction properties to
a CFG. With constraints unified to the grammar, Unification Grammars help reduce the
system’s perplexity. To better understand the Unification Grammar, consider the

following example from (Moore, 1999):

S: [tensed=yes] ~> NP: [person=P, num= N] VP: [tensed=ves, person=P, num=N]

The difference to a traditional Context-Free Grammar (CFG) is the notion of the feature
constraints {e.g. person=P, num=N). The consequent power lies in the fact that the
Unification Grammar constrains the features to variable matching instead of listing all
matching constraint value pairs. The subsequent advantage can be seen from the above
example that Unification Grammar guarantees that the person and num features of Noun
Phrase (NP) and Verb Phrase (VP) must agree with each other, avoiding enumerating

their respective features (person = first, num = singular, and so on).
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Observing that some syntactically correct utterances may be semantically wrong, Frost

(2002) proposed an approach for encoding semantic rules directly in the syntax of the
grammar to reduce the size of the langvage and therefore improve the recognition
accuracy. Frost (2002) presented an example in which the sentence “which man orbits
kuiper” may be accepted by a simple grammar for its correct syntax, but in the domain
used in the example, people cannot orbit other people, thus it is semantically incorrect.

The simple syntax that accepts the above example sentence might be as follows:
question ::= “which” nounphrase verbphrase
If we replace it with the following:

guestion ::= “which” animatenounphrase animateverbphrase

| “which” inanimatenounphrase inanimateverbphrase

then the semantically incorrect utterance above is not accepted, the perplexity is reduced,

and hence the speech-recognition accuracy should be improved.

The primary advantage of this technique is an improvement in speech recognition
accuracy without unnaturally restricting the input utterances. However, this technique has
the disadvantage that there is an increase in the size of the grammar by encoding
semantic rules in the syntax, and this makes the system difficult to maintain. This can be
overcome to some extent by combining this technique with the use of hyperlinks to create
a Speech Web of speech-accessible objects, and further improve recognition accuracy by

allowing the user to move between domain-dependent grammars (Frost, 2002).
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The method investigated in this thesis is based on Frost’s idea of encoding semantic

constraints in the syntax of the recognition grammars.

3.5 Speech Webs

It is not easy to construct speech interfaces to large knowledge bases for the reason that
large knowledge sources require large and complicated grammars, which are not trivial to
implement and which have high perplexity and therefore low accuracy (Frost and Chitte,
1999). Instead, Frost and Chitte (1999) propose a new approach of dividing large
knowledge sources into several smaller domain-based knowledge bases, called “sihios”,
and uvsing relatively narrow grammars in each individual sihlo. Only when the sihlo is
visited are its grammar and other related properties downloaded to respond to the user.
With the decrease of the scope of the knowledge source, the query language is shrunk,

which can significantly improve speech-recognition accuracy.

The user can move from sihlo to sihlo by “speaking” hyperlinks. In this approach,
semantic constraints that are coded in the syntax of each sihlo are chosen to reflect the
fact that some semantic constraints are appropriate in one context and are inappropriate in
others (Frost, 2002). For example, the constraint “people cannot orbit anything” might be
appropriate in a sihlo which only answers questions about moons orbiting planets, while

not appropriate in a sihlo about astronauts.
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It seems that “speech-communication ability” is an instinct of human beings, for most
human beings will be able to speak naturally at a certain age. But it is quite different for
machines. Since countless human conversations proceed every day without any trouble,
people do not realize that they have overcome many problems. In addition, many
utterances can be understood only in particular context within some domains. However,
all the above challenges and others, such as noise of the background and speaker
variation, are very difficult for machines to tackle. Due to the large variability and
flexibility of human speech and the speciality of machines (compared to human beings),

there are many problems in the speech-recognition process.

4.1 Recognition Accuracy

Speech is recognized correctly if and only if the recognition result returned from the
system is correctly corresponding to the user’s speech input. There are two types of
recognition errors: (1) utterance is not recognized at all; (2) utterance is mis-recognized.

Since the first type of error (i.e., not recognized) might prompt the user to repeat, and the
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second type of error (i.e., mis-recognition) is likely to direct the user to the wrong results,
it is very important to minimize the mis-recognitions. In general, statistical models have
better recognition accuracy than grammar-based models. Good recognition accuracy is

definitely one of the goals that numerous Al researchers have been pursuing.

42R

bustness

Robustness means the extent to which a system handles errors or “unexpected” input.
Robustness is crucial in language systems for the reason that the inability or low
performance in processing incorrect utterances will cause unacceptable degradation of the
overall system (Ballim and Pallotta, 2000). Like human beings, the ideal spoken-
language models should tolerate disfluencies, out of vocabulary words, incomplete or
ungrammatical utterances, to some extent in speech communication. In reality, various
uncertain and flexible factors of the spontaneous dialogue add more difficulties to speech
recognition. Generally, statistical models outperform grammar-based models in the sense
of robustness. However, there is still a lot left to be desired in state-of-the-art language

models toward the goal of robustness.

4.3 Flexibility

An ideal spoken-dialogue system should be able to accept a user’s flexible utterances,
allow the user to supply extra information and make reasonable responses (Milward,
1999). While the fact is that the user may not realize the bounds of the domain, they may
ask queries that are beyond the capability of the system. For example, the JUPITER
weather-information system (developed in MIT) can only forecast short-term weather
(Glass, 1999). So, if the user asks for “What is the weather in two months?” the JUPITER

weather-information system cannot give an answer. Under such circumstance, the system
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is expected to give the user appropriate help to direct him/her to formulate an acceptable
query. Since statistical models are based on huge training data and grammar-based

models depend on the defining grammar, the former is more flexible than the latter.

4.4 Large vocabulary.

Many spoken-language systems are supported by a large vocabulary so that they can
cover as many of the spontaneous utterances as possible. On the other hand, a large
vocabulary can make the language system intractable; especially, the large number of
categories due to the huge number of unrelated entries (Rosenfeld, 2000a) is a great
challenge for speech recognition. For example, in a large vocabulary, there is no closer
relation between BANK and LOAN than that with COUNTRY. The relative
independence in a vocabulary leads to the huge intractable parameters, which is a

problem existing in both statistical and grammar-based models.

In communication, human beings use knowledge about word relationships to help them
recognize utterances. For example, if someone hears “ the interest rate on bank loa... is
5%”. They can fill in the missing letters and recognize “loa.” as “loan”. In this way,
humans can recognize utterances involving huge vocabularies. However, computer-
recognition systems that are based on simple syntax rules or statistical relationships

between word occurances cannot handle huge vocabularies as well as human beings.

srittieness across do

The efficiency of current language models depends much on the domains on which they
are frained (Rosenfeld, 2000a). For example, a language model trained on business is not
appropriate to recognize utterances about sports. Training of language models refers only

to statistical models. Grammar-based models are totally brittle across a domain in the
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sense that a recognizer based on a grammar for one domain will not work at all in another

domain unless they share common vocabulary and syntax rules.

4.6 False independence assumption.

While building a tractable language model, the state-of-the-art technology assumes some
independence among different portions of the same document (Rosenfeld, 2000a). For
example, the N-gram model (statistical model) determines the probability of the current
word in a sentence only by the identity of the last N-1 words, which loses the long-term

dependency. In particular, semantic constraints cannot be modeled with small N,

4.7 The Challenge

As mentioned in sub-section 1.4, accuracy and robustness are among the most important
problems existing in speech-recognition technology. Usually, good accuracy is likely to
lead to poor robustness; and vice versa. For example, the experiments of chapter seven
show that the semantic grammar defines the smallest size of language and the best
recognition accuracy but the poorest robustness; while the syntactic grammar defines a
larger language size, better robustness, but lower accuracy than the semantic grammar;
meanwhile, the word-sequence grammar, defining the largest language, is the most robust,
but the least accurate among these three grammars (i.e., semantic, syntactic, and word-
sequence grammar). The challenge is, how to achieve a good balance between accuracy

and robusiness.
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Three types of grammar and their extensions are involved in the experiments. The
experimental grammars are constructed based on the grammars created by Frost (2002),
which define a language consisting of questions about the solar system, such as “who
discovered phobos”. The three unextended grammars are defined over the same
vocabulary, but define different sets of expressions on account of the different ways of
combining the words. Furthermore, a set of words is added to each vocabulary of these
grammars for extension purpose, so that each extended grammar covers a larger language

than the original grammar.

The experimental grammars are defined in the Java Speech Grammar Format (JSGF),
which is a platform-independent, vendor-independent textual representation of grammars

for use in speech recognition (Sun, 2000). A summary of JSFG features is listed in table 5

(Sun, 2000).
Table 5: summary of JSGF features
Feature Purpose
Word or “word” Words (terminals, tokens) need not be guoted
<rule> Rule names (non-terminals) are enclosed in <>
Ix] Optionally x
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{...) Grouping

XVZ... A seguence of x then y then z then ...
x|viz... A set of alternatives of x or yor z or ..
<rule> = x; A private and a public rule definition
public <rule> = x;

Table 5: summary of JSGF features (Cont’d)

Word-Sequence Grar

ars

A simple word-sequence grammar defines any sequence of words from the dictionary of
some length, including neither semantics nor syntax. The unextended word-sequence

grammar used in the experiment is given in figure 5.1,

/* 10-word word-seguence grammar
wordSequence_gram_extl.gram ¥/
gramiuar wordSequence_gram_extl;
public <s> = <word>
[<word> <word>
<word> <word> <word>
l<word> <word> <word> <word>
l<word> <word><word> <word><word>
j<word> <word><word> <word><word> <word>
kword> <word><word> <word><word> <word><word>
l<word> <word><word> <word><word> <word><word> <word>
[<word> <word><word> <word><word> <word><word> <word><word>
l<word> <word><word> <word><word> <word><word> <word><word> <word>
l<simple>;

EE i

Figure 5.1: word-sequence grammar

Thereafter, the leftmost numbers in figures (figure 5.1, 5.2., 5.3) are line numbers. Line 1
and 2 are comments. Line 1 says that this simple word-sequence grammar defines any
10-word sequence. Line 2 tells the name of the grammar file. Line 3 marks the beginning
of the JSGF grammar, defining the grammar name. Line 4 is a public rule, also the root

rule of the grammar (the rule name is s), which consists of 10 alternatives of word
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sequence, ie., l-word sequence (<word>), or (denoted by “|”) 2-word sequence
(<word><word>), or 3-word sequence {<word><word><word>), and so on. Line 5
specifies some sentences that can be used as condition to direct the voice application. For
example, in our testing applications, if the user says “goodbye”, the voice application
terminates. Line 6, defines the dictionary (vocabulary) of the language by listing all

possible alternatives of the non-terminal <word>.

5.2 Syntactic Grammar

The syntactic grammar in the experiment only includes syntax, which defines the rules
governing the structure of a language. The complete syntactic grammars used in the
experiment are given in Appendix B. Figure 5.2 shows an extract. A brief explaination is

provided later.

1. /% gyntax_gram_exti.gram %/
2. grammar syntax_gram_extl ;
3. public <s> = <linkingvh> <termph> [<transvb> by ] <termph>
| <linkingvb> <termph> [<transvb> <preposition>] <termph>
| <quest1> <sent>
| ( who |what) <verbph>
| ( which | how many ) <nouncla><verbph>;
<gsent> = <termph> <verbph>;
<termph> = <stermph> | <stermph> (and | or) <stermph>;
<stermph> = <pnoun> | <detph>;
<verbph> = <transvbph> | <intransvb>;
<transvbph> = ( <transvb> | <linkingvb> <transvb> by ) <termph> |
( <transvb> | <linkingvb> <iransvb> <preposition> ) <termph>;
9. <nouncla> = <adj> <cnoun> | <cnoun>;

© N s

10. <cnoun> = man | men | person | people | planet | planets | moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal|
metals| nonmetal | nonmetals | country | countries | capital | capitals | city |cities|
continent] continents | river | rivers | lake | lakes ;
11, <intransvb>= spin | spins | orbit | orbits| orbited | exist | exists ;
12. <pnoun> = <pnoun_planet_moon_human>
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| <nonhuman_pnoun_chemical>
| <space_program>
| <earth_geography_domain>;
13. <transvb> = orbit | orbits | discover | discovered | neighbour | neighbours | neighboured | worship |
worshiped | contain | contains | contained | find | finds | found;
Figure 5.2: extract of syntactic grammar

Line 3 is the root rule, which defines five kinds of questions by five alternatives. The first
(/second) kind of guestion is started by a linking verb, then a term phrase, then a
transitive verb and by (second kind of question uses preposition like “in” or “on”, instead
of by) (which is optional), then a term phrase. A term phrase is defined in line 5, which
could use nouns in aﬁy category of planet, moon, human, geography, and so on. Sample
sentence of this guestion type could be: “is mars discovered by hall” or “is mars a moon”.
The sample second kind of question could be: “is hydrogen found on earth”. The third
kind of question starts with a question word (do|does| did), then a term phrase, followed
by a verb phrase (which uses transitive or intransitive verbs). The sample questions could
be: “Does phobos orbit mars” or “Does phobos spin”. The fourth and fifth kinds of
question define questions such as “who discovered phobos” and “how many moons orbit

mars”.

5.3 Semantic Grammars

Semantics defines the relationships between symbols and their meanings. A semantic
grammar directly encodes semantic constraints into the syntax of the grammar. The
complete semantic grammars are given in Appendix B. An extract is shown in figure 5.3,
and explained later.

1. /* semantics_gram_extl.gram */

2. gramimar semantics_gram_extl;

3.  public <> = <linkingvb> <termphrase_verbphrase>
| is <pnoun> <pnoun>
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 is <pnoun> ( ajan ) <nouncla>
| is <pnoun> ( alan ) <nouncla> or { alan ) <nouncla>
| <quest!> <sent>
| { who ) <animate_verbph>
| { what ) <inanimate_verbph>
| ( which | how many ) <nouncla_verbph>
| ( which | how many ) <nouncla_verbph_other>;
4. <termphrase verbphrase> = <ponhuman_termph_planet> <transvb_by_termph>
| <nonhuman_termph_moon> <animate_transvb> by <human_termph>
| <ponhuman_termph_other> <animate_transvb> by <human_termph>
| <nonhuman_termph_other> <animate_transvb> <preposition>
<ponhuman_termph_planet>
| <nonhuman_termph_other> <animate_transvb> <preposition>
<nonhuman_termph_moon>;
5.  <transvb_by_termph> = <animate_transvb> by <human_termph>
| <inanimate_transvb> by <nonhuman_termph_moon>
| <inanimate_transvb_other> by <nonhuman_termph_other>;
6. <sent>= <human_termph> <animate verbph>
| <nonhuman_termph_moon> <inanimate_verbph_active>
[ <nonhuman_termph_planet> <inanimate_verbph_passive>
| <nonhuman_termph_moon> <inanimate_verbph_active_other>;
7. <nouncle verbph> = <human_nouncla> <animate_verbph>
| <nonhuman_nouncla_moon> <animate_verbph_passive>
| <nonhuman_nouncla_planet> <animate_verbph_passive>
| <nonhuman_nouncla_moon> <inanimate_verbph_active>
| <nonhuman_nouncla_planet> <inanimate_verbph_passive> ;
8. <nouncla_verbph_other> = <nonhuman_nouncla_other> <animate_verbph_passive>
| <nonhuman_nouncla_other> <inanimate_verbph_passive_other>;
9. <inanimate_ verbph> = <inanimate_verbph_active>
| <inanimate_verbph_passive>
| <inanimats_verbph_active_other>
| <inanimate_verbph_passive_other>;
10. <humen _stermph> = <human_pnoun> | <human_detph> ;
11. <nonhuman_siermph_planet> = <nonhuman_pnoun_planet> | <nonhuman_deiph_planet>;
12. <nonhuman_stermph_moon> = <nonhuman_pnoun_moon> | <nonhuman_detph_moon> ;
13. <nonhuman_stermph_other> = <nonhuman_pnoun_other> | <nonhuman_detph_other>;
14. <human_termph> = <human_stermph> | <human_stermph> ( and | or ) <human_stermph> ;
15. <nonhuman_termph_planet> = <nonhuman_stermph_planet>
| <nonhuman_stermph_planet> ( and | or } <nonhuman_stermph_planet> ;
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16. <nosmhuman_termph_moon> = <nonhuman_stermph_moon>
| <ponhuman_stermph_moon> { and | or ) <nonhuman_stermph_moon>;
17. <nonhuman_termph_other> = <nonhuman_stermph_other>
{ <nonhuman_stermph_other> ( and | or ) <nonhuman_stermph_other>;
18. <animate verbph> = <animate transvbph>;
19. <inanimate verbph_active> = <inanimate_transvbph_active> | <intransvb> ;
20. <inanimate_verbph_passive> = <inanimate_iransvbph_passive>
| <intransvb>
| <inanimate_fransvb> sun ;
21. <inanimate_verbph_active_other> = <inanimate_transvbph_active_other>| <intransvb_other>;
22. <inanimate_verbph_passive_other> = <inanimate_transvbph_passive_other> | <intransvb_other>;
23. <animate_transvb> = discover | discovers | discovered | find | finds | found ;
24, <animate_transvb_other> = worship | worshiped;
25. <inanimate_transvb> = orbit | orbits | orbited | neighbour | neighbours | neighboured;
26. <inanimate_transvb_other> = contain | contains | contained ;

Figure 5.3: extract of semantic grammar

Similar to the syntactic grammar in figure 5.2, the semantic grammar in figure 5.2 defines
nine kinds of question by specifying nine alternatives in line 3. The primary difference
between the semantic grammar and the syntactic grammar is that the former encodes
some semantic constraints into the syntax of the grammar to ensure the correct semantics
besides the correct syntax. In the semantic grammar, nouns are classifed into groups
based on semantics, such as Auman, moon, planet, and other category; and verbs are
gouped into animate and inanimate, so that it is possible to make the nouns and verbs
match in semantics. For example, hall and bond are people, so, they belong to human
group; phobos and tritan are moons; earth and mars are planets; hydrogen and water go
to other category; discover is an animate verb, orbit and spin are inanimate verbs. So, if
take a look at the first type of question, it can be traced down the first alternative in line 3,
then the first alternative in line 4 to expand the non-terminal in line 3, then the first
alternative in line 5 to expand the non-terminal in line 4, finally, we can have the sample
question like: “is mars discovered by hall”. In this way, the question like: “is maors

discovered by earth” would never be generated by the semantic grammar in figure 5.3,
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though it is possible by the syntactic grammar in figure 5.2 (e.g. from the first alternative
of line 3 in figure 5.2). In other word, the semantic grammar improves the recognition

accuracy by including semantic constraints in syntax to reduce the language size.

5.4 Extending the gra

To further investigate the features of different grammars, the three types of grammars
discussed in sub-sections 5.1, 5.2, and 5.3 are extended. To simplify the expansion, we
just add a set of words to each vocabulary of these grammars, so that each extended
grammar covers a larger language than the original grammar. For example, in each
original grammar, the <country> and <capital> rules both have size 6 (i.e., each
language covers 6 countries and 6 capitals), and in the extended grammars, we add 181
countries and 92 capitals to the vocabulary (now, each language covers 187 countries and
98 capitals), so that the extended grammars cover larger languages than the original

grammars.
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Since most commercial speech products are constructed using grammar-based technology
(Knight et al., 2001), grammar design becomes a crucial issue in speech recognition. A
grammar specifies the legal utterances, i.e., the sequences of words that the user may say
(Lucas, et al, 1999)VXML, 2000). Good grammar can achieve an appropriate
compromise between accuracy and robustiness. In our investigation, we observe that the
size of the language defined by the grammar has a significant influence on speech
recognition. For example, the direct encoding of semantic constraints into a syntactic
grammar can reduce the language size, and the experiments show that this causes the
speech-recognition accuracy to improve. However, constraining the language in this way
leads to a reduction in robustness. Therefore, the grammar design is an extremely

important topic in natural-language speech-recognition.

6.1 Gra:

mar and Language Size

As a grammar defines a language, the size of the language is defined at the same time.
Language size means how many possible utterances can be generated by the specific

defining grammar.
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A CFG can be defined as a set of rules that have a single atomic grammatical category on
the lefi-hand side, and a sequence of atomic categories and words on the right-hand side
(described in sub-section 2.2.1). To make it simple, we consider “word” or “category” as
“symbol”, and “expression” to consist of one or more “symbols”. Then, the size of the

defined language can be calculated in the following way:

1) The language size is the size of the root rule;

2) The size of right-hand expression is assigned to the size of lefi-hand expression;

3) If an expression is constructed by one symbol, the size of this expression is equal to
the size of the symbol;

4y If an expression is composed by a group of symbols (a phrase), the size of the
expression is the product of the size of each symbol in this group;

5) If an expression consists of alternate symbols (disjunction), the size of the expression
can be obtained by summing of the sizes of all the alternative symbols;

6) Each single word has the size 1;

Consider the sample CFG grammar in figure 2.2.1, language size is calculated as shown

in figure 6.1:
<§>% = <Np>* <vP>¥, /32 = 4%8
<NP>* = <Det>* <N>?; /] & =2%2
<Vp>% = <y>? NP>t /8 =2%4
<Det>* = the | a; /2
<N>? = boy | door; /2
<V>? = opened | closed; /12

Figure 6.1: language-size computation

Note: superscripts are used to denote the obtained size of the sub-language defined by the
expressions; the following comments (starting with *“//”) denote the computation used to

calculate the size,
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The calculation process is explained as follows:

To calculate the language size defined by the grammar in figure 6.1, we start from the
first rule of the grammar (also the root rule), which is composed of a complete phrase
(grouping) with 2 symbols (i.e., <NP>, <VP>), so we need multiply these two symbols’
sizes which need further computation. Then, we trace the symbol <NP> first, which is
defined in the second rule. We can find that <NP> requires <Det> and <N>. As for
<Det>, from the fourth rule of the above grammar, we know it has 2 alternative words
(disjunction), which means the size of <Det> is 2 (i.e. 2=1+1); also, we can get the size of
<N> by 2. Then, we come back to the second rule to calculate the size of <NP> by
multiply the sizes of <Det> and <N> (i.e., 4=2%2), i.e., the size of <NP> is 4. Similarly,
we can get the size of <VP> by multiply the sizes of <V> and <NP> (i.e, 8§ = 2%4).
Finally, the root rule size is obtained by multiplying the sizes of <NP> and <VP> (i.e., 32
= 4*8). Therefore, the size of the language defined by the above sample grammar is 32,

which means it can accept 32 utterances, such as “A boy opened the door.”

The details of language-size computation of the grammars in our experiment are given in

Appendix B.

6.2 Interpretation of Language Size

Since the left-hand side symbol in CFG rule can be freely replaced by the right-hand side
rules (refer to sub-section 2.2.1), we can obtain the following equivalent in figure 6.2 (1)

to the sample grammar in figure 6.1:

<857 = <Det>? <N>L <V>2 <Det>? <N>2

Figure 6.2 (1): variation of the grammar in figure 6.1
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So, from figure 6.2 (1), the grammar in figure 6.1 actually states that a valid sentence is
composed of a determiner (<Det>), a noun {<N>), a verb (<V>), a determiner (<Det>),
and a noun (<N>). In this specific example, each word has 2 valid alternatives. So, there
are 2¥2%2%2%2 = 32 possible valid sentences in the language defined by the sample
grammar. Furthermore, the language size is the size of the root rule, which is the product
of each word-candidate size (word-candidate sizes means how many possible alternatives

for this word candidate, e.g., size of <N>is 2).

Then, if we take d as the average depth, i.e., the average length of a sentence in the
language defined by a grammar, take 4 as the average branching factor, i.e., the average
number of word candidates. In the above example, the average depth (average length of a
sentence) 4 is 5, the average word-candidate size (branching factor) 4 is 2, and the

language size s is equal to 2° (e, 32).

In this specific example in figure 6.2 (1), each non-terminal in the grammar rule has the
same number of word candidates, and the grammar is equivalent to one rule. So, the
average branching factor and the sentence length are obvious. In genersl, it is hard to
know the precise sentence length and the branching factor. Since the language size can be
precisely calculated using the method discussed in sub-section 6.1, if either branching
factor or language length is available, the other is able to be obtained using the formula
s=b". Assuming all terminals and non-terminals in the grammar which has been assigned
weight in a particular context will all occur with equal probability, the general average

branching factor can be estimated in the following way:

1) The branching factor for an expression is the number of its successors;
2) The left-hand side expression takes the first alternatives on the right-hand side

EXPression as successors.
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3) If an expression has successors, it will be taken into account for average branching
factor;

4) Each terminal (word) has the size 1;

5) Average branching factor can be obtained by summing up all the branching factors,
then divided by the number of expressions for which branching factors have been

calculated,

Consider a general grammar in figure 6.2 (2), where the lefimost numbers are line
numbers, superscripts are used to denote the branching factors of the preceding
expressions (in the left-hand side, superscripts directly denote the branching factor of
non-terminals); the underlined superscripts are used for average branching-factor

computation.

1. <sent> = <ex>>

<w>Z;
2. <ex>’=<t1>% and* <12>%;
3. <w>’=<t2>? orl <3>3

| <t4>7;
<t1>*=wl|w2|w3;

<2>?=x1]x2;

<t3>°=nl|n2 |n3 |nd|n5;

NS n e

<t4>’=31|a2|a3|a4|asS|a6]a7;
Figure 6.2 (2): sample grammar with branching factors

The first rule in line 1 is the root rule of this grammar. The expression sent is composed
of ex followed by w. The branching factor (number of successors) for sent is the number
of possible alternatives of ex, which can be obtained by calculate the number of words in

¢l according to the rule in line 2. #/ has 3 alternatives (line 4), so ex has the branching
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factor 3 in line 2, and sent has the branching factor 3 in line 1. In the right-hand side of
line 1, the successor of ex is w, which is defined in line 3 with #2 and #4 as successors.
Since ¢2 has 2 alternatives defined in line 5 and #4 has 7 alternatives defined in line 7, w
has 9 successors in line 3(i.e.,9=2+7), which will be passed to ex in line 1. In this way,
the other branching factors can be obtained shown in figure 6.2 (2). The average
branching factor is calculated based on the expression with successors (numbers

underlined in figure 6.2):
b= (3+0+1+2+1+5)/6=3.5

Note that, this method is not suitable for the word-sequence grammar which consists of
word sequences. The branching factor for the word-sequence grammar is always equal to

the number of words in the dictionary.

Since the grammar has defined 5° possible valid choices for speech input, we consider the
following two cases: (1) If the branching factor (b) is a constant, which means the
average number of word candidate are supposed a constant, the language size will be in
exponential increase with d, the average length of an utterance in the language. (2) If the
average length of a sentence 4 is fixed, then the increase of the branching factor 5, i.e.,

the word-candidate size, will induce a polynomial increase in the language size (bd).

In practice, natural-language-database queries have a stable average utterance length (d),
so the number of word candidates (i.e., the branching factor b) plays a prominent role in
language size. In other words, increasing the vocabulary in a database query system can
increase the language size considerably. For example, assuming an average utterance
length (d) of 5 and an average branching factor (b) of 2, we have 32 (i.e., 2°) utterances.
If we keep the same utterance length (d=5), and double the branching factor (vocabulary

size, b=4), the language size increases to 1024 (i.e., 4%,
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Note that this assumes that the average branching factor is directly proportional to the
vocabulary size. Our experiment shows that this assumption is not valid in all

applications.

6.3 The Significance of Language Size

6.3.1 Influence on Speech-Recognition Accuracy:

We hypothesize that, in the same domain, the smaller the size of the defined language,
the higher is the speech-recognition accuracy. This hypothesis is examined from both
horizontal- and vertical- direction comparisons. Consider the following three general
types of grammar {(discussed in chapter 5): one is the semantic grammar, which directly
encodes semantic constraints into syntax rules of the CFG; the second is the syntactic
grammar, which contains only syntax rules; the third one is a simple word-sequence
grammar, which includes neither semantics nor syntax. With the same vocabulary, the
semantic grammar defines a language with the smallest size, the syntactic grammar
defines a larger-size language, and word-sequence grammar covers the largest language.
The horizontal-direction comparison occurs between these three different types of
grammar. We found that recognition accuracy increases with the decrease of the language
size, which means that the semantic grammar is the most accurate, the second accurate
grammar is the syntactic grammar, and the word-sequence grammer has the worst

recognition accuracy.

In a second experiment, these three types of grammar are each extended to enlarge the
language size by adding more words to the vocabulary. Then the vertical comparison is
available between the original grammar (e.g. syntactic grammar) and the later extended

grammar {(e.g. extended syntactic grammar). The result was that the extended grammar
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has lower recognition accuracy than the original one, for it has increased the language
size. This result was expected. The interesting part of this result is that recognition
accuracy remained quite good for the semantic grammar despite significant increase in

the language size.

We consider the speech recognition to be correct only when the recognition resuit
returned by the speech-recognition system is in accordance with the user’s speech input.
On the other hand, if the speech recognition is not correct, there may occur two possible
cases: (1) the system mis-recognizes the user’s speech input into something else. For
example, the user says “Who discovered mars?”, the system returns with “Who
discovered mimas?”; (2) the system cannot recognize the user’s speech input. For

example, the system responds to the user with “Sorry, I didn’t understand” .

While designing a grammar in speech recognition, we expect a good accuracy. However,
it is impractical to require a speech-recognition system to have 100% recognition
accuracy with current technology. We would like the system to report the information of
“not recognized” (such as the response to user “Sorry, I didn’t understand” in our
experiment) rather than the mis-recognition (incorrect recognition), if the speech
recognition is not correct. The reason is that “Sorry, I didn’t understand” may prompt the
user to repeat and get the correct speech input; while a mis-recognition is likely to pass

the system with wrong information and lead the user to some wrong results.

Our experiments show that, with the semantic grammar, the speech-recognition system
makes fewer mis-recognitions than the syntactic grammar with both semantically and
syntactically correct utterances, and the word-sequence grammar has the most mis-
recognitions among these three types of grammar, which proves that the semantic

grammar outperforms the syntactic grammar and word-sequence grammar in recognition
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accuracy with both semantically and syntactically correct utterance inputs.

Therefore, if speech-recognition accuracy is the most important feature for a speech-
recognition system, the grammar designer would try to restrict the language grammar to a
size as small as possible, which, for instance, can be implemented by directly encoding

semantics into the syntax of the grammar.

6.3.2 Influence on Robu

Although it is effective to get good recognition accuracy by adding more constraints to
shrink a language in size, it is likely to make the speech-recognition system lose
robustness. Intuitively, when we are reducing a language in size, we are adding more
constraints to the language, which implies that more utterances (that are valid in the
original grammar) are discarded due to their invalidity in the shrunk language. If the
discarded utterances are indeed not correct in some sense (e.g. semantics), the shrunk

language is achieving a more accurate performance.

However, not all users might be clear about the domain of the speech-recognition system.
It is possible they may ask some out-of-range questions. If the system just discards such
input, it may confuse the users if they indeed don’t realize what’s wrong with their inputs.
For example, if in a solar system with the semantic grammar, the user asks the system
“Does mars orbit phobos?”, which is absolutely syntactically correct, but semantically
incorrect for a planet cannot orbit a moon in common sense. Then the solar system (with
the semantic grammar) refuses such speech input due fo its semantic incorrectness. But
the user has not realized the problem and keeps asking such guestions on account of their
syntactic correctness. At such time, if the user cannot get any help from the system,

communication may get stuck.
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Based on the above reason, sometimes, we expect the system to be able to accept some
“incorrect” input, and provide the users with proper guidance to direct them back to the
correct track on the speech-recognition system. That’s where the robustness lies. At this
point, the speech-recognition system with the larger language size (e.g., defined by
syntactic grammar) outperforms that with a smaller language size (e.g., defined by

semantic grammar).

In grammar design, if the application requires more robustness than accuracy, a syntactic
grammar, instead of a semantic grammar, can be considered, for the reason that the
syntactic grammar is capable of accepting the uiterances that are syntactically correct but

semantically incorrect, which are rejected by a semantic grammar.

Generally, a trade-off exists between recognition accuracy and robustness, and how to

balance the speech-recognition accuracy and robustness is a significant future task.
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erview of the Experiment

Our preliminary experiment was carried out to investigate the significance of grammar
design in speech-recognition. Six grammars, i.e., semantic grammar, syntactic grammar,
word-sequence grammar, extended semantic grammar, extended syntactic grammar, and
extended word-sequence grammar (which are discussed in chapter 5), and two people,
one English male and one non-English female, were involved in the experiment. The
experimental subjects (people) speak to the experimantal system at a normal speed,
pronouncing every word as clearly as possible, like a normal user o a speech-recognition
system. They adjust their pronunciation by experience. All experiments are conducted

consistently in the same experimental location, with the same background.

A summary of the language sizes is given later in table 7.4.2, and a detailed computation
process of language sizes is given in Appendix B. The horizontal comparison is made
among the semantic grammar, syntactic grammar, and word-sequence grammar, also

among the extended semantic grammar, extended syntactic grammar, and extended word-
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sequence grammar. The vertical comparison is conducted between semantic grammar and
extended semantic grammar, syntactic grammar and extended syntactic grammar, word-

sequence grammar and extended word-sequence grammar.

At the beginning of the experiment, each subject (person) is trained by a set of utterances,
in order that they can get used to the testing system and make their pronunciation
acceptable to the system. Generally, people will adjust their pronunciation during the
practice, so that it is gradually accepted more and more by the system. Therefore, we
include the training part in the experiment to minimize the order effect, which means that
the order that the grammar is tested will not affect its recognition accuracy. The training
set is customized as a set of syntactically correct questions. Each person is trained by

going through this set ten times using the syntax grammar.

The testing utterance inputs are categorized into the following three categories: a
semantics set, which is composed of the questions that are both semantically and
syntactically correct (e.g., “Is titania a mountain™); a syntax set, which consists of the
questions that are only syntactically correct, but semantically incorrect (e.g., “Does a
mountain contain a moon”); and a word-sequence set, which covers the utterances that
are neither semantically nor syntactically correct, they are only word sequences (e.g., “Is
mountain contain moon™). All three types of testing utierances are checked by text-mode

testing to ensure they are categorized correctly.

To further minimize the order affect, the user will go through the three sets of questions
for each grammar twice in different sequences, for example, in the order like this:
(extended) semantic grammar, (extended) syntactic grammar, and (extended) word-

SCQUCnCe Zrammar,
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7.2 Experiment Environment

Qur experiments were carried out using IBM WebSphere Voice Server SDK which can be
frecly downloaded from IBM (2002) on Windows XP platform. The grammars were
written in JSGF, which can be embedded in VoiceXML pages as in-line grammar
segments, or stored in separate files locally or remotely. The testing applications were
written in VoiceXML (Voice eXtensible Markup Language), which is a programming
language for building interactive voice applications (Tellme, 2002). VocieXML is an
XML-based markup language for creating distributed voice applications, much as HTML

is a markup language for creating distributed visual applications (IBM, 2001).

The IBM WebSphere Voice Server SDK provides a spoken equivalent to visual browsing,
such as supporting VoiceXML to web application development activities (IBM, 2001). It
can be used to create and test Web-based voice applications based on the workstation’s
speakers to play audio output. Also, the developers can input data using the workstations’
microphones, prerecorded audio files, or the IBM WebSphere Voice Server SDK’s DTMF
Simulator (to simulate any telephone key input) (IBM, 2001). The SDK also supports

text-mode and automated testing.

The IBM WebSphere Voice Server SDK consists of a speech browser that interprets
VoiceXML markup, IBM ViaVoice Speech Recognition and Text-To-Speech (TTS)
engines for accepting voice input and generating synthesized speech output, sample
applications, and other tools for developing and testing VoiceXML applications (IBM,
2001).

The hardware configuration is as follows:

256 MB RAM;
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30GRB hard drive;

A display adapter with a setting of greater than 256 colors;

A Microsoft Windows 2000 compatible, 16-bit, full-duplex sound card (with a

microphone input jack) with good recording quality;

An average microphone.

The experiment results are given with respect to subject (people), grammar, testing
utterance set, and recognition result. The experiment result is denoted as follows: C:
Correctly recognized, I: Incorrectly recognized, N: Not recognized at all. The testing
order is considered in the experiment to ensure that the results are not unduly affected by

the testing order.

Note that, in the experiments, person #1 went though all the semantic grammars and
syntactic grammars using the semantics set and the syntactic set, and some of the
experiments using the word-sequence grammars and the word-sequence testing utterance
set; person #2 went through all the experiments using all types of testing utterances and
grammars. The experiment results are represented by two formats: a table and a graph.

Partial experiment results in detail are given in Appendix D.uo

In the experiment, the recognizer was tailored with a grammar. The subject read the
queries (utterances), and the recognition results were recorded. For example, given a

small set of three queries as follows:

1. Was phobos discovered by a person?
2. Is titania a mountain?

3. Does Saturn contain a crater?
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Supposing person #2 uses the extended semantic grammar to test the above testing
utterance set, the testing voice application is called “semantics test ext2.vxml”, the

command to run this application is: vsaudio_en_US.bat semantics_test_ext2.vxmi. The

screen shot is shown in figure 7.3 (1).

A A e B R o R o D A 8 e S A3 W N G L S G A A G e

Figure 7.3 (1): sample screen shown of the experiment

The format of trace enfries in the IBM Voice Server SDK is defined with “Code:
Message” as shown in table 7.3 (1) (IBM, 2001) :

Table 7.3 (1): Trace code in IBM Voice Server SDK

Code | Message

A Logged when the VoiceXML browser detects audio input, but the speech
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recognition engine does not return a recognized phrase; this may be due to breath

or background noise. The message column contains audio level messages.

Logged when the VoiceXML browser fetches a resource such as a grammar file,
an audio file, or a script. The message column contains the URI of the file, and

whether it was fetched from the server or was in the cache.

Logged when the user responds using voice input. The message column displays

the word or phrase that was recognized by the speech recognition engine.

A%

Logged when the VoiceXML browser fetches a .vxmil file. The message column
contains the URI of the file, and whether it was fetched from the server or was in

the cache.

Logged when the speech recognition engine determines that the user said
something, but the confidence level is not high enough to justify using the results.
In response, the VoiceXML browser throws a nomathc event. The message

column contains the word or phrase that was recognized.

Table 7.3 (1): Trace code ir IBM Voice Server SDK (Cont’d)

Refer to figure 7.3 (1), the “?: Was phobos discovered by a person” on the screen shot

(i.e., in trace log) means that the user’s speech input “Was phobos discovered by a

person” could not be recognized by the speech engine due to an insufficiently high

confidence level, which is denoted by “N” in our experiment result record. The “H: Is

titania a mountain” is the recognition result returned by the speech recognition engine,

also that’s exactly what the user has said. Under such circumstance, we consider this

recognition result to be correct, and denote it with “C” in our experiment result record.

The third utterance asked by the user was “Does saturn contain a crater”, but the speech

recognizer recognized it as “Does fifan contains a crater”. Actually, the speech engine

mis-recognized the user’s utterance input, we record it with “I” in the recognition result.
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7.3.1. Table Representation

The following tables contain summaries of the raw results of the experiments which are
given in Appendix D. To remind the reader what the rows and columns stand for, we

summarize some of the discussion so far in this chapter:

1. Three initial grammars were used to configure the speech recognizer: a semantic
grammar that defines the smallest language, a syntactic grammar that defines a larger
language consisting of syntactically correct utterances, and a word-sequence grammar.

2. The three grammars were all extended to include a larger vocabulary and the
experiment was repeated.

3. Three sets of utterances were used. A semantics set, which includes testing utterances
that are both semantically and syntactically corret; a syntax set, which contains
testing utterances that are only syntactically correct but semantically incorrect; and a
word-sequence set, which covers word sequences that are neither semantically correct

nor syntactically correct.

In addition, these tables show the experiment results afier we changed the grammars to

accommodate the person-specific problem (which is discussed later in sub-section 7.4.4).
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Person #1 (English male):

Table 7.3 (2): Experiment result using grammars BEFORE extension — Person #1

T ,, ggrxeeﬂy 5

@t :

Not Recog’

- 7 Correct | Incorrect

; § Grammar ;7 | Utierances 5} Recognized | Recognized | Recognized Eer@entég@ | Pememage Percentage |

& ) L B - ® P | B (%)
e = - b — R

o | Grammar #3 73 60 4 9 8§22 55 123

§ Average B 60 35 TG I A 4.8 13.0

& | Syntactic 42 73 ™ 60 1 2 822 151 2.7

& | Grammar Y 73 57 11 5 78.0 15.1 6.9
Average | G T 80.1 151 48
Serantic - #1 B 5 20 o 20 80 2
Grammar #3 25 0 8 17 0 32 68

G ‘ e T T

=, | Syntactic 22 0 88 0 12

* | Grammar ny) 25 2 0 3 88 12
W~ 25 23 0 T 3 88 0 12
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Table 7.3 (3): Experiment result using grammars BEFORE extension — Person #2

Person #2 (non-English female):
- - | TotalTest | Correctly o
Recognized | Recognized | Reco

®» @ | e | o )

Percentage |

| Utterances | Percentage ]

| souesng

Semantic #1 73 48 2 23 65.8 2.7 315
Grammar #4 73 52 2 19 712 2.7 26.0
| Average 73 w0 ) r 21 68.5 27 28.8
Syntactic %72 7| 36 10 27 T 493 | 137 37.0
Grammar #5 73 41 10 2 56.2 13.7 30.1
Average | - B 385 W s Ly 13.7 336
Word | #3 7319 | 46 a8 | 123 | 630 24.7
Sequence #6 73 9 41 23 12.3 56.2 31.5

Average 73 ' 9 433 205 ‘ 12.3 39.6 \ 28.1
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uble 7.3 (3): Experiment

Semantic #1 25 0 4 21 16 84
Grammar #4 25 0 5 20 0 20 80
| Average | 0 0 18 82

¢ | Syntactic B 16 48

g Grammar #5 25 12 1 12 48 4 48

> R SL e ey s e e e 10 48
Word #3 25 2 10 13 8 40 52
Sequence #6 25 2 12 11 8 48 44
R . e o . — 5 T 5
T o - - o - = -
Grammar #4 24 0 2 22 0 8.3 91.7

: e v ,‘ — = W v ?ﬁ 55"

e | Syntactic #2 24 0 17 0 29.2 70.8

g Grammar #5 24 0 17 0 29.2 70.8

2 [Avemage SR 0 7 s R 353 708

& | Word #3 24 4 12 8 16.7 50.0 333
Sequence #6 24 3 15 6 12.5 62.5 25.0
Average | ‘_{ 24 e T 7 14.6 "'"Sfé,'”:"a?'" 29.1

reszélﬁt“using grafnfnars BEF ORE extension — Person #2 (Cont’d)
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Table 7.3 (4): Experiment result using grammars AFTER extension — Person #1

Person #1 (English male):

| Total Test | Correctly | Not | Correct | Incorrect

Not Recog’
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8 e e ) (%) (%) %)

T e - S . — ——
Grammar #3 73 56 7 10 76.7 9.6 13.7

w | Average 73 5 68 9 78.8 89 o3

§ Syntactic #2 73 55 9 9 754 12.3 12.3

& | Grammar #4 73 53 11 72.6 15.1 12.3

& |Average | 73 ey 5 74.0 137 23
Wd Seq #5 73 14 46 13 19.2 63.0 17.8
Average g 73 14 ! 46 13 ! 192 63.0 17.8
| Semantic 1| 25 o | 4 21 |0 16.0 84.0
Grammar #3 25 4 21 0 16.0 84.0

2] -

'S | Average 25 s 4 21 0 16.0 84.0

% ["Syntactic ) 35 0| 1 4 80 4 16
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Semantic #1 25 0 5 20 0 20.0 80.0
Grammar #3 25 0 3 22 0 12.0 88.0
R e o o . o e
v | Syntactic #2 25 12 3 10 48.0 12.0 40.0
g Grammar #4 25 12 1 12 43.0 4.0 43.0
Word 45 25 1 15 9 4.0 60.0 36.0
Sequence #6 25 0 14 11 0 56.0 44.0
| Average 25 0.5 145 10 2.0 58.0 40.0
Semantic | #1 2% | 0 1 23 0 42 95.8
Grammar #4 24 0 1 23 0 4.2 95.8
me, 7 0 1 23 0 4.2 95.8
§ Syntactic | #’H 24 0 6 18 0 75.0 75.0
g Grammar #5 24 0 7 17 0 292 70.8
8 [Avemnge 7 o L B § 371 729
% | Word #3 24 1 18 5 42 75.0 20.8
Sequence #6 24 2 14 8 8.3 58.4 33.3
 Average ~ b s 16 65 63 66.7 270

Tuble 7.3 (5) Exfér‘ir}zent result using gfdni}ﬁars AFTER extension — Person #2 M( ?Con‘tv’d)
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7.3.2 Further Summary and Graphical Representation of the Results

To study the general trend of the experimental results, we take the average recognition

results of each subject using each grammar under each testing utterance set.

Table 7.3.2 (1): the “Correct” feature using the semantics set

Grammars Person #1 Person #2 Average
Semarntic 82.2 68.5 75.35
Syntactic 80.1 52.7 66.4
Word Sequence 12.3 12.3
Ext. Semantic 78.8 61 69.9
Ext. Syntactic 74 46.6 60.3
Ext. Word Sequence 19.2 4.8 12

Correctness (%)

syntactic

Ext. |
syntactic |
Ext. Word |

@ semantic}

Figure 7.3.2 (1): the “Correct” feature using the semantics set

The data above shows that: for both subjects, and for the original and extended grammars,
the semantic grammar has higher accuracy than the other grammars; the word-sequence

grammar has much lower accuracy than the other grammars, for queries that are

semantically as well as syntactically correct.
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Table 7.3.2 (2): the “Incorrect” feature using the semantics set

Grammars Person #1 Person #2 Average
Semantic 4.8 2.7 375
Syntactic 15.1 13.7 14.4
Word Sequence 59.6 59.6
Ext. Semantic 8.9 6.2 7.55
Ext. Syntactic 13.7 16.4 15.05
Ext. Word Sequence 63 69.9 66.45

\—— Person #1
-~ Person #2
Averace

:
|
|
L

incorrectness (%)
8888

t.

2
i
=
5 E
mm
&

Ext
syntactic |
Ext. Word |
Sequence|

syntactic

i S

Figure 7.3.2 (2): the “Incorrect” feature using the semantics set

The data above shows that: for both subjects, and for the original and extended grammars,
the semantic grammar has the lowest mis-recognition rate, and the word-sequence
grammar has the highest mis-recognition rate, for queries that are semantically and

syntactically correct.
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Table 7.3.2 (3): the “Not recognized” feature using the semantics set

Grammars Person #1 Person #2 Average
Semantic 13 28.8 20.9
Syntactic 4.8 33.6 19.2
Word Sequence 28.1 28.1
Ext. Semantic 12.3 32.8 22.55
Ext. Syntactic 12.3 37 24.65
Ext. Word Sequence 17.8 25.3 21.55

f

Not Recoghize
(%)
Ett=tots

semantici
sequencef

Syntactic |
Ext. Word

Syntactic

Gransars

Figure 7.3.2 (3): the “Not recognized” feature using the semantics set

Though it seems that there is not an obvious trend for the “not recognized” feature using
semantics set, we can see the “not recognized” rates of semantic grammar and syntactic
grammar are approximately the same. The figure also shows that the person #2 has
encountered more “not recognized” than person #1, which may be due to their experience

with English.
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The above data shows that if the user asks the queries that are both semantically correct
and syntactically correct, for both subjects, and for the original and extended grammars,

the experiment results can be summarized as follows:

The semantic grammars have the highest correct recognition rate and the fewest

incorrect recognition (mis-recognition) rate.

The word-sequence grammar has significantly less accuracy and higher mis-

recognition rate than the other grammars;

The semantic grammar has approximately the same percentage of “not recognized”

as the syntactic grammar.
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Table 7.3.2 (4): the “Correct” feature using the syntax set

Grammars Person #1 Person #2 Average
Semantic 0 0 0
Syntactic 88 42 65
Word Sequence g 8
Ext. Semantic 0 0 0
Ext. Syntactic 82 48 65
Ext. Word Sequence 2 2
|
the & |
S 100
% 80
£ @
8 40
g 2
B 6H) !
8 g o8 g B¢
& o = &J 3 (o]
2 25 8 =8
c © cE¢g
& @ g
Gra

Figure 7.3.2 (4): the “Correct” feature using the syntax set

The above data shows that: if the user asks the queries in syntax set, which are only
syntactically correct but semantically incorrect, the syntactic grammar, as well as its
extension, has higher recognition accuracy than the other grammars. The semantic
grammars cannot recognize any query in the syntax set, and the word-sequence grammars

have very low-recognition accuracy.
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Table 7.3.2 (5): the “Incorrect” feature using the syntax sef

Grammars Person #1 Person #2 Average
Semantic 26 18 22
Syntactic 0 10 5
Word Sequence 44 44
Ext. Semantic 16 16 16
Ext. Syntactic 2 8 5
Ext. Word Sequence 58 58

incorrectness (%)
03888

EXt. Word |

syntactic
syntactic

Figure 7.3.2 (5): the “Incorrect” feature using the syntax set

The above data shows that: for the queries in syntax set, which are only syntactically
correct but semantically incorrect, for both subjects, and for the original and extended
grammars, the syntactic grammar has the lowest mis-recognition rate. The word-sequence

grammar has the highest mis-recognition rate.
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Table 7.3.2 (6): the “Not recognized” feature using the synitax set

Grammars Person #1 Person #2 Average
Semantic 74 82 78
Syntactic 12 48 30
Word Sequence 48 48
Ext. Semantic 84 84 84
Ext. Syntactic 16 44 30
Ext. Word Sequence 40 40
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Figure 7.3.2 (6): the “Not recognized” feature using the syntax set

The above data shows that: if the queries are only syntactically correct but semantically
incorrect, the semantic grammar is more likely to report “not recognized” information to
the user than the other grammars. The syntactic grammar has the lowest “not recognized”

rate.
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Figures 7.3.2 (4), 7.3.2 (5), and 7.3.2 (6), as well as tables 7.3.2 (4), 7.3.2 (5), and 7.3.2
(6) show that if the queries are only syntactically correct, but semantically incorrect, the

experiment results can be summarized as follows:

The syntactic grammars have the highest accuracy, the lowest mis-recognition rate,

and the lowest “not recognized” rate.

The semantic grammar cannot recognize any such kind of queries, and has the

highest “not recognized” rate.

The word-sequence grammar has the most mis-recognitions;
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Table 7.3.2 (7): the “Correct” feature using the word-sequence set

Grammars Person #2
Semantic 0
Synatactic 0
Word Sequence 14.6
Ext. Semantic 0
Ext. Syntactic 0
Ext. Word Sequence 6.3

| [ person #2/
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Figure 7.3.2 (7): the “Correct” feature using the word-sequence set

It can be seen from the above data that: if the user’s queries are only word sequences that
are neither semantically correct nor syntactically correct, only the word-sequence
grammar can recognize some, though the accuracy (14.6%) is much lower than that of the
semantic grammar using the semantics set (75.35%) or that of syntactic grammar using
syntax set (65%). Neither semantic grammar nor syntactic grammar can recognize any

query in word-sequence set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 Experiment and Results

Page 67

Table 7.3.2 (8): the “Incorrectness” feature using the word-sequence set

Grammars Person #2
Semantic 104
Syntactic 29.2
Word Seguence 56.3
Ext. Semantic 4.2
Ext. Syntactic 27.1
Ext. Word Sequence 66.7

Incorrectness (%)
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Figure 7.3.2 (8): the “Incorrectness” feature using the word-sequence set

The above data shows that: if the input queries are only word sequences, the trend with

respect to the mis-recognition rate is similar to that shown in figure 7.3.2 (4), which

represents the “incorrectness” feature using the semantics set. The word-sequence

grammar has the highest mis-recognition rate, and the semantic grammar has the lowest

mis-recognition rate.
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Table 7.3.2 (9): the “Not recognized” feature using the word-sequence set

Grammars Person #2
Semantic 89.6
Syntactic 70.8
Word Sequence 29.1
Ext. Semantic 95.8
Ext. Syntactic 72.9
Ext. Word Sequence 27
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Figure 7.3.2 (9): the “Not recognized” feature using the word-sequence set

The above data shows that: if the user asks only word sequences that are neither

semantically correct nor syntactically correct, the semantic grammar has the highest “not

recognized” rate, and that for word-sequence grammar is the lowest.
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Figures 7.3.2 (7}, 7.3.2 (8), and 7.3.2 (9), and tables 7.3.2 (7), 7.3.2 (8), and 7.3.2 (9)
show that, if the queries are only word sequences that are neither semantically correct,

nor syntactically correct, the experiment results can be summarized as follows:

Only the word-sequence grammar can recognize some queries. Neither the semantic

grammar nor the syntactic grammars can recognize any such kind of queries.

The word-sequence grammars have the most mis-recognitions, and the semantic

grammar has the lowest mis-recognition rate.

The word-sequence grammars have the lowest percentage for “not recognized”
among the three kinds of grammars, and the semantic grammar has the highest “not

recognition” rate.
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The tentative experiment is examined and analyzed from the following aspects:

7.4.1 Review the Nature of the Testing Utterances (Q

eries)

The grammars in the experiment define the language that can accept users’ questions
within the domain of a solar system. The testing utterances are customized with the goal
of being representatives of the language. However, the language in the experiment is too
large to be able to choose a sample size that can be shown to be truly representative from
a phonetic perspective. For example, the smallest language in the experiment is defined
by the semantic grammar with a language size of 2.70 * 10'2. What we have done is to
pick representatives from each type of question in each alternative in the root rule of the
grammar, which is subdivided further for subtypes of utterances. While selecting the
words in the same category, we apply different words in different testing utterances in
order to have a broad testing coverage. In addition, we did not include very long queries
for testing utterances, such as “Is a red crater or an atmospheric mountain contained by a
planet or a moon”, in the experiments in order to avoid speech errors from the person
speaking that result from misreading the query. As a matter of fact, we would say that the
testing ufterances are enough in number rather than in the sense of being provably
representative. In a future, more intensive experiment, it might be possible to identify a

more ‘provably-representative’ set of utterances.
7.4.2 Calculation of Language Size

Using the method described in sub-section 6.1, the sizes of the languages defined by the
experimental grammars can be calculated precisely, using the method in sub-section 6.2,

the average branching factors can be estimated, furthermore, the estimated-average-query
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lengths are also available using the formula s=2°. The detailed calculation process of
language sizes and branching factors can be found in Appendix B and Appendix C

respectively, the results are summarized in table 7.4.2.

Table 7.4.2:language sizes and branching factors

Grammar Language size (s) | Branching factor (b)
semantic grammar 2.70 % 10" 39.6
syntactic grammar 3.05 * 10" 95.5
word-sequence grammar 2.31 * 10% 273
extended semantic grammar 5.55 * 10 95.6
extended syntactic grammar 8.17 * 10 267.3
extended word-sequence grammar 2.40 * 107 547

7.4.3 An Analysis of Individual User

Since the default voice in the experimental environment is an American male voice, it is
not surprising that the person #1, English male (although not North American), in the
experiment has an overall higher recognition accuracy than person #2 who is a non-
English female. In addition, person #2 is more likely to be affected by the training, which
means that she is being accepted by the system better with more practice and adjustment.

That’s also the reason that we vary the testing order in the experiments.

Despite the differences between the experiment subjects, they provide the same trend,
with only one exception (the “not-recognized” result when using the semantics set of
questions), with the same grammar and testing-utterance set in the experiment, which is
clearly shown by the figures in sub-section 7.3.2. This fact indicates that the
performances of different languages (defined by different grammars) are comparable
though various subjects may be involved in the experiment. Furthermore, it proves the

generality of the observations set up in this thesis,
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7.4.4 An Analysis of the Person-Specific Problem

The VXML browser has the ability to convert text to speech (TTS), but it requires the
text be represented in its pronunciation format. For example, “OK” need to be written in
“Okay”, and “etc.” in “et cetera”. During the experiment, we observed that the speech-
recognition system may not be able to recognize some of the user’s specific words.
Person #1, for instance, the word “earth” maybe recognized as “paris” or something else,
and for person #2, the word “earth” may be acceptable, but the word “Jupiter” may be
mis-recognized as “Jupitereighth”. To these specific words, we make the modification in
all the grammars using “urth” to replace word “carth” that may have the pronunciation
“ear th”, and using “Jupiter eighth” that are divided into two separate words, instead of

the one word “Jupitereighth” in order to avoid the mis-recognition of word “Jupiter”.

The experiments do show the effectiveness of these modifications. The figures in sub-
section 7.3.2 show the results after we made such changes to all the experiemental
grammars. The semantic grammars correct those words successfully, but the problems
still exist in the syntactic grammars, which also proves our statement that the semantic
grammar has better recognition accuracy than the syntactic grammar. The drawback is

that this correction is person-specific.

7.4.5 An Analysis of the “Correctness” Feature

From the figures in sub-section 7.3.2, we can state that: if the user is very clear about the
system, and inputs both semantically and syntactically correct utterances (in semantics set)
to the speech-recognition system, the semantic grammar provides the best recognition
accuracy, the syntactic grammar has the second best accuracy, and the accuracy of word-
sequence grammar is the lowest. Meanwhile, in the vertical comparison, the extended

grammar has lower recognition accuracy than its original one (before its extension).
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However, if the user is not familiar with the speech-recognition system and its current
domain, therefore asks out-of-range utterances, the semantic grammar is not superior o
the syntactic grammar or word-sequence gramrmar any more. Refer to figure 7.3.2 (2) and
figure 7.3.2 (3), as for only syntactically correct but not semantically correct utterances
(syntax set), the syntactic grammar has betier recognition accuracy than semantic
grammar and word-sequence grammar; only word-sequence grammar, among the three
types of grammar, has any recognition ability (i.e., recognize some utterances correctly)

to the word-sequence set.

7.4.6 An Amnalysis of the “Incorrectness” Feature

As discussed in sub-section 6.3.1, mis-recognitions are unwelcome in a speech-
recognition system. Refer to figure 7.3.2 (4), in the semantics testing utterance set, the
semantic grammars are least likely to have mis-recognitions, which means it performs
better than the syntactic grammar and the word-sequence grammar. Meanwhile, the
extended grammars have relatively more mis-recognitions than their original ones. These
phenomena are in coincidence with the finding that semantic grammars have the best
recognition accuracy among these three types of grammar, and the accuracy drops down
with the extension of the grammar (discussed in sub-section 7.4.4). But if the user’s
inputs belong to the syntax testing utterance set (only syntactically correct, but
semantically incorrect), the semantic grammar is inferior to the syntactic grammars with
respect to the mis-recognition feature. The word-sequence grammar always has the most

mis-recognitions with any type of input utterances.

7.4.7

Analysis of the “Not recognized” Feature

Within the semantics set, the semantic grammar is the one that is most likely to respond

the user with “not recognized” information. The percentage of “not recognized” of the
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extended grammars is usually higher than the original grammars. Since the testing
utterances in the syntax set are semantically wrong, the semantic grammar often responds
the user with “not recognized” here. The word-sequence grammars seldom respond the

“not recognized” information in any testing utterance set.

7.4.8 Examine the Detail of Incorrect Recognition f

s-recognition)

The tentative experiment has explicitly shown that the overall recognition accuracy of the
word-sequence grammar is pretty low. So, does that mean the word-sequence grammar is
useless any way? If we take a careful examination of Table Appendix D (8) in Appendix
D, we can find that, with proper analysis, the word-sequence grammar is also able to

provide some useful information in the speech-recognition system.

The mis-recognitions can be classified into two types by the extent of the incorrectness in
the recognition. The first type of mis-recognition is: the system recognizes most of the
words (e.g., greater than 70%, this threshold is set up depending on specific system and
requirement). For example, the user says “Was phobos discovered by a person”, the
system does not recognizes the determiner “a”, and the recognition result is “Was phobos
discovered by person” (number of correct words/ total number=5/6 = 83.3% correctness).
In this case, the system has caught the correct meaning of the user’s input, the

communication between the user and the system can proceed smoothly.

In the second type of mis-recognition, the system may only recognize a small part of the
input utterance (e.g. less than 70%). For example, if the user asks “Which mountain is
found on Jupiter”, the system recognizes as “which mountain is Yaounde Jupiter”, the
correct recognition rate is 4/ 6 (66.7%). Though the recognition result seems funny, we
can guess from that the user is interested in “which mountain” and some relation to

“Jupiter”. In this case, if the system is robust enough, it could further confirm the user’s
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question by prompting the user with ”Are you interested in the mountain and Jupiter?” If
the user answers “Yes”, the systemn may direct the user to the site with the information of

“Jupiter and mountains”, and the communication continues correctly.

Furthermore, if we examine some sample recognition results, we may find some
“probable” mis-recognitions. Again take a look at the Table Appendix D (8), we find out
that the user’s input “found on” is likely to be recognized with “Yaounde”. So, if there are
not many utterances about the real “Yaounde”, we can replace the “Yaounde” with “found
on” in the recognition results and obtain the more reasonable recognition. Then, the
above example mis-recognition “which mountain is Yaounde Jupiter” is restored to
“which mountain is found on Jupiter”, which is the correct result corresponding to the

user’s input.

7.4.9 An Analysis of the “Robustness” Feature

As discussed in sub-section 4.2, robusiness means the extent to which a system handles
errors or “unexpected” inputs. From the figures in sub-section 7.3.2, we can see that the
semantic grammar is most likely to refuse incorrect inputs, since it cannot accept any
utterance that is not semantically correct; the next one is syntactic grammar, which can
accept the syntax set, but refuse the word-sequence set; while the word-sequence
grammar seems to be able to accept any kind of utterances and word sequences.
Therefore, the robustness of semantic grammar, syntactic grammar, and word-sequence

grammar is increasing in this order.

7.4.10 Issues on Grammar Combination

Since we cannot anticipate 100% accuracy in the state of the art, we have to try to

overcome the drawback of non-recognition. For mis-recognition, it seems we cannot do
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anything to it, because during the communition, the user doesn’t realize the speech
system has mis-recognized his/ her voice input unless the system returns what it gets after

the user’s input, which is certainly annoying to the user.

If the system returns the information of “Not recognized”, we may have the following
two choices to improve it: (1) prompt the user to repeat his/ her utterances. For example,
refer to table Appendix D (9), the second utterance (“Is titania a mountain”) was not
recognized in the first round test (sem #1), but in the next round test (sem #3), it was recognized
correctly. (2) Transfer the speech input to a grammar defining a larger language with the
same domain. For example, we could combine the semantic grammar, syntactic grammar,
and word-sequence grammar into one “combined grammar”, and assign them with the
different probabilities in the descending order. When the system receives a voice input,
the grammar with the highest probability (i.e., semantic grammar) is tried first. If it
cannot recognize the input, the input is transferred to the grammar with lower probability
(i.e., syntactic grammar), and so on. For example, the user asks an utterance in the syntax
set, the semantic grammar definitely refuses it, then the syntactic grammar (with lower
probability) could be used, and may accept the input. The results of our experiments
suggest that speech-recognition systems which use combined grammars will be able to

achieve a flexible combination of good accuracy and good robustness. This part of our

hypothesis requires further investation.

Through the above analysis, the advantages and disadvantages of each grammar
(semantic grammar, syntactic grammar, and word-sequence grammar) are summarized as

follows:
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The semantic grammar has the best recognition accuracy for semantically and
syntactically correct utterances, but lowest robustness for other types of utterances. It
defines the smallest language, with the most complicated grammar design that is

most difficult to maintain and extend;

The syntactic grammar has median performances in accuracy, robustness, language

size, and grammar complicity, among these three types of grammar;

The recognition accuracy of the word-sequence grammar is very low, but it is the
most robust grammar, and may provide some useful information when the user
inputs an ‘unexpected’ utterance. The grammar of word sequence is the simplest one,

which covers the largest language.

If these three grammars are integrated into one combined grammar, using probability
values, the speech-recognition system may achieve flexible combination of accuracy

and robustness.

So, what kind of grammar should be applied in a specific speech-recognition system
which can only use one grammar? If the system requires high recognition accuracy, the
semantic grammar should be the first selection; otherwise, if the system emphasizes more
robustness than accuracy, the syntactic grammar could be considered. The word-sequence
grammar as the most robust grammar may be useful in some specific application. To
balance the robustness and accuracy, we suggest integrating these three grammars, and

assigning them different probability values.

Furthermore, the language size defined by the grammar in the speech-recognition system
needs to be considered. Refer to sub-section 7.4.2, the smallest language in the
experiment has the size of 2.70 * 10'2. So what has been proven in the experiment may

be applicable to grammars that define a language size less than 2.70 * 10" To better
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imagine how large the language is, figure 7.4.11 (1) and figure 7.4.11 (2) show a sample

grammar and a language in tree structure.,

<Sent>>609%0 = <Ques*t>3 <Det>*<Noun>'% <Verb>* <Det>? <Noun>'";
//3%100%3%2%100=1.8 * 10°
<Quest>® = was | does | did;
<Det>* =a | an;
<Noun>'" = planet | moon | mountain | gas | chemical | earth | mars |.... // 100 words
<Verb>® = find | found | contain;

Figure 7.4.11 (1): sample grammar showing language size
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<Quest>3

was does did

plafet modh mbuntain 100 words ™

<Verb>

find found tontain
<Det>?

a an

Figure 7.4.11 (2): Tree structure of the language defined by the sample grammar

It is shown that the smallest language in our experiment is almost amillion times larger
than the above sample language. It is reasonable to believe that the results of the
experiment identify a not-worse performance in speech-recognition systems, such as
command systems, covering a small vocabulary of commands, such as “open the door”
and “turn on the light”, but the experiment cannot guarantee the same accuracy for larger
systems such as a university-management system with a larger vocabulary, for example,

thousands of students.
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8.1 Summary of Work Done

To investigate the features of grammars in speech recognition, experiments were carried
out and results were analyzed. Based on the grammars created by Frost (2002), we
constructed three types of grammar, semantic grammar, syntactic grammar, and word-
sequence grammar, as well as their extensions. The examination of different grammars in
speech recognition is conducted from two directions: horizontal and vertical comparisons.
Semantic grammar, syntactic grammar, and word-sequence grammar are compared in
horizontal direction. The original (unextended) grammar is compared with its extension
{(e.g. syntactic grammar vs. extended syntactic grammar) for vertical comparison. Two
subjects (people) are involved in this experiment, an English male and a non-English
female. Three customized testing-utterance sets are included in the experiments: one is
the semantics set, in which the utterances are both semantically and syntactically correct;
second set is the syntax set, which covers the utterances that are only syntactically correct
but semantically incorrect; the third set is the word-sequence set, which includes only

word sequences that are neither semantically nor syntactically correct.
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The experiments indicate that: in the same domain, the smaller the size of the defined
language, the higher is the recognition accuracy, but the less is the robustness. Meanwhile,
the experiments show the unexpected result that the semantic grammar is less likely to
lead to mis-recognition than the syntactic grammar and word-sequence grammar with the
utterances that are both semantically and syntactically correct. If the utterances are only
syntactically correct and semantically incorrect, the syntactic grammar outperforms the
semantic grammar. In addition, the word-sequence grammar would be useful with

‘anexpected’ utterance inputs.

Furthermore, the experimental results suggest that the integration of semantics, syntax,
and word-sequence grammar, using probability values, into speech-recognition grammar,

would achieve a flexible combination of robustness and accuracy.

There are many factors involved in grammar design and speech-recognition issues.
Though what we have shown are very crude experiments, they are sufficient to indicate

that grammar design in speech-recognition technology is a good area for further study.

8.2 Limitations of the Experiment

Although there is no contradictive evidence in the experiment to the thesis statement, it is
really a quite crude and preliminary experiment. There are a number of limitations that

need further improvement.

Insufficient knowledge of the recognition mechanism used in the VXML tool

During the experiment, we did not study the recognition mechanisin of the experiment
tool. We don’t know the threshold of a phoneme to be accepted (recognized) by the
system. We don’t know whether the speech speed will influence the speech recognition.
We have no idea whether large spaces between words will be helpful or hindering to
speech recognition. We also don’t know whether the loudness level will affect the

recognition result, and to what extent background noise will affect the recognition.
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Representative utterances

In sub-section 7.4.1, we look into the testing ufterances, and have to accept that it is hard
to say that these viterances are the exact representatives of the language. For example, we
did not include very long testing utterances in the experiments, such as “Is a red crater or
an atmospheric mountain contained by a planet or a moon”, in order o avoid speech

errors that result from the person misreading the query.

Subject-specific problems

As analyzed in sub-section 7.4.4, there are subject-specific problems in our experiment
which may affect the generic application of the speech-recognition system. If more
subjects (people) are involved in the experiments, someone may have some problems that
are all right to others, but the others may have other new problems. So, it will be very

hard to handle the subject-specific problems in generic meaning,

Crude experiment

This experiment is only a crude and preliminary experiment. Only two people (subjects)
and three types of grammar: semantic grammar, syntactic grammar, and word-sequence
grammars, are involved. In the future, more people (subjects) and more experiments will

be involved,

8.3 Future Work

As we have seen through this thesis report, there is a lot to be desired in the speech-
recognition technology. Moreover, every step along the long road is open to philosophical
debate. As much as we understand that a 100% accuracy and robusiness in speech-
recognition is impractical, we do respect the sufficiency of any trivial observation and
improvement. Since the extensive investigation shows the significance of grammar

design in speech-recognition technology, it deserves further attention in the future work.

Besides the above limitations discussed in sub-section 8.2, we will consider another
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critical issue existing in speech-recognition technology: how to balance the recognition
accuracy and robustness. In future work, we would combine the semantics, syntax, and
word sequence, using probability values, into speech-recognition grammar to achieve a

flexible combination of accuracy and robustness.

Furthermore, we also expect to construct a speech-recognition system with good
flexibility in the future. As we showed in sub-section 4.3, flexibility is one of the
problems in speech-recognition technology. The ideal system is able to accept the user’s
out-of-range utterances, and provide him/her with some reasonable guidance to direct
him/her to the correct place to continue using the system. We'd like to set the flexible

navigation through a speech-web as our future work.

8.4 Su ry of Conclusions

Over the past decades, a lot of work has been carried out on speech-recognition
technology, a variety of approaches have been proposed, and numerous commercial or
laboratorial speech-related products have emerged. However, there are a number of
unsolved problems in speech-recognition technology. In this thesis report, we have

investigated the significance of grammar design in natural-language speech-recognition.
Supported by the experiments, we conclude as follows:

Adding syntactic rules does improve recognition accuracy.

Adding semantic constraints further improves accuracy.

All of the grammars have advantages and disadvantages, so the application
characteristics need to be carefully examined to select the proper grammar. Table 8.4

summarizes the relation between the application characteristics and grammars.

Table 8.4: application characteristics and grammars

Application Grammars Accuracy Incorrectness
Characteristics (%) {%)
High accuracy | ¥ Semantic grammar | High (75) Low (4)
for semantic | Syntactic grammar Median (66) | M (14)
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Word-sequence grammar | Low (12) High (60)
High robustness | Semantic grammar Low (0) Median (22)
for syntactic | v Symtactic grammar | High (65) Low (5)
queries Word-sequence grammar | Median (8) High (44)
Highest Semantic grammar Low (0) Low (10}
accuracy for Syntactic grammar Low (0) M (30)
word sequences | v Word-sequence Median ¢(15) | High (56)

Table 8.4: application characieristics and grammars (Cont’d)

Table 8.4 shows that if the application requires high recognition accuracy for
semantic queries, the semantic grammar should be the best choice with highest
recognition accuracy and lowest mis-recognition rate; if the application asks for
high robustness with syntactic queries, the syntactic grammar should be the
candidate; if the application need highest robustness for word sequences, the word-

sequence grammar could be considered.

If the grammar could be combined, using probability values, it would result in a

flexible combination between accuracy and robustness.
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With the growing interest and demand for human-machine interaction, more and more

work concerning speech-recognition has been carried out over the past decades. This
survey investigates the techniques involved in speech-recognition, including the widely-
used robust stochastic approaches, the prevalent grammar-based methods, combined N-
gram and grammar-based techniques, parsing techniques used for speech recognition, the
approaches of integrating syntax and semantics, and other techniques. Since language
features play a significant role in speech-recognition, the techniques of using semantics in
speech-recognition are emphasized. Although many research prototypes and even
commercial applications have been deployed, many challenges remain in the

development of speech-recognition technologies.
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Looking back on human history, language marked the evolvement of the humankind,
words recorded the civilization of the human society, and speech communication has
been the most common, convenient, and preferred methods of communication of human
beings. For the majority of human beings, speech communication is the easiest way to
convey information from human to human, for it can make hands free, can proceed in the

dark, and even can reach very far distance through radio and telephone.

The question is, can machines make use of all of the advantages of human’s natural
language speech? If a machine can understand natural language, one can easily interact
with that machine (just like communicating with another human) in natural language to
refrieve information, conduct transactions, or perform other problem-solving tasks. For
example, people can direct the machine, in spoken language, to execute commands; with
the assistance of external equipment (e.g,, telephone), activate remote controls or fulfill
remote commercial transactions; visit the speech web with natural spoken language input
and voice output without text or graphic interfaces; virtual-reality technology can be
strengthened with more-real natural-speech interactions; machines can dictate what one
says and save it as a text document; machines can automatically translate one language
into other languages and the people with vision disability will suffer less on account of

the help of machines equipped with a natural-language ability.

Over decades, a number of Artificial Intelligence (AI) researchers have been striving to
build models to interact between humans and machines with natural-language speech.
The conversational interfaces in the 1950s marked the origin of spoken-dialogue systems
(McTear, 2002), whereas, it is only in the past decade that speech technology has
achieved advanced progress with the introduction of both research prototypes and
commercial applications, such as SPHINX (the first accurate large-vocabulary continuous
speaker-independent speech recognition system, which was developed at Carnegie
Mellon University (Huang et at., 1992) (Lee, 1988) (Kita and Ward, 1991)), ATIS (an
actual spoken language Air Travel Information System (Moore er al, 1995)) ,
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CommandTalk (a spoken-language interface to a battle-field simulator (Goldwater ef al,
2000) (Dowding ef al., 1999) (Stent ef al., 1999) (Moore ef al., 1997)), and the JUPITER
weather information system (developed in MIT, (Glass, 1999)).

The potential of speech technology has aroused the attention of some telecommunication
and software companies. Some newly-developing areas, e.g. computer-telephony
integration, are demanding speech solutions. Subsequently, the corresponding products
were created, such as, voice portals (McTear, 2002), which provide a speech-based

interface between a telephone user and web-based services.

A complete spoken-dialogue system involves the integration of the following components
(McTear, 2002) (Han, 2000) (Glass, 1999): a speech recognition component, a language
understanding component, a dialogue management component, a component for
communication with an external system, a response generation component, and a speech
output component. These components work in a sequential stream, in which the first
component receives the user’s input, then the output from that component feeds into the
next component as the input, and so forth, until the consequent voice output is
synthesized for the user. An overview of the interaction of the components in spoken

dialogue system is as follows (McTear, 2002):

The speech-recognition component receives the user’s input utterance and converts the
continuous-time signal into a sequence of discrete units for the use of the language-
understanding component. As the language component receives the information from the
previous speech-recognition component, it analyzes the discrete units and derives a
meaning representation for the next dialogue control component. The dialogue-
management component controls the dialogue flow by determining whether the user has
provided sufficient information, also communicating with the external application and the
ﬁser. Usually, it is a database that acts as the external system component for the requested
information retrieval in the spoken-dialogue system. Finally, the response-generation
component will construct the message retrieved from the external system component

corresponding to the user’s request and send it to the speech output component to
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synthesize the voice output for the user.

From the above architecture, it can be seen that speech recognition forms the basis, the
fundamental part, and the gateway of the whole spoken-dialogue system. Recognition
accuracy directly affects the performance of the subsequent processes. The main task of
speech-recognition research is to build a suitable language model to determine the
individual words of the input utterances and to specify the possible sentences for the
system (McTear, 2002). The technology of speech recognition is concermned with various

linguistic features, including syntax and semantics, and statistical or grammar-based

techniques are also involved.

Since countless human conversations proceed every day without any trouble, people do
not realize that they have overcome many problems in such conversations, such as,
disfluencies, interruptions, confirmations, anaphora, and ellipsis. For example, Glass
(1999) showed a statistic number that almost 50% acknowledgements (e.g., “okay”,
alright”, “uh-huh’) occurred in the customer dialogues. In addition, many utterances can
be understood only in particular context within some domains. However, all the above
challenges and others, such as noise of the background and speaker variation, are very
difficult for machines to tackle. Due to the large variability and flexibility of human
speech and the speciality of machines (compared to human beings), there are various

problems in the speech-recognition process.

A human being only makes a few mistakes in interpretation if he/she knows the
words. However, it is not the same in human-machine speech interaction. There are
a variety of factors that may cause recognition ambiguities or errors that degrade the
performance of the whole spoken dialogue system. Improved accuracy of the
speech recognizer is one of the goals that numerous Al researchers have been

pursuing. High accuracy of speech recognition is very important.
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Robusiness.

Robustness means the extent to which a system handles errors or “unexpected”
input. Robustness is crucial in language systems for the reason that the inability or
low performance in processing incorrect utterances will cause unacceptable
degeneration of the overall system (Ballim and Pallotta, 2000). Like human beings,
the ideal spoken-language models should tolerate disfluencies, out of vocabulary
words, incomplete or ungrammatical utterances to some extent in speech
communication. In reality, various uncertain and flexible factors of the spontaneous
dialogue add more difficulties to speech recognition. There is still a lot to be desired

for the state-of-the-art language models toward the goal of robustness.

Large vocabulary.

Many spoken-language systems are supported by a large vocabulary so that they
can cover as many as possible of the spontaneous utterances. On the other hand, a
large vocabulary can make the language system intractable, especially, the large
number of categories due to the huge unrelated entries (Rosenfeld, 2000a), is a great
challenge for speech recognition. For example, in a large vocabulary, there is no
closer relation between BANK and LOAN than that with COUNTRY. The relative
independence in a vocabulary leads to the huge intractable parameters. Suppose that
the related words can be grouped into one category, for example, BANK and LOAN
belong to the same category FINANCE, the number of the categories in the
vocabulary must be much fewer than the original individual words. (This idea can
be found in class N-gram technique, discussed in section 3.2). Some large-

vocabulary related techniques in speech recognition are discussed in section 9.2.

Texibility (Milward, 1999).

An ideal spoken-dialogue system should be able to accept a user’s flexible
utterances, allow the user to supply extra information and make reasonable

responses. While the fact is that the user may not realize the bounds of the domain,
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they may make free queries that are out of the capability of the system. For example,
the JUPITER weather information system (developed in MIT) can only forecast
short-term weather (Glass, 1999). So, if the user asks for “What is the weather in
two months?” the JUPITER weather information system cannot give an answer.
Under such circumstance, the system is expected to give the user appropriate help

to direct him/her to formulate an acceptable query.

Brittleness across domains (Rosenfeld, 2000a).

The efficiency of the current language models depends much on the domains on
which they are trained. For example, a language model trained on business is not

appropriate to recognize utterances about sports.

False independence assumption (Rosenfeld, 20002).

While building a tractable language model, the state-of-the-art technology assumes
some independence among different portions of the same document. For example,
the N-gram model determines the probability of the current word in a sentence only

by the identity of the last N-1 words, which loses the long-term dependency. In

particular, semantic constraints cannot be modeled with small N.

At present, there exist various ways to construct language models for speech recognition.
Roughly, the approaches can be categorized into stochastic (statistical) models (which
require a large corpus of training data) (discussed in this section), and grammar-based
models (which uses grammars to specify the utterances) (discussed in section 4) (Rayner
et al., 2000b). A language model consists of a vocabulary (a set of words that can be
recognized by the system) and grammar (a set of rules by which sentences are parsed or

constructed) (Souto ef al., 2002). The grammar can be a set of linguistic rules or a
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stochastic (statistical) model. Generally, if a substantial domain corpus is available, a
stochastic (statistical) language model is better as it is more robust; otherwise, a Context-

Free grammar-based language model may be more appropriate.

So far, many language models have been successfully constructed for stochastic
(statistical or probabilistic) techniques. Stochastic language models are designed and
evaluated to optimize speech-recognition accuracy. A Statistical Language Model (SLM)
is simply a probability distribution P(s) over all possible sentences s, or spoken utterances,

documents, or any other linguistic units (Rosenfeld, 2000a).

The typical architecture of the speech language-understanding system that uses a
stochastic model is described in (Knight ez ¢/, 2001) as follows: firstly a domain corpus
is collected and wsed to train the statistical language model; then the statistical language
model is incorporated into the recognizer; after that, a robust phrase-spotting parser is
built to analyze the text output of the recognizer and produce semantic representations in

the form of slot/filler pairs.
3.1 N-grams

The N-gram is the most frequently-used stochastic technique in speech recognition. N-
gram means, with enough amount of training data, each word can be predicted from the
previous N-1 words (Souto ef al., 2002). Namely, the probability of a word’s occurrence
can be predicted by the preceding N-1 words and one or more candidate words are output

in some ranked “recognition hypothesis list”.

The type of training data to be collected is determined by the task of the model. For
example, if it is a model for medical application, the training data should be focused on
the medical reports, papers and other resource instead of that in sports or fashion. Often, a
trigram (IN=3} is used with large training corpora (million words), whereas a bigram (N=2)
in the smaller set of training data (Rosenfeld, 2000a).

The primary advantages of the N-gram lie in its robustness.
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3.2 Multi-class Compeosite N-gram (Class N-gram)

The sparseness (the infrequency of word sequences in a corpus (Magerman and Marcus,
1990)) is a2 common problem in the N-gram approach, even with the large corpora. For
example, in some training corpora, many triplets (in trigram) appear only once or few
times, thus, the straightforward estimation of N-gram probabilities from counts is not
viable. To address the problem of data sparseness, Rosenfeld (2000a) describes various
techniques, such as the discounting the maximum likelihood estimation (Witten and Bell,
1991) (Good, 1953), recursively backing off to lower order N-grams (Kneser and Ney,
1995) (Ney et al., 1994) (Katz, 1987), linearly interpolating N-grams of different order
(Jelinek and Mercer, 1980), constituent boundary parsing method (discussed in section

6.6), and using high level semantic domains (discussed in section 8.7).

According to Rosenfeld (2000a), Yamamoto et al. (2001) propose an effective “class N-
gram” technique by using vocabulary clustering to battle the sparseness problem.
Multiple words are assigned to one word class representing either syntactic categories
(for example, noun or verb) or semantic categories (for example, days of the week, names
or airports) (McTear, 2002) (Baggia ez al., 1999), thus, the transition probabilities from
word to word are approximately changed to that from class to class. Consequently, with
the decreased search space (obviously, the number of classes is much smaller than that of
the original words), the perplexity is reduced and the recognition accuracy increases. The
key of this technique lies in the clustering, which determines the quality of the model. It
works better within small domains by manual clustering semantic categories, and it is not

the same case in the less constrained domains (Rosenfeld, 2000a).

33

Jecision-Tree Models and Semantic Classification-Tree Models

Decision-tree models (Rosenfeld, 2000a), as well as semantic classification-tree models
(Noth et al., 1996) take the advantage of decision-tree structure. “A decision tree can
arbitrarily partition the space of histories by asking arbitrary binary questions about the
history at each of the internal nodes” (Rosenfeld, 2000a). The probability distribution of
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next word is constructed, based on the training data at each leaf. Interpolating leaf
distribution with internal-node distribution found along the path can contribute to reduce

the variance of the estimate (Rosenfeld, 2000a).

Seen from the experiment of (Noth et al., 1996), the semantic classification-tree model,
combined with different knowledge sources, improved the recognition rate. However,
since the tree structure has space complexity of O(bd), where b is the branching factor
and d is the depth of the tree, the space of the history is very large, and the space of
possible questions is much larger (Rosenfeld, 2000a). Therefore, technigues to prune the
large trees are needed. For example, the CART-style LM used a history window of 20
words and restricts questions to individual words to control the history space (Rosenfeld,
2000a).

3.4 Adaptive

dels

Domain restriction remains one of the problems in speech recognition (discussed in
section 2). Adaptive models in (Rosenfeld, 20002) provide the possibility to alleviate the
domain problem. The Cross-Domain Adaptation model takes advantage of a cache to
transfer test data to the language model without training. In the Within-Domain
Adaptation model, the test data comes from the same source, but this particular source
consists of many subsets of various topics, styles or both. Then the adaptation can
proceed among the subsets, and two different domains can be combined to construct a

general model so that the language model can cover a wider domain.

A problem with the adaptive models is that an increase in training data does not guarantee
a corresponding improvement in the accuracy of the language model. The reason is that
the adaptive models may cover several domains and it is possible that the data increase

occurs on some domains that have litile influence on the model in other domains.
3.5 N-best Fiitering or Rescoring

N-best filtering or rescoring is a very simple search technique (Moore, 1999). Just as its
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name implies, this technique always chooses the best one in the sorted recognition
hypothesis list. According to different criteria or different language models, the order of
the hypothesis list is different. Section 8.2 discusses several examples of the N-best
technique for the post-processing of the speech recognition output. Some
implementations require that N be known in advance (Murveit and Moore, 1990), while
there are also techniques (Seide ef al., 1996) (discussed in section 8.2) that do not have

this requirement.

The primary advantage of the N-best approach is its simplicity. The disadvantage is high
computational cost for large N. Generally speaking, if N is small the computation rate is
low, but the increase of the length of a sentence may cause an exponential increase of N

{Murveit and Moore, 1990).
3.6 Learning Techniques

Stochastic techniques are popular for their good recognition accuracy and robusiness.
However, it is not a trivial task to obtain the huge corpus of training data. The following

are some techniques to obtain the training data.

Bootstrapping (Rayner et al., 2000a) (McCandless and Glass, 1994) (Baggia et al.,
1999).

Bootstrapping is the simplest and cheapest way to collect training data. The main
idea is to build an initial version of the system using a hand-coded model, then put it
into practice to collect more data. Recursively, the data is used to construct a new
language model and that is used to collect new data. This cycle can be repeated until

satisfactory accuracy is achieved.

Use of The World Wide Web

Nowadays, with the boom of the World Wide Web, the information available online
has been growing at an exponential factor. Undoubtedly, the World Wide Web is

destined to be the main source for collecting training data for stochastic methods.
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Taking advantage of the World Wide Web access to a huge amount of information
online and use of effective search engines, Zhu and Rosenfeld (2000za) proposed an
efficient method to obtain the N-gram (N=3) estimates for statistical language
modeling. The N-gram was submitted to the web search engine as a phrase guery to
retrieve the corresponding web pages containing the N-gram data. At the same time,

the number of the retrieved web pages and the count of the N-gram were calculated.
3.7 Summary

Statistical Language Models (SLMs) have the advantages of simplicity, flexibility,
adaptation, higher recognition accuracy and robust performance. Also a key advantage of
SLMs over grammar-based models is the ability to handle the input that is not in the

language defined by the grammar.

On the other hand, SLMs suffer the unavoidable disadvantage of the costly collection of
huge amount of training data. In ATIS (Air Travel Information System (Moore et al.,
1995)), it took over a vear and $1M to carefully collect the 20000 utterances (Knight ez
al., 2001). According to (Rosenfeld, 2000a), an informal estimation by IBM states that an
effective bigram models needs several hundred million words as training data; and the
trigram models are probably to absorb a few billion words. The worst is that most of the
training data comes from written language, which does not really reflect the spontaneous

nature in spoken language.

Even though the World Wide Web provides a great opportunity for collecting large
amount of training data in all kinds of domains, the quality of the statistical language
models is not improved by a corresponding factor. Actually, the improvement of SLM is
asymptotic (Rosenfeld, 2000a), which means that even though the online resource can
increase at an exponential rate, the quality of the SLM is not likely to improve by a

significant factor.

Data sparseness and limited scope dependencies are also two problems existing in the up-

to-date standard N-gram-based statistical language models (Chappelier ef al, 1999)
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{(Weber and Gbrz, 1999). Section 3.2 describes a possible solution to the data sparseness

problem, and section 8 discusses the possible solutions to the limited-scope dependencies

problem.

As an alternative to Statistical Language Models (SLMs), which apply word probabilities
{(N-gram) as the only form of language knowledge (Rosenfeld, 2000a), grammar-based
speech recognition describes the language features in a set of rules {o generalize over a

certain application domain.

According to (Knight e al, 2001), the up-to-date grammar-based strategy (which is
usually adopted by commercial organizations) is like this: use Nuance or Speechworks as
a standard commercial platform; then hand-code a grammar in some subset of Context-
Free Grammar (CFQG), and extend the grammar with semantic annotations; later on, using
a system-initiative dialogue strategy, code in Nuance’s Speech Objects or Speechworks’
Disalogue Models or VoiceXML.

4.1 Context-Free Grammars (CFGs)

A Context-Free Grammar (CFG) is a crude, yet well-understood, model of natural
language. A CFG consists of a vocabulary, a set of non-terminal symbols, and a set of
production or transition rules. Usually, a CFG can be defined as a set of rules that have a
single atomic grammatical category on the lefi-hand side, and a sequence of atomic
categories and words on the right-hand side (Moore, 1999), (Amaya ef al., 1999). Based
on the fact that all context-free rules can contain only one symbol on the left hand side,
and it is free to be replaced by the right side rules, comes the name “Context-Free

Grammar”.

Unlike the finite-state grammar, a CFG allows recursion (Moore, 1999), which makes it
much more suitable for defining linguistically-based language models. However, it does

not include more detail of the language constraints, which may be significant in the
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grammars definition (Moore, 1999). For example, to define the sentence with the
structure that a noun phrase followed by a verb phrase, in CFG, the rule can be written as
S =» NP VP In general, a sentence will express the person and number, the verb tense,
and whether it is interrogative or declarative. The CFG can only define such detail
information by adding more rules for each person, tense and so on. Obviously, this will
greatly increase the number of the rules. An alternative is to annotate the CFG grammar

in some ways, which are discussed in sections 8.4.1 and 8.4.2.

4.2 Statistical or Probabilistic Grammars

Probabilistic Context-Free Gran

ars (PCFG).

The mathematics of Probabilistic Context-Free Grammars (PCFG) is the basis of
most hybrid approaches in Natural Language Processing. Probabilistic Context-Free
Grammars (PCFGs) are CFGs with a probability distribution defined over all
productions that share their lefi-hand side (Rosenfeld, 2000b), (Moore, 1999),
(Weber and Gérz, 1999). For the example that the conditional probability of the rule
S-» NP VP is 0.5, Moore (1999) explains that this means: if there is a phrase S, there
is 0.5 chance that it consists of a phrase of NP followed by VP.

Rosenfeld (2000b) points out that the consequence of fusing CFGs and bigrams was
a model with size (number of parameters) comparable to a bigram yet performance
comparable to a trigram. However, it is necessary to consider about both the CFG
itself and the context-free production probabilities to use PCFGs for unconstrained
language. Since the-state-of-the-art CFG cannot sufficiently cover unconstrained
English, and it is difficult to globally optimize context-free production probabilities,
and even with the possible global optimum, the contexi-free production probabilities
might not have sufficient expressive power to capture the true distribution of parses,

PCFGs cannot compete (statically) with the conventional N-gram (Rosenfeld, 2000b).

Furthermore, if the probability is based on a Unification Grammar instead of a

Context-Free Grammar, a Probabilistic Unification Grammar is obtained. However,
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Moore (1999) states that there appears to be no published reports of models that
incorporate all the constraints of a complex unification grammar into a statistical

model.

Probabilistic Dependency Gra

ars (PDG).

Similar to regular N-gram, in Probabilistic Dependency Grammars (PDG), each word
is predicted based on a number of other words. The difference from conventional N-
gram is that, in the latter, each word is predicated from the N-1 words immediately
before if; whereas in PDG, the words act as the predictors depend on a hidden
variable, the dependency graph (Rosenfeld, 2000a). Typically, a sentence s is parsed
to generate the most likely dependency graphs Gi ( with attendant probabilities
P(Gi)); then compute each generation probability P(s|Gi) (either N-gram style or an
Maximum Entropy (ME) model); finally, the complete sentence probability P(s) =~ X
i P(Gi)*P(s|Gi) (the reason for the approximation is that the P(Gi) themselves were
derived from the sentence s). Sometimes P(s) is further approximated as P(s|G¥),
where G* is the single best scoring parse (Rosenfeld, 2000a). Rosenfeld (2000a)
introduces an example model developed by Chelba er @/ (1997), which uses the
parser of (Collins, 1996) to generate the candidate parses, and uses maximum

entropy to train the parameters.
4.3 Discourse Grammars

The notation of Discourse Grammar was proposed by Churcher et al. (1996) o break the
large syntax into smaller syntaxes to improve the performance of the language models
that have lower perplexity and ambiguity. The idea supporting this approach is that,
generally, the smaller syntax contains fewer words and less complicated structure than
the original one, hence is potentially less ambiguous. Furthermore, Churcher ez al. (1996)
broke the discourse into discourse segments that reflect a set of utterances with some
properties in common. A discourse segment can be the utterances discussing a certain
topic, or even the discourse between a set of speakers, namely, a dialogue. Using three

syntaxes based on a corpus of transmissions between the ATC and pilots, Churcher e al.
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{1996} explored experiments and achieved 8% increase compared to the original large

syntax. Also, similar ideas can be found in (Frost and Chitte, 1999) (section 9.1 discusses
the details).

ars

Stochastic, syntactic and semantic grammar methods are widely used in speech
recognifions with their respective features. According to Demetriou and Atwell (199%4a),
semantic grammars are usually represented as transition networks, and provide stronger
constraints than pure syntax by integrating semantic conditions closely with the syntactic
rules of the grammar. A syntactic grammar is effective in describing the structure of
phrases and sentences, whereas semantic constraints are more powerful for languages

whose phrase orders are not very constrained, such as Japanese (Takezawa ef al., 1991).

For more details about the semantic grammars, refer to sections 8.4 and 8.5.
4.5 Summary

Stochastic (statistical) techniques and grammar-based techniques are two main streams in
language-model constructions. It was reported in (Knight et al, 2001) stochastic
(statistical) language models were popular around 1995, but by 2001, grammar-based

language models took the prevalent position in commercial products.

Compared to statistical techniques, grammar-based speech recognition is more common
and easier to use and has reasonable recognition accuracy for small domains. Actually,
within the domain covered by the grammar, the recognition accuracy is pretty high and
the fact is that the user usually has the rough idea about the system and stays in the
domain (Rayner ez al., 2000b). In addition, for simple applications, good grammars can
be constructed quickly and efficiently (Rayner ez al., 2000b). In contrast to the stochastic
techniques, grammar-based techniques have another compelling advantage that they do

not require large amount of training data that is difficuit and expensive to collect.
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Just as a coin has two sides, the grammar-based technique also has its disadvantage that it
needs experts to write high-quality grammars and the grammar rules are difficult to
maintain and extend. Geistert (1998) developed a Grammar Interface Tool (GIT), by
which the grammar and the lexicon for a specific application can be designed from some

exampie sentences annotated with their respective semantic interpretation.

In addition, the grammar-based recognition is not as robust as statistical techniques. For
example, it will make mistakes while encountering the utterances that are not covered by
the grammar. Also, the lack of robustness can be a result of over-constraint (Glass, 1999).
The DARPA ATIS program (Ward and Issar, 1996) (Noord et al., 1998) successfully
solved this problem by keyword and phrase spotting methods instead of the fully
analyzing the whole utterance. Seneff (1992) proposed another approach that they firstly

analyzed the complete utterance, then backed off to robust parsing if no complete parse

was found,

So far, the success of the stochastic (statistical) language model approach has been
proved by its simplicity, flexibility, better recognition accuracy and robustness.
Meanwhile, it suffers from the unavoidable difficulty of collecting large and expensive
training data corpus. On the other hand, the grammar-based language model adopts a set
of grammatical rules instead of calculating the word occurrence possibilities from the
training data in the recognition. For simple applications, the grammar is not too difficult
to construct, but it is cannot handle out-of-coverage utterances. The question is, is it
feasible to take their respective advantages and overcome the disadvantages by

integrating the stochastic techniques and grammar-based techniques?

The ATIS, Air Travel Information System (Moore, et al. 1995), is one example of the
successful language models, which uses a CFG in parsing and produces a sequence of

grammatical fragments, then, the trigram (N=3) is applied. The results of such integration
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of CFG and SLM included a 15% reduction in a speech recognition error rate. Using
syntax on trigram, Chelba (2000) carried out experiments on the Wall Street Journal,
Switchboard and Broadcast News corpora and achieved the improvement in both
perplexity and word error rate over the original trigram. Also, Rayner and Carter (1997),
Geutner (1996), and Jones ef al. (1993) achieved robust and efficient performance within

a linguistically motivated framework by combining the rule-based and statistical methods.

Knight ef al. (2001) implemented the preceding idea in the experiment of a home device
control system. They firstly applied the Nuance Toolkit Grammar Specification Language
(GSL) to set up a CFG grammar-based system. As a language model, this grammar-based
system accepts the user’s input and collects the utterances as the training corpus for a
Stochastic (Statistical) Language Model (SLM.). The SLM uses a standard back-off
trigram model over the training corpus obtained from the grammar-based system. The
results show that the grammar-based language model performs well for in-coverage
sentences, but very poorly on out-of-coverage ones. However, the SLM makes slightly
more word errors for in-coverage sentences, but performs much better for out-of-

coverage examples.

Benedi and Sanchez (2000) linearly combined the N-gram models and a stochastic
grammatical model for language modeling. A classical N-gram model was used to
capture the local relations between words, then, a stochastic grammatical model is used to
represent the long-term relations between syntactical structures. A category-based SCFG
and a probabilistic model of word distribution in the categories are used to define this
grammatical model for large-vocabulary complex tasks. Experiments using the Penn
Treebank corpus showed the improvement of 30% in perplexity with regard to the

classical N-gram models.

In (McCandless and Glass, 1994), a simple Context-Free Grammar was firstly used to
decode the training data and iteratively generalize and reduce the grammar. Then this
grammar was combined with a phrase class N-gram formalism to assign probability to

test sentences. Compared fo traditional trigram, a unified model of CFG and N-gram
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significantly reduced the perplexity (Wang er al. 2000) (McCandless and Glass, 1994)
and the number of parameters (McCandless and Glass, 1994).

In addition, Siu, and Ostendorf (2000) integrated a context-dependent phrase grammar in
a variable N-gram framework, and the experiment result showed the improvement of

recognition accuracy on the Switchboard corpus in comparison with both the baseline

trigram and the variable N-gram alone.

Parsing is usually involved in speech recognition to determine whether the word strings
are valid or not, according to the defined grammar. A parser is responsible to produce the
grammatically syntactic and semantic interpretation of a sentence. Parsing is used in the
following two ways: (1) during the recognition process to guide the recognizer and (b) to

post-process the output from the recognizer to pick the most likely sentence.

Since the spontaneous speech has its particular features such as containing
ungrammatical utterances, words or sentences that are not covered by the system’s
lexicon and grammar, online verbal corrections or other extra-grammaticalities (Kaiser ef
al., 1999), it is difficult to parse the output from the recognizer if it is not a grammar-
directed recognizer. The following are some parsing techniques that were used in some

speech-recognition systems.
6.1 Finite State Parser

A Finite State Parser explains why the input is accepted by processing the recognition of
the input sequences one by one and returns the sequence of transitions that was made
(Blackburn and Striegnitz, 2002). Namely, the output of the Finite State Parser is a

sequence of nodes in the recognizing order.

PROFER is a Predictive RObust Finite-state parsER system with the ability to produce
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sequential prediction sets and incrementally build a case-frame representation of concepis
extracted from the input (like PHOENIX, which is discussed in section 8.8) (Kaiser et al.,
1999). PROFER can be used as a stand-alone semantic parser, and as a stand-alone finite-
state predictor. Compared to the chart-based or generalized lefi-right (GLR) parsers,
PROFER’s lower complexity and robustness has been showed in Kaiser (1999). PROFER
has been used in various limited task domains by providing a higher-level, grammatical

language model for speech recognition.

The importance of finite-state networks has been stressed in many speech recognition
systems. Also, Casacuberta et al. (2001) presented the feasibility of the finite state
transducer (a specific stochastic finite state network) in EUTRANS system (a speech-to-

speech translation system).
6.2 Word Lattice Parsing

Word lattice parsing is probably the oldest approach to integrate complex language
models into speech recognition (Moore, 1999). The architecture is as follows (Moore,
1999) (Atwell and Kevitt, 1994) (Hazen er al, 2000): for the input segment, the
recognizer produces a set of word hypotheses and assigns them acoustic scores, then uses
the natural-language parser or other language model to find the path of the words with
best acoustic and language model scores through the word lattice. The disadvantages

include the heavy computational burden on the system (Murveit and Moore, 1990).
6.3 Left-corner Parsing

It is possible for the pure bottom-up or top-down parsing to make mistakes under some
circomstances (Blackburn, and Striegnitz, 2002). While the combination of the preceding
two methods, obtained lefi-comer parsing, can get dramatic effect (Blackburn and
Striegnitz, 2002). A lefi-comer parser firstly uses a bottom-up parsing technique to look
at the first word of the input string, and determines its category, and then looks for a rule
with this category as the first symbol on its right hand side. Then the left-corner parser

uses this rule as top-down information and tries to recognize the rest of the right-hand
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side.

6.4 GLR * Parsing

The GLR * parsing algorithm in (Lavie, 1996) was based on Tomita’s Generalized LR
(GLR) parsing algorithm. The GLR evolved from the LR parsing techniques. The
mechanism of LR parser is bottom-up parsing, lefi-to-right scanning. Driven by a table of
grammatical parsing actions, LR parsers are deterministic and efficient. Tomita’s
Generalized LR {GLR) parsing algorithm is an extension of LR for non-LR languages. If
the actions in the parsing table conflict (non-determinism), the GLR will efficiently try all
possible actions in a pseudo-parallel fashion. The data structures and the parsing table in
GLR* are both similar to GLR. GLR* extends GLR only in the run-time parsing way.
GLR* intends to detect and reject the ungrammatical input at the possible earliest stage.
It solves the problems of noise input and limited grammar coverage by ignoring the
unparsable words and fragments and conducting a search for the maximal subset of the

original input that is covered by the grammar.
6.5 Feature Structure Parser

The FEAture Structure PARser, called FeasPar, which learns parsing spontaneous speech,
was proposed by Buo and Waibel (1996). The primary elements of FeasPar are “chunks”,
their features and relations. They are structured into a neural network collection and a
search. The neural network divides the input sentence into chunks, which are labeled with
feature values and chunk relations. Then, depending on the feature structure, which acts
as the constraint, the search obtains the most probable and consistent feature structure.
After being trained, tested and evaluated, the FeasPar (with the Spontaneous Scheduling
Task) was compared with a hand-modeled LR-parser from six aspects. Buo and Waibel

(1996) concluded that FeasPar performed better than LR-parser
6.6 Constituent Boundary Parsing

Constituent boundary parsing was proposed by Magerman and Marcus (1990) as an
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alternative to traditional grammar-based parsing methods, though it actually included a
distituent grammar. The constituent boundary parsing method treats part-of-speech
sequences as stochastic events suitable for probabilistic models. The mutual information
values of the part-of-speech N-grams within the sentence determine the constituent
boundaries. Since it computes the tag N-grams for a set of tags (with sufficient frequency)
rather than word N-grams, the sparseness is not the problem in constituent boundary

parsing method (Magerman and Marcus, 1990).
6.7 Two-level LR Parsing

To integrate speech and language for an automatic interpreting telephone, Takezawa ef al.
(1991) explored a predictive two-level LR parser based on an inter-phrase grammar,
which was developed according to a half-million-word-dialogue database on “an
international conference secretarial service”. Firstly, this inter-phrase LR parser predicts
next phrasal categories (e.g. Noun Phrase (NP)) depending on the inter-phrase LR parsing
table. Then, all the phones predicted by the NP initial state are picked up by the intra-
phrase LR parser and the HMM phone model is invoked to verify the existence of these
predicted phones. Once the NP candidates have been recognized, the next phrasal
category (e.g. Verb Phrase (VP)) is predicted by the inter-phrase LR parsing table, and the
above process continues until the entire speech data has been processed. The experiments
in (Takezawa et al., 1991) show the effectiveness of the two-level LR parsing over the

phrase lattice parsing method.

5)

A History-Based Grammar (HBG) is essentially a probabilistic model, which
incorporates the detailed linguistic information such as lexical, syntactic, semantic and
structural information to resolve the ambiguity (Black er al. 1992). HBG combines a
Treebank (a corpus of bracketed sentences) and a decision tree to determine the correct
sentence from the parse free, where the probability depends on the information of the

partial derivation of decision tree. Black er al. (1994) reported an improvement from
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PCFG to HBG of 15% increase of parsing accuracy rate.

7.1 Introduction

Language features are very effective in any system for reducing the number of possible
utterances and for prioritizing utterance hypotheses (Hermannsdottir, 1996). Takezawa et
al. (1991) said that “the accuracy of speech recognition heavily depends on what kinds of
linguistic knowledge are used”. At the current state of the art, to achieve high accuracy in
speech recognition with moderate to large vocabularies (hundreds to tens of thousands of
words), language models are necessary (Moore, 1999), (Harper et al., 2000), (Takezawa
et al., 1991) and (Seneff et al, 1995) as discussed earlier. Takezawa er al. (1991)
categorizes linguistic constraints into syntactic, semantic, pragmatic and contextual
constraints. The models, including knowledge of syntax, semantics, domain, task and
current dialogue state, can assist the speech recognition process effectively (Johnson,
2000), (Demetriou et al., 2000), (Ward, 1996), (Hunt,1994), and (Loken-Kim, 1988).

One of the features of the spoken language system is its interaction, which requires the
methods for representing and integrating knowledge from different sources (White, 1990).
Various linguistic constraints can be incorporated into the speech recognition process
tightly or loosely. Tight integration means the linguistic constraints are directly

incorporated into the recognition algorithms (Chappelier, 1999) (Harper ez al., 1994).

The advantage of tight integration is the smaller size of hypotheses space and strong
restrictions on the grammar. In addition, since the language information usually
contributes to reduce the perplexity of the system, it is an advantage to tightly integrate;
however, foo tight integration usually reduces robustness. In addition, tight integration

often makes the big systems intractable and difficult to train.
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Preferred by Chappelier (1999) and Harper ef al. (1994), loose integration architecture
means knowledge sources are applied one by one in a sequential order. This modular
architecture makes it possible to use each language-processing technique with little
modification. The other advantage is that, the update of a powerful language model will
not increase the computational cost or the amount of training data required (Harper ef al,,
2000).

Syntax is the structure of expressions in a language. It defines the relationship among
characters or groups of characters, independent of their meanings or the manner of their
interpretation and use. Semantics defines the relationships between symbols and their
meanings; characters or groups of characters to their meanings. Syntax is responsible for
the sentence structure. Syntax can be used in conjunction with a statistical model to guide
the recognizer. Semantics contributes more to the meanings of the words or sentences.
Appropriate integration of syntax and semantics can help improve the recognition
performance. However, in many cases syntactic information alone is not sufficient in
restricting the search space for speech recognition (Takezawa ef al., 1991). And the fact is

that almost all language models implicitly or explicitly embody the semantics.

Semantics can be built into language models explicitly or implicitly. Stochastic Language
Model (SLM) performs its recognition by computing the possibilities of the word
occurrences depending on large training data corpus (discussed in section 3). It is
primarily based on the statistical analysis. However, it actually reflects the semantic
constraints implicitly. For example, from an astronomic domain training data corpus, the
possibility of “who discovers something” must be much higher than “which discovers
something”, which implies that it is much more possible for the word “discover” to occur
after a person than after something. Therefore, stochastic language model also reflects the

semantics indirectly.

As for grammar-based language model, usually, it defines more about the syntax than the
semantics of the language features. But after the scrutiny, the clue of the semantics in

grammar can be found. In the above example, the sample grammar may be more like:
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q::= who discovers something

| what orbits something

than

q::= (who|what) (discoversjorbits) something

Here, the grammar-based language also induces embodies semantics (Frost, 2002).

Various techniques for use semantics in speech recognition are described in more detail in

the remainder of this section.
7.2 Use of Large N, N-grams to try and capture semantic Information

In a traditional N-gram (discussed in section 3.1), the current word is predicted by the
immediately previous N-1 words. This technique is based on the assumption that the
relevant syntactic information lies in the immediate past. However, the fact is that some
syntactic or semantic information does exist in the farther past. On the other hand, if use a
larger N in an N-gram model is used, the free parameters will exponentially increased,

which is too hard to control.

Huang ef al. (1992) experimented with long-distance bigrams (the same principle can be
applied to N-gram) with reduced number of free parameters. In the distance-d bigram, a
word W, is predicted by the word W .4 (Huang ef al., 1992). The observation is that the
recognition error has been reduced significantly, and the perplexity is low for d=1; and
increases significantly for d=2,3,4 and 5; while remains at almost the same for d=6, 7, &,
9, 10. Huang ef al. (1992) made the conclusion that there is some relevant information,

which is thinly spread across the history, in the distant past.

In (Bonafonte ef al.,1996), the speech was decoded onto an intermediate representation in
sequence, where the order of semantic units was the same as that of the words in the

sentence. Also, the query was modeled as the semantic unit strings, which was suitable
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for N-gram to capture the semantic language.

Considering the fact that, in many languages (e.g. English), multiple words can be unified
together and be treated as a single unit (phrase) in communication, Riccardi and Gorin
(1998), Riccardi and Bangalore (1996) proposed “phrase-based language models” to
better (over word-based language models) capture long spanning dependencies between
words and without the exponential increase of parameters. They acquired the lexical
features (phrases) from training data and the probability of the word sequence was
computed from the process of entropy minimization over the training set and its length
ranges from 1 to N. The phrase-based N-gram language model significantly outperforms
a word-based language model (Riccardi and Bangalore, 1996).

7.3 Semantic Post-Processing of Output from Statistical Recognizer

At present, it is impossible to avoid errors in the earlier stage of speech recognition. Since
the goal of eradicating the speech recognition errors is unpractical, many researchers are
working on semantic post-processing techniques for error correction to further improve

the recognition accuracy.
7.3.1 Post-processing to Choose Best Hypothesis

On account of its simplicity and efficiency, N-best search can be used in a post
processing stage in the speech recognition to get better performance. Tran ef al., (1996)
firstly constructed a recogpition hypothesis word graph, and extracted N-best word
sequences from the word graph. Combining with the language features, such as syntactic
and/or semantic analysis, the N candidates can be re-scored with highly-reduced
computational cost (Rayner et al, 1994), and even many of the top N sentence
hypotheses could have been eliminated before reaching the end with early syntactic and
semantic analyses (Seneff ef al., 1995). Milward and Knight (2001) applied a class-based
statistical language model to construct the word-hypothesis graph and then used the
semantic knowledge which can be obtained by Spoken Language Translator (Rayner ef
al., 2000c) to choose the hypothesis in the graph. Seneff er al. (1995) used an A*
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algorithm to search through the large hypothesis word graph, and Harper ef al. (1992)
used synfactic constraints and a Constraint Dependency Grammar {(CDG) parser
(discussed in section 7.6) to effectively prune the hypothesis word graph of the
ungramimatical sentence hypotheses and limit the possible parses of the remaining

sentences.

Stolcke et al. (1997) developed an algorithm 1o explicitly minimize the expected word
errors for recognition hypotheses. The N-best lists tell the approximation of the posterior
hypothesis probabilities. Then with respect to the posterior distribution, each hypothesis’

expected word error is computed, and the hypothesis with the lowest error is chosen.

Ballim and Pallotta (2000) use domain knowledge to semantically constrain the
hypothesis space. The architecture contains the following three modules: (1) a speech
recognition system taking speech signals as input and providing N-best sequences in form
of a lattice; (2) a stochastic syntactic analyzer (i.e. parser) extracting the k-best analyses;

(3) a semantic module in charge of filling the frames required to query a database.

Current speech recognizers usually associate the input word with a lattice of word-
hypotheses rather than a uniquely identified word. Taking into account the linguistic
context, such as lexis and morphology, parts-of-speech, phrase structure, semantics and
pragmatics, Atwell and Kevitt (1993) developed a language model to constrain the
possible choices to the most linguistically plausible words. In (Atwell and Kevitt, 1993)
(Atwell ez al., 1993), the linguistic knowledge sources include the Longman Dictionary
of Contemporary English (LDOCE) semantic primitives, semantic tagging (semantic
subject field markers), non-compositional phrase structure (syntactic phrase structure
boundaries), wordtag n-grams, word-collocational preferences and the relationship
between prosody and syntax. Resorting to the machine-readable dictionaries (e.g. the
LDOCE) for the syntactic and semantic definition, (Atwell ef al., 1993) dealt with the
word ambiguity by probabilistic ranking.

Stahl ef al. (1997), Muller and Stahl (1998), Kawahara (1994) have described a speech

understanding system, which has the architecture of sequential combination of a signal
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preprocessor, a stochastic-driven one-stage semantic decoder and a rule-based intention
decoder. Goddeau (1993) proposed a probabilistic language model to integrate the local
and long-distance language constraints into lexical-access search algorithms. The
technique adopted the LR parser to map sentence prefixes into equivalence classes, which

are further used to compute next word probabilities for speech recognition.

In (Stahl ez al., 1996), the semantic information was directly represented in the parse tree.
This semantic tree structure consists of a finite number of semantic units (called semuns),
each semun contains the semantic contribution of one significant word in the sentence.
Then, an incremental technique, which integrated semantic, syntactic, acoustic-phonetic
knowledge, and Viterbi-algorithm (Muller and Stahl, 1998), together with the chart-
parsing technique and a top-down parsing strategy (Stahl er al., 1996), was applied to
achieve high efficiency and further the seamless interface between the speech recognition

and understanding components.

The processing in (Seide et al., 1996) can be sketched as follows: using an acoustic
model and a word-unigram language model, the plausible word hypotheses are identified
and scored. Then, a bigram is used to prune the word graph. Since all plausible
alternative sentence hypotheses have been included in the word graph, every path through
the graph represents a sentence hypothesis. Subsequently, an attributed stochastic
grammar parses the word graph and assigns the language-model probability for every
path (i.e., sentence hypothesis) through the information graph. Finally, taking account of
the database goal and the consistency constraints, the most likely hypotheses are
determined. The speciality of the technique not only lies on the consideration of the
database goal and the consistency constraints, but also lies on the fact that N is not
required to be known in advance. This technique computes the N best sentences one by

one and discard those that are inconsistent or referring to invalid database entries.
7.3.2 Post-processing to Correct Errors

Ringger (2000), Ringer and Allen (1996), (1997) have investigated the use of statistical

techniques and search algorithms for post-processing the output of a speech recognizer to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A Using Natural Language Features to Improve Speech Recognition Accuracy
Page 129

correct errors. Soltau and Waibel (1998) considered the speaking style is more
accentuated to disambiguate the original mistakes. Hauptmann ef ol (1998) conducted
experiments to assess the effect of words missing from the speech recognition vocabulary.
Walker er al. (2000) developed a spoken dialogue system to allow some automatic error

corrections by interacting with the user.

Loken-kim (1988) developed the Automatic Error Detection and Correction System
(AutoDac), which is able to parse ill-formed sentences with a combination of left-to-right
and right-to-left parsing, learn the history of recognition errors and utilize this
information to subsequently recover from similar recognition errors later; and allow a
user to manually correct any part of the recognized sentence. Combining automatic and
manual error correction, a total of 142 out of 192 testing sentences were recovered
(Loken-kim, 1988).

7.3.3 Post-processing to Meodify System for Future Use

For the 10-best hypothesis lists on the 1001-unseen-utterence subset of the ATIS corpus,
the best result of the experiments, which were explored by Rayner et al. (1994), gave a
proportional reduction of 13% in the word error rate and 11% in the sentence error rate.
In addition, the hypothesis reordering technique proposed by Rayner er al. (1994) is

automatically trainable, acquiring information from both positive and negative examples.

In the voice-interactive natural language system, Fink (1984) added a special module,
called an expectation system, to aid the speech-recognition process. Its basic idea is like
this: the expectation system accepts the user’s utterances, and studies the repetition and
patterns in the dialogues to create a more general dialogue, then uses this generalized
dialogue to correct errors in the future sentences by prediction. The results showed that
the average sentence error rate was decreased from 53% to less than 8%. Furthermore, it
can be concluded that the expectation system is capable of predicting what might happen

in any situation that tends to be repeated.

As any spoken dialogue system aims to fulfill some goals in a particular domain, the user
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operates the system with the intentions in some specific directions. For example, the user
enters into an automatic exchange board system with the intention of connecting to some
person specified by name. Based on this observation, Seide ef gl (1996) designed a
system to catch the user’s dialogue goals and restrict the discourse to a narrow
application domain, hence further constrain the variety of possible user reactions and

improve future recognition accuracy.

7.4 Grouping of Terminals/ Words/ Lexicon According to Meaning

Demetriou et gl. (2000) developed a semantic model of language using an online
dictionary, Longman Dictionary of Contemporary English (LDOCE), to acquire lexical
semantic knowledge for speech-recognition modeling. The modeling of the semantic
knowledge is based on the association between two words from their meanings in the
dictionary, then compute how much do the meanings (sets of semantic primitives or
concepts that are used to define the words in the dictionary) overlap or linkage
(semantics). Furthermore, the semantic association measure for two words can be
extended for computing the semantic association of longer word sequences in texts, such

as phrases, sentences or paragraphs.

The experiments conducted by Demetriou et @l. (2000) show that this model is able to
capture the potential semantic dependencies between the words in texts, and reduce the
language ambiguity by a considerable factor, and improve the word-recognition rates in
“noisy-channel” applications. Therefore, Demetriou ef al. (2000) stated that limited or
incomplete knowledge from lexical resources such as Machine Readable Dictionaries

(MRDs) can contribute to domain-independent language modeling,

7.5 Integrating Semantics into the Gra

ecognizer — Unification Grammars

Belonging to the augmented or annotated Context-Free Grammars, Unification Grammar
is more expressive and more concise than the traditional CFG Unification Grammar is a

higher-level formalism of Context-Free Grammar, which is obtained by applying some
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restriction properties fo the CFG With more constraints unified to the grammar,
Unification Grammmar helps reduce the system’s perplexity. To better understand the

Unification Grammar, refer to the following example extracted from (Moore, 1999):
S: [tensed=yes] -» NP: [person=P, num= N] VP: [tensed=yes, person=P, num=N]

The distinction from traditional Context-Free Grammar (CFG) is the notion of the feature
constraints (such as, person=P, num=N). The consequent unique power lies in the fact
that the Unification Grammar constrains the features to a variable instead of specific
values. The subsequent advantage can be seen from the above example that Unification
Grammar guarantees that the person and num features of Noun Phrase (NP) and Verb
Phrase (VP) must agree with each other, avoiding enumerating their respective features

(person = first, num = singular, and so on).

A Unification Grammar can be compiled into a Contexi-Free Grammar by eliminating
left recursion (detail instantiating algorithms can be found in Moore, 1999), which can be

fed directly into the Nuance Toolkit’s language model compiler (Rayner et al., 2000a).

So far, Unification Grammars have been widely used to successfully build substantial
general grammars for Natural Language Processing (NLP). Gemini, a natural language
understanding system developed for spoken language applications (Dowding ez al., 1993),
is such a successful Unification-Grammars-Based system (Moore et al., 1997), where the
Unification Grammars are initially specified and later compiled into standard CFG
descriptions by a model compiler. In Gemini system, firstly all possible features in the
grammar rules and lexicon entries are enumerated; then, each rule and entry in the
original Unification Grammar are transformed into a set of rules in the derived CFG
{(Rayner et al., 2000b).

Many significant applications, such as CommandTalk (Goldwater ef al., 2000) (Stent et
al., 1999), are built on the Gemini system. CommandTalk is a spoken-language interface
to the battle-field simulator, which allows military commanders to interact with simulated

forces in a manner similar to the way they would command actual forces. The
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unification-based grammar, based on Gemini, in CommandTalk brought twofold effects
{Goldwater er al., 2000): the negative is the less coverage than a statistical model; while
the positive is the elimination of the usual discrepancy in coverage between the

recognizer and the natural language parser.

Based on the Unification Grammars, Dowding et al. (1994) introduced an efficient
bottom-up parser that interleaved syntactic and semantic structure building. It applied the
limited left-context constraints to reduce local syntactic ambiguity, and the local semantic
ambiguity was alleviated by deferred sortal-constraint application. The primary
advantage of this parser lies in the dramatic reductions in both numbers of chart edges

and total parsing time without sacrificing completeness.

Generally, the grammar-based language model suffers from the potential disadvantage of
over-constraint, which means the grammar might exclude some reasonable utterances. To
alleviate this problem, the grammar in CommandTalk was broadened to allow the word
insertions and deletions (Goldwater ef 2/, 2000) if the inserted and deleted words

contribute little to the meaning of the sentence.

Buo and Waibel (1996) introduced a feature structure parser, called FeasPar system
(discussed in section 6.5), which is able to learn parsing spontaneous speech
automatically with minor hand labeling, to challenge the unification approaches’
drawback of requiring hand-designed lexicon and grammar rules, and rigidity of the

grammar encountering ungrammaticality and deviations from linguistic rules.

7.6 Integrating Semantics into the Gr

cognizer — Dependency Gr

A Dependency Grammar (DG) incorporates semantic constraints for large-vocabulary
continuous-speech recognition (Takezawa ef al., 1991). Dependency Grammar describes
sentences in terms of asymmetric pairwise relationships among words (Rosenfeld, 2000a),
which means that each word in the sentence is dependent upon one other word (called its

head or parent) except the root that serves as the head of the entire sentence.
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7.6.1 Constraint Dependency Grammar (CDG) (Harper ef 2l., 2000), (Harper ef al,,

1999a), (Harper et al., 1995).

Harper (1999a) states that the Constraint Dependency Grammar (CDG) was first
proposed by Maruyama in 1990. It is a constraint-based grammatical formalism with a
weak generative capacity beyond Context-Free Grammars (CFG) and supports a very
flexible parsing algorithm for working with feature grammars (Harper, 1999a). CDG uses
constraints to determine the grammatical dependencies for a sentence. In CDG, the
parsing rules are defined as constraints and the solutions are parses, thus, the parsing

procedure has been transformed into the constraint satisfaction procedure.

A Constraint Dependency Grammar (CDG) (Harper et al., 2000) (Harper et al., 1999a)
(Harper ef al., 1995) consists of four finite sets: %, R, L and C. Z includes lexical
categories (for example, noun, verb); R contains role types {ri,..., Iy}, L constitutes of a
group of labels {l;,...,Ig}and C is a finite set of constraints, which determine the
grammatical dependencies for a sentence. For example, an n-symbol sentence s =
WiWa...Wq is an element of 3, and each word w; € I. A role is a variable with the role
Values, and each label in L indicates a different syntactic function. To successfully
generate a sentence, there must exist an assignment A that maps a role value to each of
the n*p roles for s such that C is satisfied. If there is more than one assigmment of role
values satisfies C, ambiguity takes place. If the number of variables in a subformula of C
is one or two, the subformula is called a wnary constraint or binary constraint
respectively. The max number of variables contained in a subformula of C is called the

arity parameter for a CDG

Compared with Context-Free Grammars (CFG), the Constraint Dependency Grammar
(CDG) is more flexible and more tractable, but less expressive (Harper, 1999a). CDG
holds the advantage of supporting a very flexible parsing algorithm for feature grammars.
However, its disadvantage is the O(n*) parsing time complexity (Harper ef al., 1999a).
Harper et al. (1999b) loosely integrated a CDG parser with an HMM word recognizer to

reduce the parsing time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A: Using Natural Language Features to Improve Speech Recognition Accuracy
Page 134

7.6.2 Enhanced Constraint Dependency Grar

Harper et al. (19992) pointed out two difficulties existing in the original CDG parsing
mentioned above: (1) the CDG is difficult to analyze the sentence where the lexical
categories are multiple (for example, the word can belongs to noun, verb, and modal
categories); (2) or the category has multiple feature values (for example, the word the as a
determiner can modify nouns of both third person singular and third person plural). The

second difficulty is its slowness (the time complexity is O@") ).

Harper et al. (1995), Helzerman et al. (1996) proposed extensions to the Constraint
Dependency Grammar to address the first difficulty by allowing the simultaneous parsing
of alternative sentences from lexical or feature ambiguity. The original CDG creates and
applies all the possible role values for all roles at one time, which uses much computation
time. Nevertheless, Harper er al. (1999a) adopted an Enhanced CDG to reduce the
computation time by applying the feature constraints in groups and eliminating the
ungrammatical role values as many as possible before preparing for another feature. The
time complexity for Enhanced CDG has been improved from O(n®) to O(n?) (Harper et
al., 1999a).

7.6.3 Corpus-Induced Constraint Dependency Grammar (Harper et al., 2000)

Corpus-Induced Constraint Dependency Grammar means exiracting CDG constraints
from a domain-specific corpus of sentences. Harper e al (2000) conducted an
experiment fo test its plausibility and benefits. The result is that the Corpus-Induced
Constraint Dependency Grammar significantly improved recognition accuracy over the

conventional CDG
7.6.4 The TINA Framework

TINA is a trainable natural-language model (Chung and Seneff, 1998) developed by
Seneff et al. (1995). The base of TINA is an augmented Context-Free Grammar, which

contains a set of features to enforce syntactic and semantic constraints, and a trace
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mechanism to handle movement phenomena. Both features and unification apply are
associated with category, not on the context-free rule. Terminal words with feature values
unify them with the feature pattern that is delivered to them by their parent/left sibling
during the parse process (Seneff er al, 1995). Constraints, such as subject-verb
agreement, and semantic features, are very important syntactic features for constraining

2aps.

The hand-coded grammar rules are automatically broken apart into a set of ftrigram
sibling-sibling transition probabilities to capture both spatial (parent) and temporal (lefi-
sibling) conditioning context. The top-level rules of the grammar are very flexible, for
they permit the parser to derive a partial parse (Seneff e al., 1995). A sentence can be
fully parsed, also, it may be parsed by skipping one or more non-content or unknown
words. The probabilities are calculated by tabulating counts in the parse trees, which are
automatically built up from the training corpus. Similarly, the top-level transition
probabilities are based on the tabulations on counts for the top-level transitions. In this
way, full-parsed and partial-parse theories can compete side-by-side according to their
probabilities (Seneff et al., 1995). Seneff ef al. (1995) showed the favorable recognition

performance of TINA over a traditional word class 4-gram language model.
7.6.5 Techniques Related to Underspecified Semantic Representation

Investigating the ambiguity existing in a compact “underspecified semantic
representation” (which means there are multiple meaning options for one sentence
instead of a specific one) for sentences, Dorre (1997), and Milward and Kaight (2001)
proposed a method which constructs the compact semantic representation from input
syntactic parse forests and constraint-based semantic construction rules. Milward and
Knight (2001) state that this approach can improve keyword- or phrase- spotting
approaches, because it can avoid many pitfalls of “over-early commitment” (e.g. to
longest fragments) existing in many grammar-based systems. Dorre (1997) has fully
implemented the algorithm with time complexity of O(n*log(n)) with respect to sentence
length.
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The DELTA project at Tilburg University is about semantic and pragmatic interpretation
of utterances in human-computer natural-language information dialogues (Bunt, 1995). It
uses context-independent versus context-dependent aspects of semantic interpretation.
The interpretation process calls for underspecified semantic representations, which can be
further specified as contextual constraints. Bunt (1995) shows several instances of

developing such representations for a variety of cases of ambiguity and vagueness.

Appropriate use of constraints can restrict the search space of input uftterances, and
reduce the perplexity of the speech recognition (Murveit and Moore, 1990), thereby,
improving the speech recognition accuracy. Usually, recognizers return a couple of
guesses of the input utterances, then, use semantic post-processing techniques to help find

the most plausible guesses.

Moreover, an alternative approach is to encode the semantic rules directly in the syntax of
the grammar (Frost, 2002). This technique is based on the observation that some
syntactically correct utterances may be semantically wrong. Frost (2002) presented the
example that the sentence “which man orbits kuiper” may be accepted by a simple
grammar for its correct syntax, but in the domain used as example, people cannot orbit
other people, thus it is semantically incorrect. The simple syntax that accepts the above

example sentence might be as follows:
question ::= “which” nounphrase verbphrase
If we replace it with the following:
question ::= “which” animatenounphrase animateverbphrase
| “which” inanimatenounphrase inanimateverbphrase

then the semantically incorrect utterance above is not accepted as a possible utterance by
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the recognizer, hence the speech recognition accuracy has been improved.

The primary advantage of this technique is an improvement in speech recognition
accuracy without unnaturally restricting the input utterances. However, this technique has
the disadvantage that the increase of complexity and the size of the grammar by encoding
semantic rules in the syntax make the system difficult to maintain. This can be overcome
to some extent by combining this technique with the use of hyperlinks to create a Speech
Web of speech-accessible objects, and further improve recognition accuracy by moving

between domain-dependent grammars (Frost, 2002).

7.8 Integrating Semantics in Statistical Language Modeling

Coccaro and Jurafsky (1998) and Chappelier er al. (1999) introduced a number of
techniques to help integrate semantic knowledge with N-gram language models for
automatic speech recognition. The techniques in (Coccaro and Jurafsky, 1998) are able to
integrate Latent Semantic Analysis (LSA), a word-similarity algorithm based on word co-
occurrence information, with N-gram models. LSA can tell the presence of words in the
domain of the text, but cannot tell their exact location. Since the N-gram model has the
ability to work out the word location, it can complement the LSA model by filling in the

missing information.

In addition, LSA performs better in predicting coherent content words than frequent
words in a low dynamic range. However, the linear combination of LSA and N-gram has
the poor performance. To address this problem, Coccaro and Jurafsky (1998) meodified
the dynamic range, applied a per-word confidence metric, and used geometric rather than
linear combinations with N-grams, and the result is a more robust language model with a

lower perplexity on a Wall Street Journal Test-set than a baseline N-gram model.

7.9 Semantics in Topics - High Level Semantic D

The frequently-used N-gram model suffers from a lack of long-term information for the

reason that the next word is predicted by the preceding N-1 words (typically 2<<N<4).
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In addition, the disorganization of the words in a large vocabulary constitutes the large
number of intractable parameters (which is discussed in section 2). To capture the
relationships between the words and extract the topics can not only build up the long-
term context information about the topic (Mahajan ef al., 1999), but also dramatically
reduces the dimensions (parameters), and consequently improves the performance of

speech recognition.

Reynar (1998) proposed a technique to segment different topics in one document. What
Rosenfeld (2000a) did was to firstly tabulated the occurrence of every word in the
document; then, reduce the large matrix by Singular Value Decomposition to a lower
dimension. Then, the correlations between words were captured in the smaller matrix and
consequently the new document, structured by topics, was obtained. It was reported in
(Rosenfeld, 2000a) that combining this adaptation with an N-gram could reduce the
perplexity and obtain lower recognition errors. Using the experiments on the Wall Street
Journal text corpus, Mahajan et al, (1999) demonstrates the effectiveness of this
technique of perplexity reduction by 37% compared to the baseline language models.

7.10 Semantic Networks

A semantic network is another powerful technique to assist in speech recognition, which
is usually represented in the form of a directed graph where nodes represent word senses
and links represent the types of conceptual relationships. A traversal through the network
defines a sentence. Semantic networks have been used for the construction of sentence
hypotheses guided by concept-relation judgements of content words (Demetriou and
Atwell, 1994a).

Demetriou and Atwell (1994b) developed a large-vocabulary semantic network by
systematically using semantic information on nouns and verbs from the Longman
Dictionary of Contemporary English (LDOCE) using pattern-matching rules. Using
semantic networks, Ahlrichs ef al. (1999) proposed a knowledge-based approach for
spoken dialsogue. Dupont (1993), Jurafsky ef al. (1995) and Fischer ez al., 1999) built a

semantic network as a stochastic finite-state network (called a Stochastic Context-Free
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Grammar (SCFG)), where grammars, probabilities and other linguistic constraints can be
added to the word connections (Savage-Carmona et al., 1995) (Dupont, 1993) to

minimize the perplexity (the average word branching factor).

In PHOENIX, a robust semantic parser is used in the speech recognizer of SPHINX-II,
which was developed in Carnegie Mellon University, the semantic relations are
represented by concept frames and the patterns for semantic fragments are represented in
Recursive Transition Networks (RTNs) (Kaiser ef al., 1999). The patterns are used to fill
the slots in semantic frames (Ward and Young, 1993). Out-of-grammar words that occur
between slots can be skipped and the resulting partial parses (only some slots in the frame

have been filled) are returned.

In this architecture, word strings with the same meaning are determined from the network,
which is generated from the semantic grammar. Ward and Issar (1994) compiled the
grammars into many small “phrase level” nets, instead of a single large network (which is
common in other standard RTNs). For example, the words representing departure and
arrival cities will respectively be assigned to two different networks. Thus, the utterance
“I want to see flights from Boston to Denver after Spm” would be interpreted as the
concept sequence [list] [select_field] [from_location] [to_location] [depart_time_range],

where the concept sequences are specified by RTN (Ward and Young, 1993).

The semantic hierarchy contributes to restrictions in the way that the inheritance of the
networks can help generalize role fillers (Demetriou and Atwell, 1994a). Also taking
advantage of the finite-state language constraints (Murveit and Moore, 1990), various
search algorithms can be used here, such as a beam search and A¥ search algorithms
(Kaiser et al, 1999). Also, it can be combined with context-free grammars and word
bigram methods (Ward and Young, 1993) (Ward and Issar, 1994). The “concept-spotting”
approach in PHOENIX is considerably robust and has been widely used in spoken
language information systems (Kaiser e7 al, 1999). Dupont (1993) applied a beam-
pruning technique and Savage-Carmona et al. (1995) used a Viterbi algorithm to further

limit the search space growth, consequently, the complexity of the network expansion
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decreased dramatically.

In addition, Jurafsky et al., (1995) mentioned another advantage of the above SCFG that
it included the language model at the frame level of the acoustic decoding, hence
significantly improved the recognition accuracy of decreasing the word error rate from
34.6% (bigram) to 29.6% (SCFG).

However, even though SCFGs are good at modeling long-term relations and limited-
domain tasks of low perplexity, it may be intractable if the lexicon size or the language
model is too large due to the difficulty of the computation of word transition probabilities
for complex real tasks (Benedi and Sanchez, 2000). The worst is that if there exists self-

embedded recursion in the language model, it will result in the corresponding network

with infinite states and transitions.

8. 1 Speech W

ebs

It is not easy to construct speech interfaces to large knowledge bases for the reason that
large knowledge source require large and complicated grammars, which are not trivial to
implement and which have high perplexity and therefore low accuracy (Frost and Chitte,
1999). Instead, Frost and Chitte (1999) proposes a new approach of dividing large
knowledge sources into several smaller domain-based knowledge bases, called “sihlos”,
and using relatively narrow grammars in each individual sihlo. Only when the sihlo is
visited, are its grammar and other related properties downloaded to respond to the user.
With the decrease of the scope of the knowledge source, the query language is shrunk,

which can significantly contribute to the speech recognition accuracy.

The user can move from sihlo to sihlo by “speaking” hyperlinks. Under such a schema,
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the semantic constraints in syntax (the techniques are discussed in section 7.7) of each
sihlo have to be considered for the fact that some semantic constraints are appropriate in
one context and might be inappropriate in another one. Frost (2002) gave the example
that the constraint that “people cannot orbit anything” is appropriate in the “solarman

object”, while not appropriate in the object about astronauts.

In addition, a spoken-dialogue system may perform differently for different users and
even the same user during different dialogues. To solve this problem, Litman and Pan
(2000) (1999) developed TOOT, a spoken-dialogue system for retrieving train schedule
on the web which predicts a user’s behaviour in a particular dialogue process. According
to such predictions whether he/she is having speech-recognition problems, TOOT will

automatically adapt its dialogue strategies.
8.2 Large Vocabulary Related Techniques

Large vocabularies have been one of the major challenges for speech-recognition
iescarchers (discussed in section 2). So far, a lot of work has been conducted on this point,
such as the dependency grammars (discussed in section 7.6), semantics in topics — high-
level semantic domains (discussed in section 7.9), and semantic networks {discussed in
section 7.10) might be possible solutions to this problem. The following are some other

techniques related to this problem:

Miller (1988) describes a CFG-based syntactic component for large vocabulary
speech recognition as the language model. Benedi and Sanchez (2000) proposed an
approach, which is capable of capturing both local and long-term relations between

words and syntactical structures (details are discussed in section 5).

Bellegarda (1998) proposed a new framework of integrating both local and global
constraints for multi-span statistical language modeling. Local constraints are
captured via language modeling, while global constraints are taken into account
through latent semantic analysis. The integration of these two paradigms results in

several families of multi-span language for large vocabulary speech recognition.

Moody (1988) conducted experiments to test the effects of restricted vocabulary size
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in speech-recognition and natural language understanding process, and the results
show the advantages of the restricted vocabulary over unrestricted vocabulary in the
ways that the shorter completing time, the fewer word usage, and better recognition

accuracy is achieved, especially in goel direcied utterances.

Valverde-Albacete and Pardo (1996) presented a multi-level lexical-semantics based
language-model design for guided integrated continuous-speech recognition fo
decrease the search space when the lexicon size grows. This approach consists of two
mutually-recursive functions. Firstly, an auxiliary retrieval function is used to obtain
lexicalized (already built) solutions to the problem, which are merged with the ones
built by the second function. This second function describes the acoustical and
semantic recognition process as a search problem, which is defined in the first
function, and solved with the help of the A* strategy. A hierarchy of linguistic levels
is used. And each level contains a particular meaning structure, a lexicon of
lexicalized forms, the lexicalization probabilities, and a local lexical grammar
describing how the semantic categories of the level can be built. This speech
recognition architecture is tested 2 DARPA RM-like application by Valverde-
Albacete and Pardo (1996).

8.3 Language Models for Languages Other Than English

Xu et al. (1988) integrated syntactic, semantic and vocabulary knowledge constraints into
a linguistic processor to improve the performance of a Chinese speech-recognition
system. One feature of this processor is that both sentences and phrases can become its

speech input. In addition, some unigue characteristics of Chinese language are taken into

account.
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A great deal of work has been carried out on the use of Natural-Language features in
speech recognition. Correspondingly, a number of other surveys have been done on this

topic.

Rosenfeld (2000) primarily focused on Statistical Language Model (SLM)
techniques, such as N-grams, Class N-gram, Decision Tree Models, and Adaptive
Models. Also, in Rosenfeld’s (2000a) opinion, the Probabilistic Dependency
Grammars belong to the promising current directions. In addition, Rosenfeld (2000a)
mentioned that the World Wide Web is an efficient resource for obtaining the training
data.

Demetriou and Atwell (1994a) summarized the current semantic methods in speech
recognition and understanding research and classified the approaches into six main
categories: (1) Semantic networks, which are discussed in section 7.10. (2) Semantic
grarmmars, which are discussed in sections 4.4, 7.5, 7.6 and 7.7. (3) Caseframe
approaches, in which, the semantic constraints are expressed in the form of
caseframes. These methods can be used for the production of sentence hypotheses
from a word lattice and the choice of the most likely one, or for filling gaps of
missing words or for post-processing correction, as well as for making word
predictions during recognition. (4) Statistical approaches, which are discussed in
section 3. (5) Unification-based approaches, which are discussed in section 7.5. (6)
In neural networks, processing elements or nodes are connected by links with
variable weights, which are adapted from fraining data and are continuously

modified during use.

Based on the observation that the successful SLM techniques use very little language
knowledge, Rosenfeld (2000b) reviewed the extent to which aspects of natural
language are captured in current models. Rosenfeld (2000b) mentioned three
approaches of integrating syntax into language modeling. (1) Probabilistic Context-
Free Grammars (PCFG) (discussed in section 4.2); (2) Probabilistic link grammars,
which use lexicalized grammar formalism. Specific link grammars are constructed by
hand. Based on the link grammar, a word can be predicted from any pair of adjacent

words that precede it in the sentence. A specialized form of the grammar, called a
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Grammatical trigram, has achieved a modest yet consistent perplexity improvement
over the current trigram. (3) In structured language model, the next word is predicted

based on a set of linguistic equivalence classification of the history.

Rosenfeld (2000b) also iniroduced four ways to capture topic coherence. (i) Mode!
interpolation. The training data were partitioned into multiple sets by topic(s). Then,
a separate topic-specific language model is created on each such set, and the
interpolations between the various models takes place at the word level. This method
achieves moderate vet consistent reductions in perplexity and speech recognition
error rates. (ii) The N-gram cache, which has been implemented in many systems
with 2 modest reduction in word recognition error rate, is easy to implement and
capture word auto-correlations. (ill) Word triggers are the outcome of the
generalization of the cache idea. (iv) The dimensionality reduction of the topic space,
which can be achieved by Singular Value Decomposition (SVD), improves the

modeling individual word correlations.

According to Rosenfeld (2000b), it is almost impossible to think about linguistic
aspects of sentences, such as their grammar syntax, semantics or pragmatics, and say
nothing of encoding in a conditional framework. Rosenfeld (2000b) proposed the
exponential model, which directly models the probability of an entire sentence or
utterance. In this model, each sentence or utterance is treated as a bag of features,
which are arbitrary computable properties of the sentence. Furthermore, the unified
structure of the model makes it possible that any linguistic theory can be

incorporated without any change to the model itself.

Rosenfeld (2000b) has discussed the reason for the difficulty of integrating linguistic
features with statistical language models as the following: (1) linguistic theories and
statistical models have different goals. The former deal with existence, whereas the
latter deal with prevalence. (2) lack of a general framework. (3) mental straight-
jacket of the conditional formulation. (4) Impoverished priors. A prior is supposed to

capture everything that is known about the domain before any data are observed.
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However, the language (e.g. English) has such a large parameter space that any

feasible amount of training data is insufficient.
Lavie (1996) mentioned the following techniques:

Carbonell and Hayes (1984) suggested a case-frame approach to handle the extra-
grammaticality. After examining the main semantic concept of the sentence, the
semantic interpretation of the input is obtained. Then, search the sentence for
components that instantiate the semantic frames that are associated with the main
concept. This approach is flexible to the order of the semantic frames fo the input, but
it is domain dependent and hard to capture syntactic and other grammatical

knowledge.

McDonald (1992) described an approach based on chart parsing. Semantic grammars
are used to combine the lower level phrases into phrases that represent semantic
concepts, and then applied to a coherent analysis by the conceptual analyzer, which
allowed gaps of unanalyzed segments of text between the combined phrases. The
system unified bottom-up syntactic parsing with top-down conceptual expectation-
driven parsing into a flexible multi-layer parser. Thus comes the drawback of

complexity.

Menzel (1995) suggested a unified approach by using the constraint grammar
formalism to express syntactic, semantic and pragmatic linguistic constraints. Thus,
the violation of the constraints is regarded as penalties, and the importance of
satisfying a constraint can be modeled via penalty weights. Then the minimal penalty
means satisfying the constraints best. Unfortunately, this approach has not been fully

implemented in a large application.

With the growing interest and demand for the human-machine interaction, more and more

work concerning speech-recognition has been carried out over the past decades.
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Chappelier er al. (1999) has stated that, over the past decade, speech-recognition
technology has made significant progress: with twofold reduction every two years, in
word-recognition errors (Rabiner ef al., 1996}, and the emergence of high-performance
language systems. A variety of approaches have been proposed to address speech-
recognition issues, such as the stochastic (statistical) techniques, grammar-based
techniques, combined N-gram and grammar-based techniques, technigues integrated with
linguistic features, and other approaches. Furthermore, it has been widely accepted that
language features are playing significant roles to achieve high accuracy in speech
recognition (Harper et al., 2000), (Moore, 1999), (Seneff ef ai., 1995), (Hermannsdottir,
1996), (Takezawa et al., 1991). However, there are still a lot of challenges on the way of
developing high-accuracy, and user-friendly speech-recognition technologies (Glass,
1999).

This survey also indicates that Rosenfeld is the person who is making significant

contribution to the integramion of grammar-based and stochastical-based techniques.
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Note: superscripts are used to denote the obtained size of the sub-language defined by the
expressions; the following comments (starting with “//”) denote the computation used to

calculate the size,

Figure Appendix B (1): language-size computation of semantic grammar

/* semantics_gram_extl.gram %/
grammar semantics __gram_exﬂ;
public <g>206244178E <linkingvb>" <termphrase_verbphrase>
| is <pnoun>"*! <pnoun>'
| is <pnoun>'*" ( ajan )* <nouncla>'"
% is <pnoim'§>121 ( a|a21;142;0§71}302uncla>wg or ( alan }? <nouncla>'"
<guestl>” <sent>
| (who ) <animate_verbph>
| ( what ) <inanimate_verbph>
| ( which | how many ) <nouncla_verbph>
| ( which | hz%w many ) <ncuncla_verbph_other>
| <simple> %
/{ 4%455684689185 + 121%121 + 121%2*108 + 121%2%108*2*108 + 3%¥294403057132+ 8772934 +
//+ 3837429 + 126895596 + 156297624 + 26 =
//= 1822738756740 + 14641 + 26136 + 5645376 +820116752331 + 295803609
/I = 2706249417898 = 2.70 * 10"
<simple>?® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
|
E

455684685185

8772934

3837429

126895596
156297624

thanks
thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
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| can i talk to solar man
i who is monty
| can i talk to monty ;
<termphrase__verbphrase>455 684689185 = <nonhuman_termph _planet>
i <nonhuman_termph moon>"*"*® <animate_transvb>° by <human ‘eermph>2
| <nonhuman_termph_other>'"®*3
| <nonhuman_termph_other> 1089453 < animate_transvb>® <preposition>
<nonhumarn_termph __pianet> 595
| <nonhuman_termph_ 0€her>}°69453
<nonhuman_termph_moon>"*
1/ 6555%3447441+ 14196%6%25651+ 1069433*6*25652 + 1065453%6%2%6555 + 1069453%6%2%14166
/] =22597975755 + 2184849576 + 164595233418 + 84123172980 + 182183457456 455684689185
<transvb_by_termph> 3447441 <ammate _transvb>° by <human f:ermph>
| <inanimate_transvb>° by <nonhuman _termph_ moon>"*1%
| <inanimate_transvb_other>> by <nonhuman_termph_other>'""*" ;
/16*%25651+ 6% 14196 + 3 * 1069453 = 153906 + 85176 + 3208359 = 3447441
<sent>PH0TIR & pan te rraph>2%! <gnimate,_verbph>®T"5%
i<n0nhuman__tennph_moon>m% <inanimate_verbph_active>
| <nonhuman_termph_planet>%"" <inanimate_verbph_passive>"
| <nonhuman_termph_; moon>"*1% <mzmwna‘ce_;verbph__actzve_csther>3 208361
| <nonhuman_termph_planet>%">° <inanima{e__verbph_active__other>32°336! s
/1 25651%8772934 + 14196%*39337 + 6555340717 + 14196 * 3208361 + 6555 *3208361
I/ = 225034530034 +558428052 + 2233399935 + 45545892756 +21030806355
1/ =294403057132 .
<nouncla_verbph>"%%% = <hyman_nouncla>'"? <animate _verbph>
| <nonhuman_nouncla moon>6 <animate_verbph_passive>
| <nonhuman_nouncla _pianet> <animate_verbph_passive>
| <nonhuman_nouncla_moon>° <inanimate_verbph_active>>">>"
| <nonhuman_nouncla_planet>° <inanimate _verbph_passive>>""""" ;
/112%8772934 + 6*%1611672 + 6*1611672 +6*39337 + 6%340717 =
i/ = 105275208 + 9670032 + 9670032 + 236022 + 2044302 =126895596
<nouncla_verbph_other>!62776% = <nonhuman nouncla_other>% <animate verbph assive>
| <nonhuman_nouncla_other> <inanimate _verbph_passive_other> 249014,
// 84 * 1611672 + B4%249014 = 135380448 +20917176 = 156297624
<inanimate__verbph>383 72 = <inanimate verb?h active>>>>%7
| <inanimate_verbph_passive>’
| <inanimate_verbph_active_other>"2%¢!
| <inanimate_verbph_passive_other>"*"";
H 39337 + 340717 + 3208361 + 249014 = 3837429
<human_stermph>' = <human __pnoun>17
| <human_ detph> s 17496 =113
<nonhuman_stermph_planet>"’ ——<nonhuman _pnoun _piama&
<nonhuman_detph_planet>" ; // 9+ 48 =57
<nonhuman_stermph_moon>" = <nonhuman _pRoun_ moon>3‘5
L <nonhuman_detph_moon>"% ; // 36+48 =84
B! = <ponhuman _pnoun_¢ other> *
| <nonhuman _detph other>""%: //59+ 672 =731
= <human sterm?h
f<human stennph> " (and | or ) <human_stermph>" ; //113+113%2%113=25651
<nonhuman_termph_planet>"""> = <nonhuman stermph _planet>"’
| <nonhuman_stermph_planet>"’ (and | or ) <nonhuman_stermph_planet>"’
/57 + (87%2*57) = 6555

6355 3447441

<transvb_by_termph>
5651

<animate_ transvb> by <human teﬁm:&h>2565I

<ammate . transvb>® <preposition>?

39337
340717

8772934
1611672
1611672

1611672

<nonhuman_stetmph_other>

<human_termph>>%!
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14196 84

<ponhuman termph_moon> = <ponhuman stennph moon™>
| <nonhuman_stermph_ moon>" ( and | or } <nonhuman_stermph_moon>
/f 84 + B4*2%84 = 14196
<nonhuman_termph_¢ other>"""** = <ponhuman _stermph_other>""
| <nonhuman_stermph_other>"" { and ] or ) <nonhuman_stermph_ other>"
/1 T3]+ F31%2%731 = 1069453
<animate_verbph>%"">** = <animate ,_transvbph>""2
<inanimate verbph_ active>""""7 —<mammate _transvbph_active>
| <intransvb>’ ; /139330 + 7 = 39337
<inanimate verbph ~pa53ive>340717 = <1nammate ._transvbph_passive>>*""
| <intransvb>’
| <inanimate_transvb>® sun ; // 340704 + 7 + 6 = 340717
<inanimate_verbph_active_other>"""®! = <inanimate transvbph active_other>*208%®
| <intransvb_other>%; // 3208359 + 2 =3208361
<inanimate_verbph_passive_other>>*"" = <inanimate transvbph _passive._ other>?*012
I<1mransvb other>?; // 249012-*—2 249014
<animate_verbph_passive> = <linkingvb>* <ammate transvb>® by <human %ermph>25651l
<11nk1ngvb> <animate | transvb> <preposmon>2 <nonhuman_termph_planet> 555}
<linkingvb>* <animate_transvb>® <prep051t1cm>2 <nonhuman_termph moon>"41%¢;
I 4%6*25651 + 4%6*2#6555 + 4*6*2*14196 615624 + 314640 + 681408 = 1611672
<animate_tmnsvbph>877293 = <animate_transvb>® { <nonhuman_t termph _planet>6555
| <nonhuman_termph_moon>"*1"°
| <nonhuman_term: é’h other>'%4 )
| <animate_transvb_other> (<human_termph>>
| <nonhuman_termph_planet>*>>
| <nonhuman_termph_moon>"*1%
| <nonhuman_termph_other>'"%%%%);
//6*(655‘*+14196—:—106945 3)+2"‘(25651-*6555~i—14196+1()69453) =6541224+2231710=8772934
<inanimate_transvbph_active>>""° = <inanimate_transvb>® <nonhuman _termph_planet> 8555
// 6 * 6555 = 39330
3 40704""<lmkmgvb> <inanimate_transvb>® by
<nonhuman_termph_moon>"“"% ; // 4 % 6 * 14196 =340704

84

39330

1611672

<inanimate_transvbph_passive>

<inanimate_transvbph_active_other>"""* = <inanimate_iransvb_other>>

<nonhuman_termph_ other>m69453 /'3 * 1069453 = 3208359
<inanimate_transvbph_passive_other>>*"" = <hnkmgvb> <inanimate_transvb_other>’ by
<nonhuman_termph_planet>""
| <linkingvb>* <inanimate_transvb_other> by
<nonhuman_termph ‘moon>"" ; /f 4%3%6555+4%3%14196 = 249012
<human_detph>>® = <det> <human nouncia>u ;1 8%12 = 96
<nonhuman_deiph planet> "<de£> <nonhmnan nouncia ~;plemet> /[ 8%6 =48
<nonhuman_detph_moon>"® = <det>® <nonhuman_nouncla_; moon> 3 /8%6 =48
<nonhuman_detph_other>m‘ = <det>® <nonhuman__nouncia__other> o //8%84=672
<preposition>® = on | in ;
<nouncla>'® = <human_nouncla>
<nonhuman_nouncla _planef> |
<nonhuman_nouncla_moon>° |
<n0nhuman _nouncla_ other>84 H/12+6+6+84=108
<human_pouncla>' = <adj>’ <human_cnoun>"
| <human_ cnourP4 12%4+4 =12
<nonhuman_nouncla_planet>° —<ad3> <nonhuman_cnoun _glanet>
| <nonhuman_cnoun_planet>"; //2%2+2=6

12‘
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3 . 2
<ponhuman_pouncla_moon> —<ad3> <nonhuman_cnoun_moon™>

| <nonhuman cnoun_moon>” ; I} 2¥2+2=6
<nonhuman_nouncla_other>% = <adj>* <nonhuman_ cnousl other> 2
| <nonhuman_cnoun_other>" /f2%28+28=84

<human_cnoun>" —manimen]person&people
<nonhuman_cnoun_planet>” = planet | planets ;
<nonhuman_cnoun_; moon> -moonlmoons,
<nonhuman_cnoun_other>> = mountain | mountains | crater | craters | sea | seas | ocean | oceans |
chemical | chemicals | gas | gases | metal | metals | nonmetal | nonmetals |
country | countries | capital | capitals | city | cities | continent |continents]
river | rivers | lake | lakes ;
<adp>’ = red | atmospheric;
<intransvb>’ = spin | spins | orbit | orbits | orbited | exist jexists ;
<iptransvb 0ther>2— exist | exists;
<animate_transvb>° = discover | discovers | discovered | find | finds | found ;
<animate_fransvb other>2 = worship | worshiped;
<inanimate_transvb>° = orblt | orbits | orbited | neighbour | neighbours | neighboured;
<inanimate transvb other>" = contain | contains | contained ;
<hnkmgvb> =is | was | are | were ;
<quest1> = did | do | does;
<det>® = allan [ everyionelﬁwo | three | four | five;
<pnoun> " = <ponhuman_pnoun_planet>
| <ponhuman_pnoun_moon> >
| <human_pnoun>
| <nonhuman _pnoun,_ other>"; //9+36+17+59=121
<nonhuman_pnoun_planet>’ = earth | Juplterﬁmarsﬂmercuryl neptune | pluto | saturn | uranus |
venus ;
<nonhuman_pnoun_moon>"" = almathea | ariel [callisto | charon | deimos | dione | enceladus | europa |
ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas| miranda | nereid | oberon | phobos |
phoebe | rhea | satumnfirst | tethys | titan | titania | triton | umbriel ;
<human_pnoun>'" = bernard | bond | cassini | dollfus | fountain | galileo | hall | herschel | huygens |
kowal | kuiper | larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>" = <nonhuman __pnoun chemical>
| <space_program>®
l<earth _geography_domain>""; //20+6+33=59
<nonhuman_pnoun_chemical>”’ = <nonhuman _pnoun, _gaus>6
| <nonhuman_pnoun_; metal>’
|  <nonhuman_pnoun_ponmetal>’ ; //6+9+5=20
<nonhuman_pnoun_gas>" = oxygen | hydrogen | nitrogen | d1ox1de|monox1de§hehum
<nonhuman_pnoun_metal> = gold | silver | copper | iron | stannum | nickel | potassium | natrium
hydrargymm
<nonhuman_pnoun_nonmetal>” = water | sulphur | carbon | phosphorus | calcium;
<space_program>’ = shuttle | rocket | launch | teiescope I statnonj astronaut;
<earth_geography_domain>" ‘“<country>6§<c&p1ta1> | <city>® | <continent>® | <ocean>* | <river>’
<lake>' | <mountain>' ; 6+6+6+6+4+3+1+1=33
<country> = canada | china | England | France | Germany | united states;
<c&p1tal> = ottawa | Beijing | london | paris | berlin | washington;
<city>® = toronto | shanghai | manchester | Iyon | Frankfurt | New York;
<contment> = Africa | Asia | Austrilia | Burope | North America | South America;
<ocean>" = Arctic | Atlantic | India | Pacific;
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<river>’ = Yangtse | Nile | Danube ;
<lake>' = ontaric lake;
<mountain>' = rocky mountain;

Figure Appendix B (1): language-size computation of semantic grammar (Cont’d)
Figure Appendix B (2): language-size computation of syntactic grammar

/* syntax_gram_extl.gram %/
grammar s¥nm am_extl ;
public <s> 0B TIBERT _ iorin o st cermoh>
| <linkingvb>* <termph>'"*"*** [<transvb>"* <preposition>* | <termph>
| <quest1>? <geng>701525684027295
| ( who |what)? <verbph>
| ( which | how many )? <nouncla>""<verbph>*""7013
| <simple>™®;
/1 4%1941435%15%1941435 + 4*1041435%15%2%1941435 + 3*791525684027295 + 2*407701357 +
[+ 2%108%407701357 +26 =
- 1/=226150191553500 + 452300383107000 + 2374577052081885 + 815402714 + 88063493112+26
/1= 3053116505638237 = 3.05 * 10"
<simple>*® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
who are you
where do youlive
what do vouknow
how old are you
what is your favorite band
who is the vice president at the university of windsor
who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man
| who is monty
Lcan i talk to monty ;
<sent>""1P2HTES o tormph>195 cyerbph>* 0, 11 407701357 * 1941435= 791525684027295
<stermph>>® = <pnoun>'"' | <detph>%*, // 121+864 = 985
<termph>""*"* = <stermph>" | <stermph>"*° (and | or) ? <stermph>°%; //985+985%2%985 = 1941435
<verbph>*""7"" = <pransvbph>""""%0 | <intransvb>’; /407701350 +7 =407701357

4
1941435 §<transvb>15 b } <temph>i94} 35

1941435

407701357
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<transvbph>*77"*0 = { <trangvb>' [<1mﬁngvb> <transvb>" by ) <termph>'*414% |

( <transvb>" | <linkingvb>" <transvb>'" <preposition> 2 <terrph>""""*3 ;
7 (15 +4%15) ¥ 1941435 + %15-4—4*‘ 15%2y¥1941435 = 145607625 + 262093725 =407701350
<detph>*® = <det> <nouncla> ; 8%108 = 864
<nouﬂcla> 8 = <adj>? <cnoun>>* i <cnoun>"%; // 2¥36+36 = 108
<cnoun>"* = man }menEpersonépe@pk!pianetiplanets% moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal|
metals| nonmetal | nonmetals | country | countries | capital | capitals | city [cities |continent]
continents | river | rivers | lake | lakes ;
<adj>? = red § atmosphemc
<m’cransvb> = spin | spins | orbit | orbits] orbited | exist | exists ;
<der>® = all an | every | one | two | three | four | five;
<pnoun>12 = <pnoun_planet_moon_human>"
| <nonhuman_pnoun_chemical> 2
| <space_program>
| <earth_geography._domain>>"; // 62+20+6+33 = 121
<pnoun_planet_moon_human>% = earth | jupiter | mars | mercury | neptune | pluto | satum | uranus |
venus | almathea | ariel | callisto | charon | deimos | dione | enceladus | europa | ganymede |
hyperion | iapetus | io | janus | jupitereighth | jupitereleventh | jupiterfourteenth | jupiterninth |
jupiterseventh | jupitersixth | jupitertenth | jupiterthirteenth | jupitertwelfth | luna | mimas |
miranda | nereid | oberon | phobos | phoebe | thea | satumnfirst | tethys | titan | titania |
triton | umbriel | bernard | bond | cassini | dollfus | fountain | galileo | hall | herschel |
huygens | kowal | kuiper(g larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_chemical>"" = <nonhuman_pnoun _gas>
| <nonhuman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal> ; // 6+9+5 = 20
<nonhuman_pnoun_gas>° = oxygen | hydrogen | nitrogen | dmxndelmonoxzdelhehum
<nonhuman_pnoun_metal> = gold | silver | copper | iron | stannum | nickel | potassium | natrium |
hydrargyrum
<nonhuman _proun_t nonmetal>’ = water | sulphur | carbon | phosphorus | calcium;
<space,_program>° = shuttle | rocket | launch | telescope | statmné astronaut;
<earth_geography_domain>> = <country> l<cap1tal>6l<c1ty> | <continent>® | <ocean>* | <river>
<lake>' | <mountain>' ; // 6+6+6+6+4+3+1+1 =33
<coun’cry> = canada | china | England | France | Germany | united states;
<capital>® = ottawa | Beijing | london | paris | berlin | washington;
<city>® = toronto | shanghai | manchester | lyon | Frankfurt | New York;
<cont1nent> = Africa | Asia | Austrilia | Europe | North America | South America;
<ocean> = Arctic | Atlantic | India | Pacific;
<r1ver> = Yangtse | Nile | Danube ;
<lake>' = ontamo leke;
<mountam> = rocky mountain;
<transvb>"" = orbit | orbits | discover | discovered | neighbour | neighbours | neighboured | worship |
worshiped | contain | contains | contained { find | finds | found;
<preposﬂ:1on>2 =in|on;
<Imkmgvb> =1is | was | are | were ;
<quest1>® = did | do | does ;

3

Figure Appendix B (2): language-size computation of syntactic grammar (Cont’d)
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Figure Appendix B (3): language-size computation of word-sequence grammar

/* 10-word word-sequence grammar
wordSequence_gram,_extl.gram
%/

grammar wordSequence _gram_extl;
public <g>POPITHRIOSTIRREE _ o g
I<word> <word>
l<word> <word> <word>
[<word> <word> <word> <word>
[<word> <word><word> <word><word>
[<word> <word><word> <word><word> <word>
kkword> <word><word> <word><word> <word><word>
l<word> <word><word> <word><word> <word><word> <word>
l<word> <word><word> <word><word> <word><word> <word><word>
l<word> <word><word> <word><word> <word><word> <word><word> <word>
l<simple>®%;
1273+ 2737+ 273° + 273% + 273° +273° + 2737 + 273% + 273° 4273 =
/273 + 74529 + 20346417 + 5554571841 + 1516398112593 + 41397668473788% +
/1 + 113015634933443697 + 30853268336830129281 + 8422942255954625293713 +
I+ 2299463235875612705183649 =
/= 2307917144831037751893882 = 2.31 * 10™
<simple>?® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me 2 poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man
| who is monty
| can i talk to monty ;
<word>"" = <cnoun>® | <adj>? | <verb>*C L<questi>3 | <det>® | <preposition>’ | <pnoun>
<nonhuman_pnoun_chemical>* [<space_program>° | <earth_geography_domain>
<other_word>" ; // 36+2+30+3+8+2+121+20+6+33+12 = 273

121I 33!
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<cnoun>® = man | men | person | people | planet | planets | moon | moons | mouniain | mountains |

crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | meial|
metals| nonmetal | nonmetals | country | countries | capital | capitals | city [cities jcontinent]
continents | river | rivers | lake | lakes ;
<adj>® = red | atmospheric;
<verb>" = <intransvb>’
! <1nmmsvb,othep2
| <animate_transvb>%
| <animate_transvb_other>"
! <inanimate, transvb>®
| <inanimate_| transvb__other>3
i<1mkmgvb> I T+24+6+2+6+3+4 = 30
<intransvb>’ = spin | spins | orbit | orbits | orbited | exist jexists :
<intransvb_¢ o’ﬂher>2 exist | exists;
<animate_transvb>® -—dlscover§dlscovers!dlscovered | find |finds [found;
<animate_transvh other> = worship | worshiped;
<inanimate_transvb>® = oﬁnt | orbits | orbited | neighbour | neighbours | neighboured;
<inanimate | transvb _other>’ = contain | contains | contained ;
<Emkmgvb> =is | was | are | were ;
<ques‘s1> = did | do | does;
<det>® —aﬁanﬁeveryloneitwo | three | four | five;
<preposition>" = in | on;
<pn«:)v.m>121 = <ponhuman_pnoun __planet>9
| <nonhuman_pnoun_moon>
| <human_pnoun> "’
| <nonhuman _prioun_ other>"; //9+36+17+59=121
<nonhuman_pnoun_plenet>’ = earth | Jupttergmars | mercury | neptune | pluto | saturn | uranus |
venus ;
<nonhuman_pnoun_moon>"" = almathea | ariel |callisto | charon | deimos | dione | enceladus | europa |
ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas| miranda | nereid | oberon |phobos|
phoebe | thea | saturnfirst | tethys | titan | titania | triton | ymbriel ;
<human_pnoun>'” = bernard | bond | cassini | dolifus | fountain | galileo | hall | herschel | huygens |
koweal | kuiper | larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>> = <nonhuman _pnoun, chemical>
| <space_program>°
i<earth _geography_domain>>"; //20+6+33=59
<nonhuman_pnoun_chemical>"" = <nonhuman _pnoun _gas>
| <nonhuman_pnoun_metal>®
| <nonhuman_pnoun_nonmetal>’ ; /6+9+5=20
<nonhuman_pnoun_gas>° = oxygen | hydrogen | nitrogen | dioxide | monoxide | helium ;
<nonhuman_pnoun_metal> = gold | silver | copper | iron | stannum | nickel | potassium | natrium |
' hydrargymm
<nonhuman_pnoun_nonmetal> = water | sulphur | carbon | phosphorus | calcium;
<space_program>® = shuttle | rocket | launch | telescope I statzon! astronaut;
<earth_geography_domain>" —<country>6]<cap1tal> | <city>° | <continent>® | <ocean>* | <river>
<lake>' }<mountam> 6+6+6+6+4+3+1+1=33
<country>® = canada | china | England | France | Gennaﬁy | united states;
<capital>® = ottawa | Beijing | london | paris | berlm | washington;
<city>® = toronto | shanghai | manchester | Iyon | Frankfurt | New York;
<continent>° = Africa | Asia | Austrilia | Europe | North America | South America;

3,
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<ocean>" = Arctic | Atlantic | India | Pacific;

<river>" = Yangtse | Nile | Danube ;

<lake>' = ontario lake;

<mountain>" = rocky mountain;

<other_word>"2 = sun | or | and | by | which | who | what | how | many | monty | judy | solar ;

Figure Appendix B (3): language-size computation of word-sequence grammar (Cont’d)
Figure Appendix B (4): language-size computation of extended semantic grammar

/* semantics_gram_ext2.gram ¥/
grammar semantics _§ram_ext2 ;
public <s> P37 = <inkingvb>* <termphrase_verbphrase>
| is <pnoun>>° <pnoun>*
| is <pnoun>"** ( 2jan )? <nouncla>'"®
| is <pnoun>"’ ( ajan ) <nouncla>'" or ( alan )? <nouncla>'®
[ <quest1>® <sent>T0S42576772
| { who ) <animate_verbph>
| ( what ) <inanimate_verbph>
| ( which | how many ) <nouncla_verbph>>' >+
| ( which | lzlé)w many ) > <nounc}a__*ver}:oph__cther>i56297624
| <simple>*° ;
// 4%857815517151 + 395%395 + 395%2%108 + 395*2*108*2*108 +3*706042576772 + 22511168+
/] + 6682235 + 2¥291754404 + 2*156297624 + 26 =
/f = 3431262068604 +156025 +85320 + 18429120 +2118127730316 +29203403 +583508808+
// +312505248 +26 = 5550333776870 = 5.55 *10"
<simple>"" = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
{ how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man

857815517151

22511168
6692235
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| who is monty
j can i talk to monty ;
<termphrase_ verbphrase>35 BB = <honhuman _termph_planet>
! <nonhuman_termph_; moon>"*"* <animate_transvb>® by <human_termph>
| <nonhuman_termph_other>" 2021055 animate,_ transvb> by <buman_termph>
| <nonhuman_termph_other>?%1% <ammate transvb>® <preposition>”
<nonhuman_termph_planet>""
! <nonhuman__tennph_other>m2055
<nonhuman_termph_moon>
1/ 6555%6302247 +14196%6%2365 1+2021055*6*25651 +2021055%6%2%6555 + 2021055%6%2%14196
/f=41311229085 + 2184849576 + 311052490830+ 158976186300 + 344290761360 =
//= 857815517151
<transvb by_termph>

4
8555 <ivansvb ) by termph>6f’°22 7
2565

25651

4<9?mmate transvb>® <preposition>®
141

6302247 25631

= <gnimate | transw b>° by <human_termph>
| <inanimate_transvb>® by <nonhuman _termph_moon>
| <inanimate_transvh_other>’ by <nonhuman_termph_other>
// 6%25651 + 6%14196 + 3*2021055 = 153906 + 85176 + 6063165 = 6302247
= <human termph>25651 <amimaﬁte_verbphpz251 1168
| <nonhuman_termph_moon>'*1% <inanimate_verbph_active>
| <nonhuman_termph_planet>"">" <inanimate »_verbph_passive>
| <nonhuman_termph_; moon>'**¢ <inanimate ,_verbph_active_ other>%83167
| <nonhuman_termph_planet> 6555 <1nan1mate__verbph__act1ve__other>6 3167,
/1 25651%22511168 + 14196%39337 + 6555%340717 + 14196*6063167 + 6555*6063167=
/= 577433970368 + 558428052 +2233399935 + 86072718732 +39744059685 =
/f="T06042576772
<nounc1a__verbph>2917m°4

i41%6
2021055 ,
3

<g ent>70»6()425’}'6772
39337

340717

= <human_nouncla>"> <animate_verbph>?>111%

| <nonhuman_nouncla_s moon>6 <animate_verbph_passive>
| <nonhuman_nouncla_planet>° <animate_verbph _passive>
| <nonhuman_nouncla_; mc:»on>6 <inanimate_verbph_active>
| <nonhuman_nouncla_planet>° <inanimate ,_verbph _passive>’
/1 12%22511168 + 6*1611672 + 6*1611672 + 6%39337 + 6*340717 =
/1 270134016 + 19340064+ 236022 + 2044302 = 291754404
<nouncla_verbph_other 136297624 = <nonhuman nouncla other>% <animate ,_verbph_passive>
| <nonhuman_nouncla_other>% <inanimate ,_verbph_passive_ other>>¥"14,
// 84*1611672 + 84%249014 = 135380448+ 20917176 = 156297624
<inanimate_verbph>*""?* = <inanimate ._verbph_active>>"
| <inanimate_verbph_passive>>4*"""
| <inanimate_verbph_active_other>
| <inanimate_verbph_passive_other>
/139337 +3407E7+ 6063167+249014 = 6692235
<human_stermph>'"? = <human _pnoun>'"’
| <human_ detph>96 /1 17+ 96 =113
<nonhuman_stermph_planet>"" = <nonhuman _pnoun_planet>’
| <nonhuman_detph_planet>*® ; // 9+48 =57
<nonhuman_stermph_moon>** = <ponhuman _pnonn,_; moon>36
|<n0nhuman detph_moon>" ; // 36+48 =84
<nonhuman_stermph_other>'"® = <ponhuman _pnoun_other>""
| <nonhuman_detph_other>°" ; //333+672 = 1005
= <human_stermph>'"
[ <human_stermph>'" { and | or ) <human_stermph>
/113+113%2%113=25651
<nonhuman_termph_planet>%% = <n0nhuman _stermph __planet>
| <nonhuman_stermph_planet>"" ( and | or )* <nonhuman_stermph_planet>"

1611672
1611672
39337
40717 ,

1611672

6063167
245014,
3

<human_termph>256ﬁ
1
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i 5T+5TF2*57 = 6555
<ponhuman_fermph_; moon>""*¢ = <nonhuman stermph moon>
| <nonhuman_stermph_moon>"* ( and | { or } <nonhuman_stermph_ moon>™
// 84 +84%2%84 = 14196
<nonhumean_termph_other>*1%% ~<nonhuman stermph 0ther>
| <nonhuman_stermph_other>""" ( and | or ) > <nonhumean_stermph_other>
/1005 + 1005%2*1005 = 2021055
<animate verbph> BHIEE = <animate ﬁ:lrzmswﬂoph>22511168 :
<inanimate_verbph_active>>">' = <inanimate ;_transvbph_active>
| <intransvb>’ ; // 39330+7 = 39337
0T = <inanimate _transvbph_passive>
| <intransvb>’
i<ma.mmate transv>® sun ; // 340704 +7 +6 = 340717
<inanimate_verbph_active_other>%'"" = <inanimate transvbph active_other>%%16
I<mtransvb other>?; // 6063165 + 2 =6063167
<inanimate_verbph_passive_other>"*"" = <inanimate transvhph _passive_other>>*%"
ﬂ<mtransvb other>?; // 249012 +2 249014
<animate_verbph_passive> = <linkingvb>* <ammate transvb> by <human_termph>>>**
i<hnk1ngvb> <animate transvb> <preposition>> <nonhuman_termph,_ planet>65 %
| <linkingvb>* <animate_transvb>® <preposmon>2 <ponhuman_termph moon>'*1% ;
H/E*6¥25651 + 4%6%2%6555 + 4*6*2*14196 =1611672
<animate_transvbph>">"""% = <animate_transvb>® ( <nonhuman_| termph_planet>
| <nonhuman_termph_moon>'4%°
§<nonhuman termph_other>""21% )
| <animate_transvb_other>” (<human_termph>>%"
| <nonhuman_termph_planet>"">>
| <nonhumean_termph_moon>"*%°
{ <nonhuman_termph_other>""21%%;
i 9¥(6555+14196+2021055) + 2*(25651+6555+14196+2021055) =
/] 9%2041806 + 2#2067457 = 18376254 + 4134914 = 2251 1168
<inanimate_transvbph_active>>-0 = <inanimate_transvb>® <nonhuman _termph_planet>
//6%6555=39330
<inanimate_transvbph_passive>>*"% =
<linkingvb>" <inanimate_transvb>° by <ponhuman_termph _moon>
I/ 4*6%14196 = 340704
<inanimate_transvbph__active__oﬂler>6°63 165 =
<ipanimate_transvb_other>" <nonhuman_termph_other>""1% ;
/ 3%2021055 = 6063165
<inamimate_iransvbph _passzve other>"" =
<lmlﬁngvb> <ipanimate transvb other>3 by <anonhuman_termph_planet>
| <linkingvb>* <inanimate_transvb_other>’ by <nonhuman_termph_moon>
W 4*3*65'*5 +4%3+14196 = 78660 + 170352 = 249012
<human detph> = <det>* <human nouncia>12 HE*12=196
<nonhuman_detph __planet> "<det> <n0nhumaﬁ nouncla _planet> ; [18%5 =48
<nonhuman_detph_moon>" = <det>® <nonhuman_nouncla_moon>® //6*8 =48
<n0nhuman_detph_other>672 = <det>® <nonhuman_nouncla_other>84 /8%84 =672
<preposition>® = on jin;
<nouncla>'" = <human_nouncla>"
| <nonhuman_pouncla __planefzé
| <nonhuman_nouncla_moon>°
i<nonhuman nounc]a other>%; // 12+6+6+84 = 108
<human_nouncla>" ——<adJ> <human_cnoun>

1005
1 OGS

3533¢

<inanimate_verbph_passive> 340704

1611672

6555

3

6555

14196 ,
3

6355
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<human cnoun> s 244 =12
<nonhuman_nouncia _planeb = <adj>’ <nonhuman £noun _Iznlaneb
i<nonhuman cnoun_planet>" ; //2%2+2 =6
<nonhuman_nouncla_moon>® = <adj>* <nonhuman_cnoun moon>2
| <nonhuman_cnoun_moon>” ; //2%2+2 =6
<nonhuman_ncuncla_other>" = <au?;j>2 <nonhuman_cnoun~0&1@r>28
| <nonhuman_cnoun_other>" ; // 2%28 + 28 = 84
<human_cnoun> —manlmenlper@onipeople,
<nonhuman_cnoun_planet> = planet | planets ;
<nonhuman_cnoun_moon> = moon | moons;
<nonhuman_cnoun_other>>* = mountain | mountains | crater | craters | sea | seas | ocean | oceans |
chemical | chemicals | gas | gases | metal | metals | nonmetal | nonmetals |
country | countries | capital | capitals | city | cities | continent |
continents | river | rivers | lake | lakes ;
<adp>’ = red | atmospheric;
<intransvb>’ = spin | spins | orbit | orbits | orbited | exist jexists ;
<intransvb_ othe:r>2 = exist | exists;
<animate_transvb>® = dlscoverﬂdlscovers | discovered | find | finds | found ;
<animate_transvb_: 0ther> = worship | worshiped;
<inanimate_transvb>® = orbit | orbits | orbited | neighbour | neighbours | neighboured;
<inanimate transvb other>’ = contain | contains | contained ;
<hnkmgvb> =is | was | are | were ;
<questi> = did | do | does;
<det>® = al an | every | one | two | three | four | five;
<pnoun>* = <nonhuman_pnoun_planet>
| <nonhuman _pnoun_meon>
| <human_pnoun>"’
| <nonhuman _pnoun_ other>""; // 9+36+17+333 = 395
<nonhuman_pnoun_planet> = urth | Juplterlmarslmercurylneptuneipluta | saturn | uranus | venus ;
<nonhuman_pnoun_moon>"® = almathea | ariel [callisto | charon | deimos | dione | enceladus |
europa | ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | lana | mimas| miranda | nereid | oberon | phobos |
hoebe | thea | saturnfirst | tethys | titan | titania | triton | umbriel ;
<human_pnoun> ' = bernard | bond | cassini | dollfus | fountain | galileo | hall | herschel | huygens |
kowal l kuiper | larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>""" = <ponhuman _pnoun_chemical>
| <space_program>°
|<earth _geography_domain>"""; // 20+6+207 =333
<nonhuman_pnoun_chemical> 20 = <nonhuman _pnoun _,gas>6
| <nonhuman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal>’ ; //6+9+5 =20
<nonhuman_pnoun_gas>® =0xygenﬂhydrogenim§rogenld1ox1de§monox1deiheimm
<nonhuman_pnoun_metal>’ = gold | silver | copper | iron | stannum | nickel | potassium | natrivm |
hydrargymm
<nonhuman _pooun, | nonmetal>’ = water | sulphur | carbon | phosphorus | calcium;
<space_program>® = shuttle E rocket | Iaunchg telescope | station | astronaut;
<earth_geography_domain>>" —<country> 7| <ca ?nab 8§<01ty>61<cont1nent> | <ocean>" |
<river>" | <lake>' | <mountain>' ; // 187+098+6+7+4+3+1+1 =307
<country>'"" = Afghanistan | Albania | Algena | American Samoa | Andorra | Angola | Anguilla |
Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan |
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize | Benin |
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Bermuda | Bhuatan | Bolivia [Bosnia and Herzegovina | Botswana [Bouvet Island | Brazil|
Brunei |Bulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |
China | Clipperion Island | Colombia | Comoros | Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands | Costa Rica | Croatia | Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt |
El Salvador | Equatorial Guinea | Eritrea | Estonia | Ethiopia | Europe Island | Fiji | Finland |
France [French Guiana | Gabon | Gambia | Gaza Strip [Georgia | Germany | Ghana |
Gibraltar | Glorioso Island | Greece | Greenland | Grenada | Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana | Haiti | Heard and Mcdonald Island [Holy See |
Honduras | Howland Island | Hungary [Iceland |India [Indonesia | Iran |Iraq | Ireland | Israel|
Italy | Jamaica | Jan Mayen [Japan | Jarvis Island | Jersey | Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia [Lebanon | Lesotho |Liberia |Libya | Liechtenstein | Lithuania |
Luxembourg | Macedonia | Madagascar | Malawi | Malaysia | Maldives | Mali | Malta |
Isle of Man | Marshall Islands | Martinique | Mauritania |Mauritius | Mayotte| Mexicol
Micronesia | Midway Island [Moldova | Monaco | Mongolia | Montserrat | Morocco |
Mozambique [Myanmar | Netherlands | Norway | New Zealand | Nigeria | Oman | Portugal |
Poland | Romania | Russia | Rwanda | Tajikistan | Tanzania | Syria | Swede | Switzerland |
Sudan | Spain | Singapore | Thailand | Togo [Tokelau | Tonga [Tunisia | Turkey |
Turkmenistan | Tuvalu | Uganda | Ukraine united Arab Emirates | United Kingdom |
United States of Amerima [Uruguay | Uzbekistan [Vietnam | Yemen | Yugoslavia [Zambia]
Zimbabwe ;
<capital>®® = ottawa | Beijing | london | paris | berlin | Washington| Kabul [Tirana |Algiers | Pago Pago
Luanda | Andorra la Vella | Buenos Aires | Yerevan | Oranjestad | Canberra | Vienna |
Baku| Dhaka [Manama | BridgeTown | Brussels | Belmopan | Portonove | Hamilton |
Thimphu | LaPaz |Gaborone [Brasilia| Phnom Penh [Yaounde | Praia | Prague | Santiago |
Bogota | Moroni | Havana | Nicosia | Copenhagen | Roseau | Cairo | Asmara [Addis Ababal
Suva | Helsinki | Libreville | Banjul | GoregeTown | Thilisi JAccra | Athens |
Saint George’s | Conakry | Port-au-prince | Budapest | New Delhi | Jakarta | Tehran |
Baghdad | Dublin | Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait |
Beirut | Maseru | Monrovia | Tripoli | Skopje | Amsterdam | Kuala Lumpur | Bamako |
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo | Warsaw | Lisbon |
Moscow | Stockholm | Bucharest | Singapore | Madrid | Khartoum | Bern | Damascus |
Hanoi |Ankara | Sanaa | Harare | Belgrade | Lusaka ;
<city>® = toronto | shanghai | manchester | lyon | Frankfurt | New York;
<contment> = Africa | Asia | Austrilia | Burope | North America | South America;
<ocean>* = Arctic | Atlantic | India | Pacific;
<nver> = Yangtse | Nile | Danube ;
<lake>' = ontario fake:
<mountain>' = rocky mountain;

Figure Appendix B (4): language-size computation of extended semantic grammar (Cont’d)
Figure Appendix B (5): language-size computation of extended syntactic grammar

/* syntax, _gram exi2. gram ¥/
grammar §

xt2 ;
public <> = <lmkmgvb> <termp h>3176460

3176460

77%29 20T
[<transvb>" b;r 1 <t«ermph>3176460

| <linkingvb>* <termph> [<transvb>'> <preposition>” | <termph>>'"4¢°
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2118878629871220

| <quest1>® <sen€>
667056607

| ( who |what)? <verbph>
| ( which | how many )? <nouncla>
| <simple>”
/1 4%3176460%15%31 i6460 + 4¥3176460%13%2%3176460 + 3%¥2118878620871220 + 2*667056607+
/f + 2%108%667056607 +26
/=605393887896000+1210787775792000+6356635889613660 + 1334113214+144084227112+26
/= 8172962971642012 = 8.17 *10"
<simple>*® = | ask them to be guite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
Vcan i talk to judy
| can i talk to solar man
! Who is monty
an 1 talk to monty ; ;
<senf:>2”387862937‘22° = <termph>"""" <verbph>%"5%, // 3176460 * 667056607 =
21 18878629871220
<stermph>"*% = <pnoun>** §1<‘detph>86‘i // 396 + 864 = 1260
<termph>*175% = <stermph>1%
| <sterm: ?h>‘26° (and | or) % <sterm 60;;31192"D //1260 +1260*2*1260= 3176460
<verbph>"""% = <irangybph>*70% | <intransvb>"; / 667056600 + 7 = 667056607
<1:rans‘>vbph>66 7036600 . { <transvb>"’ ! <1mkmgvb> <traﬁsvb> by ) <termph>3 176460
| ( <transvb>"° * | <linkingvb>" <transvb>" <preposition> ) <termph>’ 176460,
i (15 + 4*15)*3176460 + (15+4*15*2)*3176460 238234500 +428822100 = 667056600
<detph>** = <det> <nouncia> ;// 8%108 = 864
<nouncla>'" = <adj>’ <cnoun>’ | <cnoun>"%; //2%36 +36 = 108
<cnoun>>® = man | men | person | people | planet | planets | moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal |
metals | nonmetal | nonmetals | country | countries | capital | capitals | city | cities |
contment | continents | river | rivers | lake | lakes ;
<adj>* = red i atmosphenc
<mtransvb> = spin | spins | orbit | orbits| orbited | exist | exists ;
<det>* = a | an | every | one | two | three | four | five;

108 667056607

<verbph>
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396 63

<pnoun>" "~ = <pnoun_planet_moon_ human>
| <ponhuman_pnoun_chemical>*
ﬁ <space_program>"
| <earth_geography_domain>"""; /63+20+6+307 = 396
<pnoun_planet_moon_human>" = urth | jupiter | mars | mercury | neptune | phuto | saturn | uranus |
venus | almathea | ariel | cailisto | charon | deimos | dione | enceladus | europa |
ganymede | hyperion | iapetus | io | janus | jupiter eighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas | miras | miranda | nereid | oberon |
phobos | phoebe | rhea | saturnfirst | tethys | titan | titania | triton | umbriel | bernard
bond | cassini | dollfus | fountain | galileo | hall | herschel | huygens | kowal [kuiper|
larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_chemical> ? = <nonhuman _pnoun_gas>
| <nonhuman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal>’ ;
<nonhuman_pnoun_gas>°® = - oxygen | hydrogen | mtrogen | dioxide | monoxide | helium ;
<nonhuman_pnoun_metal>® = gold | silver | copper | iron | stannum | nickel | potassium E natrium |
hydrargyrom ;
<nonhuman_pnoun_nonmetal> = water | sulphur | carbon | phosphorus | calcium;
<space_program>" = shuttle | rocket | launchJ telescope | statmn | astronauﬁ
<earth_geography_domain>"" = <country>'""" | <cap1tal> I <01ty> | <continent>' | <ocean>"*|
<river>" | <lake>! | <mountain>' ; /187+98+6+7+4+3+1+1=307
= Afghanistan | Albania | Algeria | American Samoa | Andorra | Angola | Anguilla |
Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan |
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize | Benin |
Bermuda | Bhutan | Bolivia [Bosnia and Herzegovina | Botswana |[Bouvet Island | Brazil|
Brunei [Bulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |
China | Clipperton Island | Colombia | Comores | Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands | Costa Rica | Croatia | Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt |
El Salvador | Equatorial Guinea | Eritrea | Estonia | Ethiopia | Europe Island | Fiji [Finland]
France [French Guiana | Gabon | Gambia | Gaza Strip |Georgia | Germany | Ghana |
Gibraltar | Glorioso Island | Greece | Greenland | Grenada | Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana | Haiti | Heard and Mcdonald Island [Holy See |
Honduras | Howland Island | Hungary [Iceland |india [Indonesia | Fran [iraq | Ireland | Israel]
Ttaly | Jamaica | Jan Mayen [Japan | Jarvis Island | Jersey | Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia |Lebanon | Lesotho [Liberia [Libya | Liechtenstein | Lithuania |
Luxembourg | Macedonia | Madagascar | Malawi | Malaysia | Maldives | Mali | Malia |
Isle of Man | Marshall Islands | Martinique | Mauritania [Mauritius | Mayotte] Mexico|
Micronesia | Midway Island [Moldova | Monaco | Mongolia | Montserrat | Morocco |
Mozambique [Myanmar | Netherlands | Norway | New Zealand | Nigeria |
Oman | Portugal | Poland | Romania | Russia | Rwanda | Tajikistan | Tanzania |
Syria | Swede | Switzerland | Sudan | Spain | Singapore |
Thailand | Togo [Tokelau | Tonga [Tunisia | Turkey | Turkmenistan [Tuvalu | Uganda |
Ukraine [united Arab Emirates | United Kingdom | United States of Amerima | Uruguay |
Uzbeklstan [Vietnam | Yemen | Yugoslavia |Zambia | Zimbabwe ;
<capital>"® = ottawa | Beijing | london | paris | berlin | Washington |
Kabul | Tirana |Algiers | Pago Pago | Luanda | Andorra la Vella | Buenos Aires |
Yerevan | Oranjestad | Canberra | Vienna | Baku | Dhaka [Manama | BridgeTown |
Brussels | Belmopan | Portonovo | Hamilton | Thimphu | LaPaz |Gaborone [Brasilial

<country>£87
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Phnom Penh {Yaounde | Praia | Prague | Santiago | Bogota | Moroni | Havana |
Nicosia | Copenhagen | Roseau | Cziro | Asmara | Addis Ababa | Suva | Helsinki |
Libreville | Banjul | GoregeTown | Thilisi jAccra | Athens | Saint George’s | Conakry |
Port-au-prince | Budapest | New Delhi | Jakarta | Tehran | Baghdad | Dublin |
Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait | Beirut |
Maseru | Monrovia | Tripoli | Skopie | Amsterdam | Kuala Lumpur | Bamako |
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo |
Warsaw | Lisbon | Mioscow | Stockholm | Bucharest | Singapore | Madrid |
Khartoum | Bern | Damascus | Hanoi |Ankara | Sanaa | Harare | Belgrade | Lusaka ;
<city>® = tomnto | shanghat | manchester | lyon | Frankfurt | New York;
<contmem> = Africa | Asia | Austrilia | Europe | North America | South America | Antarctica;
<ocean>* = Arctic | Atlantic | India | Pacific;
<rwer>3 = Yangtse | Nile | Danube ;
<lake>!= ontano lake;
<mountam> = rocky mountain;
<transvb>" = orbit | orbits | discover | discovered | neighbour | neighbours | neighboured | worship |
worshlped | contain | contains | contained | find | finds | found;
<preposmon> =in|on;
<Emkmgvb> =is | was | are | were ;
<quest1>® = did | do | does ;

Figure Appendix B (5): language-size computation of extended syntactic grammar (Cont’d)
Figure Appendix B (6): language-size computation of extended word-sequence grammar

/* extended 10-word word-sequence granumar
wordSequence_gram_extl. gmm */
grammar wordSequence extl;
public <g>2H25251739962033% G006 = <word>
l<word> <word>
[<word> <word> <word>
[<word> <word> <word> <word>
kword> <word><word> <word><word>
l<word> <word><word> <word><word> <word>
l<word> <word><word> <word><word> <word><word>
l<word> <word><word> <word><word> <word><word> <word>
[<word> <word><word> <word><word> <word><word> <word><word>
l<word> <Word><word> <word><word> <word><word> <word><word> <word>
[<simple>”;
I/ 547 + SAT + 547 + 547" + 54T +547° + 547" + 547° + 547° 45470 =
/547 + 299209 + 163667323 + 89526025681 + 48970736047507 +26786992617986329 +
/4 14652484962038521963 + 8014909274235071513761 + 4384155373006584118027267 +
/1 + 2398132989034601512560915049 =
/] = 2402525173996203346833004636 = 2.40% 107
<simple>?® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
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j thanks
| thanks solar man
| ves please
| what is your name
| who are you
| where do youlive
j what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man
| who is monty
| can i talk to monty ;
<word>""" = <cnoun>** | <adj>? | <verb>* L<quest1> [<det>*] <preposmon> | <pnoun>
<ponhumean _pnoun_ chemical>* [<space, _program> | <earth_geography_domain>
, <other - word>"? ; // 36+2+30+3+8+2+121+20+6+33+12 = 547
<cnoun>"® = man | men | person | people | planet | planets | moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal]
metals| nonmetal | nonmetals | country | countries | capital | capitals | city leities [continent]
continents | river | rivers | lake | lakes ;
<adj>? = red | atmosphemc
<verb>*" = <intransvb>’
| <intransvb_other>>
| <animate_transvb>®
i <animate_transvb_other>>
| <inanimate_transvb>®
| <inanimate tmnsvb__other>3
{<hnkmgvb> /] TH2+6+24+6+3+4 = 30
<intransvb>' = spin | spins | orbit | orbits | orbited | exist Jexists ;
<intransvb other>2 = exist | exists;
<animate_transvb>® = discover | discovers | discovered | find |finds [found;
<animate_transvb_ other>2 = worship | worshiped;
<inanimate_transvb>® = orblt | orbits | orbited | neighbour | neighbours | neighboured;
<inanimate_| transvb _other>> = contain | contains | contained ;
<hnkmgvb> =is | was | are | were ;
<questi> = did | do | does;
<det>® —alanlevery!oneitwoithreelfourgﬁve,
<preposition>’ = in | on;
<pnoun>"?! = <nonhuman, _pnoun_planet>’
| <nonhuman_pnoun_moon>
! <human_pnoun> '
| <nonhuman _pnoun_t other>""; //9+36+17+59=121
<nonhuman_pnoun_planet>’ = earth | jupiter | mars | mercury | neptune | pluto | saturn | uranus |
venus ;
<nonhuman_pnoun_moon>" = almathea | ariel [callisto | charon | deimos | dione | enceladus | europa |

. I 307 i
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ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas| miranda | nereid | oberon jphobos]
phoebe { thea | saturnfirst | tethys | titan | titania | triton | umbriel ;
<human_pnoun>"’ = bernard | bond | cassini | dolifus | fountain | galileo | hall | herschei | huygens |
kowal | kuiper | larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>> = <ponhuman _pnoun chemical>"
| <space_program>°
I <earth _geography_domain>*""; //20+6+33=59
<nonhuman_pnoun_chemical>>" = <nonhuman _pnoun, ,gas>6
| <nonhuman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal>’ ; //6+9+5=20
<ponhuman_pnoun_gas>® = oxygen | hydrogen | nitrogen | dzomde | monoxide | helium ;
<nonhuman _pnoun_{ metal>’ = gold | silver | copper | iron | stannum | nickel | potassium E natrium |
hydrargymm
<nonhuman, _proun_ nonmetal> = water | sulphur | carbon | phosphorus | calcium;
<space_program>® = shuttle l rocket | launch SE telescope | statzon | asfronaut;
<earth_geography_domain>"" = <country>'""" | <capital>"® | <c1ty> | <continent>' | <ocean>*|
<river>" | <lake>' | <mountain>' ; //187+98+6+7+4+3+1+1=307
<country>'"" = Afghanistan | Albania | Algeria | American Samoa | Andorra | Angola | Anguilla |
Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan |
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize | Benin |
Bermuda | Bhutan | Bolivia |Bosnia and Herzegovina | Botswana [Bouvet Island | Brazil|
Brunei |Bulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |
China | Clipperton Island | Colombia | Comoros | Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands | Costa Rica | Croatia | Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt |
El Salvador | Equatorial Guinea | Eritrea | Estonia | Ethiopia | Europe Island | Fiji [Finland]
France [French Guiana | Gabon | Gambia | Gaza Strip |Georgia | Germany | Ghana |
Gibraltar | Glorioso Island | Greece | Greenland | Grenada | Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana | Haiti | Heard and Mcdonald Island [Holy See |
Honduras | Howland Island | Hungary [Iceland |India [Indonesia | Iran |Iraq | Ircland | Israel]
Italy | Jamaica | Jan Mayen |Japan | Jarvis Island | Jersey | Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia [Lebanon | Lesotho [Liberia |Libya | Liechtenstein | Lithuania |
Luxembourg | Macedonia | Madagascar | Malawi | Malaysia | Maldives | Mali | Malta |
Isle of Man | Marshall Islands | Martinique | Mauritania [Mauritius | Mayotte] Mexico
Micronesia | Midway Island |Moldova | Monaco | Mongolia | Montserrat | Morocco |
Mozambique [Myanmar | Netherlands | Norway | New Zealand | Nigeria |
Oman | Portugal | Poland | Romania | Russia | Rwanda | Tajikistan | Tanzania |
Syria | Swede | Switzerland | Sudan | Spain | Singapore |
Thailand | Togo {Tokelau | Tonga [Tunisia | Turkey | Turkmenistan [Tuvalu | Uganda |
Ukraine funited Arab Emirates | United Kingdom | United States of Amerima | Uruguay |
Uzbekzstan [Vietnam | Yemen | Yugoslavia [Zambia | Zimbabwe ;
<capital>™ = ottawa | Beijing | london | paris | berlin | Washington |
Kabul | Tirana |Algiers | Pago Pago | Luanda | Andorra la Vella | Buenos Aires |
Yerevan | Oranjestad | Canberra | Vienna | Baku | Dhaka [Manama | BridgeTown |
Brussels | Belmopan | Portonovo | Hamilton | Thimphu | LaPaz |Gaborone [Brasilia|
Phnom Penh [Yaounde | Praia | Prague | Santiago | Bogota | Moroni | Havana |
Nicosia | Copenhagen | Rosean | Cairo | Asmara | Addis Ababa | Suva | Helsinki |
Libreville | Banjul | GoregeTown | Thilisi [Accra | Athens | Saint George’s | Conakry |
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Port-au-prince | Budapest | New Delhi | Jakarta | Tehran | Baghdad | Dublin |
Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait | Beirut |
Maseru | Monrovia | Tripoli | Skopje | Amsterdam | Kuala Lumpur | Bamako |
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuia | Weliington | Oslo |
Warsaw | Lisbon | Moscow | Stockholm | Bucharest | Singapore | Madrid |
Knaﬂoum | Bern | Damascus | Hanoi |Ankara | Sanaa | Harare | Belgrade | Lusaka ;

<city>® = toronto | shanghai | manchester | Iyon | Frankfurt | New York;
<c;omment> = Africa | Asia | Austrilia | Europe 2 North America | South Americs;
<ocean> = Arctic | Atlantic | India | Pacific;

<m/er> = Yangtse | Nile | Danube ;

<lake>' = ontane lake;

<mountain>' = mcky mountain;

<other_word>'" =sunlor | and | by | which | who | what | how | many | monty | judy | solar ;

Figure Appendix B (6): language-size computation of extended word-sequence grammar (Cont’d)
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Note: superscripts are used to denote the branching factors of the preceding expressions,

the underlined superscripts are used for average branching-factor computation..

Figure Appendix C (1): branching-factor computation of semantic grammar

/% semantics_gram_ext!.gram ¥/
grammar semantics_gram_e exﬂ
public <s>% = <hnk1ngvb> <termphrase_verbphrase>®%
|1s <pnoun>2 <pnoun>2
I is <;pnov.m>)“?’i (alan )2 <nouncla>#
lis <pn0un>lz" (alan )* <nouncla>* or! ( ajan }* <nouncla>®
i <quesﬂ> <sem
| who)? <ammate . verbph>%
| ( what ) ! <inanimate verbph>‘é
| { which | how many) <nouncla_verbph>#
| ( which | how many )* <nouncla_verbph_other>®
| <simple> **
<sunple> =} ask them 10 be quite
| please introduce yourself
| helio there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| ves please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
f tell me 2 poem
| know any poems
[ tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man
| who is monty
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| can i talk to monty ;
<termphrase_verbphrase>"" = <nonhuman_termph_planet>>* <transvh_by._termph>™
i <nonhuman_termph__m00n>88 <animate_transvb> byt <human_termph>2
| <nonhuman_termph_other>""* <animate_transvb>® by <humam__?:emriph>‘§Q
| <nonhuman_termph_other>"* <animate_transvb>% <preposition
<ponhuman_termph _piaﬁewﬁ
| <nonhuman_termph_other>""* <animate_transvb>® <preposition>3
) <nonhuman_teﬂnph_moon>§§ :
<transvb_by,_termph>"" = <animate_transvb>® by* <human_termph>>
| <inanimate_transvb>® by* <ponhuman_termph_moon>%
| <inanimate_transvb_other> by' <nonhuman_termph_other>'3 ;
<sent>"* = <human_termph>" <animate_verbph>*
| <nonhuman_termph_moon>*® <inanimate_verbph_active>:
| <nonhuman_termph_planet>>* <inanimate_verbph_passive>
| <nonhuman_termph_moon>% <inanimate__verbph__acﬁve_othepi
| <nonhuman_termph_planet>>* <inanimate_verbph__acﬁve_other>5‘;
<nouncla_verbph>" = <human_nouncla>® <animate_verbph>%
| <nonhuman_nouncla_moon>* <animate_verbph _passive>*
| <nonhuman_nouncla_planet>* <animate_verbph _passive>™
| <nonhuman_nouncla_moon>* <inamimfcnte__verbph_active>l:2
| <nonhuman_nouncla _planet>4 <inanimate__verbph_passive>ﬂ ;
<nouncla_verbph_other>% = <nonhuman_nouncla_other>>° <animate_verbph _dpassive>lg
| <nonhuman_nouncla_other>>° <inanimate_verbph _passive__other>m;
<inanimate_verbph>* = <inanimate_verbph_active>"
| <inanimate_verbph_passive>'’
| <inanimate_verbph_active_other>’
| <inanimate_verbph_passive_other>'";
<human_stermph>" = <human _pnoun>"’
| <human_detph>® ;
<nonhuman_stermph_planet>"” = <ponhuman _pnoun_planet>’
J<n0nhuman_detph _planet>? ;
<nonhuman_stermph_moon>"* = <nonhuman_pnoun_moon>>
]7 <nonhuman_detph_moon>® ;
§7 = <nonhuman _pnoun_other>>
| <nonhuman_detph_other>® ;
<human_i:ermph>50 = <human_stermph>%
| <human_stermph>" ( and | or )% <human_stermph>= ;
<nonhuman_termph_planet>"* = <n0nhuman_stenn8h _planet>"
| <nonhuman_stermph_planet>"" (and | or )‘2 <nonhuman_stermph ﬁplanet>-1l ;
<nonhuman_termph_moon>% = <nonhuman__stermgh_moon>

| <nonh1ﬁl}an__stermpb_m00n>4 (and | or )* <nonhuman_stermph_moon>* ;

<nonhuman_stermph_other>

<nonhuman_termaph_other>""" = <nonhuman_sterm h_ether>67 N
| <nonhuman_stermph_other>% (and lor )Z <nonhuman_stemph_ot‘her>§"';
<animate_verbph>® = <animate_transvbph>";
<inanimate_verbph_active>" = <inanimate_transvbph_active>
| <intransvb>’ ;
<inanimate_verbph_passive>'’ = <inanimatg _fransvbph _passive>4
| <intransvb>’
| <inanimate_transvb>® sunt ;
<inanimate_verbph_active_other>" = <inanimate_transvbph_active_other>’
| <intransvb_other>%;
<inanimate_verbph_passive_other>'® = <inanimate_transvbph_passive_other>"

6
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| <intransvb_other>%;
<animate_verbph_passive>'> = <linkingvb>" <animate_transvb>® by* <human_termph>"
| <linkingvb>* <animate_transvb> <preposition:
<nonhuman_termph _planet>
| <linkingvb>* <animate_fransvb>" <preposition>*
<n0nhuman~termph_moon>3§ ;
<animate_transvbph>® = <animate_iransvb>® { <nonhuman_termph_planet>*
| <nonhuman_termph_moon>%
| <nonhuman_termph_other>"*)
| <animate_transvb_o€her>2 {<human_termph>
| <nonhuman_termph_planet>*
| <nonhuman_termph_moon>"
| <nonhuman_termph_other>2);
<inanimate_transvbph~active>6 = <inanimate_transvb>6 <aonhuman_termph __plane‘?ﬂ;
<inanimate_transvbph_passive>* = <linkingvb>" <inanimate_transvb>* b
<n0nhuman__tem1ph_m00n>&8‘ :
<inanimate_transvbph_active_other>" = <inanimate_transvh_other>’ <ﬂonhuman_tem1}1)h_0ther>l$;
<inanimate_transvbph_passive_other>® = <linkingvb>"* <inanimate~transvb_other>;;og‘r
<nonhuman_termph_plane
| <linkingvb>" <inanimate_transvh_other>* by .
<nomimman__tenrnph_moon>88 ;
<human_detph>® = <det>® <human_nouncla>? ;
<r10nhuman_detph_,plame(?8 = <det>* <nonhuman_nouncla, _planet>§‘;
<nonhum:qm_*de:tph_mooi:l>8 = <det>? <nonhw.mmn__nounclan_l:noon>‘-I :
<n01:1111.1man__detph__othelf>8 = <det>® <nonhmnan__noxmcla_o»thm‘>iQ :
<preposition>> = on | in ;
<nouncla>* = <human_nouncla>®
{ <nonhuman_nouncla _plamet>4
| <nonhuman_nouncla_moon>"
| <nonhuman_nouncla_other>"C;
<human_nouncla>® = <auij>2 <human_cnoun>*
| <human_cnoun>" ;
<nonhuman_nouncla_planet>" = <adj>* <nonhuman_cnoun __zplanet>*2"
<nonhuman_cnoun_planet>" ;
<nonhuman_nouncla_moon>" = <adj>? <nonhuman_cnoun_moon>%
| <nonhuman_cnoun_moon>" ;
<nonhuman_nouncla_other>"’ = <adj>* <nonhuman_cnoun_other>2
| <nonhuman_cnoun_other> ;
<human_cnoun>* = man | men | person | people;
<nonhuman_cnoun_planet>" = planet | planets ;
<nonhuman_cnoun_moon>" = moon | moons;
<nonhuman_cnoun_other>"* = mountain | mountains | crater | craters | sea | seas | ocean | oceans |
chemical | chemnicals | gas | gases | metal | metals | nonmetal | nonmetals |
country | countries | capital | capitals | city | cities | continent [continents|
river | rivers | lake | Iakes ;
<adj>* = red | atmospheric;
<intransvb> = spin | spins | orbit | orbits | orbited | exist Jexists ;
<intransvb__other>2 = exist | exists;
<znimate_transvb>® = discover | discovers | discovered | find | finds | found ;
<animate_transvb_other>® = worship | worshiped;
<inanimate_transvb>° = orbit | orbits | orbited | neighbour | neighbours | neighboured;
<inanimate_transvbwother>3 = contain | contains | contained ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C: Computation of Branching Factor in Detail Page 169

<}mkmgvb> = is | was | are | were ;
<quest1> = did | do | does;
<det>¥=3g an{every}onelmro | three | four | five;
<pnoun>"?" = <ponhuman_pnoun_planet>
| <noshuman _prour,_moon>
| <human_pnoun> "’
| <nonhuman _prioun_ other>"";
<nonhuman_pnoun_planet>’ = earth | jupzterlmars | mercury | neptune | pluto | saturn | uranus |
venus ;
<nonhuman_pnoun_moon>"° = almathea | ariel |callisto | charon | deimos | dione | enceladus | europa |
ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas| miranda | nereid | oberon | phobos |
phoebe | rhea | saturnfirst | tethys | titan | titania | triton | umbriel ;
<human_pnoun>"' = bernard | bond | cassini | dolifus | fountain | gahleoihaﬁ|herschei | huygens |
kowal | kuiper | Iarsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>" = <nonhuman _pnoun__chemica1>2°
| <space_program>°
|<earth _geography._« domain>>";
<nonhuman_pnoun_ chemical>*" = <nonhuman, _pnoun_gas>
| <nonhuman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal>’ ;
<nonhuman_pnoun_gas>" = oxygen | hydrogen | nitrogen | diox;de | monoxide | helium ;
<nonhuman_pnoun_metal> = gold | silver | copper | iron | stannum | nickel | potassium | natriom |
hydrargyrum
<nonhuman _pnoun, nonmetal> = water | sulphur | carbon | phosphorus | calcium;
<space_program>® = shuttle | rocket | launch | telescope | stahon! astronaut;
<earth_geography_domain>" —<country>6|<cap1ta1>6E<c1ty> | <continent>® | <ocean>* | <river>’
<lake>' | <mountain>' ;
<country> = canada | china | England | France | Germany | united states;
<cap1ta1> = ottawa | Beijing | london | paris | berlin | washington;
<city>® = toronto | shanghai | manchester | lyon | Frankfurt | New York;
<contment> = Africa | Asia | Austrilia | Europe | North America | South America;
<ocean> = Arctic | Atlantic | India | Pacific;
<nver> = Yangtse | Nile | Danube ;
<lake>' = ontano lake;
<mountain>' = rocky mountain;

3

The average branching factor for semantic grammar

b =( (42+524y+(121+121)H(121+2+44)+ (121 +2+44+1+2+44)H(260-+8+45+22+60)+
(15+6+1+50+6+1+50+6+2+34+6+2+88)+(1+50+1+88+1+134)+(8+13+17+5+5)+
(B+12+12+ 13+1 )+ (1241002425 + 2+ 1 T)+(2+44 ) +(2+6T7+ ) H(6+1-+50+6+ 2+ 34+6+2+88)+
(34-+88+134)+(50+34+88+134)+(34)H(6+1+88)+(134)+(3+1+34+3+1+88)H{6) H4+4+30)+
(4+2+2+28))/92

=3684/93

=39.6

Figure Appendix C (1): branching-factor computation of semaniic grammar (Cont’d)
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Figure Appendix C (2): branching-factor compuiation of syntactic grammar

/* syntax_gram_extl.gram */
grammar syniax_gram _exti ;
public <s>* = <linkingvbh>* <u‘_errm:»h>Zjﬁ [<transvb>2 byl | <tennph>g§§
| <linkingvb>* <termph>®2 [<transvb>+ <preposiﬁ0n>; ] <termph>*2%
| <quest1>’ <sent>*
| ( who |what)? <verbph>%£
| ( which | how many )? <nouncla><verbph>*
| <simple>™® ;
<simple>” = | ask them to be quite
| please introduce yourself
| helio there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
[ who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me 2 poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| can i talk to judy
| can i talk to solar man
| who is monty
Lcan i talk to monty ;

<sent>""* = <termph>>"° <verbph>;
<stermph>‘29 = <pnoun>l2
| <detph>%;

<te1’mph>258 = <gtermph>'>

| <stermph>'? (and | or)? <stermph>'2;
<verbph>* = <transvbph>>*
g<in€ransvb>7;
<transvbph>>* = ( <transvb>" J <linkingvb>”* <transvb>1 by ) <termph>*2
| (<transvb>"] <linkingvb>* <transvb>L <preposition>* ) <tennph>m ;
<de:tph>8 = <det>® <pouncla>®;
<nouncla>>® = <adj>2 <cnoun>*t
I <cnoun>%;
<cnoun>"® = man | men | person | people | planet | planets | moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal|
metals| nonmetal | nonmetals | country | countries | capital | capitals | city [cities jcontinent|
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continents | river | rivers | lake | lakes ;
<adj>? —redl atmospheric;
<mtransvb> = spin | spins | orbit | orbits| orbited | exist | exists ;
<det>* -'aj an | every | one | two | three | four | five;
<pnoun>"' = <pnoun_planet_moon_] human>
| <ponhuman_pnoun_chemical>*
| <space_program>°
| <earth_geography_domain>";
<pnoun_planet_moon_human>> = earth f jupiter | mars | mercury | neptune | pluto | saturn | uranus |
venus | almathea | ariel | callisto | charon | deimos | dione | enceladus | europa | ganymede |
hyperion | iapetus |io | janus | jupitereighth | jupitereleventh | jupiterfourteenth | jupiterninth |
jupiterseventh | jupitersixth | jupitertenth | jupiterthirteenth | jupitertwelfth | luna | mimas |
miranda | nereid | oberon | phobos | phoebe | thea | saturnfirst | tethys | titan | titania |
triton | umbriel | bernard | bond | cassini | dolifus | fountain | galileo | hall | herschel |
huygens | kowal | kuiperJ larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman pnoun chemical>? = <ponhuman _pnoun __gas>
| <nonhuman_pnoun_metal>®
| <nonhuman_pnoun_nonmetal>" ;
<nonhuman_pnoun_gas>° = oxygen | hydrogen | nitrogen | d10x1delmonoxidelhelium;
<nonhuman_pnoun_metal>" = gold | silver | copper | iron | stannum | nickel | potassium | natrium |
hydrargymm
<nonhuman_pnoun_ponmetal>" = water | sulphur | carbon | phosphorus | calcium;
<space_program>° = shuttle | rocket | launch | telescope | station J astronaut;
<earth_geography_domain>> =<country> | <capital>® | <city>® | <continent>° | <ocean>" | <river>
<lake>! | <mountain>' ;
<country> = canada | china | England | France | Germany | united states;
<cap1ta1> = oftawa | Beijing | london | paris | berlin | washington;
<city>® = tomnto | shanghai | manchester | lyon | Frankfurt | New York;
<contment> = Africa | Asia | Austrilia | Europe | North America | South America;
<ocean>" = Arctic | Atlantic | India | Pacific;
<r1ve:1'>3 = Yangtse | Nile | Danube ;
<lake>' = ontario lake;
<mounta1n>1 = rocky mountain;
<transvb>"" = orbit | orbits | discover | discovered | neighbour | neighbours | neighboured | worship |
worshiped | contain | contains | contained | find | finds | found;
<pmpos1t10n>2 =inlon;
<hnkmgvb> = is | was | are | were ;
<quest1>’ = did | do | does ;

32

3

The average branching factor for syntactic grammar

b= ((41+258+15+1+258)+(258+15+2+258)+{258+45+38+45)H{(45)+H(2+129+{(1 5+ 1+258)+
(15+2+258)+(38y+(36)) / 24

=2291/24

=055

Figure Appendix C (2): branching-factor computation of syntactic grammar (Cont’d)
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Figure Appendix C (3): branching-factor computation of extended semantic grammar

/* semantics_gram_ext2.gram ¥/
grammar semantics_gram_ext2 ;
public <s>% = <linkingvb>"* <teﬁnphmse_verbphmse>m
| is' <pnoun>** <pnoun
|is" <pnoun>2 ( ajan }* <nouncla>*
|is' <pnoun>2 ( ajan }* <nouncla>* or* ( ajan )* <nouncla>*
| <quest1>® <sen
| { who )' <animate_verbph>%
| ( what } ' <inanimate_verbph>%
| ( which | how many }* <nouncla_verbph>®
| ( which | how many ) * <nouncla_verbph_other>%
| <simple>™® ;
<simple>?® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye sclar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me 2 poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
| cani talk to judy
i can i talk to solar man
| who is monty
| can i talk to monty ; )
<termphrase_verbphrase>” fos <ponhuman_termph __pianet>3 4 <€mnsvb__by__‘termph>'12
| <nonhuman_termph_moon>" <animate_transvb>® by! <human_termph>>
| <n0nhuman_€ennph_other>682 <animate_transvb>2 byt <human_termph>2
| <nonhuman_termph_other>"% <animate_transvb>® <preposition
<nonhuman_termph_planet>*2
| <n0nhuman__termph¢_other>682 <animate__transvb>§ <prf:p«os.iﬁ€m>‘Z
<nonhuman_termph_moon>¥ ;
_<t:r&ms;vb_b*_s,r_jermph>15 = <animate_transvb>° by* <human_termph>2
| <inanimate_transvb>° by* <nonhuman_termph_moon>%
| <inanimate_transvb_other>" by <nonhuman_termph_other>%2 ;
<sent>" = <human__tcrmph>5 ¢ <anim:ante__verbph>'zi
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! <nonhuman_termph_moon>" <inzm:lma‘;e_yarbph__a.ctive)li
| <nonhuman_termph_planet>>* <inanimate_verbph_passive :
I <n0nhuman_teﬂnph_moon>gg <inanimate_verbph__active_other>*§
| <nonhuman_termph _plemet>3 ¢ <inanjmate__verbph_active_othepi;
<nouncla_verbph>" = <human_nouncla>® <emimaitejfeﬂjph>*§
i <nonhuman_nouncla_moon>* <animate_verbph _passive>lg
! <nonhuman_nouncia_planet>4 <gnimate_verbph _passive>ﬁ“
! <nonhuman_nouncla_moon>" <inanima€e_,verbph_active>ﬁ
| <nonhuman_nouncla_planet>* <inanimate_verbph _passive>i‘Z ;
<n0uncla_verbph_other>6° = <nonhuman_nouncla_other>" <animate verbph __passiveﬁ
I <nonhuman_nouncla_other>"" <inanimate_verbph _passive__athepig;
<inanimate_,verbph>45 = <inanﬁmate__verbph_activ@f3
| <inanimate_verbph_passive>'’
| <inanimate_verbph_active_other>’
I<inanimate__verb¥)h _passive_other>'";
<human__stermph>25 = <human_pnoun> 7
| <human_detph>® ;
<nonhuman_stermph_planet>'’ = <nonhuman_pnoun _planet>’
| <nonhuman_detph_planet>® ;
<nonhuman_stermph_moon>* = <nonhuman_pnoun_moon>""
_ | <nonhuman_detph_moon>® ;
<nonhuman_stermph_other>>*! = <ponhuman _pnoun_other>>>
| <nonhuman_detph_other>® ;
<humanﬂtermph>5 0= <human_s‘cem:nph>2 >
| <human_stermph>%* ( and | or }* <human_stermph>> ;
<nonhuman_termph_planet>’ * = <ponhuman_stermph_planet>"’
| <nonhuman_stermph_planet>"" ( and | or ¥* <nonhuman_stermph_planet>"" ;
<nommman_’cermph_mo01’1>88 = <ponhuman_stermph_moon>"*
I <nonhuman_stermph_moon>44 (and|or )z <nonhuman__stermph_moon>£ ;
<nonhuman_teﬂnph_omer>6gz == <nonhuman__stermph__other>3 4
| <nonhuman_stermph_other>>*' (and | or ) <nonhuman_stermph_other>%;
<animate_verbph>® = <animate_transvbph>3 ;
<inanimate_verbph_active>"" = <inanimate_transvbph_active>®
| <intransvb>' ;
<inanimate_verbph_passive>"’ = <inanimate_transvbph_passive>"
| <intransvb>’
| <inanimate_transvb>° sunt ;
<inanimate_verhph_active.other>5 = <inanimate__transvbph_active_other>3
| <intransvb_other>%;
<inanimate_verbph_passive_other>'" = <inanimate_transvbph _passive_other>8
| <intransvb_other>%; i
<animate _verbph __passin12 = <Einkingvb>4 <animate_transvb>% byl <human___mrmph>lQ
| <iinkin,g,rvb>4 <animate_transvb>% <p¥:epc»e‘,iti0n>2 <ponhuman_termph. _piane@ﬁ
| <linkingvb>* <animate_transvb>% <prﬁ:posi;tiom>"Z <n0nhuman_termph__moon>§§ ;
<animate_transvbph>® = <animate_transvb>° ( <nonhuman_termph_planet>%*
| <nonhuman_termph_moon>
! <h1mnht.u:nan__termph_other>§'gz )
[ <animate_transvb_other>? (<human_termph>>
| <nonhuman_termph_planet>2*
| <nonhuman_termph_moon:
| <nonhuman_termph_other>%%);
<inanimate_transvbph_active>6 = <inanimate_transvb>°® <nonhuman_termph __planet>‘3£ :
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<inanmimate_transvbph _pass1ve>
<linkingvb>* <inanimate transvb>2 by* <nonhuman_termph_; moor>2 ;
<inanimate_transvbph_active_other> =
<inanimate transvb other> <nonhuman_termph_ other>* ;
<inapimate transvbph _passwe other>® =
<Emkmgvb> <inanimate_transvb_other>* bnl <nonhurmpan_termph _pianet>‘l'
! <hnkmgvb> <man1mate fransvh 0ther>ﬁ by‘ <nonhuman_fermph_1 moon>E ;
<human detph> = <det>? <human nouncla>ﬁ
<ponhuman,_deiph ~planet> “<det> <ponhuman_nouncla _planet>-
<ponhuman_deiph_; moon>8 = <det> <nonhuman_nouncla 1 mo0n>‘i
<ponhuman detph other>® = <det>® <nonhuman_nouncla_other>¥
<preposition>® = on | in ;
<nouncla>* = <human_; nouncla>®
| <nonhuman_nouncla _piane’P
| <nonhuman_nouncla_moon>*
l<n0nhuman nouncla_; o‘cher>30
<human_pouncla>® = <adj>* <human_t cnmm>"
l<human cnoun>
<nonhuman_pouncla_planet>* = <adj>* <nonhuman cnoun _gianetr
|<n0nhuman cnoun_planet>" ;
<nonhuman _nouncla_moon>" = <adj>* <nonhuman_cnoun_ moon>2
|<nonhuman cnoun_moon>
= <adj>’ <nonhuman_cnoun_ other>gi
| <nonhuman_cnoun_ other>? ;
<human_cnoun>* = man | men | person | people;
<nonhuman_cnoun_planet> = planet | planets ;
<ponhuman_cnoun moon> .~ moon | moons;
<nonhuman_cnoun_other>" = mountain | mountains | crater | craters | sea | seas | ocean | oceans |
chemical | chemicals | gas | gases | metal | metals | nonmetal | nonmetals |
country | countries | capital | capitals | city | cities | continent |
continents | river | rivers | lake | lakes ;

<ponhueman nouncla other> 30

<adj>* = red I atmospheric;
<intransvb>’ = spin | spins | orbit | orbits | orbited | exist Jexists ;
<intransvb_i other>2" exist | exists;
<animate_transvb>® = discover | discovers | discovered | find | finds | found ;
<animate_transvb_ other>2 = worship | worshiped;
<inanimate_transvb>® = orbxt]orbits | orbited | neighbour | neighbours | neighboured;
<inanimate transvb other>® = contain | contains | contained ;
<11nk1ngvb> =is | was | are | were ;
<questl> = did | do | does;
<det>* = aJ an | every | one | two | three | four | five;
<pnoun>"" = <ponhuman, _pnoun_planet>’
| <nonhuman_pnoun_moon>
| <humarn_pnoun>'"’
| <nonhuman _proun,_ other>**
<nonhuman_pnoun_planet>’ = urth | Jupiter ! mars | mercury | neptune | pluto | saturn | uranus | venus ;
<nonhuman_pnoun_moon>"° = almathea | ariel [callisto | charon | deimos | dione | enceladus |
europa | ganymede | hyperion | iapetus | io | janus | jupitereighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas!| miranda | nereid | oberon | phobos |
hoebe | rhea | saturnfirst | tethys | titan | titania | triton | umbriel ;
<human_pnoun>'' = bernard | bond | cassini | dollfus | fountain | galileo | hall | herschel | huygens |
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kowal j kuiper | larsen | lassell | melotte | nicholson | perrine | pickering ;
<nonhuman_pnoun_other>"" = <ponhuman _pnoun_ chemical>
| <space_program>*
| <earth_geography_domain>
<ponhuman_punoun chemical> # = <ponhuman_pnoun, _gas>
~ | <nonhiwman_pnoun_metal>’
| <nonhuman_pnoun_nonmetal>’ ;
<ponhuman_pnoun_gas>® = oxygen | hydrogen | nitrogen | dmmde | monoxide | helium ;
<nonhuraan_pnoun_metal>" = gold | silver | copper | iron | stannum | nickel | potassium | natrivm |
_hydrargyrom ;
<penhuinan _pnoun,_ nonmetal> = water | sulphur | carbon | phosphorus | calcium;
<space_program>" = shuttle ! rocket | launché telescope | station | astronaut;
<earth_geography_domain>""" = <country> 7 <ca]i)1tai>98 | <city>® | <continent>" | <ocean>
<river>" | <lake>' | <mountain>' ;
<country>'*" = Afghanistan | Albania | Algeria | American Samoa | Andorra [ Angola | Anguilla |
Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan |
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize | Benin |
Bermuda | Bhutan | Bolivia [Bosnia and Herzegovina | Botswana [Bouvet Island | Brazil|
Brunei [Bulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |
China | Clipperton Island | Colombia | Comoros | Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands | Costa Rica | Croatia | Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt|
El Salvador | Equatorial Guinea | Eritrea | Estonia | Ethiopia | Europe Island | Fiji | Finland |
France [French Guiana | Gabon | Gambia | Gaza Strip |Georgia | Germany | Ghana |
Gibraltar | Glorioso Island | Greece | Greenland | Grenada | Guadeloupe | Guam |
Guatemala | Guemsey | Guinea | Guyana | Haiti | Heard and Mcdonald Island [Holy See |
Honduras | Howland Island | Hungary [Iceland [India |[Indonesia | Iran [Irag | Ireland | Israel]
Italy | Jamaica | Jan Mayen |Japan | Jarvis Island | Jersey | Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia |[Lebanon | Lesotho [Liberia [Libya | Liechtenstein | Lithuania |
Luxembourg | Macedonia | Madagascar | Malawi | Malaysia | Maldives | Mali | Malta |
Isle of Man | Marshall Islands | Martinique | Mauritania [Mauritius | Mayotte] Mexicol
Micronesia | Midway Island [Moldova | Monaco | Mongolia | Montserrat | Morocco |
Mozambique [Myanmar | Netherlands | Norway | New Zealand | Nigeria | Oman | Portugal |
Poland | Romania | Russia | Rwanda | Tajikistan | Tanzania | Syria | Swede | Switzerland |
Sudan | Spain | Singapore | Thailand | Togo |Tokelau | Tonga {Tunisia | Turkey |
Turkmenistan | Tuvale | Uganda | Ukraine Junited Arab Emirates | United Kingdom |
United States of Amerima [Uruguay | Uzbekistan [Vietnam | Yemen | Yugoslavia [Zambia|
Zimbabwe ;
<capital>"® = otiawa | Beijing | london | paris | berlin | Washington] Kabul |Tirana |Algiers |
Pago Pago | Luanda | Andorra la Vella | Buenos Aires | Yerevan | Oranjestad | Canberra |
Vienna | Baku] Dhaka [Manama | BridgeTown | Brussels | Belmopan | Portonovo |
Hamilton | Thimphu | LaPaz |Gaborone |Brasilia| Phnom Penh [Yaounde | Praia | Prague ]
Santiago | Bogota | Moroni | Havana | Nicosia | Copenhagen | Roseau | Cairo | Asmara)
Addis Ababa| Suva | Helsinki | Libreville | Banjul | GoregeTown | Thilisi [Accra | Athens |
Saint George’s | Conakry | Port-au-prince | Budapest | New Delhi | Jakarta | Tehran |
Baghdad | Dublin | Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait |
Beirut | Maseru | Monrovia | Tripoli | Skopje | Amsterdam | Kuala Lumpur | Bamako |
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo | Warsaw | Lisbon |
Moscow | Stockholm | Bucharest | Singapore | Madrid | Khartoum | Bem | Damascus |
Hanoi |Ankara | Sanaa | Harare | Belgrade | Lusaka ;

07

!
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<city>® = fommo | shanghai | manchester | tyon | Frankfurt | New York;
<con€:men9 = Africa | Asia | Austrilia | Europe | North America | South America;
<0cean> = Arctic | Adlantic | India | Pacific;

<nver> = Yangtse | Nile | Danube ;

<lake>! = Qntano iake;

<mountain>' = rocky mountain;

The average branching factor for extended semantic grammar

b= ({(42+2168)+(395+395)+(395+2+44)+(305+2+44+1+2+44)H(294)+(8+45+22+60)+
(I53H(6+1+50)H(6+1+50)H(6+2+34)H(6+2-+88)H{1+50)+(1+88+1+682)+(B+13+17+5+5)+
(8+12+12+13+1 712+ 10+ 2+ 25 H 2+ 1 T2 +44)+(2+34 1 ) 1 H{(6+ 1+H50)H(6+2+34 ) +(6+2+88)+
(34+88+682)+(50+34-+88+682)+34+(6+1-+88)-682-+(3+1+34)+(3+1+88)H{(6+4+4-30)+
{(4+2-+2+283 /93

= 8890 /93

=956

Figure Appendix C (3): branching-factor computation of extended semantic grammar (Cont’d)
Figure Appendix C (4): branching-factor computation of extended syntactic grammar

/* syntax_gram_ext2.gram ¥/
grammar syntax _gram_¢ extz
public <g>* = <hnk1ngvb> <termph>ﬂ [<transvb>" byt ] <fiesrnr1ph>§g21
I <lmkmgvb> <termph>#2 [<transvb>1 <preposmon> ] <‘iem1ph>‘9§
| <quest1>’ <sent
| (who |what)? <verbph>ﬁ
| ( which | how many ) <nouncla>¥<verbph>%£
l<51mple> §,
<simple>*® = | ask them to be quite
| please introduce yourself
| hello there
| goodbye
| goodbye solar man
| fine thanks
| thanks
| thanks solar man
| yes please
| what is your name
| who are you
| where do youlive
| what do youknow
| how old are you
| what is your favorite band
| who is the vice president at the university of windsor
| who is the dean of science at the university of windsor
| tell me a poem
| know any poems
| tell me a joke
| know any jokes
| who is judy
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| can i talk to judy
| can i talk to solar man
| who is monty
| can i talk to monty |
<sent>"® = <termph>>"® <verbph>%;
<stermph> 404 = <prnoun>
! <detph>
= <stermph> od
| <stermph>*" (and | or)® <stermph>2
<verbph> = <trat;nsvbph>38
£<1n’transvb>
<transvbph>>* = ( <transvb>15 l <Emkmgvb> <‘trans-'ﬁﬂ:r>~-i 'byl? <termph>ﬁ
i <transvb>'> <hnkmgvb> <transvb>1* <preposmon>‘ ) <termph>-g'
<detph>® = <det> <nou.ncla>"§
<nouncla>>® = <adj> <cnoun>“§
| <a:ﬂmm>3
<cnoun>" = man | men | person | people | planet | planets | moon | moons | mountain | mountains |
crater | craters | sea | seas | ocean | oceans | chemical | chemicals | gas | gases | metal |
metals | nonmetal | nonmetals | country | countries | capital | capitals | city | cities |
contment | continents | river | rivers | lake | lakes ;
<adj>® = red l atmospheric;
<mtransvb> = spin | spins | orbit | orbits| orbited | exist | exists ;
<det>f = ag an | every | one | two | three | four | five;
<pnoun>"" = <pnoun_planet_moon_human>
| <nonhuman_pnoun_ chemical>?
| <space_program>°
| <earth_geography_domain>
<pnoun_planet_moon_human>® = urth ﬂjuplter | mars | mercury | neptune | pluto | saturn | uranus |
venus | almathea | ariel | callisto | charon | deimos | dione | enceladus | europa |
ganymede | hyperion | iapetus | io | janus | jupiter eighth | jupitereleventh |
jupiterfourteenth | jupiterninth | jupiterseventh | jupitersixth | jupitertenth |
jupiterthirteenth | jupitertwelfth | luna | mimas | miras | miranda | nereid | oberon |
phobos | phoebe | thea | saturnfirst | tethys | titan | titania | triton | umbriel | bernard]
bond | cassini | dolifus | fountain | galileo | hall | herschel | huygens | kowal [kuiper]
larsen | lassell | melotte | nicholson | perrine | pickering ;
<ponhuman_pnoun_chemical> 2 = <nonhuman _pnoun_gas>
| <nonhuman_pnoun_metal>
| <nonhuman_pnoun_nonmetal>® ;
<nonhuman_pnoun_gas>’ = oxygen | hydrogen | nitrogen | dioxide | monoxide | helium ;
<nonhuman_pnoun_metal> = gold | silver | copper | iron | stannum | nickel | potassium | natrium |
hydrargyrum ;
<nonhuman _pnoun_J nonmetal>’ = water | sulphur | carbon | phosphorus | calcium;
<space_program>° = shuttle | rocket | launch | telescope | stanon | astronaut;
<earth_geography_domain>""" = <country>'®" | <cap1ﬁa1> I <mty>6 | <continent>’ | <ocean>"*|
) <river>” | <lake>' | <mountain>' ;
<country>'®" = Afghanistan | Albania | Algeria | American Samoa | Andorra | Angola | Anguilla |
Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan |
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize | Benin |
Bermuda | Bhutan | Bolivia {Bosnia and Herzegovina | Botswana |Bouvet Island | Brazil|
Brunei [Bulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |
China | Clipperton Island | Colombia | Comoros | Congo Democratic Republic |

<termph>*" =

307
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Congo Republic | Cook Islands | Coral Sea Islands | Costa Rica | Croatia | Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt |
El Salvador | Equatorial Guinea | Eriirea | Estonia | Ethiopia | Europe Island | Fiji [Finland]
France [French Guiana | Gabon | Gambia | Gaza Strip |Georgia | Germany | Ghana |
Gibraltar | Glorioso Island | Greece | Greenland | Grenada | Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana | Haiti | Heard and Mcdonald Island [Holy See |
Honduras | Howland Island | Hungary |Iceland [india [Indonesia | Iran [Iraq | Ireland | Isracl]
Italy | Jamaica | Jan Mayen [Japan | Jarvis Island | Jersey | Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia [Lebanon | Lesotho |[Liberia |[Libya | Liechtenstein | Lithuania |
Luxembourg | Macedonia | Madagascar | Malawi | Malaysia | Maldives | Mali | Malta |
Isle of Man | Marshall Islands | Martinique | Mauritania [Mauritius | Mayotte] Mexico]
Micronesia | Midway Island Moldova | Monaco | Mongolia | Montserrat | Morocco |
Mozambique [Myanmar | Netherlands | Norway | New Zealand | Nigeria |
Oman | Portugal | Poland | Romania | Russia | Rwanda | Tajikistan | Tanzania |
Syria | Swede | Switzerland | Sudan | Spain | Singapore |
Thailand | Togo [Tokelau | Tonga |Tunisia | Turkey | Turkmenistan [Tuvalu | Uganda |
Ukraine Junited Arab Emirates | United Kingdom | United States of Amerima | Uruguay |
Uzbeklstan [Vietnam | Yemen | Yugoslavia [Zambia | Zimbabwe ;
<capital>*® = ottawa | Beijing | london | paris | berlin | Washington |
Kabul | Tirana |Algiers | Pago Pago | Luanda | Andorra la Vella | Buenos Aires |
Yerevan | Oranjestad | Canberra | Vienna | Baku | Dhaka |Manama | BridgeTown |
Brussels | Belmopan | Portonovo | Hamilton | Thimphu | LaPaz |Gaborone [Brasilial
Phnom Penh [Yaounde | Praia | Prague | Santiago | Bogota | Moroni | Havana |
Nicosia | Copenhagen | Roseau | Cairo | Asmara | Addis Ababa | Suva | Helsinki |
Libreville | Banjul | GoregeTown | Thilisi |Accra | Athens | Saint George’s | Conakry |
Port-au-prince | Budapest | New Dethi | Jakarta | Tehran | Baghdad | Dublin |
Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait | Beirut |
Maseru | Monrovia | Tripoli | Skopje | Amsterdam | Kuala Lumpur | Bamako |
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo |
Warsaw | Lisbon | Moscow | Stockholm | Bucharest | Singapore | Madrid |
Khartoum | Bern | Damascus | Hanoi |Ankara | Sanaa | Harare | Belgrade | Lusaka ;
<city>® = toronto | shanghai | manchester | lyon | Frankfurt | New York;
<contmem> = Africa | Asia | Austrilia | Europe | North America | South America | Antarctica;
<ocean>* = Arctic | Atlantic | India | Pacific;
~<11ver>3 = Yangtse | Nile | Danube ;
<lgke>!= ontano lake;
<mountam> = rocky mountain;
<transvb>"" = orbit | orbits | discover | discovered | neighbour | neighbours | neighboured | worship |
worshiped | contain | contains | contained [ find | finds | found;
<prep031non>2 =in)on;
<lmkmgvb> =1is | was | are | were ;
<quest1>’ = did | do | does ;

‘The average branching factor for extended syntactic grammar

b= ((41+808+15+1+808)+(808+15+2+808)+(808+45+38+45)+45-+(2+404 ) +(15+1+808+15-+2+808)+
38+36) /24

=6416/24

=267.3

Figure Appendix C (4): branching-facior computation of extended syntactic grammar (Cont’d)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(1) Notes for the experiment:
Sernantics set: a set of utterances that are both semantically and syntactically correct.
Syntax set: a set of utterances that are syntactically correct, but semantically incorrect.
Word-sequence set: word sequences that are neither semantically, nor syntactically
correct, but consist of words from the defined vocabulary.

(2) Notations for recording experiment-recognition results.
C: recognized Correctly;
I: recognized Incorrectly;
N: Not recognized at all.

(3) Note for the heading line in the table. The heading line indicates which grammar is u
sed, the testing order, etc.

sem: semantic grammar;

syn: syntactic grammar;

wd seq: word-sequence grammar,

sem ext: extended semantic grammar;

syn ext: extended syntactic grammar;

wd seq ext: extended word-sequence grammar.

# 1: testing order

(w/m) : » utterances are correctly recognized out of m utterances.

(N: x, I y): x utterances are not recognized at all, y utterances are recognized

incorrectly.

e.g.: Sem#1 (60/73) (N:10,1: 3)

means the semantic grammar was the first grammar to be tested, 60 utterances were
recognized correctly out of total 73 utterances, 10 utterances were not recognized at
all, 3 utterances were recognized incorrectly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table Appendix D (1): experiment result of Person #1 on grammars before extended using semantics set
Person #1 (English Male):

Sywzfmg} gm #5773

N | Testing Utterances Sem: #1(60/73) | Sem #3(60/73)
{(N:10, I: 3) (N:9, I:4)

Was phobos discovered by a person

Is titania a mountain

Is cassini a moon

Is pluto a mountain or a moon

Is pluto an atmospheric crater

Does pluto exist

Does ariel neighbour pluto

~ilalalolalalalziz

Does a moon neighbour a planet

o] o a[ e w[w]e]=]e
ojolalalolalal m; o 1:;;;

Does every person worship a planet

e

Does saturn contain a crater

poms | et
[l B

Does phobos contain a red mountain

o
o]

| Does janus contain nitrogen
Did bernard discover a mountain

fa—y
(5]

o mm;m{n

Yot
f

Who discovered a crater

et
L

Which mountain is found on uranus

)
fe e

Which gas is found on a moon
| What is contained by venus

oy
~J

‘uolssiwiad jnoyum paugiyoud uononpoidal Jeyung -Jaumo JybuAdoo ayp Jo uoissiwiad ypm paonpoiday

Pt
joed

What is contained by phobos

Which mountain is found on janus
Which sea exists

Which mountains are discovered by hall
Which moon orbits a planet

How many moons neighbour saturn

i
O

b
<@

o]
pineg

:

N
2

OlZIOOIOOIOOOIOIZIOOIOIOIZI0IOO0I0Ial0
QOO OO OIOIOIOIOOIOO0aIOIOIOQIO0 00

alea mcﬁ!mfr}

[NV
W
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24,

Was neptune discovered by dolifus or cassini

25

Does triton orbit pluto or saturn

26

Was neptune contained by hydrogen or nitrogen

27

Does jupitereighth contain a sea or a mountain

28]

Does jupiter contain hydrogen or oxygen

29

Does earth contain oxygen

30

Does a moon contain hydrogen

31

Does a moon neighbour a planet

32

How many gases are found on mars

33

How many craters are found on a moon

34,

How many oceans are discovered by hall

35

How many mountains are found on earth

36

Is gold found on earth

37

Is silver found on janus

38

Is a chemical found on triton

~laj={=ala|~lalal-lal=lzlalo

39

Is dioxide found on phoebe

40

Is sulphur found on luna

41,

Is oxygen found on mars

42

Is a metal found on a planet

43,

Is a nonmetal found on pluto

e e |

;

44

Is a river found on neptune

45

Is a lake found on venus

46

Which gas is found on titan

47

Which chemicals are found on thea

alajalaln]=lalalalel=~lalol=[=lo]~alz|al o)l

ki

48

Which nonmetals are found on jupiter

§

a0

49,

Which metals are found on a moon

50

Which river is found on hyperion

QIOIOQIZIOOIO0 Q™ QIO OO0 QOO OO0 aI0n

QOO QIO OIO0=OIOQITOQI™Z IO OOIOIZI00n

olalalaiaiololo @\gﬁwm ng

=

lle
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51

Which mountains are found on rhea

52,

How many chemicals are found on pluto

53

How many metals are found on a moon

54

How many nonmetals are found on jupiter

55

How many gases are found on mars

56,

How many continents are found on earth

57

Is berlin a capital

58

Is beijing a city

59,

Is lyon a moon

60

Is india an ocean or a country

61

Is canada a mountain

62

Is england an atmospheric planet

63

Which mountain is found on jupiter

64

Which rivers are found on io

65

Which nonmetals are found on a planet

66

Which gases are found on a moon

67

Is an ocean found on mercury

68

How many rivers are found on miranda

69

How many chemicals are found on phoebe

lojolalala|alalolololalalel={=lalalala

70

How many continents are found on earth

71

Is an ocean found on mercury

72

How many gases are contained by earth

it

73

How many gases are found on earth

HZOZZOOOZOZGOGOOOOOZOZO

ZIOOQIZIZ QIGIOIZIO0 OO0 0 0I0ZIOZEIOZIO

~I=lalz|alalclalzlolafalolz]alalal={=]a]

ey v .

Table Appendix D (1): experiment result of Person #1 on grammars before extended using semantics set { Cont ‘d)
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Table Appendix D (2): experiment result of Person #1 on grammars before extended using syntax set
Person #1 (English Male):
N | Testing Utterances Sem #1 (0/25) | Sem#3 (0/25) | Syn#2 (22/25) | Syn #4 (22/25)
o (N:20, 1:5) (N: 17, I:8) |N:3,00) N30
1 | Does a mountain contain a moon N N o ~
2 | Does a gas contain a planet N N ;
3 | Does a river contain a continent N I | o
4 | Was phobos discovered by a moon 1 i :
5 | Does water contain a river N N C
6 | Is a crater found in nitrogen N I C '
7 | Does ariel neighbour hall N N C
8 | Does a moon neighbour a people N N e
9 | Does a crater contain saturn N N C
10 | Does a red mountain contain phobos I N C
11 | Does nitrogen contain janus N N ¢ ‘
12 | Does berlin discover a moon N N C
13 | Which mountain is found on bond N | ‘
14 | Which moon is found in a gas i I
15 | Which mountains are discovered by pacific I I
16 | Which river orbits a planet N N
17 | How many people neighbour Saturn N N
18 | Was neptune discovered by dollfus or lyon N I
19 | Does triton orbit pluto or frankfurt N N
20 | Does gold contain a sea or a2 mountain N 1
21 | How many moons are found in atlantic N N
22 | How many craters are discovered by nile I N
23 | Is gold found in cassini N N
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24

Which chemicals are found on bond

25

How many chemicals are found on galileo

Table Appendix D (2): experiment result of Person #1 on grammars before extended using syntax set (Cont ’)

Table Appendix D (3): experiment result of Person #2 on grammars before extended using semantics set
Person #2 (non-English Female):

N | Testing Utterances Sem #1 Sem #4 | Syn#2 (36 | Syn #5 Wd Seq Wd Seq
o (48 173) (52/13) | AHN2IL | 41/73) #30/73) | #6(9/73)
N:23, I 2 N:19, 1.2 110 { Ni22 110 | N:18L:46 N:23 41

1 | Was phobos discovered by a person N N N iN 11 I

2 | Is titania a mountain C C Tﬁm ‘ 1N I N

3 | Is cassini a moon C C ¢ ¢ Ic C

4 | Is pluto a mountain or a moon N N ™ R N IN I

5 | Is pluto an atmospheric crater C C c e G |1 1

6 | Does pluto exist C C o 1o 1 C C

7 | Does ariel neighbour pluto C C N IN I N

8 | Does a moon neighbour a planet C C ngw tr. - IC 1

9 | Does every person worship a planet C C L C I C

10 | Does saturn contain a crater I C I ae C I

11 | Does phobos contain a red mountain C C ] - 1C : I I

12 | Does janus contain nitrogen C C 5 f ] I -~ 1C 1

13 | Did bernard discover a mountain C N C il M N N

14 | Who discovered a crater C C < {ic i1 C

15 | Which mountain is found on uranus N C o ; c .l N

16 | Which gas is found on a moon C C £ L C I I

17 | What is contained by venus N N N e I I

18 | What is contained by phobos C N N 1€ C I
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19 | Which mountain is found on janus C C s 30 1 I
20 | Which sea exists C C e | A C C
21 | Which mountains were discovered by hall N N N ‘ ” ” I 1
22 | Which moon orbits a planet C C C L N C
23 | How many moons neighbour saturn C C T 1 1 » 11 i
24 | Was neptune discovered by dollfus or cassini N N i N . H , ‘ N 1
25 | Does triton orbit pluto or saturn N N ' N ' ” N N N
26 | Does neptune contain hydrogen or nitrogen N N -‘ 7 ; o I I
27 | Does phobos contain a sea or a mountain N C ’ bbbbbb ” e I i
28 | Does phoebe contain hydrogen or oxygen N N N N I i
29 | Does oberon contain oxygen C C o= C i C
30 | Does a moon contain hydrogen C C o e I I
31 | Does a moon neighbour a planet C C E v gl o C
32 | How many gases are found on mars C C N o , N a1 I
33 | How many craters are found on a moon C C Cc . 1 C ot 1 I
34 | How many oceans were discovered by hall N C N IN D N
35 | How many mountains are found on earth C C I . 1 ‘ w I N
36 | Is gold found on earth C C 1 bk ] ] I
37 | Is silver found on janus C C f: je o ] I
38 | Is a chemical found on triton C C c ¢ - IN N
39 | Is dioxide found on phoebe C C C C I'N N
40 | Is sulphur found on luna C C C e 1 N
41 | Is oxygen found on mars C C 1 B0 I I
b e
42 | Is a metal found on a planet C C o {N N N
43 | Is a nonmetal found on Pluto C C 1 e ] I
44 | Is a river found on Neptune N N N PN I N
45 | Is a lake found on venus C C I'e e N
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46 | Which gas is found on titan C C . I I
47 | Which chemicals are found on rhea C C B N = N N
48 | Which nonmetals are found on jupiter N C T : N I
75 TWheh et e o o oo = = —te F N
50 | Which river is found on hyperion N N N . " ( TN N
51 | Which mountains are found on rhea C N B0 e e T I
52 | How many chemicals are found on pluto C C ‘ . ' ,' IN I
53 | How many metals are found on a moon C i éﬁw e e N N
54 | How many nonmetals are found on jupiter C N EM 1 I N
55 | How many gases arc found on mars N C i N B I
56 | How many continents are found on charon C C N , 1 I I
57 | Is berlin a capital 1 I I e T I
58 | Is beijing a city C C i“C » C o I
59 | Is lyon a moon C C C o C C
60 | Is india an ocean or a country N C N N »m I N
61 | Is canada a mountain C C (B2 Tff«- 4 i I I
62 | Is england an atmospheric planet N N N N 4 C N
63 | Which mountain is found on jupiter C I o C N I
64 | Which rivers are found on io N N ﬁfm N N 1
65 | Which nonmetals are found on a planet N C Pfﬁ - 1C N N
66 | Which gases are found on a moon N C i\?m e 1 N
67 | Is an ocean found on mercury C C tC C N N
68 | How many rivers are found on miranda N N N N I I
69 | How many chemicals are found on phoebe C C C & 11 I
70 | How many continents are found on earth C C 1 N i1 I
71 | Is an ocean found on mercury C C C 1c . N N
72 | How many gases are contained by earth N N N N I I
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[73 ] How many gases are found on earth l N ] N ; { I
Table Appendix D (3): experiment resuit of Person #2 on grammars before extended using semanizcs set (Cont’d)
Table Appendix D (4): experiment result of Person #2 on grammars before extended using syntax set
Person #2 (non-English Female):
No | Testing Utterances Sem #1 Sem #4( 0 Wd Seq #3 | Wd Seq #6
( 0/25) 125) 1 (2/25) (2125}
(N:21, I:4) | (N:20,1: 5) | (N:13, B10) T (N:11L,E12)
1 Does a mountain contain a moon N N I N
2 Does a gas contain a planet N N IN N
3 Does a river contain a continent N N N N
4 Was phobos discovered by a moon N N I I
5 Does water contain a river N N I N N
6 | Is a crater found in nitrogen I 1 IN N
7 Does ariel neighbour hall N N I C
8 Does a moon neighbour a person N N 1 1
9 Does a crater contain saturn N N N N
10 | Does a red mountain contain phobos N N I i
11 | Does nitrogen contain janus N I 1 I
12 | Did berlin discover a moon 1 I C C
13 | Which mountain is found on bond I I 11 I
14 | Which moon is found in a gas I 1 1 I
15 | Which mountains were discovered by pacific | N N IN N
16 | Which river orbits a planet N N N N
17 | How many people neighbour saturn N N 1 C I
18 | Was neptune discovered by dollfus or lyon N N N I
19 | Does triton orbit pluto or frankfurt N N N N
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20 | Does gold contain a sea or a mountain N N N N N I
21 | How many moons are found in atlantic N N N ' } N , N I
22 | How many craters were discovered by nile N N N 1C ' ‘ I I
23 | Is gold found in cassini N N e iC I N
24 | Which chemicals are found on bond N N o e [N I
25 | How many chemicals are found on galileo N N N ' IN N N
Table Appendix D (4): experiment result of Person #2 on grammars before extended using syntax set (Cont’d)
Table Appendix D (5): experiment vesult of Person #2 on grammars beforve extended using word-sequence set
Person #2 (non-English Female):
N | Testing Utterances Sem #1 Sem #4 Word Seq | Werd Seq
o (0/24) 0/24) #3(4/24 #6 (3724
(N:21, I:3) | (N:22, I:2) (N:8L:12) (N:61: 15
1 | Is a mountain contain a moon N N 41I N
2 | Does a gas a planet N N I N
3 | Is ariver found a continent N N | N I
4 | Phobos discovered by a moon N N 1 1
5 | Does water exist a river N N N I
6 | Is a crater contain nitrogen N N C C
7 | Is ariel neighbour a planet N N N N
8 | Is a moon discover a people N N C N
9 | Which crater contain on satum N N N I
10 | Is a red phobos contain a mountain N N 1 I
11 | Is janus contain nitrogen I 1 1 C C
12 | Is jupiter discovered bernard N N N N
13 | Which mountain is found dione and phoebe N N N I
14 | Which gas found moon I N I I
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15 | Which mountain discovered by metotie

16 | Which moon orbits on a planet

17 | How many moons neighbour on saturn

18 | Was neptune discovered dollfus and kowal

19 | Is triton orbit pluto or venus

20 | Is gold contained a moon

21 | How many mountains found on oberon

22 | How many craters are found earth

i
N
:

23 | Is gold found cassini

Ziz|\Zimzlz z|z|Z =2
Z|\ 2|2 Z|Z 2,22 Z

N
N
N
N
1

-

24 | Which chemicals are found bond N -

Table Appendix D (5): experiment vesult of Person #2 on grammars before extended using word-sequence set (Cont’d)

Table Appendix D (6): experiment result of Person #1 on extended grammars using semantics set
Person #1 (English Male):

Syn ext 4

Neo | Testing Utterances Sem ext #1 ] Sem ext #3
{ 63/73)N ) (54/73 Y(N:4 I:15)

(66 /73 Y(N:5, 1:2) | (58 /73)(N:28:143

Was phobos discovered by a person

Is titania a mountain

Is cassini a moon

Is pluto a mountain or a moon

Is pluto an atmospheric crater

Does pluto exist

Does ariel neighbour pluto

Does a moon neighbour a planet

OO ~JI OV W W B e

Does every person worship a planet

Does saturn contain a crater

QIOIZZO 000000
QOO0 0000

[N
et | €20

Does phobos contain a red mountain
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< C
L 1
£ C
£ C

12 | Does janus contain nitrogen

13 | Did bernard discover a mountain

14 | Who discovered a crater

15 | Which mountain is found on uranus

16 | Which gas is found on a moon

17 | What is contained by venus

18 | What is contained by phobos

19 | Which mountain is found on janus

20 | Which sea exists

21 | Which mountains were discovered by hall
22 | Which moon orbifs a planet

23 | How many moons neighbour saturn

24 | Was neptune discovered by dollfus or cassini
25 | Does triton orbit pluto or satum

26 | Does neptune contain hydrogen or nitrogen
27 | Does jupitereighth contain a sea or 2 mountain
28 | Does jupiter contain hydrogen or oxygen
29 | Does earth contain oxygen

30 | Does a moon contain hydrogen

31 | Does a moon neighbour a planet

32 | How many gases are found on mars

33 | How many craters are found on a moon

34 | How many oceans were discovered by hall
35 | How many mountains are found on earth
36 | Is gold found on earth

37 | Is silver found on janus

38 | Is a chemical found on triton

OO OO0 00 OO0 OIOIOIaOIaCaO00 a0

~lal =l =lalal=lalalalal nf&ai@'ﬂmﬁ?mﬁ%’mm

e e OO ZI O ZIOO0IGI0 0 0IGIONN
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39 | Is dioxide found on phoebe o {C e B
40 | Is sulphur found on luna C | C C |cC
41 | Is oxygen found on mars | C ‘ 1C 6 I

42 | Is a metal found on a planet e 1 C C ’ 1C
43 | Is a nonmetal found on pluto C C c A
44 | Is a river found on neptune o C C C
45 | Is a lake found on venus ¢ IC ’C 1 C
46 | Which gas is found on titan C - “ , ” » C c 1 C
47 | Which chemicals are found on rhea c. C c |1C
48 | Which nonmetals are found on jupiter c. M - C el I

49 | Which metals are found on a moon C W ; C , é , C
50 | Which river is found on hyperion goi e |c c C
51 | Which mountains are found on rhea c N r{?@m - C
52 | How many chemicals are found on pluto N . | N L}?i ‘ C
53 | How many metals are found on a moon c C C 1C
54 | How many nonmetals are found on jupiter C C ] C
55 | How many gases are found on mars N N ] I

56 | How many continents are found on earth N C 1 N
57 | Is berlin a capital C C e C
58 | Is beijing a city C C C | C
59 | Is lyon a moon c C C oo C
60 | Is india an ocean or a country c... C e 4N
61 | Is canada a mountain €0 C C 1 C
62 | Is england an atmospheric planet C . C B o 11

63 | Which mountain is found on jupiter c.. C C I

64 | Which rivers are found on io C C e C
65 | Which nonmetals are found on a planet C , C C ‘ C
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66 | Which gases are found on a moon e | C c i c
67 | Is an ocean found on mercury C 1C ge v W e - Ic
68 | How many rivers are found on miranda | C ke e Tc
69 | How many chemicals are found on phoebe N | C pead ‘ - |C
70 | How many continents are found on earth C 1 C T - {1
71 | Is an ocean found on mercury C |C E - C
72 | How many gases are contained by earth C {C 1 1
73 | How many gases are found on earth < . cC 1 . ’i I
Table Appendix D (6): experiment result of Person #1 on extended grammars using semantics set (Cont’d)
Table Appendix D (7): experviment result of Person #1 on extended grammars using syniax set
Person #1 (English Male):
N | Testing Utterances Sem ext #1 (0/25) | Semext#3 (0/25) | Syn ext#2 (20/25) | Syn ext #4 (21/25)
o W21k | N2IE4) | (NA4LD) (N:4 1:0)
1 | Does a mountain contain a moon N N . i{C C
2 | Does a gas contain a planet N N c A C C
3 | Does a river contain a continent N N e C C
4 | Was phobos discovered by a moon 1 Lo __1C C
5 | Does water contain a river I N , N ‘ ; I C
6 | Is a crater found in nitrogen N . N ; C C
7 | Does ariel neighbour hall N N : C C
8 | Does a moon neighbour a people hﬁ' N 1C C
9 | Does a crater contain saturn N N e 1 C C
10 | Does a red mountain contain phobos N N o C C
11 | Does nitrogen contain janus N A 1N ] C C
12 | Did berlin discover a moon N , bbbbbb , ; C C
13 | Which mountain is found on bond N N C C
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14 | Which moon is found in a gas PR i1 JcC C
15 | Which mountains are discovered by pacific |1 i N C
16 | Which river orbits a planet N N IN C
17 | How many people neighbour saturn N . N & C C
18 | Was neptune discovered by dollfus orlyon [N i1 C N
19 | Does triton orbit pluto or frankfurt N N |cC C
20 | Does gold contain a sea or a mountain I ‘N N N
21 | How many moons are found in atlantic N N fm* C N
22 | How many craters were discovered by nile | N IN C N
23 | Is gold found in cassini N iN |1C C
24 | Which chemicals are found on bond N N 1C C
25 | How many chemicals are found on galileo W { N N C
Table Appendix D (7): experiment result of Person #1 on extended grammars using syntax set (Cont’d)
Table Appendix D (8): experiment result of Person #1 on extended word-sequence grammar using semantics set
Person #1 (Knglish Male):
Note: out of 73 testing utterances, there are 14 recognized correctly, 46 recognized Incorrectly, 13 Not recognized.
No | Testing Utterances Recognized As Correctness
{or “Not recognized”) {C/ total words)
1 Was phobos discovered by a person Was phobos discovered by person 5/6
2 | Is titania a mountain Is titania a mountain 4/4
3 | Is cassini a moon Is cassini a moon 4/4
4 | Is pluto a mountain or a moon Is pluto a mountain or moon 6/17
5 | Is pluto an atmospheric crater Is pluto and atmospheric crater 4/5
6 | Does pluto exist Does pluto exist 3/3
7 | Does ariel neighbour pluto Does ariel neighbour pluto 4/4
8 | Does a moon neighbour a planet Does a moon neighbour atlantic 4/5
9 | Does every person worship a planet Does africa worship planet 3/6
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10 | Does saturn contain a crater Does saturn contain gfrica 3/5
11 | Does phobos contain a red mountain Does phobos contain a red mountain 6/6
12 { Does janus contain nitrogen Does janus contain nitrogen 4/4
13 | Did bernard discover a mountain Did banjul discover a mountain 4/5
14 | Who discovered a crater Who discovered a crater 4/4
15 | Which mountain is found on uranus Which mountain is yeounde are uranus 4/6
16 | Which gas is found on a moon Which gas is yaounde ghana moon 477
17 | What is contained by venus What is contained five venus 4/5
18 | What is contained by phobos What is contained five phobos 4/5
19 | Which mountain is found on janus Which mountain is yaounde janus 4/6
20 | Which sea exists Which sea exists 3/3
21 | Which mountains were discovered by hall Which mountains were discovered by hall 6/6
22 | Which moon orbits a planet Which moon dollfus atlantic 2/5
23 | How many moons neighbour saturn How many moons neighbour saturn 5/5
24 | Was neptune discovered by dollfus or cassini Was neptune discovered five dollfus or cassini 6/7
25 | Does triton orbit pluto or saturn Does triton orbit pluto oxygen 4/6
26 | Does neptune contain hydrogen or nitrogen Does neptune contain hydrogen Aa/l nitrogen 5/6
27 | Does phobos contain a sea or a mountain Does phobos contain a sea or mountain 6/7
28 1 Does phoebe contain hydrogen or oxygen Does phoebe contain hydrogen four oxygen 5/6
29 | Does oberon contain oxygen Does oberon contain oxygen 4/4
30 | Does a moon contain hydrogen Does a moon contain hydrogen 5/5
31 | Does a moon neighbour a planet Does a moon neighbour atlantic 4/6
32 | How many gases are found on mars How many gases iceland amman 3/7
33 | How many craters are found on a moon Not recognized

34 | How many oceans were discovered by hall How nicholson swede discovered by hall 4/7
35 | How many mountains are found on earth How many mountains are saint georges 4/7
36 | Is gold found on earth Not recognized

37 | Is silver found on janus Is suva vaounde bond janus 2/5
38 | Is a chemical found on friton Not recognized

39 | Is dioxide found on phoebe Is nile kazakhstan dione phoebe 2/6
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40 | Is sulphur found on luna Is dollfus yaounde or tuna 2/5
41 | Is oxygen found on mars Is oxygen sun amman 2/5
42 | Is a metal found on a planet Not recognized

43 | Is a nonmetal found on pluto Not recognized

44 | Is a river found on neptune Is aruba yaounde bond neptune 2/6
45 | Is a lake found on venus Is atlantic yaounde bond venus 2/6
46 | Which gas is found on titan Which gas is yaounde bond titan 3/6
47 | Which chemicals are found on rhea Which nicholson Iceland oman thea 2/6
48 | Which nonmetals are found on jupiter Which monaco sanaa finland bond jupiter 2/6
49 | Which metals are found on a moon Not recognized

50 | Which river is found on hyperion Which aruba is mouniain hyperion 3/6
51 | Which mountains are found on rhes Which mountains yaounde austria 2/6
52 | How many chemicals are found on pluto Not recognized

53 | How many metals are found on a moon How many brussels iceland oman a moon 4/8
54 | How many nommetals are found on jupiter How manama togo shanghai bond jupiter 277
55 | How many gases are found on mars How many iceland are mars 4/8
56 | How many continents are found on charon How many contains how yaounde russia 2/7
57 | Is berlin a capital Is berlin atlontic 2/4
58 | Is beijing a city Is beijing a sea 3/4
59 | Is lyon a moon Is lyon a moon 4/4
60 | Is india an ocean or a country Is india are nicholson harare conakry 277
61 | Is canada a mountain Is canada a mountain 4/4
62 | Is england an atmospheric planet Is finland and atmospheric planets 3/5
63 | Which mountain is found on jupiter Which mountain is yaounde jupiter 4/6
64 | Which rivers are found on io Not recognized

65 | Which nonmetals are found on a planet Not recognized

66 | Which gases are found on a moon Not recognized

67 | Is an ocean found on mercury Not recognized

68 | How many rivers are found on miranda How maseru is yaounde are miranda 2/7
69 | How many chemicals are found on phoebe How many guinea phobos mountains phoebe 377
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70 | How many continents are found on earth Not recognized
71 1 Is an ocean found on mercury Not recognized
72 | How many gases are contained by earth How many gases are contain by pairs 6/7
73 | How many gases are found on earth How many gases yaounde honduras 3/7

Table Appendix D (8): experiment result of Person #1 on extended word-sequence grammar using semantics set (Cont’d)

Table Appendix D (9): experiment result of Person #2 on exiended grammars using semantics set

Person #2 (non-English Female):

No | Testing Utterances Sem Sem Sem Sem ‘Synext | Synext | Synext | Syn Wwd Wd Seq
ext#1 |ext#3 |ext#5 |ext#7 |#229 |#4 #6 ext#8 | Seqext | ext
43773 [ 46/73 | 45/73 [ 44/73 /73 13273 | 3%/713 | 3773 #9(4/73 | #10(3/73
N:25L5 | N:23L:4 | N:221:6 | N:26L:3 | Ne3SEO | N27L:14 | N25E10 | N21L15 | N201:49 | N:171:53

1 | Was phobos discovered by a person N N N N N IN i | N 11 N

2 | Is titania a mountain N C N C N i€ IC C 11 I

3 | Is cassini a moon C C C C C C C I I

4 | Is pluto a mountain or a moon N I N N |N N N I I

5 | Is pluto an atmospheric crater C C C C | C C i 11 C

6 | Does pluto exist C C C C C Gy C 1 C I

7 | Does ariel neighbour pluto N C I C il C N I I

8 | Does a moon neighbour a planet C C C C N N 1 C N N

9 | Does every person worship a planet C C N C IN C " T ‘ N I

10 | Does saturn contain a crater I I I C i E‘VI T I

11 | Does phobos contain a red mountain C C C C f C 1 I

12 | Does janus contain nitrogen C C C C c 1€ 11 I

13 | Did bernard discover a mountain C N C N N N ¢ N N

14 | Who discovered a crater C C C C C C C 1 C C

15 | Which mountain is found on uranus C C N C N Cc | I 1

16 | Which gas is found on a moon C C C C C 1C I N
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17 | What is contained by venus N N C N N N N c I I

18 | What is contained by phobos C N C N N 0 \ N N I I

19 | Which mountain is found on janus N C C C o o ¢ i 1T I

20 | Which sea exists C C C C e ¢ e it c C

21 | Which mountains were discovered by N C N C N N IN N 11 i
hall .

22 | Which moon orbits a planet C C C N € IC e N I I

23 | How many moons neighbour saturn C C C C N o N N I

24 | Was neptune discovered by dolifus or N N N N N N W N N I I
cassini : : Ll

25 | Does triton orbit pluto or saturn N N N N N N N |N N N

26 | Does neptune contain hydrogen or N N C N N N N N I 1
nitrogen L = 1

27 | Does phobos contain a sea or a N N N N N N N C 1 I
mountain o b L

28 | Does phoebe contain hydrogen or N N N N N O N N I I
oxygen L o

29 | Does oberon contain oxygen C C C C ¢ C c C I I

30 | Does a moon contain hydrogen C C C C c e je ¢ i1 1

31 | Does a moon neighbour a planet C C C N L ' , 1 £ ?— 1 C i1 N

32 | How many gases are found on mars C C C C ¢ N 'TEZ" - i N I

33 | How many craters are found onamoon | C C C C C C C 10 : L I

34 | How many oceans were discovered by | N C N N ‘N N N C N N
hall ' ,

35 | How many mountains are found on N C C N N & I 1 I I
earth

36 | Is gold found on earth I N C 1 L. _’I:I o I I

37 | Is silver found on janus C C C C I | N C C {1 I

38 | Is a chemical found on triton N C C C C C C - C I I
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39 | Is dioxide found on phoebe C C C C N « N e I 1
40 | Is sulphur found on luna N C C C ¢ 1 c ic I N
41 | Is oxygen found on mars C C C I ¢ i iC 1€ 11 I
42 | Is a metal found on a planet C C C C ¢ 5 "IN N [N I
43 | Is a nonmetal found on pluto C C C C Lt N = i C N N
44 | Is a river found on neptune N N N N N N {N 41 N N
45 | Is a lake found on venus C C C C . IN N 41 . 1IN I
46 | Which gas is found on titan C C C C c G ic e 1 1
47 | Which chemicals are found on rhea C C N C N C i 1 11 I
48 | Which nonmetals are found on jupiter | N N N C N lc ,’ c i N I
49 | Which metals are found on a moon C C N C N ! o g C v C I I
50 | Which river is found on hyperion N N N N N N N N N I
51 | Which mountains are found on rhea C C C C | " o {1 1 I 1
52 | How many chemicals are found on C N C C =i  C 'S I I

Pluto |
53 | How many metals are foundonamoon | C C N C » C C I I
54 | How many nonmetals are found on C N N C IN 1c C N I N

jupiter o i1 .
55 | How many gases are found on mars I I I N o N N 1b I I
56 | How many continents are found on C C C C o C ic ¢ i i

charon e ,
57 | Is berlin a capital 1 C I C Toow ot 1 1 1 1
58 | Is beijing a city C C C C N C [ C 1 I
59 | Is lyon a moon C C I C 1 C |C C C N
60 | Is india an ocean or a country N N N N ”I:;T N 1N : N » N N
61 | Is canada a mountain C C C N C | C C e I I
62 | Is england an atmospheric planet N C N N N o ‘ I N 1N I N
63 | Which mountain is found on jupiter C C C N N E« IN | N N I
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64 | Which rivers are found on io N N N N 1 ” T N N
65 | Which nonmetals are found onaplanet | N N C N IN° N I
66 | Which gases are found on a moon N N C N de 0T I
67 | Is an ocean found on mercury C C C C ¢ | N N
68 | How many rivers are found on miranda | C N C N 1 ‘; r I
69 | How many chemicals are found on C C C C 1o I I
phoebe i
70 | How many continents are found on C I C C I I I
carth 1
71 | Is an ocean found on mercury C N C C 1 N N
72 | How many gases are contained by earth | N N N N N I 1
73 | How many gases are found on earth I N I I N 1 - f i I
Table Appendix D (9): experiment result of Person #2 on extended grammars using semantics set (Cont’d)
Table Appendix D (10): experiment vesult of Person #2 on extended grammars using syntax set
Person #2 (non-English Female):
N | Testing Utterances Semext#1 | Semext#3 | Symext#2 | Synext#4 | Wd Seqext | Wd Seq ext
0 (0/25) (0/25) {12283 #5 (1/25) #6 (0/25)
N:20,1: 5 N:22,1:3 N10Ls N:9, I 15 N:11,1 14
1 | Does a mountain contain a moon N N N . I N
2 | Does a gas contain a planet N N C 1 I
3 | Does a river contain a continent N N N N N
4 | Was phobos discovered by a moon N N N I N
S | Does water contain a river N N ' 11 I
6 | Is a crater found in nitrogen I N N N
7 | Does ariel neighbour hall N N I N
8 | Does a moon neighbour a person N N C 1
9 | Does a crater contain satum N N S N N
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10 | Does a red mountain contain phobos N N = 1C i1 I

11 | Does nitrogen contain janus N I C C 1 I

12 | Did berlin discover a moon I I C i€ N N

13 | Which mountain is found on bond I I . N 11 I

14 | Which moon is found in a gas | N N IN I I

15 | Which mountains were discovered by pacific | N N N IN i1 N

16 | Which river orbits a planet N N ‘N IN 1 N

17 | How many people neighbour saturn N N I 1C N |

18 | Was neptune discovered by dollfus or lyon N N | N N N I

19 | Does triton orbit pluto or frankfurt N N N o IN N I

20 | Does gold contain a sea or a mountain N N - C N I N

21 | How many moons are found in atlantic N N c e 1 I

22 | How many craters were discovered by nile N N N ’ § N 1 I

23 | Is gold found in cassini N N L C S T 1

24 | Which chemicals are found on bond I N C S4C |N I

25 | How many chemicals are found on galileo N N N N _—1 i N

Table Appendix D (10): experiment result of Person #2 on extended grammars using syntax set (Cont’d)
Table Appendix D (11): experiment result of Person #2 on extended grammars using word-sequence set
Person #2 (non-English Female):
No | Testing Utterances Sem ext #1 Semext#4 | Synext#2  Synext#5 Wd Seq ext Wd Seq ext
©/24) ©024) (0/24) 0/24) 1 #3 (1/24) #6 (2/24)
(N:23 L 1) N:23,I:1 | (N: 18, 1:6) N7, BT N:5,1: 18 N:8 I 14

1 | Is a mountain contain a moon N N N AN I N
2 | Does a gas a planet N N W - i1 N
3 Is a river found a continent N N N e N N
4 Phobos discovered by a moon N N N | N I I
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5 Does water exist a river N N | N N I
6 | Is a crater contain nitrogen N N o i i
7 | Is ariel neighbour a planet N N N N N I
8 Is a moon discover a people N N ’ | 1 1 N
9 | Which crater contain on saturn N N N 1 N N
10 | Is a red phobos contain a mountain N N " " .. I I
11 | Is janus contain nitrogen I N i N |1 C
12 | Is Jupiter discovered bernard N N 1 ' N 11 1
13 | Which mountain is found dione and phoebe N N N N 1 I
14 | Which gas found moon N N N I N |1 I
15 | Which mountains discovered by melotte N N [N N I N
16 | Which moon orbits on a planet N N N IN I N
17 | How many moons neighbour on saturn N N I W o ” 1 ’ ‘ 11 N
18 | Was neptune discovered dollfus and kowal N N ﬁm ’ 1 |C C
19 | Is triton orbit Pluto or venus N N N N N N
20 | Is gold contained a moon N N i b i I I
21 | How many mountains found on oberon N N .ﬁ_‘ N 11 I
22 | How many craters are found earth N N N N I I
23 | Is gold found cassini N N N 1 I I
24 | Which chemicals are found bond N I N | N 11 I

Table Appendix D (11): experiment result of Person #2 on extended grammars using word-sequence set (Cont’d)
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