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Abstract

With the growing interest and demand for human-machme interaction, much work 

concerning speech-recognitioE has been carried out over the past three decades. Although 

a variety o f approaches have been proposed to address speech-recognition issues, such as 

stochastic (statistical) techniques, grammar-based techniques, techniques integrated with 

linguistic features, and other approaches, recognition accuracy and robustness remain 

among the major problems that need to be addressed.

At the state of the art, most commercial speech products are constructed using grammar- 

based speech-recognition technology. In this thesis, we.investigate a number of features 

involved in grammar design in natural-language speech-recognition technology. We 

hypothesize that: with the same domain, a semantic grammar, which directly encodes 

some semantic constraints into the recognition grammar, achieves better accuracy, but 

less robustness; a syntactic grammar defines a language with a larger size, thereby it has 

better robustness, but less accuracy; a word-sequence grammar, which includes neither 

semantics nor syntax, defines the largest language, therefore, is the most robust, but has 

very poor recognition accuracy. In this Master’s thesis, we claim that proper grammar 

design can achieve the appropriate compromise between recognition accuracy and 

robustness.

The thesis has been proven by experiments using the IBM Voice-Server SDK, which 

consists of a VoiceXML browser, IBM ViaVoice Speech Recognition and Text-To-Speech 

(TTS) engines, sample applications, and other tools for developing and testing VoiceXML 

applications. The experimental grammars are written in the Java Speech Grammar 

Format (JSGF), and the testing applications are written in VoiceXML. The tentative 

experimental results suggest that grammar design is a good area for further study.
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Chapter 1

Introduction

While speech recognition has been an active field for several decades, some newly- 

developing areas, e.g. computer-telephony integration, are demanding the speech 

solutions. In addition, the explosive growth in the use of wireless devices and the World 

Wide Web has created an urgency for better tools to manipulate speech-related operations, 

such as voice data entry and speech navigation of the web.

Although some new products have emerged recently, such as voice portal (McTear, 2002) 

(which provides a speech-based interface between a telephone user and web-based 

services), and VoiceXML (which is an XML-based markup language for creating 

distributed voice applications, much as HTML is a markup language for creating 

distributed visual applications (IBM, 2001)), the core is the speech-recognition 

technology, which still has a long way to go before the real value of the new tools can be 

harnessed.

Over the last three decades, a number of Artificial Intelligence (A!) researchers have been 

striving to build models to interact between humans and machines with natural-language 

speech. However, it is only in the past decade that speech technology has achieved
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advanced process with the introduction of both research prototypes and commercial 

applications, such as SPHINX (the first accurate large-vocabulary continuous speaker- 

independent speech-recognition system developed at Carnegie Mellon University (Huang 

et a l, 1992) (Lee, 1988) (Kita and Ward, 1991)), AXIS (an actual spoken-language Air 

Travel Information System (Moore et a l, 1995)), and the JUPITER weather-information 

system (developed at MIT, (Glass, 1999)).

Although speech-recognition technology has been addressed from various perspectives, a 

number of problems need to be solved, such as recognition accuracy, robustness, and 

flexibility. Speech is recognized correctly if  and only if  the recognition result returned 

from the system is correctly corresponding to the user’s speech input. Robustness means 

the extent to which a system handles errors or “unexpected” input. A flexible spoken- 

dialogue system is able to accept a user’s flexible utterances, allow the user to supply 

extra information and make reasonable responses (Milward, 1999).

In this thesis, we investigate the significance of grammar design in speech recognition 

from various aspects. This thesis is supported by an experiment with multi-direction 

comparisons over three types of grammar (semantic grammar, syntactic grammar, and 

word-sequence grammar, which are discussed in detail in chapter 5). We observe that the 

size o f a language defined by a grammar has a significant influence on speech- 

recognition accuracy (and robustness, which is expected). The smaller language, which 

can be obtained by including semantic constraints in the syntax, has better accuracy and 

less robustness, with more complicated grammar design. (We explain what a “semantic 

constraint” is in sub-section 1.4). The syntactic grammar, using a less-complicated 

grammar, defines a larger language to obtain better robustness, but less accuracy. The 

trade-off between accuracy and robustness is adjusted by the grammar design. Therefore, 

grammar design is an extremely important topic in natural-language speech-recognition.
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A lthou^ the prelimiaary experiments show no contradictive evidence to our claim, we 

have encountered some limitations that are discussed in sub-section 8.2.

1.1 The Need for Speech-Recogmtioii

Looking back on human history, language has marked the evolution of humankind: words 

recorded the civilization of human society, and speech has been the most common, 

convenient, and preferred method of communication for human beings. For the majority 

of human beings, speech communication is the easiest way to convey information from

human to human, for it can make hands free, can proceed in the dark, and can even reach 

very far distances through radio and telephone.

The question is: can machines make use of all of the advantages of human’s natural- 

language speech? If a machine can understand natural language, one can easily interact 

with that machine (Just like humans communicate with humans) in natural language to 

retrieve information, conduct transactions, or perform other problem-solving tasks. For 

example, people can direct the machine in spoken language to execute commands; with 

the assistance of external equipment (e.g. a telephone), activate remote controls or fulfill 

remote commercial transactions; visit the speech web with natural spoken-language input 

and voice output without text or graphic interfaces, Virtual-reality technology can be 

strengthened with more realistic natural-speech interactions. Machines can dictate what 

one says and save it as a text document; machines can automatically translate one 

language into other languages. People v/ith vision disability will suffer less on account o f 

the help of machines equipped with natural-language ability.

In addition, the World Wide Web has become an important tool in modem people’s daily 

life to retrieve information and conduct e-business transactions. But the current popular 

structure is mostly based on visual interfaces, which means that information and services
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are delivered to users in graphical and textual formats via computers. Consequently, the

web ignores a large number of people who have visual disabilities or do not have access 

to a computer due to time, location, and/or cost constraints. Therefore, we are looking 

forward to an alternative way to interact with the web, which provides such people with 

the chance to access the information and services by voice, i.e. a speech web.

1.2 Spoken-Dialogue Systems

A complete spoken-dialogue system involves integration of the following components 

(McTear, 2002) (Han, 2000) (Glass, 1999): a speech-recognition component, a language- 

understanding component, a diaiogue-management component, a component for 

communication with an external system, a response-generation component, and a speech- 

output component. These components work in a sequential stream, in which the first 

component receives the user’s input, then the output from that component feeds into the 

next component as the input, and so forth, until the consequent voice output is 

synthesized for the user. An overview of the interaction of the components in a spoken 

dialogue system is as follows (McTear, 2002):

The speech-recognition component receives the user’s input utterance and converts the 

continuous-time signal into a sequence of discrete units for the use of the language- 

understanding component. As the language component receives the information from the 

previous speech-recognition component, it analyzes the discrete units and derives a 

meaning representation for the next dialogue control component. The diaiogue- 

management component controls the dialogue flow by determining whether the user has 

provided sufficient information, also communicating with the external application and the 

user. Usually, it is a database that acts as the externa! system component for the requested 

information retrieval in the spoken-dialogue system. Finally, the response-generation
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component will construct the message retrieved from the external system component 

corresponding to the user’s request and send it to the speech output component to 

synthesize the voice output for the user.

1.3 Voice Applications

Voice applications are applications in which the input and/or output are through a spoken, 

rather than a graphical, user interface (IBM, 2001). The voice application can be a stand­

alone application, whose files reside on the local machine, or a distributed application, 

with application files residing in an intranet, or on the Internet.

Typically, voice applications can be categorized into “queries” and “transactions” (IBM, 

2001). The purpose of user access to a “query application” system is to retrieve 

information. The system provides users with a series of instructions, such as prompts and 

menu choices, the user uses spoken commands to make menu selections and fill in form 

fields. Based on the user’s input, the system locates the appropriate information from a 

back-end database, and presents the desired information to the user in voice output.

The “transaction” voice-application system provides users with the opportunity to 

execute specific transactions using voice. The user is guided to provide the data required 

for the transaction, and then responds to the system using spoken commands. Based on 

the collected data from the user’s input, the system executes the transaction and updates 

the appropriate records in the corresponding back-end database. Also, the system reports 

back to the user by playing back prerecorded audio files or by synthesizing speech based 

on the information in the database records.
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1.4 The Specific Problems to Be Addressed

Among the problems existing in speech recognition, accuracy and robustness are two 

important problems to be addressed. Although human beings seldom make mistakes in 

recognizing commoniy-used spoken words in their own language, machines are 

susceptible to recognition ambiguities or errors owing to a noisy environment, speech 

disfluency, and inability to use contextual knowledge. Since it is impractical to expect the 

machine to recognize speech 100% correctly, to improve the recognition accuracy 

becomes one of the major goals.

Then, if  the system cannot recognize the user’s speech input, will it be stuck? Humans 

have the ability to tolerate the mistakes in human-human communication to some extent. 

For example, if  a person asks “which moon did discovered by Hall?”, we - human beings 

- can make the reasonable guess that he/she is asking “which moon was discovered by 

Hall”, and give him/her a corresponding response. Therefore, we expect a spoken- 

language system to be robust to handle the user’s errors or “unexpected” input to some 

extent, so that the system can provide a re^onabie response to the user, and the human- 

machine interaction can proceed smoothly.

A grammar defines a language by specifying the legal utterances, i.e., the sequences of 

words that the user may say (Lucas, et a l, 1999)(VXML, 2000). Even with the same 

domain, different grammars can define different kinds of languages. For example, if  some 

semantic constraints are encoded into the syntax, the semantic grammar defines a smaller 

language than the corresponding syntactic grammar. For example, a sentence can be 

defined as a noun phrase followed by a verbphrase, denoted as the following syntax:

<sentence> = <nounphrase> <verbphrase>
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By this syntactic grammar, the sentences “a tree runs” and “a boy loses leaves” are legal, 

though they are not accepted in common sense. To avoid such funny sentences, some 

semantic constraints can be encoded into the syntax to further keep the correct semantics, 

as well as the correct syntax. The corresponding semantic grammar is as follows:

<seEtence> = <animatenounphrase> <animateverbphrase>

I <inanimatenounphrase> <inanimateverbphrase>

Then, the semantic grammar requires that an animate noun phrase (e.g., a boy) should be 

followed by an animate verb phrase (e.g, runs), and an inanimate noun phrase (e.g., a tree) 

should be followed by an inanimate verb phrase (e.g., loses leaves). So, the sentences “a 

tree runs” and “a boy loses leaves” are not correct in semantic grammar, though they are 

correct in syntactic grammar. The accuracy is improved with the reduction o f the defining 

language, but the robustness is lowered meanwhile. How to balance the accuracy and 

robustness is a great challenge for speech-recognition researchers.

1.5 Thesis Statement

This thesis is concerned with grammar design in natural-language speech-recognition. 

Several features are examined through initial experiments. In particular, we claim that:

(1) Encoding semantic constraints in a grammar can improve speech-recognition 

accuracy;

(2) Using a combination of grammars with different weights (probabilities) can help 

achieve good accuracy and good robustness.
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1.6 The Structure of This Thesis Report

The rest of this thesis report is constructed as follows:

A review of some speech-recognition techniques, such as statistical techniques, grammar- 

based techniques, and techniques involving semantics, is presented in chapter two and 

chapter three; chapter four discusses the existing problems in the state-of-the-art speech- 

recognition technology; chapter five discusses the grammars used in the experiment; 

chapter six proposes the investigation of the grammar design from various aspects; the 

experiments, results, and analysis are described in chapter seven; finally, conclusions and 

future work are summarized in chapter eight.
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Chapter 2

Overview of Speech-Recognition Techniques

Currently, many ways to construct language models for speech recognition exist. Roughly, 

the approaches can be categorized into stochastic (statistical) models (which require a 

large corpus of training data) and grammar-based models (which use grammars to specify 

the utterances) (Rayner et al, 2000b). A language model consists of a vocabulary (a set of 

words that can be recognized by the system) and grammar (a set o f rules by which 

sentences are parsed or constructed) (Souto et al., 2002). The grammar can be a set of 

linguistic rules or a stochastic (statistical) model. Generally, if a substantial domain 

corpus is available, a stochastic (statistical) language model is better as it is more robust; 

otherwise, a Context-Free Grammar-based language model may be more appropriate.

Stochastic (statistical) techniques and grammar-based techniques are two main streams in 

language-model constructions. It was reported in (Knight et a l, 2001) that stochastic 

(statistical) language models were popular around 1995, while by 2001, grammar-based 

language models took the pre-eminent position in commercial products.

In this thesis report, we give only a brief overview of speech-recognition techniques; 

more details can be found in Appendix A, which contains a comprehensive survey of
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research and the use of natural-language features to improve speech-recognition accuracy.

2.1 Stochastic (Statistical) Techniques in Speech-Recognition

A Statistical Language Model (SLM) is simply a probability distribution f{s) over all 

possible sentences s, or spoken utterances, documents, or any other linguistic units 

(Rosenfeld, 2000a).

The typical architecture of the speech language-understanding system that uses a 

stochastic model is described in (Knight et a l, 2001) as follows; firstly, a domain corpus 

is collected and used to create the statistical language model; then the statistical language 

model is incorporated into the recognizer; after that, a robust phrase-spotting parser is 

built to analyze the text output of the recognizer and produce semantic representations in 

the form of slot/filler pairs.

Statistical Language Models (SLMs) have the advantages o f simplicity, flexibility, 

adaptation, higher recognition accuracy, and robust performance. Meanwhile, SLMs 

suffer from the unavoidable disadvantage of the costly collection of huge amounts of 

training data. In addition, SLMs are not supported by commercial systems, such as 

VoiceXML browsers.

2.1.1 N-grams

The N-gram is the most frequently-used SLM technique in speech recognition. N-gram 

means: with enough amount of training data, each word can be predicted from the 

previous N-1 words (Souto et al., 2002). The probability of a word’s occurrence can be 

predicted by the preceding N-1 words, and one or more candidate words are output in 

some ranked “recognition-hypothesis list”.
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The type of training data to be collected is detemined by the task of the model. For 

example, if  it is a model for a medical application, the training data should be focused on 

medical reports, papers and other resource instead of sports or fashion. Usually, a trigram 

(N=3) is used with large training coipora (millions of words), whereas a bigram (N=2) is 

used with a smaller set of training data to create a less-accurate model (Rosenfeld, 2000a).

The primary advantage o f the N-gram ties in its robustness.

2.1.2 Multi-class Composite N-gram (Class N-gram)

The sparseness (the infrequency of word sequences in a corpus (Magerman and Marcus, 

1990)) is a common problem in the N-gram approach, even with large corpora. For 

example, in some training corpora, many triplets (in trigram) appear only once or a few 

times, thus, the straightforward estimation of N-gram probabilities from counts is not 

viable.

To address the problem of data sparseness, Rosenfeld (2000a) described an effective 

“class N-gram” technique, which is also proposed by Yamamoto et al. (2001), by using 

vocabulary clustering to battle the sparseness problem. Multiple words are assigned to 

one word class representing either syntactic categories (e.g., noun or verb) or semantic 

categories (e.g., days of the week, names or airports) (McTear, 2002) (Baggia et a l, 

1999), thus, the transition probabilities from word to word are approximately changed to 

that from class to class. Consequently, with the decreased search space (the number of 

classes is much smaller than that of the original words), the perplexity is reduced and 

recognition accuracy increases.

The key point of this technique ties in the clustering, which determines the quality of the 

model. It works better with small domains by manual clustering of semantic categories,
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and it is not as effective in less-constrained domains (Rosenfeld, 2000a).

2.1.3 Decision-Tree Models and Semantic-CIassification-tree Models

Decision-tree models (Rosenfeld, 2000a) as well as semantic classification-tree models 

(Noth et a l, 1996) take the advantage of a decision-tree structure. “A decision tree can 

arbitrarily partition the space of histories by asking arbitrary binary questions about the 

history at each of the internal nodes” (Rosenfeld, 2000a). The probability distribution of 

the next word is constructed, based on the training data at each leaf. Interpolating the leaf 

distribution with the intemal-node distribution found along the path can contribute to 

reduce the variance of the estimate (Rosenfeld, 2000a).

This kind of model suffers from the huge search space. If the average vocabulary size is 

denoted as b (the branching factor of the tree); and the utterance length is denoted as d, 

(the depth of the tree), the decision tree model has space complexity of 0(b^). Therefore, 

special techniques to prune the large trees are required.

2.1.4 Adaptive Models

Adaptive models in (Rosenfeld, 2000a) are addressed to alleviate the domain-restriction 

problem (discussed in sub-section 4.5). The Cross-Domain Adaptation model takes 

advantage of a cache to transfer test data to the language model without training. In the 

Within-Domain Adaptation model, the test data comes from the same source, but this 

particular source consists of many subsets of various topics, styles, or both. Then the 

adaptation can proceed among the subsets, and two different domains can be combined to 

construct a general model so that the language model can cover a wider domain.

A potential problem with adaptive models is that an increase in training data does not
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guarantee a corresponding improvement in the accuracy of the language model due to the 

fact that the data increases that occur in some domains might have little influence on the 

model in other domains.

2.1.5 N-best Filtering or Rescoring

N-best filtering or rescoring is a very simple search technique (Moore, 1999). Just as its 

name implies, this technique always chooses the best one in the sorted recognition 

hypothesis list according to certain criteria.

While simplicity represents the primary advantage of N-best filtering or rescoring 

approach, the high computational cost for large N is its disadvantage.

2.1.6 Learning Techniques

One of the big problems associated with SLMs is how to obtain the huge corpus of 

training data. Bootstrapping (Rayner et al, 2000a)(McCandless and Glass, 1994)(Baggia 

et a l, 1999) and use o f the World Wide Web (Zhu and Rosenfeld, 2000a) are two of the 

popular techniques to obtain the training data. Bootstrapping is the simplest and cheapest 

way to collect training data. Its basic mechanism is to build an initial version of the 

system using a hand-coded model, then put it into practice to collect more data. 

Recursively, the data is used to construct a new language model and that is used to collect 

new data. This cycle can be repeated until satisfactory accuracy is achieved. Also, the 

explosion of the information online makes the World Wide Web a good source for 

collecting training data.
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2.2 Grammar-Based Speech-Recognitioii

As an alternative to Statistical Language Models (SLMs), which apply word probabilities 

(N-gram) as the only form of language knowledge (Rosenfeld, 2000a), ^ammar-based 

speech recognition describes the language features in a set of rules to generalize over a 

certain application domain.

According to Knight et al. (2001), the up-to-date grammar-based strategy (which is 

usually adopted by commercial organizations) is like this: use Nuance or Speechworks as 

a standard commercial platform; then hand-code a grammar in some subset of Context- 

Free Grammar (CFG), and extend the grammar with semantic annotations; later on, using 

a system-initiative dialogue strategy, code in Nuance’s Speech Objects or Speechworks’ 

Dialogue Models or VoiceXML.

Compared to statistical techniques, grammar-based speech recognition is more common 

and easier to use and has reasonable recognition accuracy for small domains. In addition, 

an important advantage over statistical approaches is that grammar-based approaches do 

not require a large amount of training data that is difficult and expensive to collect.

However, grammar-based techniques require experts to write high-quality grammars, and 

the grammar rules are difficult to maintain and extend. In addition, grammar-based 

recognition is not as robust as are statistical techniques. For example, it cannot handle the 

utterances that are not covered by the grammar.

2.2.1 CFGs

A Context-Free Grammar (CFG) is a crude, yet well-understood, model o f natural 

language. A CFG consists of a vocabulary, a set of non-terminal symbols, and a set of
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production or transition rules. Usually, a CFG can be defined as a set o f rules that have a 

single atomic grammatical category on the left-hand side, and a sequence of atomic 

categories and words on the right-hand side (Moore, 1999)(Amaya et al, 1999). Based 

on the fact that all context-free rules can contain only one symbol on the left-hand side, 

and it is free to be replaced by the right-side rules, comes the name “Context-Free 

Grammar” (Blackburn and Striegnitz, 2002),

A sample CFG grammar that defines a sentence, such as “a boy opened the door”, is 

shown in figure 2.2.1:

<S> = <NP> <VP>;
<NP> = <Det> <N>;
<VP>= <V><NP>;
<Det> = the I a;
<N> = boy I door;
<V> = opened | closed;

Figure 2.2.1: a sample CFG grammar

2.1.2 Statistical or Probabilistic Grammars

Probabilistic Context-Free Grammars (PCFG) and Probabilistic Dependency Grammars 

(PDG) are two probabilistic (statistical) grammars. PCFGs are CFGs with a probability 

distribution defined over all productions that share their left-hand side (Rosenfeld, 2000b) 

(Moore, 1999) (Weber and Gorz, 1999). For the example, the conditional probability of 

the rule S -> NP VP might be 0.5, that means: if  there is a sentence S, there is 0.5 chance 

that it consists of a NP (noun phrase) followed by VP (verb phrase).

FDGs have some similarity to regular N-grams in that each word is predicted based on a 

number of other words. The difference is that, in a conventional N-gram, each word is 

predicated from the N-1 words immediately before it; whereas in a PDQ the words acting
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as the predictors depend on a hidden variables the dependency graph (RosenfeM, 2000a). 

Typically, a sentence s is parsed to generate the most likely dependency graphs Gi ( with 

attendant probabilities P(Gi)); then compute each generation probability P(s{Gi) (either 

N-gram style or an Maximum Entropy (ME) model); finally, the complete sentence 

probability is given by P(s) «= E i P(Gi)*P(s|Gi) (the reason for the approximation is that 

the P(Gi) themselves were derived from the sentence s). Sometimes P(s) is further 

approximated as P(s|G*), where G* is the single best scoring parse (RosenfeM, 2000a).

2 2 3  Discourse Grammar

The idea of Discourse Grammar that was proposed by Churcher et al. (1996) is to break 

the large syntax into smaller syntaxes to improve the performance of the language models 

with lower perplexity and ambiguity. The supporting idea is that, generally, the smaller 

syntax contains fewer words and less complicated structure than the original one, hence is 

potentially less ambiguous. A discourse segment can be a set of utterances with some 

properties in common, e.g., a certain topic, or even the discourse between a set of 

speakers, i.e., a dialogue.

2,2,4 Semantic Grammars

According to Demetriou and Atwell (1994a), semantic grammars are usually represented 

as transition networks, and provide stronger constraints than pure syntax by integrating

semantic conditions closely with the syntactic rules of the grammar. A syntactic grammar 

is effective in describing the structure of phrases and sentences, whereas semantic 

constraints are particularly useful for languages whose phrase orders are not very 

constrained, such as Japanese (Takezawa et a l, 1991).
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2.3 Combined Stochastic (Statistical) and Grammar-Based Techniques

As we have seen, both stochastic (statistical) and grammar-based techniqijes have their 

advantages and disadvantages. A question is whether it is feasible to take their respective 

advantages and overcome the disadvantages by integrating the stochastic techniques and 

grammar-based techniques.

There are some successful cases that combine these two techniques. The AXIS, Air Travel 

Information System (Moore, et al 1995) uses a CFG in parsing and produces a sequence 

of grammatical fragments, then, applies a trigram (N=3) to obtain a 15% reduction in a 

speech-recognition-error rate. Knight et a l (2001) first set up a CFG grammar-based 

system, then used it to collect the training corpus for a SLM. The results show the 

effectiveness o f grammar-based language for in-coverage sentences, and the SLM for 

out-of-coverage examples. Also, Rayner and Carter (1997), Geutner (1996), and Jones et 

al (1993) achieved robust and efficient performance within a linguistically motivated 

framework by combining the rule-based and statistical methods.

More detailed discussion of the research described in this chapter is given in Appendix A.
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Chapter 3

Overview of Existing Techniques of Using Semantics in 

Speech-Recognition

Language features are very effective in any system for reducing the number of possible 

utterances and for prioritizing utterance hypotheses (Hermannsdottir, 1996). Takezawa et 

al. (1991) say that ‘The accuracy of speech recognition heavily depends on what kinds of 

linguistic knowledge are used”. At the current state of the art, to achieve high accuracy in 

speech recognition with moderate to large vocabularies (hundreds to tens o f thousands of 

words), language models are necessary (Moore, 1999)(Haiper et a l, 2000)(Takezawa et 

a l, 1991)(SenefF et a l, 1995) as discussed earlier, and in Appendix A.

Semantics is that part of linguistic knowledge which is concerned with meaning. 

Semantic rules can be used to restrict the expressions of a language defined by a grammar. 

For example, the question “which man orbits a blue man” is syntactically correct but not 

semantically correct.
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3.1 Use of Large N, N-grams to Try and Capture Semantic Information

A traditional N-gram predicts the current word by the immediately previous N-1 words 

(discussed in sub-section 2.1), which assumes that the relevant information lies in the 

immediate past. However, the fact is that some syntactic or semantic information does 

exist farther back in the utterance. On the other hand, if  a larger N in an N-gram model is 

used, the free parameters will increase exponentially, which is too difficult to analyze.

Supported by an experiment using long-distance bigrams with reduced number of free 

parameters, Huang et al (1992) concludes that there is some relevant information, which 

is thinly spread across the history, in the distant past.

Considering the fact that in many languages (e.g. English) multiple words can be unified 

together and be treated as a single unit (phrase) in communication, Riccardi and 

Bangalore (1996) and Riccardi and Gorin (1998) proposed “phrase-based language 

models” to better (compared to word-based language models) capture long-spanning 

dependencies between words, without the exponential increase in the number of 

parameters.

3.2 Semantic Post-Processing of Oiitpwt from Statistical Recognizer

Since the goal of completely eradicating speech-recognition errors at the front-end of the 

recognizer is impractical at the state of the art, many approaches using semantic post­

processing for error correction have been investigated to further improve the recognition 

accuracy.
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3 2 A  Post-processing to Choose Best Hypothesis

On account of its simplicity and efficiency, N-best search can be used in a post­

processing stage in speech recognition to get better performance. Tran et a l, (1996) first 

constructed a recognition-hypothesis word graph, and then extracted the N-best word 

sequences from the word graph. Combined with language features, such as syntactic 

and/or semantic analysis, the N candidates can be re-scored with highly-reduced 

computational cost (Rayner et a l, 1994), and even many of the top-N sentence 

hypotheses can be eliminated before reaching the end with this type of syntactic and 

semantic analyses (Seneffe? al, 1995).

3.2.2 Post-processing to C o rrec t Errors

Loken-kim (1988) developed the Automatic Error Detection and Correction System 

(AutoDac), which is able to parse ill-formed sentences with a combination of left-to-right 

and right-to-left parsing; learn the history of recognition errors and utilize this 

information to subsequently recover from similar recognition errors in future tasks; and 

allow a user to manually correct any part of the recognized sentence. Combining 

automatic and manual error correction, a total of 142 out of 192 testing sentences were 

recovered correctly (Loken-kim, 1988).

3 .2 3  Post-processing to Modify System fo r Future Use

In the voice-interactive natural language system, Fink (1984) added a special module, 

called an expectation system, to aid the speech-recognition process. The basic idea is that 

the expectation system accepts the user's utterances and studies repetition and patterns in 

the dialogues to create a more general dialogue, then uses this generalized dialogue to 

correct errors in future sentences by prediction. The results showed that the average
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sentence error rate was decreased from 53% to less than 8%. Furthermore, it was 

concluded that the expectation system is capable of predicting what might happen in any

situation that tends to be repeated.

33 Integrating Semantics into tie  Grammar to Better Direct the

Recognizer -  Unification Grammars

Belonging to the augmented or annotated Context-Free Grammars, a Unification 

Grammar is more expressive and more concise than a traditional CFG in “representing” 

semantics in a syntactic notation. A Unification Grammar is a higher-level formalism 

than a Context-Free Grammar, and is obtained by applying some restriction properties to 

a CFG. With constraints unified to the grammar, Unification Grammars help reduce the 

system’s perplexity. To better understand the Unification Grammar, consider the 

following example from (Moore, 1999):

S: [tensed=yes] NP: [person=P, num=N] VP: [tensed=yes, person=P, num=N]

The difference to a traditional Context-Free Grammar (CFG) is the notion of the feature 

constraints (e.g. person=P, num=N). The consequent power lies in the fact that the 

Unification Grammar constrains the features to variable matching instead of listing all 

matching constraint value pairs. The subsequent advantage can be seen from the above 

example that Unification Grammar guarantees that the person and man features o f Noun 

Phrase (NP) and Verb Phrase (VP) must agree with each other, avoiding enumerating 

their respective features (person = first, num = singular, and so on).
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3.4 Integrating Semamtks Into the Grammar to Better Direct the 

Recognizer - Direct Encoding of Semantics as Syntax Rules

Observing that some syntactically correct utterances may be semantically wrong. Frost 

(2002) proposed an approach for encoding semantic rules directly in the syntax of the 

grammar to reduce the size of the language and therefore improve the recognition 

accuracy. Frost (2002) presented an example in which the sentence “which man orbits 

kuiper” may be accepted by a simple grammar for its correct syntax, but in the domain 

used in the example, people cannot orbit other people, thus it is semantically incorrect. 

The simple syntax that accepts the above example sentence might be as follows:

question ::= “which” nounphrase verbphrase

If we replace it with the following:

question ::= “which” animatenounphrase animateverbphrase

I “which” inanimatenounphrase inanimateverbphrase

then the semantically incorrect utterance above is not accepted, the perplexity is reduced, 

and hence the speech-recognition accuracy should be improved.

The primary advantage of this technique is an improvement in speech recognition

accuracy without unnaturally restricting the input utterances. However, this technique has 

the disadvantage that there is an increase in the size of the grammar by encoding 

semantic rales in the syntax, and this makes the system difficult to maintain. This can be 

overcome to some extent by combining this technique with the use of hyperlinlcs to create 

a Speech Web of speech-accessible objects, and further improve recognition accuracy by 

allowing the user to move between domain-dependent grammars (Frost, 2002).
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The method investigated in this thesis is based on Frost’s idea of encoding semantic 

constraints in the syntax of the recognition grammars.

3.5 Speech Webs

It is not easy to construct speech interfaces to large knowledge bases for the reason that 

large knowledge sources require large and complicated grammars, which are not trivia! to 

implement and which have high perplexity and therefore low accuracy (Frost and Chitte, 

1999). Instead, Frost and Chitte (1999) propose a new approach of dividing large 

knowledge sources into several smaller domain-based knowledge bases, called “siMos”, 

and using relatively narrow grammars in each individual sihlo. Only when the sihlo is 

visited are its grammar and other related properties downloaded to respond to the user. 

With the decrease o f the scope of the knowledge source, the query language is shrunk, 

which can significantly improve speech-recognition accuracy.

The user can move from sihlo to sihlo by “speaking” hyperlinks. In this approach, 

semantic constraints that are coded in the syntax of each sihlo are chosen to reflect the 

fact that some semantic constraints are appropriate in one context and are inappropriate in 

others (Frost, 2002). For example, the constraint “people cannot orbit anything” might be 

appropriate in a sihlo which only answers questions about moons orbiting planets, while 

not appropriate in a sihlo about astronauts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 Problems in Speech-Rccognition   Page 24

Chapter 4

Problems in Speech-Recognition

It seems that “speech-commimication ability’' is an instinct of human beings, for most 

human beings will be able to speak naturally at a certain age. But it is quite different for 

machines. Since countless human conversations proceed every day without any trouble, 

people do not realize that they have overcome many problems. In addition, many 

utterances can be understood only in particular context within some domains. However, 

all the above challenges and others, such as noise of the background and speaker 

variation, are very difficult for machines to tackle. Due to the large variability and 

flexibility o f human speech and the speciality of machines (compared to human beings), 

there are many problems in the speech-recognition process.

4.1 Recognition Accuracy

Speech is recognized correctly if  and only if  the recognition result returned from the 

system is correctly corresponding to the user’s speech input. There are two types of 

recognition errors: (1) utterance is not recognized at all; (2) utterance is mis-recognized. 

Since the first type of error (i.e., not recognized) might prompt the user to repeat, and the
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second type of error (i.e., mis-recognition) is likely to direct the user to the wrong results, 

it is very important to minimize the mis-recognitions. In general, statistical models have 

better recognition accuracy than grammar-based models. Good recognition accuracy is 

definitely one of the goals that numerous Al researchers have been pursuing.

4.2 Robustness

Robustness means the extent to which a system handles errors or ‘hmexpected” input. 

Robustness is crucial in language systems for the reason that the inability or low 

performance in processing incorrect utterances will cause unacceptable degradation of the 

overall system (Ballim and Pallotta, 2000). Like human beings, the idea! spoken- 

language models should tolerate disfluencies, out of vocabulary words, incomplete or 

ungrammatical utterances, to some extent in speech communication. In reality, various 

uncertain and flexible factors of the spontaneous dialogue add more difficulties to speech 

recognition. Generally, statistical models outperform grammar-based models in the sense 

of robustness. However, there is still a lot left to be desired in state-of-the-art language 

models toward the goal o f robustness.

4.3 Flexibility

An ideal spoken-dialogue system should be able to accept a user’s flexible utterances, 

allow the user to supply extra information and make reasonable responses (Milward, 

1999). While the fact is that the user may not realize the bounds of the domain, they may 

ask queries that are beyond the capability o f the system. For example, the JUPITER 

weather-information system (developed in MIT) can only forecast short-term weather 

(Glass, 1999). So, if  the user asks for “What is the weather in two months?” the JUPITER 

weather-information system cannot give an answer. Under such circumstance, the system
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is expected to give the user appropriate help to direct him/her to formulate an acceptable 

query. Since statistical models are based on huge training data and grammar-based 

models depend on the defining grammar, the former is more flexible than the latter.

4.4 Large vocabulary.

Many spoken-language systems are supported by a large vocabulary so that they can 

cover as many of the spontaneous utterances as possible. On the other hand, a large 

vocabulary can make the language system intractable; especially, the large number of 

categories due to the huge number of unrelated entries (RosenfeM, 2000a) is a great 

challenge for speech recognition. For example, in a large vocabulary, there is no closer 

relation between BANK and LOAN than that with COUNTRY. The relative 

independence in a vocabulary leads to the huge intractable parameters, which is a 

problem existing in both statistical and grammar-based models.

In communication, human beings use knowledge about word relationships to help them 

recognize utterances. For example, if  someone hears “ the interest rate on bank loa... is 

5%”. They can fill in the missing letters and recognize “loa.” as “loan”. In this way, 

humans can recognize utterances involving huge vocabularies. However, computer- 

recognition systems that are based on simple syntax rales or statistical relationships 

between word occurances cannot handle huge vocabularies as well as human beings.

4.5 Brittleness across domains.

The efficiency of current language models depends much on the domains on which they 

are trained (RosenfeM, 2000a). For example, a language model trained on business is not 

appropriate to recognize utterances about sports. Training of language models refers only 

to statistical models. Grammar-based models are totally brittle across a domain in the
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sense tliat a recognizer based on a grammar for one domain will not work at all in another 

domain unless they share common vocabulary and syntax rales.

4.6 False independence assumption.

While building a tractable language model, the state-of-the-art technology assumes some 

independence among different portions of the same document (RosenfeM, 2000a). For 

example, the N-gram mode! (statistical model) determines the probability o f the current 

word in a sentence only by the identity of the last N-1 words, which loses the long-term 

dependency. In particular, semantic constraints cannot be modeled with small N.

4.7 The Challenge

As mentioned in sub-section 1.4, accuracy and robustness are among the most important 

problems existing in speech-recognition technology. Usually, good accuracy is likely to 

lead to poor robustness; and vice versa. For example, the experiments o f chapter seven 

show that the semantic grammar defines the smallest size of language and the best 

recognition accuracy but the poorest robustness; while the syntactic grammar defines a 

larger language size, better robustness, but lower accuracy than the semantic grammar; 

meanwhile, the word-sequence grammar, defining the largest language, is the most robust, 

but the least accurate among these three grammars (i.e., semantic, syntactic, and word- 

sequence grammar). The challenge is, how to achieve a good balance between accuracy 

and robustness.
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Chapter 5

Grammars Used in the Experiment

Three types of grammar and their extensions are involved in the experiments. The 

experimental grammars are constracted based on the grammars created by Frost (2002), 

which define a language consisting of questions about the solar system, such as “who 

discovered phobos”. The three unextended grammars are defined over the same 

vocabulary, but define different sets of expressions on account of the different ways of 

combining the words. Furthermore, a set of words is added to each vocabulary of these 

grammars for extension purpose, so that each extended grammar covers a larger language 

than the original grammar.

The experimental grammars are defined in the Java Speech Grammar Format (JSGF), 

which is a platform-independent, vendor-independent textual representation of grammars 

for use in speech recognition (Sun, 2000). A summary of JSFG features is listed in table 5 

(Sun, 2000).

TalMe 5; summary o f JSGFfeatures
Feature Purpose 1
Word or “word” Words (terminals, tokens) need not be quoted |
<ruie> Rule names (non-terminals) are enclosed in <> |
rxi Optionally x |
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(...) Grouping
X y z ... A sequence of x then y then z then ...
X y l z . . . A set of alternatives o f x or y or z or ...
<rule> = x; 
public <rale> = x;

A private and a public rule definition

Table 5: summary o f JSGF features (Cont’d)

5.1 Simple Word-Sequence Grammars

A simple word-sequence grammar defines any sequence of words from the dictionary of 

some length, including neither semantics nor syntax. The unextended word-sequence 

grammar used in the experiment is given in figure 5.1.

1. /* 10-word word-sequence grammar
2. wordSequence_grain_extl .gram */
3. grammar wordSequence_gram_extl;
4. public <s> = <word>

|<word> <word>
|<word> <word> <word> 
j<word> <word> <word> <word>
|<word> <word><word> <wordxword>
|<word> <wordxword> <wordxword> <word>
|<word> <wordxword> <wordxword> <word><word> 
j<word> <word><word> <wordxword> <wordxword> <word>
|<word> <word><word> <word><word> <wordxword> <word><word>
|<word> <word><word> <wordxword> <word><word> <word><word> <word> 
i<simple>;

Figure 5.1: word-sequence grammar

Thereafter, the leftmost numbers in figures (figure 5.1, 5.2., 5.3) are line numbers. Line 1 

and 2 are comments. Line 1 says that this simple word-sequence grammar defines any 

10-word sequence. Line 2 tells the name of the grammar file. Line 3 marks the beginning 

of the JSGF grammar, defining the grammar name. Line 4 is a public rule, also the root 

rule of the grammar (the rale name is s), which consists of 10 alternatives of word
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sequence, i.e., 1-word sequence (<word>), or (denoted by “|”) 2-word sequence 

(<word> <word>), or 3-word sequence (<word> <word> <word>), and so on. Line 5 

specifies some sentences that can be used as condition to direct the voice application. For 

example, in our testing applications, if  the user says “goodbye”, the voice application 

terminates. Line 6, defines the dictionary (vocabulary) o f the language by listing all 

possible alternatives of the non-terminal <word>.

5.2 Syntactic Grammar

The syntactic grammar in the experiment only includes syntax, which defines the rules 

governing the structure of a language. The complete syntactic grammars used in the 

experiment are given in Appendix B. Figure 5.2 shows an extract. A brief explaination is 

provided later.

1. /* syntax_gram_extl.gram */
2. grammar syntax_gram_ext 1 ;
3. public <s> = <linkingvb> <termph> [<transvb> by ] <termph>

I <linkingvb> <termph> [<transvb> <preposition>] <termph>
I <quesll> <sent>
I ( who |what) <verbph>
I ( which I how maoy) <noimcla><verbpli>;

4. <sent> = <termph> <verbph>;
5. <termph> = <stennph> | <stemiph> (and | or) <stermph>;
6. <stermph> = <pnoun> j <detph>;
7. <verbph> = <transvbph> | <intransvb>;
8. <transvbph> = ( <transvb> | <linkingvb> <transvb> by) <termph> |

( <transvb> j <linkiiigvb> <b:ansvb> <prepositioa>) <termpli>;
9. <nouncla> = <adj> <cnoim> | <cnoun>;
10. <caiorai> = man \ men | person j people | planet | planets j moon \ moons j mountain | mountains |

crater | craters | sea | seas | ocean [ oceans | chemical j chemicals | gas j gases j metal] 
luetalsj nonmeta! | nonmetals | country | countries j capital | capitals | city jcities] 
continent] continents j river | rivers | lake j lakes ;

11. <intraiisvb> = spin j spins | orbit | orbits] orbited | exist | exists ;
12. <pnoun> = <pnoun_j5lanet_moon_human>
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j <!ionhiiiiian_pnouii_cliemical> 
j <space_program>
1 <earth^eography_domaiii>;

13. <transvb> = orbit | orbits j discover) discovered j neighbour | neighbours | neighboured | worship I 
worshiped \ contain | contains [ contained | find j finds | found;

Figure 5.2: extract o f  syntactic grammar

Line 3 is the root rule, which defines five kinds o f questions by five alternatives. The first 

(/second) kind of question is started by a linking verb, then a term phrase, then a 

transitive verb and by (second kind of question uses preposition like “in” or “on”, instead 

of by) (which is optional), then a term phrase. A term phrase is defined in line 5, which 

could use nouns in any category of planet, moon, human, geography, and so on. Sample 

sentence o f this question type could be: “is mars discovered by hall” or “is mars a moon 

The sample second kind of question could be: “is hydrogen found on earth”. The third 

kind of question starts with a question word (do\does\ did), then a term phrase, followed 

by a verb phrase (which uses transitive or intransitive verbs). The sample questions could 

be: “Does phobos orbit mars” or “Does phobos spin”. The fourth and fifth kinds of 

question define questions such as “who discovered phobos” and “how many moons orbit 

mars”.

53  Semantic Grammars

Semantics defines the relationships between symbols and their meanings. A semantic 

grammar directly encodes semantic constraints into the syntax of the grammar. The 

complete semantic grammars are given in Appendix B. An extract is shown in figure 5.3, 

and explained later.

1. /* semantics_gram_extl .gram */
2. grammar semantics__gram_extl;
3. public <s> = <linkingvb> <termphrase_verbplirase>

I is <pnoun> <pnoun>
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I is <pnoun> ( ajaa ) <QOuncIa> 
j is <pnoaH> ( a|an) <noancla> or ( ajan) <noTmcla>
I <qaestl> <sent>
! ( who) <animate_verbph>
I ( what) <iEanimate_verbph>
I ( which j how many) <noimda_verbph>
I {which I how many) <nouncla_verbph_other>;

4. <termphrase_verbphrase> = <nonhuinan_termph_plaiiet> <transvb_by_termph>
I <nonhuman_temiphjiioon> <aniniate_transvb> by <human_termph>
I <nonhuman_termpli_other> <animate_transvb> by <haman_teniiph>
I <nonhnman_termpli_other> <animate_trans¥b> <preposition> 

<nonhuman_termph_planet>
I <iionhTiman_termph_other> <animate_transvb> <preposition> 

<nonhuman_teniiph_moon>;
5. <transvb_by_tennph> = <animate_transvb> by <homan_termph>

I <inanimate_Jxansvb> by <nonhuinan_termph_iiiooii> 
j <inanimate_transvb_other> by <nonhumanJ:ermph_other>;

6. <sent> = <hiuman_termph> <animate_verbph>
j <noQhumaiiJ:emiph_mooE> <inanimate_verbph_active> 
j <nonhuman_termphj(laiiet> <inanimate_verbph_passive>
I <nonhiiman_termph_mQoii> <inanimate_verbph_active„other>;

7. <nouiicla__verbph> = <hranaii_iioimcla> <animate_verbph>
I <nonhuman_nouncla_moon> <animate_verbph_j5assive>
I <nonhuman_nouncla_j)lanet> <animate_verbph_passive>
I <nonhumanjioimcla_mooQ> <ioanimate_verbph._active>
I <noiihitman_noiincia_plaiiet><inanimate_verbph_passive>;

8. <nouncla_verbph_other> = <nonhuman_noiinc!a_other> <animate_verbph_passive>
I <nonhuman_Eouncla_other> <inanimate_verbph_passive_other>:

9. <inaniinate_verbph> = <inanimate_verbph_active>
I <inanimate_verbph_passive>
I <inanimats_verbph_active_other>
I <inanimate_verbph_passive_other>;

10. <human_stemiph> = <haman_pnoijn> | <huniaii_detph> ;
11. <nonhnmaii_stermph._phnet> = <nonhiii!iaa_j5iioim_j)lanet> | <noiihaman_detph_pkaet>;
12. <nonhuniaa_stemiph_moon> == <nonhuman_pnoim_moon> \ <nonhuman_detph_moon> ;
13. <nontoman_stermph_other> = <nonhuman_pnoun_other> | <nonhumaii„detph_other>;
14. <laimaii_termph> = <human_stemiph> | <lniman_stennph> {and | o r) <human_stermpli> ;
15. <nonliijmaiiJermph_p!anet> = <nonlmman_stermph_planet>

! <nonhuman_stemiph_j5laiiet> ( and | o r ) <nonhntnaxi_stermphj)lanet> ;
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16. <noDiniinan_templi_mooii> = <aoiihiimaia_stemiph_moon>
j <noiihiiman_stemiph._mooi2> ( and | o r) <nonhuman_stermph_jEoon>;

17. <nonliiimaii_termph_other> = <noahuman_stermph_oliier>
I <nonhuman_stemipli_other> ( and | o r) <noiilajman_steTmpli_other>;

18. <animate_¥erbpli> = <animate_transvbph>;
19. <iiianimate_verbph_active> = <manimate_trans¥bph_active> | <intransvb> ;
20. <inanimate_verbph_passive> = <manimate_iransvbph_passive>

I <intransvb>
j <inaniinate_tfaiisvb> sun;

21. <inanimate_verbph_active_other> = <iEanimate_traiisvbph_.active_other> | <mtfansyb__other>;
22. <inaiiiinate_verbphj)assive_ot]ier> = <inanimate_transvbph_passive_other> | <intransvb_otiier>;
23. <animate_transvb> = discover [ discovers | discovered | find j finds | found;
24. <animate_transvb_other> = worship | worshiped;
25. <inanimate_transvb> = orbit | orbits | orbited [ neighbour j neighbours | neighboured;
26. <inanimate_transvb_other> = contain | contains | contained;

Figure 5.3: extract o f semantic grammar

Similar to the syntactic grammar in figure 5.2, the semantic grammar in figure 5.2 defines 

nine kinds of question by specifying nine alternatives in line 3. The primary difference 

between the semantic grammar and the syntactic grammar is that the former encodes 

some semantic constraints into the syntax of the grammar to ensure the correct semantics 

besides the correct syntax. In the semantic grammar, nouns are classifed into groups 

based on semantics, such as human, moon, planet, and other category; and verbs are 

gouped into animate and inanimate, so that it is possible to make the nouns and verbs 

match in semantics. For example, hall and bond are people, so, they belong to human 

group; phobos and tritan are moons; earth and mars are planets; hydrogen and water go 

to other category; discover is an animate verb; orbit and spin are inanimate verbs. So, if 

take a look at the first type of question, it can be traced down the first alternative in line 3, 

then the first alternative in line 4 to expand the non-terminal in line 3, then the first 

alternative in line 5 to expand the non-terminal in line 4, finally, we can have the sample 

question like: “is mars discovered by halF. In this way, the question like: “is mars 

discovered by earth" would never be generated by the semantic grammar in figure 5.3,
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though it is possible by the syntactic grammar in figure 5.2 (e.g. from the first alternative 

of line 3 in figure 5.2). In other word, the semantic grammar improves the recognition 

accuracy by including semantic constraints in syntax to reduce the language size.

5.4 Extending the grammars

To further investigate the features of different grammars, the three types of grammars 

discussed in sub-sections 5.1, 5.2, and 5.3 are extended. To simplify the expansion, we 

just add a set o f words to each vocabulary of these grammars, so that each extended 

grammar covers a larger language than the original grammar. For example, in each 

original grammar, the <country> and <capital> rules both have size 6 (i.e., each 

language covers 6 countries and 6 capitals), and in the extended grammars, we add 181 

countries and 92 capitals to the vocabulary (now, each language covers 187 countries and 

98 capitals), so that the extended grammars cover larger languages than the original 

grammars.
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Chapter 6

Grammar Design in Speech-Recognition

Since most commercial speech products are constracted using grammar-based technology 

(Knight et a l, 2001), grammar design becomes a crucial issue in speech recognition. A 

grammar specifies the legal utterances, i.e., the sequences o f words that the user may say 

(Lucas, et a l, 1999)(VXML, 2000). Good grammar can achieve an appropriate 

compromise between accuracy and robustness. In our investigation, we observe that the 

size of the language defined by the grammar has a significant influence on speech 

recognition. For example, the direct encoding of semantic constraints into a syntactic 

grammar can reduce the language size, and the experiments show that this causes the 

speech-recognition accuracy to improve. However, constraining the language in this way 

leads to a reduction in robustness. Therefore, the grammar design is an extremely 

important topic in naturai-Ianguage speech-recognition.

6.1 Grammar and Language Size

As a grammar defines a language, the size of the language is defined at the same time. 

Language size means how many possible utterances can be generated by the specific 

defining grammar.
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A CFG can be defined as a set of rules that have a single atomic grammatical category on 

the left-hand side, and a sequence of atomic categories and words on the right-hand side 

(described in sub-section 2.2.1). To make it simple, we consider “word” or “category” as 

“symbol”, and “expression” to consist of one or more “symbols”. Then, the size of the 

defined language can be calculated in the following way:

1) The language size is the size of the root rule;

2) The size of right-hand expression is assigned to the size of left-hand expression;

3) If an expression is constracted by one symbol, the size of this expression is equal to

the size of the symbol;

4) If an expression is composed by a group of symbols (a phrase), the size of the 

expression is the product of the size of each symbol in this group;

5) If an expression consists of alternate symbols (disjunction), the size of the expression 

can be obtained by summing of the sizes of all the alternative symbols;

6) Each single word has the size 1;

Consider the sample CFG grammar in figure 2.2.1, language size is calculated as shown

in figure 6.1:

<S>32 ^  <|qp>4 <YP>^; 1/32 = 4*8
<NP>'" = <Det>^<N>"; f/4 = 2*2
<VP>« = <V>2 <NP>^ f/g--= 2*4
<Det>^ = the 1 a; 112
<N>^ = boy i door; //2
<V>2 = opened j closed: 111
Figure 6,1: language-size computation

Note: superscripts are used to denote the obtained size of the sub-language defined by the 

expressions; the following comments (starting with “//”) denote the computation used to 

calculate the size.
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The calculation process is explained as follows:

To calculate the language size defined by the grammar in figure 6.1, we start from the 

first rale of the grammar (also the root rule), which is composed of a complete phrase 

(grouping) with 2 symbols (i.e., <NP>, <VP>), so we need multiply these two symbols’ 

sizes which need further computation. Then, we trace the symbol <NP> first, which is 

defined in the second rule. We can find that <NP> requires <Det> and <N>. As for 

<Det>, fi*om the fourth rale of the above grammar, we know it has 2 alternative words 

(disjunction), which means the size o f <Det> is 2 (i.e. 2=1+1); also, we can get the size of 

<N> by 2. Then, we come back to the second rule to calculate the size of <NP> by 

multiply the sizes of <Det> and <N> (i.e., 4=2*2), i.e., the size of <NP> is 4. Similarly, 

we can get the size of <VP> by multiply the sizes of <V> and <NP> (i.e., 8 = 2*4). 

Finally, the root rule size is obtained by multiplying the sizes of <NP> and <VP> (i.e., 32 

= 4*8). Therefore, the size of the language defined by the above sample grammar is 32, 

which means it can accept 32 utterances, such as “A boy opened the door.”

The details o f language-size computation of the grammars in our experiment are given in 

Appendix B.

6.2 Interpretation of Language Size

Since the left-hand side symbol in CFG rule can be freely replaced by the right-hand side 

rules (refer to sub-section 2.2.1), we can obtain the following equivalent in figure 6.2 (1)

to the sample grammar in figure 6.1:

<S>̂ - = <Det>- <N>  ̂<V>  ̂<Det>- <N>^

Figure 6.2 (I): variation o f the grammar in figure 6.1
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So, from figure 6.2 (1), the grammar in figure 6.1 actually states that a valid sentence is 

composed of a determiner (<Det>), a noun (<N>), a verb (<V>), a determiner (<Det>), 

and a noun (<N>). In this specific example, each word has 2 valid alternatives. So, there 

are 2*2*2*2*2 = 32 possible valid sentences in the language defined by the sample 

grammar. Furthermore, the language size is the size of the root rule, which is the product 

of each word-candidate size (word-candidate sizes means how many possible alternatives 

for this word candidate, e.g., size of <N> is 2).

Then, if  we take J  as the average depth, i.e., the average length of a sentence in the 

language defined by a grammar, take b as the average branching factor, i.e., the average 

number of word candidates. In the above example, the average depth (average length of a 

sentence) d  is 5, the average word-candidate size (branching factor) b is 2, and the 

language size s is equal to 2  ̂(i.e., 32).

In this specific example in figure 6.2 (1), each non-terminal in the grammar rule has the 

same number of word candidates, and the grammar is equivalent to one rule. So, the 

average branching factor and the sentence length are obvious. In general, it is hard to 

know the precise sentence length and the branching factor. Since the language size can be 

precisely calculated using the method discussed in sub-section 6.1, if  either branching 

factor or language length is available, the other is able to be obtained using the formula 

5= Assuming all terminals and non-terminals in the grammar which has been assigned 

weight in a particular context will all occur with equal probability, the general average 

branching factor can be estimated in the following way:

1) The branching factor for an expression is the number o f its successors;

2) The left-hand side expression takes the first alternatives on the right-hand side 

expression as successors.
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3) If an expression has successors, it will be taken into account for average branching 

factor;

4) Each terminal (word) has the size 1;

5) Average branching factor can be obtained by summing up all the branching factors, 

then divided by the number of expressions for which branching factors have been 

calculated.

Consider a general grammar in figure 6.2 (2), where the leftmost numbers are line

numbers, superscripts are used to denote the branching factors of the preceding

expressions (in the left-hand side, superscripts directly denote the branching factor of 

non-terminals); the underlined superscripts are used for average branching-factor 

computation.

1. <sent>^ = <ex>^ <w>^;

2. <ex>^= <tl>^ and- <t2>^;

3. <w>^= <t2>^ or^ <t3>^

!<t4>^

4. <tl>^ = w l I w2 I w3 ;

5. <t2>^ = x l | x 2 ;

6. <t3>^ = n l i n2 I e3 i n41 n5 ;

7. <t4>’ = al I a2 I a3 i a41 a5 i a6 I a? ;

Figure 6.2 (2): sample grammar with branching factors

The first rule in line 1 is the root rule of this grammar. The expression sent is composed 

of ex followed by w. The branching factor (number of successors) for sent is the number 

o f possible alternatives of ex, which can be obtained by calculate the number of words in 

tl  according to the rule in line 2. tl  has 3 alternatives (line 4), so ex has the branching
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factor 3 in line 2, and sent has the branching factor 3 in line 1. In the ri^t-hand side of 

line 1, the successor o f ex is w, which is defined in line 3 with t2 and t4 as successors. 

Since t2 has 2 alternatives defined in line 5 and t4 has 7 alternatives defined in line 7, w 

has 9 successors in line 3(i.e.,9=2+7), which will be passed to ex in line 1. In this way, 

the other branching factors can be obtained shown in figure 6.2 (2). The average 

branching factor is calculated based on the expression with successors (numbers 

underlined in figure 6.2):

b = (3+9+l+2+l+5)/6 = 3.5

Note that, this method is not suitable for the word-sequence grammar which consists of 

word sequences. The branching factor for the word-sequence grammar is always equal to 

the number of words in the dictionary.

Since the grammar has defined possible valid choices for speech input, we consider the 

following two cases: (!) If the branching factor (b) is a constant, which means the 

average number o f word candidate are supposed a constant, the language size will be in 

exponential increase with d, the average length of an utterance in the language. (2) If the 

average length of a sentence d is fixed, then the increase of the branching factor h, i.e., 

the word-candidate size, will induce a polynomial increase in the language size {h )̂.

In practice, natural-Ianguage-database queries have a stable average utterance length (d), 

so the number of word candidates (i.e., the branching factor b) plays a prominent role in 

language size. In other words, increasing the vocabulary in a database query system can 

increase the language size considerably. For example, assuming an average utterance 

length {d) o f 5 and an average branching factor {b) of 2, we have 32 (i.e., 2^) utterances. 

If we keep the same utterance length {d=5), and double the branching factor (vocabulary 

size, b=4), the language size increases to 1024 (i.e., 4®).
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Note that this assumes that the average branching factor is directly proportional to the 

vocabulary size. Our experiment shows that this assumption is not valid in all 

applications,

6.3 The Significance of Language Size

6.3.1 Influence on Speeci-Recognition Accuracy:

We hypothesize that, in the same domain, the smaller the size of the defined language, 

the higher is the speech-recognition accuracy. This hypothesis is examined from both 

horizontal- and vertical- direction comparisons. Consider the following three general 

types o f grammar (discussed in chapter 5): one is the semantic grammar, which directly 

encodes semantic constraints into syntax rules of the CFG; the second is the syntactic 

grammar, which contains only syntax rules; the third one is a simple word-sequence 

grammar, which includes neither semantics nor syntax. With the same vocabulary, the 

semantic grammar defines a language with the smallest size, the syntactic grammar 

defines a larger-size language, and word-sequence grammar covers the largest language. 

The horizontal-direction comparison occurs between these three different types of 

grammar. We found that recognition accuracy increases with the decrease of the language 

size, which means that the semantic grammar is the most accurate, the second accurate 

grammar is the syntactic grammar, and the word-sequence grammer has the worst 

recognition accuracy.

In a second experiment, these three types of grammar are each extended to enlarge the 

language size by adding more words to the vocabulary. Then the vertical comparison is 

available between the original grammar (e.g. syntactic grammax) and the later extended 

grammar (e.g. extended syntactic grammar). The result was that the extended grammar
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has lower recognition accuracy than the original one, for it has increased the language 

size. This result was expected. The interesting part of this result is that recognition 

accuracy remained quite good for the semantic grammar despite significant increase in 

the language size.

We consider the speech recognition to be correct only when the recognition result 

returned by the speech-recognition system is in accordance with the user’s speech input. 

On the other hand, if  the speech recognition is not correct, there may occur two possible 

cases: (1) the system mis-recognizes the user’s speech input into something else. For 

example, the user says “Who discovered marsT\ the system returns with “Who 

discovered mimasT'; (2) the system cannot recognize the user’s speech input. For 

example, the system responds to the user with “Sorry, I didn’t understand” .

While designing a grammar in speech recognition, we expect a good accuracy. However, 

it is impractical to require a speech-recognition system to have 100% recognition 

accuracy with current technology. We would like the system to report the information of 

“not recognized” (such as the response to user “Sorry, I didn’t understand” in our 

experiment) rather than the mis-recognition (incorrect recognition), if  the speech 

recognition is not correct. The reason is that “Sorry, I didn’t understand” may prompt the 

user to repeat and get the correct speech input; while a mis-recognition is likely to pass 

the system wifii wrong information and lead the user to some wrong results.

Our experiments show that, with the semantic grammar, the speech-recognition system 

makes fewer mis-recognitions than the syntactic grammar with both semantically and 

syntactically correct utterances, and the word-sequence grammar has the most mis- 

recognitions among these three types of grammar, which proves that the semantic 

grammar outperforms the syntactic grammar and word-sequence grammar in recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Grammar Design in Speech Recognition_____________________  Page 43

accuracy with both semantically and syntactically correct utterance inputs.

Therefore, if  speech-recognition accuracy is the most important feature for a speech- 

recognition system, the granunar designer would try to restrict the language grammar to a 

size as small as possible, which, for instance, can be implemented by directly encoding 

semantics into the syntax of the grammar.

63.2 Influence on Robustness

Although it is effective to get good recognition accuracy by adding more constraints to 

shrink a language in size, it is likely to make the speech-recognition system lose 

robustness. Intuitively, when we are reducing a language in size, we are adding more 

constraints to the language, which implies that more utterances (that are valid in the 

original grammar) are discarded due to their invalidity in the shrunk language. If the 

discarded utterances are indeed not correct in some sense (e.g. semantics), the shrunk 

language is achieving a more accurate performance.

However, not all users might be clear about the domain of the speech-recognition system.

It is possible they may ask some out-of-range questions. If the system just discards such 

input, it may confiise the users if  they indeed don’t realize what’s wrong with their inputs. 

For example, if  in a solar system with the semantic grammar, the user asks the system 

“Does mars orbit phobos?”, which is absolutely syntactically correct, but semantically 

incorrect for a planet cannot orbit a moon in common sense. Then the solar system (with 

the semantic grammar) refuses such speech input due to its semantic incorrectness. But 

the user has not realized the problem and keeps asking such questions on account o f their 

syntactic correctness. At such time, if  the user cannot get any help from the system, 

communication may get stuck.
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Based on the above reason, sometimes, we expect the system to be able to accept some 

“incorrect” input, and provide the users with proper guidance to direct them back to the 

correct track on the speech-recognition system. That’s where the robustness lies. At this 

point, the speech-recognition system with the larger language size (e.g., defined by 

syntactic grammar) outperforms that with a smaller language size (e.g., defined by 

semantic grammar).

In grammar design, if  the application requires more robustness than accuracy, a syntactic 

grammar, instead of a semantic grammar, can be considered, for the reason that the 

syntactic grammar is capable of accepting the utterances that are syntactically correct but 

semantically incorrect, which are rejected by a sonantic grammar.

Generally, a trade-off exists between recognition accuracy and robustness, and how to 

balance the speech-recognition accuracy and robustness is a significant future task.
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Chapter 7

Experiment and Result

7.1 Overview of the Experiment

Our preliminary experiment was carried out to investigate the significance of grammar 

design in speech-recognition. Six grammars, i.e., semantic grammar, syntactic grammar, 

word-sequence grammar, extended semantic grammar, extended syntactic grammar, and 

extended word-sequence grammar (which are discussed in chapter 5), and two people, 

one English male and one non-English female, were involved in the experiment. The 

experimental subjects (people) speak to the experimantai system at a normal speed, 

pronouncing every word as clearly as possible, like a normal user to a speech-recognition 

system. They adjust their pronunciation by experience. All experiments are conducted 

consistently in the same experimental location, with the same background.

A summary of the language sizes is given later in table 7.4.2, and a detailed computation 

process of language sizes is given in Appendix B. The horizontal comparison is made 

among the semantic grammar, syntactic grammar, and word-sequence grammar, also 

among the extended semantic grammar, extended syntactic grammar, and extended word-
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sequence gramniar. The vertical O)mparison is conducted between semantic grammax and 

extended semantic grammar, syntactic 0 -ammar and extended syntactic grammar, word- 

sequence grammar and extended word-sequence grammar.

At the beginning of the experiment, each subject (person) is trained by a set o f utterances, 

in order that they can get used to the testing system and make their pronunciation 

acceptable to the system. Generally, people will adjust their pronunciation during the 

practice, so that it is gradually accepted more and more by the system. Therefore, we 

include the training part in the experiment to minimize the order effect, which means that 

the order that the grammar is tested will not affect its recognition accuracy. The training 

set is customized as a set of syntactically correct questions. Each person is trained by 

going through this set ten times using the syntax grammar.

The testing utterance inputs are categorized into the following three categories: a 

semantics set, which is composed of the questions that are both semantically and 

syntactically correct (e.g., “Is titania a mountain”); a syntax set, which consists of the 

questions that are only syntactically correct, but semantically incorrect (e.g., “Does a 

mountain contain a moon”); and a word-sequence set, which covers the utterances that 

are neither semantically nor syntactically correct, they are only word sequences (e.g., “Is 

mountain contain moon”). Ail three types of testing utterances are checked by text-mode 

testing to ensure they are categorized correctly.

To further minimize the order affect, the user will go through the three sets of questions 

for each grammar twice in different sequences, for example, in the order like this: 

(extended) semantic grammar, (extended) syntactic grammar, and (extended) word- 

sequence grammar.
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7.2 Experiment Environment

Our experiments were carried out using IBM WebSphere Voice Server SDK which can be 

freely downloaded from IBM (2002) on Windows XP platform. The grammars were 

written in JSGF, which can be embedded in VoiceXML pages as in-line grammar 

segments, or stored in separate files locally or remotely. The testing applications were 

written in VoiceXML (Voice extensible Markup Language), which is a programming 

language for building interactive voice applications (Teilme, 2002). VocieXML is an 

XML-based markup language for creating distributed voice applications, much as HTML 

is a markup language for creating distributed visual applications (IBM, 2001).

The IBM WebSphere Voice Server SDK provides a spoken equivalent to visual browsing, 

such as supporting VoiceXML to web application development activities (IBM, 2001). It 

can be used to create and test Web-based voice applications based on the workstation’s 

speakers to play audio output. Also, the developers can input data using the workstations’ 

microphones, prerecorded audio files, or the IBM WebSphere Voice Server SDK’s DTMF 

Simulator (to simulate any telephone key input) (IBM, 2001). The SDK also supports 

text-mode and automated testing.

The IBM WebSphere Voice Server SDK consists of a speech browser that interprets 

VoiceXML markup, IBM Via Voice Speech Recognition and Text-To-Speech (TTS) 

engines for accepting voice input and generating synthesized speech output, sample 

applications, and other tools for developing and testing VoiceXML applications (IBM, 

2001).

The hardware configuration is as follows:

•  256 MB RAM;
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•  30GB hard drive;

•  A display adapter with a setting of greater than 256 colors;

•  A Microsoft Windows 2000 compatible, 16-bit, foil-duplex sound card (with a 

microphone input jack) with good recording quality;

•  An average microphone.

73 Experiment Results

The experiment results are given with respect to subject (people), grammar, testing 

utterance set, and recognition result. The experiment result is denoted as follows: C: 

Correctly recognized, I: Incorrectly recognized, N: Not recognized at all. The testing 

order is considered in the experiment to ensure that the results are not unduly affected by 

the testing order.

Note that, in the experiments, person #1 went though all the semantic grammars and 

syntactic grammars using the semantics set and the syntactic set, and some of the 

experiments using the word-sequence grammars and the word-sequence testing utterance 

set; person #2 went through all the experiments using ail types of testing utterances and 

grammars. The experiment results are represented by two formats: a table and a graph. 

Partial experiment results in detail are given in Appendix D.uo

In the experiment, the recognizer was tailored with a grammar. The subject read the 

queries (utterances), and the recognition results were recorded. For example, given a 

small set of three queries as follows:

1. Was phobos discovered by a person?

2. Is titania a mountain?

3. Does Saturn contain a crater?
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Supposing person #2 uses the extended semantic grammar to test the above testing 

utterance set, the testing voice application is called “semantics_test_„ext2.vxini”, the 

command to run this application is: vsaudio_en_US.bat semantics_test_ext2.vxmi. The 

screen shot is shown in figure 7.3 (1).

 ̂ i /V inU.*'•!*

I t

Figure 7.3 (I): sample screen shown o f the experiment

The format o f trace entries in the IBM Voice Server SDK is defined with “Code: 

Message” as shown in table 7.3 (1) (IBM, 2001):

Table 7.3 (1); Trace code in IB M  Voice Server SDK
Code Message

Logged when the VoiceXML browser detects audio input, the speech
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recognition engine does not return a recognized phrase; this may be due to breath 

or background noise. The message column contains audio level messages.

F Logged when the VoiceXML browser fetches a resource such as a grammar file, 

an audio file, or a script. The message column contains the URI of the file, and 

whether it was fetched from the server or was in the cache.

H Logged when the user responds using voice input. The message column displays

the word or phrase that was recognized by the speech recognition engine.

V Logged when the VoiceXML browser fetches a .vxml file. The message column 

contains the URI of the file, and whether it was fetched from the server or was in 

the cache.

? Logged when the speech recognition engine determines that the user said 

something, but the confidence level is not high enough to justify using the results. 

In response, the VoiceXML browser throws a nomathc event. The message 

column contains the word or phrase that was recognized.

Table 7.3 (I): Trace code in IBM Voice Server SDK (Cont’d)

Refer to figure 7.3 (1), the “?: Was phobos discovered by a person” on the screen shot 

(i.e., in trace log) means that the user’s speech input “Was phobos discovered by a 

person” could not be recognized by the speech engine due to an insufficiently high 

confidence level, which is denoted by “N” in our experiment result record. The “H: Is 

titania a mountain” is the recognition result returned by the speech recognition engine, 

also that’s exactly what the user has said. Under such circumstance, we consider this 

recognition result to be coixect, and denote it with “C” in our experiment result record. 

The third utterance asked by the user was “Does satum contain a crater”, but the speech 

recognizer recognized it as “Does titan contains a crater”. Actually, the speech engine 

mis-recognized the user’s utterance input, we record it with “I” in the recogmtion result.
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7.3.1. Table Representation

The foilowing tables contain smmnaries of the raw results of the experiments which are 

given in Appendix D. To remind the reader what the rows and columns stand for, we 

summarize some of the discussion so far in this chapter:

1. Three initial grammars were used to configure the speech recognizer: a semantic 

grammar that defines the smallest language, a syntactic grammar that defines a larger 

language consisting of syntactically correct utterances, and a word-sequence grammar.

2. The three grammars were all extended to include a larger vocabulary and the 

experiment was repeated.

3. Three sets of utterances were used. A semantics set, which includes testing utterances 

that are both semantically and syntactically corret; a syntax set, which contains 

testing utterances that are only syntactically correct but semantically incorrect; and a 

word-sequence set, which covers word sequences that are neither semantically correct 

nor syntactically correct.

In addition, these tables show the experiment results after we changed the grammars to 

accommodate the person-specific problem (which is discussed later in sub-section 7.4.4).
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Table 7.3 (3): Experiment result using grammars BEFORE extension -  Person #2 

Person #2 (non-English female):
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Semantic # 1 25 0 4 21 0 16 84
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m Syntactic # 2 25 9 4 12 36 16 48
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Average 25 2' 11 42 : 8 : 44 48
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1
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Table 7.3 (3): Experiment result using grammars BEFORE extension -  Person #2 (Cont’d)
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Semantic # 1 25 0 5 20 0 20.0 80.0
Grammar #3 25 0 3 22 0 12.0 88.0

Average: 25- 0 ■ 4 ; , 21;. „ 0;. ..14,0 . ,, 8A0, . - .

m
'S

Syntactic #2 25 12 3 10 48.0 12.0 40.0

1 Grammar #4 25 12 1 12 48.0 4.0 48.0
m
S , Average . 25 12 2 . . . , 11 8.0 , 44.®

Word # 5 25 1 15 9 4.0 60.0 36.0
Sequence #6 25 0 14 11 0 56.0 44.0

Affifoge 25 0.5 14J:. 10 2.0, 58.0 . 40.0

Semantic #1 24 0 1 23 0 4.2 95.8

Grammar # 4 24 0 1 23 0 4.2 95.8

o
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a Syntactic #2 24 0 6 18 0 25.0 75.0

1 Grammar #5 24 0 17 0 29.2 70.8
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Table 7.3 (5): Experiment result using grammars AFTER extension -  Person #2 (Cont’d)
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132  Further Summary and Graphical Representation of the Results

To study the general trend of the experimental results, we take the average recognition 

results o f each subject using each grammar under each testing utterance set.

Table 73.2 (1): the ‘*C&rrecf^feature using the semantics set
Grammars Person #1 Person #2 Average
Semantic 82.2 68.5 75.35
Syntactic 80.1 52.7 66.4

Word Sequence 12.3 12.3
Ext. Semantic 78.8 61 69.9
Ext. Syntactic 74 46.6 60.3

Ext. Word Sequence 19.2 4.8 12

tte ^ t u e  iBi
Semrtlcs «

cTO
£
®
CO

■m'sin #1 
■m-soi #2 
M erag

Figure 73.2 (1): the "Correct ’’feature using the semantics set

The data above shows that: for both subjects, and for the original and extended grammars, 

the semantic grammar has higher accuracy than the other grammars; the word-sequence 

grfflnmar has much lower accuracy than the other grammars, for queries that are 

semantically as well as syntactically correct.
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Table 7.3.2 (2): the “Incorrect”feature using the semantics set
Grammars Person #1 Person #2 Average
Semantic 4.8 2.7 3.75
Syntactic 15.1 13.7 ^ 14.4

Word Sequence 59.6 59.6
Ext. Semantic 8.9 6.2 7.55
Ext. Syntactic 13.7 1 16.4 15.05

Ext. Word Sequence 63 69.9 66.45

the iixw ratrK S '" m im
Sawtics M

“̂ “1'

m m

■ rersai #1
■ m s m  #2 
Averag

Q -aw s

Figure 7.3.2 (2): the “Incorrect” feature using the semantics set

The data above shows that: for both subjects, and for the original and extended grammars, 

the semantic grammar has the lowest mis-recognition rate, and the word-sequence 

grammar has the highest mis-recognition rate, for queries that are semantically and 

syntactically correct.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 Experiment and Results Page 60

Table 7.3.2 (3): the “Not recognized” feature using the semantics set
Grammars Person #1 Person #2 Average
Semantic 13 28.8 20.9
Syntactic 4.8 33.6 19.2

Word Sequence 28.1 28.1
Ext. Semantic 12.3 32.8 22.55
Ext. Syntactic 12.3 37 24.65

Ext. Word Sequence 17.8 2^3 21.55
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Figure 7.3.2 (3): the “Not recognized”feature using the semantics set

Though it seems that there is not an obvious trend for the “not recognized” feature using 

semantics set, we can see the “not recognized” rates of semantic grammar and syntactic 

grammar are approximately the same. The figure also shows that the person #2 has

encountered more “not recognized” than person #1, which may be due to their experience 

with English.
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The above data shows that if the user asks the queries that are both semantically correct 

and syntactically correct, for both subjects, and for the original and extended grammars, 

the experiment results can be summarized as follows;

•  The semantic grammars have the highest correct recognition rate and the fewest 

incorrect recognition (mis-recognition) rate.

•  The word-sequence grammar has significantly less accuracy and higher mis- 

recognition rate than the other grammars;

•  The semantic grammar has approximately the same percentage of “not recognized” 

as the syntactic grammar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 Experiment and Results Page 62

Table 7.3.2 (4): the “Correct "feature using the syntax set
Grammars Person #1 Person #2 Average
Semantic 0 0 0
Syntactic 88 42 65

Word Sequence 8 8
Ext. Semantic 0 0 0 1
Ext. Syntactic 82 48 65

Ext. Word Sequence 2 2

tte ’‘teratr»s" FMtire mi ri 
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^  10) •ftrsoi m  
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Figure 7.3.2 (4): the “Correct ’’feature using the syntax set

The above data shows that; if  the user asks the queries in syntax set, which are only 

syntactically correct but semantically incorrect, the syntactic grammar, as well as its 

extension, has higher recognition accuracy than the other grammars. The semantic

grammars cannot recognize any query in the syntax set, and the word-sequence grammars 

have very low-recognition accuracy.
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Table 7.3.2 (5): the “Incorrect ’’feature using the syntax set
Gramnms Person #1 Person #2 Average
Semantic 26 18 22
Syntactic 0 10 5

Word Sequence 44 44
Ext. Semantic 16 16 16
Ext. Syntactic 2 8 5

Ext. Word Sequence 58 58
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Figure 7.3.2 (5): the “Incorrect ’’feature using the syntax set

The above data shows that: for the queries in syntax set, which are only syntactically 

correct but semantically incorrect, for both subjects, and for the original and extended 

grammars, the syntactic grammar has the lowest mis-recognition rate. The word-sequence 

grammar has the highest mis-recognition rate.
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Table 7.3.2 (6): the “Not recognized” feature using the syntax set
Grammars Person #1 Person #2 Average
Semantic 74 82 78
Syntactic 12 48 30

Word Sequence 48 48
Ext. Semantic 84 84 84
Ext. Syntactic 16 44 30

Ext. Word Sequence 40 40
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Figure 7.3.2 (6): the “Not recognized” feature using the syntax set

The above data shows that: if  the queries are only syntactically correct but semantically

incorrect, the semantic grammar is more likely to report “not recognized” information to 

the user than the other grammars. The syntactic grammar has the lowest “not recognized” 

rate.
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Figures 7.3.2 (4), 7.3.2 (5), and 7.3.2 (6), as well as tables 7.3.2 (4), 7.3.2 (5), and 7.3.2 

(6) show that if  the queries are only syntactically correct, but semantically incoirect, the 

experiment results can be summarized as follows;

•  The syntactic grammars have the highest accuracy, the lowest mis-recognition rate, 

and the lowest “not recognized” rate.

•  The semantic grammar cannot recognize any such kind of queries, and has the 

highest “not recognized” rate.

•  The word-sequence grammar has the most mis-recognitions;
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Table 73.2 (7): the “Correct ‘’feature using the word-sequence set
Grammars Person #2
Semantic 0
Syntactic 0

Word Sequence 14.6
Ext. Semantic 0
Ext. Syntactic 0

Ext. Word Sequence 6.3
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t
8

te'SOI #2

Figure 73.2 (7): the “Correct ’’feature using the word-sequence set

It can be seen from the above data that: if  the user’s queries are only word sequences that 

are neither semantically correct nor syntactically correct, only the word-sequence 

grammar can recognize some, though the accuracy (14.6%) is much lower than that of the 

semantic grammar using the semantics set (75.35%) or that of syntactic grammar using

syntax set (65%). Neither semantic grammar nor syntactic grammar can recognize any 

query in word-sequence set.
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Table 7.3.2 (8): the “Incorrectness”feature using the word-sequence set
Grammars Person #2
Semantic 10.4
Syntactic 29.2

Word Sequence 56.3
Ext. Semantic 4.2
Ext. Syntactic 27.1

Ext. Word Sequence 66.7

tte ‘’irewratrKS” Mtire lBir« 
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Figure 7.3.2 (8): the “Incorrectness ’’feature using the word-sequence set

The above data shows that: if  the input queries are only word sequences, the trend with 

respect to the mis-recognition rate is similar to that shown in figure 7.3.2 (4), which 

represents the “incorrectness” feature using the semantics set. The word-sequence 

grammar has the highest mis-recognition rate, and the semantic grammar has the lowest 

mis-recognition rate.
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Table 7.3.2 (9): the “Not recognized “feature using the word-sequence set
Grammars Person #2
Semantic 89.6
Syntactic 70.8

Word Sequence 29.1
Ext. Semantic 95.8
Ext Syntactic 72.9

Ext. Word Sequence 27

tte  tec^zed" Feature usi ng 
¥tt"d se^jeree set

- i^SCTl #2

cranMrs

Figure 7.3.2 (9): the “Not recognized” feature using the word-sequence set

The above data shows that: if  the user asks only word sequences that are neither 

semantically correct nor syntactically correct, the semantic grammar has the highest “not 

recognized” rate, and that for word-sequence grammar is the lowest.
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F ib res  7.3.2 (7), 7.3.2 (8), and 7.3.2 (9), and tables 7.3.2 (7), 7.3.2 (8), and 7.3.2 (9) 

show that, if  the queries are only word sequences that are neither semantically correct, 

nor syntactically correct, the experiment results can be summarized as follows:

•  Only the word-sequence grammar can recognize some queries. Neither the semantic 

grammar nor the syntactic grammars can recognize any such land o f queries.

•  The word-sequence grammars have the most mis-recognitions, and the semantic 

grammar has the lowest mis-recognition rate,

•  The word-sequence grammars have the lowest percentage for “not recognized” 

among the three kinds of grammars, and the semantic grammar has the highest “not 

recognition” rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 Experimmt aad Results Page 70

7.4 Detailed Analysis of the Results

The tentative experiment is examined and analyzed from the following aspects:

7.4.1 Review the Nature of the Testing Utterances (Queries)

The grammars in the experiment define the language that can accept users’ questions 

within the domain of a solar system. The testing utterances are customized with the goal 

of being representatives of the language. However, the language in the experiment is too 

large to be able to choose a sample size that can be shown to be truly representative from 

a phonetic perspective. For example, the smallest language in the experiment is defined 

by the semantic grammar with a language size o f 2.70 * 10* .̂ What we have done is to 

pick representatives from each type of question in each alternative in the root rale o f the 

grammar, which is subdivided further for subtypes of utterances. While selecting the 

words in the same category, we apply different words in different testing utterances in 

order to have a broad testing coverage. In addition, we did not include very long queries 

for testing utterances, such as “Is a red crater or an atmospheric mountain contained by a 

planet or a moon”, in the experiments in order to avoid speech errors from the person 

speaking that result from misreading the query. As a matter o f fact, we would say that the 

testing utterances are enough in number rather than in the sense of being provably 

representative. In a future, more intensive experiment, it might be possible to identify a 

more ‘provably-representative’ set of utterances.

7.4.2 Calculation of Language Size

Using the method described in sub-section 6.1, the sizes o f the languages defined by the 

experimental grammars can be calculated precisely, using the method in sub-section 6.2, 

the average branching factors can be estimated, furthermore, the estimated-average-query
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lengths are also available using the formula The detailed calculation process of 

language sizes and branching factors can be found in Appendix B and Appendix C

respectively, the results are summarized in table 7.4.2.

Table 7A.2tlanguage sizes ami branching factors
Grammar Language size (s) Branching factor {b)

semantic grammar 2.70 * 39.6

syntactic grammar 3.05 * 10^ 95.5

word-sequence grammar 2.31 * 10̂ '" 273

extended semantic grammar 5.55 * 10'^ 95.6

extended syntactic grammar 8.17 * 267.3

extended word-sequence grammar 2.40 * 10 '̂' 547

7.4.3 An Analysis of Individual User

Since the default voice in the experimental environment is an American male voice, it is 

not surprising that the person #1, English male (although not North American), in the 

experiment has an overall higher recognition accuracy than person #2 who is a non- 

English female. In addition, person #2 is more likely to be affected by the training, which 

means that she is being accepted by the system better with more practice and adjustment. 

That’s also the reason that we vary the testing order in the experiments.

Despite the differences between the experiment subjects, they provide the same trend, 

with only one exception (the “net-recognized” result when using the semantics set of 

questions), with the same grammar and testing-utterance set in the experiment, which is 

clearly shown by the figures in sub-section 7.3.2. This fact indicates that the 

performances of different languages (defined by different grammars) are comparable 

th o u ^  various subjects may be involved in the experiment. Furthermore, it proves the 

generality of the observations set up in this thesis.
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7.4.4 An Analysis of the Person-Specific Problem

The VXML browser has the ability to convert text to speech (TTS), but it requires the 

text be represented in its pronunciation format. For example, “OK” need to be written in 

“Okay”, and “etc.” in “et cetera”. During the experiment, we observed that the speech- 

recognition system may not be able to recognize some of the user’s specific words. 

Person #1, for instance, the word “earth” maybe recognized as “pans” or something else, 

and for person #2, the word “earth” may be acceptable, but the word “Jupiter” may be 

mis-recognized as “Jupitereighth”. To these specific words, we make the modification in 

all the grammars using “urth” to replace word “earth” that may have the pronunciation 

“ear th”, and using “Jupiter eighth” that are divided into two separate words, instead of 

the one word “Jupitereighth” in order to avoid the mis-recognition of word “Jupiter”.

The experiments do show the effectiveness of these modifications. The figures in sub­

section 7.3.2 show the results after we made such changes to all the experiemental 

grammars. The semantic grammars correct those words successfully, but the problems 

still exist in the syntactic grammars, which also proves our statement that the semantic

grammar has better recognition accuracy than the syntactic grammar. The drawback is 

that this correction is person-specific.

7.4.5 An Analysis of the ‘Correctness” Feature

From the figures in sub-section 7.3.2, we can state that: if  the user is very clear about the 

system, and inputs both semantically and syntactically correct utterances (in semantics set) 

to the speech-recognition system, the semantic grammar provides the best recognition 

accuracy, the syntactic grammar has the second best accuracy, and the accuracy of word- 

sequence grammar is the lowest. Meanwhile, in the vertical comparison, the extended 

grammar has lower recognition accuracy than its original one (before its extension).
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However, if  the user is not familiar with the speech-recognition system and its current 

domain, therefore asks out-of-range utterances, the semantic grammar is not superior to 

the syntactic grammar or word-sequence grammar any more. Refer to figure 7.3.2 (2) and 

figure 7.3.2 (3), as for only syntactically correct but not semantically correct utterances 

(syntax set), the syntactic grammar has better recognition accuracy than semantic 

grammar and word-sequence grammar; only word-sequence grammar, among the three 

types o f grammar, has any recognition ability (i.e., recognize some utterances correctly) 

to the word-sequence set.

1A£ An Analysis of the “Incorrectness” Feature

As discussed in sub-section 6.3.1, mis-recognitions are unwelcome in a speech- 

recognition system. Refer to figure 7.3.2 (4), in the semantics testing utterance set, the 

semantic grammars are least likely to have mis-recognitions, which means it performs 

better than the syntactic grammar and the word-sequence grammar. Meanwhile, the

extended grammars have relatively more mis-recognitions than their original ones. These 

phenomena are in coincidence with the finding that semantic grammars have the best 

recognition accuracy among these three types of grammar, and the accuracy drops down 

with the extension of the grammar (discussed in sub-section 7.4.4). But if  the user’s 

inputs belong to the syntax testing utterance set (only syntactically correct, but 

semantically incorrect), the semantic grammar is inferior to the syntactic grammars with 

respect to the mis-recognition feature. The word-sequence grammar always has the most 

mis-recognitions with any type of input utterances.

7.4.7 An Analysis of the “Not reeognizei” Feature

Within the semantics set, the semantic grammar is the one that is most likely to respond 

the user with “not recognized” information. The percentage of “not recognized” of the
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extended grammaxs is usually higher than the original grammars. Since the testing

utterances in the syntax set are semantically wrong, the semantic grammar often responds 

the user with “not recognized” here. The word-sequence grammars seldom respond the 

“not recognized” information in any testing utterance set.

7.4.8 Examine tie  Detail of Incorrect Recognition (Mis-recognition)

The tentative experiment has explicitly shown that the overall recognition accuracy of the

word-sequence grammar is pretty low. So, does that mean the word-sequence grammar is 

useless any way? If we take a careful examination of Table Appendix D (8) in Appendix 

D, we can find that, with proper analysis, the word-sequence grammar is also able to

provide some usefijl information in the speech-recognition system.

The mis-recognitions can be classified into two types by the extent o f the incorrectness in 

the recognition. The first type of mis-recognition is: the system recognizes most of the 

words (e.g., greater than 70%, this threshold is set up depending on specific system and 

requirement). For example, the user says “Was phobos discovered by a person”, the 

system does not recognizes the determiner “a”, and the recognition result is “Was phobos 

discovered by person” (number of correct words/ total number=5/6 = 83.3% correctness). 

In this case, the system has caught the correct meaning of the user's input, the 

communication between the user and the system can proceed smoothly.

In the second type of mis-recognition, the system may only recognize a small part of the

input utterance (e.g. less than 70%). For example, if the user asks “Which mountain is 

found on Jupiter”, the system recognizes as “which mountain is Yaounde Jupiter”, the 

correct recognition rate is 4/ 6 (66.7%). Though the recognition result seems fimny, we 

can guess from that the user is interested in “which mountain” and some relation to 

“Jupiter”. In this case, if  the system is robust enough, it could further confirm the user's
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question by prompting the user with "Are you interested in the mountain and Jupiter?” If 

the user answers “Yes”, the system may direct the user to the site with the information of 

“Jupiter and mountains”, and the communication continues correctly.

Furthemiore, if  we examine some sample recognition results, we may find some 

“probable” mis-recognitions. Again take a look at the Table Appendix D (8), we find out 

that the user’s input “found on” is likely to be recognized with “Yaounde”. So, if  there are 

not many utterances about the real “Yaounde”, we can replace the “Yaounde” with “found 

on” in the recognition results and obtain the more reasonable recognition. Then, the 

above example mis-recognition “which mountain is Yaounde Jupiter” is restored to 

“which mountain is found on Jupiter”, which is the correct result corresponding to the 

user’s input.

1 A 3  An Analysis o f the “R obustness” Feature

As discussed in sub-section 4.2, robustness means the extent to which a system handles 

errors or “unexpected” inputs. From the figures in sub-section 7.3.2, we can see that the 

semantic grammar is most likely to refuse incorrect inputs, since it cannot accept any 

utterance that is not semantically correct; the next one is syntactic grammar, which can 

accept the syntax set, but refuse the word-sequence set; while the word-sequence 

grammar seems to be able to accept any kind of utterances and word sequences. 

Therefore, the robustness of semantic grammar, syntactic grammar, and word-sequence 

grammar is increasing in this order.

7.4.10 Issues on Grammar Combination

Since we camot anticipate 100% accuracy in the state of the art, we have to try to 

overcome the drawback of non-recognition. For mis-recognition, it seems we cannot do
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anything to it, because during the communition, the user doesn’t realize the speech 

system has mis-recognized Ms/ her voice input unless the system returns what it gets after 

the user’s input, wMch is certainly annoying to the user.

If the system returns the information of ‘"Not recognized”, we may have the following 

tvm choices to improve it: (1) prompt the user to repeat Ms/ her utterances. For example, 

refer to table Appendix D (9), the second utterance (“Is titania a mountain”) was not 

recognized in the first round test (sem #1), but in the next round test (sem #3), it was recognized 

correctly. (2) Transfer the speech input to a grammar defining a larger language with the 

same domain. For example, we could combine the semantic grammar, syntactic grammar, 

and word-sequence grammar into one “combined grammar”, and assign them with the 

different probabilities in the descending order. When the system receives a voice input, 

the grammar with the highest probability (i.e., semantic grammar) is tried first. If it 

cannot recognize the input, the input is transferred to the grammar with lower probability 

(i.e., syntactic grammar), and so on. For example, the user asks an utterance in the syntax 

set, the semantic grammar definitely re&ses it, then the syntactic grammar (with lower 

probability) could be used, and may accept the input. The results o f our experiments 

suggest that speech-recognition systems which use combined grammars will be able to 

achieve a flexible combination of good accuracy and good robustness. This part of our 

hypothesis requires further investation.

7.411 An Analysis of tie  Results for Design Issues

Through the above analysis, the advantages and disadvantages of each grammar 

(semantic grammar, syntactic grammar, and word-sequence grammar) are summarized as 

follows:
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•  The semantic grammar has the best recognition accuracy for semantically and 

syntactically correct utterances, but lowest robustness for other types of utterances. It 

defines the smallest language, with the most complicated grammar design that is 

most difficult to maintain and extend;

•  The syntactic grammar has median performances in accuracy, robustness, language 

size, and grammar complicity, among these three types of grammar;

•  The recognition accuracy of the word-sequence grammar is very low, but it is the 

most robust grammar, and may provide some useful information when the user 

inputs an ‘unexpected’ utterance. The grammar of word sequence is the simplest one, 

which covers the largest language.

•  If these three grammars are integrated into one combined grammar, using probability 

values, the speech-recognition system may achieve flexible combination of accuracy 

and robustness.

So, what kind of grammar should be applied in a specific speech-recognition system 

which can only use one grammar? If the system requires high recognition accuracy, the 

semantic grammar should be the first selection; otherwise, if  the system emphasizes more 

robustness than accuracy, the syntactic grammar could be considered. The word-sequence 

grammar as the most robust grammar may be useful in some specific application. To 

balance the robustness and accuracy, we suggest integrating these three grammars, and 

assigning them different probability values.

Furthermore, the language size defined by the grammar in the speech-recognition system 

needs to be considered. Refer to sub-section 7.4.2, the smallest language in the 

experiment has the size of 2.70 * 10*̂ . So what has been proven in the experiment maj/ 

be applicable to grammars that define a language size less than 2.70 * 10̂ .̂ To better
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imagine how large the language is, figure 7.4.11 {!) and figure 7.4.11 (2) show a sample 

grammar and a language in tree structure.

<Sent>^^®°“  -  <Quest>^ <Det>“<Noun>*“  <Verb>^ <Det>^ <Nouii>̂ ®®; 
//3*100*3*2*100=1.8 * 10̂
<Quest>^ = was j does | did;
<Det>^ = a j an;
<Noun>**’ = planet j moon | mountain j gas j chemical | earth | mars |. .. //100 words 
<Verb>^ = find j found | contain;

Figure 7.4.11 (1): sample grammar showing language size
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<Quest>

<Det>^

An
<Noim>100

planet moon mountain 100 words
<Verb>^

d found contain 
<Det>^

a A .

<Noun> 100

planet moon mountain 100 words

Figure 7.4.11 (2): Tree structure o f the language defined by the sample grammar

It is shown that the smallest language in our experiment is almost amiliion times larger 

than the above sample language. It is reasonable to believe that the results of the

experiment identify a not-worse performance in speech-recognition systems, such as

command systems, covering a small vocabulary of commands, such as “open the door” 

and “turn on the light”, but the experiment cannot guarantee the same accuracy for larger 

systems such as a university-management system with a larger vocabulary, for example, 

thousands of students.
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Chapter 8

Conclusion

8.1 Smiimary of Work Done

To investigate the features of grammars in speech recognition, experiments were carried 

out and results were analyzed. Based on the grammars created by Frost (2002), we 

constructed three types of grammar, semantic grammar, syntactic grammar, and word- 

sequence grammar, as well as their extensions. The examination of different grammars in 

speech recognition is conducted from two directions: horizontal and vertical comparisons. 

Semantic grammar, syntactic grammar, and word-sequence grammar are compared in 

horizontal direction. The original (unextended) grammar is compared with its extension 

(e.g. syntactic grammar vs. extended syntactic grammar) for vertical comparison. Two 

subjects (people) are involved in this experiment, an English male and a non-English 

female. Three customized testing-utterance sets are included in the experiments: one is 

the semantics set, in which the utterances are both semantically and syntactically correct; 

second set is the syntax set, which covers the utterances that are only syntactically correct 

but semantically incorrect; the third set is the word-sequence set, which includes only 

word sequences that are neither semantically nor syntactically correct.
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The experiments indicate that: in the same domain, the smaller the size of the defined 

lan^age, the higher is the recognition accuracy, but the less is the robustness. Meanwhile, 

the experiments show the unexpected result that the semantic grammar is less likely to 

lead to mis-recognition than the syntactic grammar and word-sequence grammar with the 

utterances that are both semantically and syntactically correct. If the utterances are only 

syntactically correct and semantically incorrect, the syntactic grammar outperforms the 

semantic grammar. In addition, the word-sequence grammar would be useM  with 

‘unexpected’ utterance inputs.

Furthermore, the experimental results suggest that the integration of semantics, syntax, 

and word-sequence grammar, using probability values, into speech-recognition grammar, 

would achieve a flexible combination of robustness and accuracy.

There are many factors involved in grammar design and speech-recognition issues. 

T h o u ^  what we have shown are very crude experiments, they are sufficient to indicate 

that grammar design in speech-recognition technology is a good area for further study.

8.2 Limitations of the Experiment

Although there is no contradictive evidence in the experiment to the thesis statement, it is 

really a quite crude and preliminary experiment. There are a number o f limitations that 

need further improvement.

•  Insufficient knowledge of the recognition mechanism used in the VXML tool

During the experiment, we did not study the recognition mechanism of the experiment 

tool. We don’t know the threshold of a phoneme to be accepted (recognized) by the 

system. We don’t know whether the speech speed will influence the speech recognition. 

We have no idea whether large spaces between words will be helpM  or hindering to 

speech recognition. We also don’t know whether the loudness level will affect the 

recognition result, and to what extent background noise will affect the recognition.
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•  Representative utterances

In sub-section 7.4.1, we look into the testing utterances, and have to accept that it is hard 

to say that these utterances are the exact representatives of the language. For example, we 

did not include very long testing utterances in the experiments, such as “Is a red crater or 

an atmospheric mountain contained by a planet or a moon”, in order to avoid speech 

errors that result from the person misreading the query.

•  Subject-specific problems

As analyzed in sub-section 7.4.4, there are subject-specific problems in our experiment 

which may affect the generic application of the speech-recognition system. If more 

subjects (people) are involved in the experiments, someone may have some problems that 

are ail right to others, but the others may have other new problems. So, it will be very 

hard to handle the subject-specific problems in generic meaning.

•  Crude experiment

This experiment is only a crude and preliminary experiment. Only two people (subjects) 

and three types of grammar: semantic grammar, syntactic grammar, and word-sequence 

grammars, are involved. In the future, more people (subjects) and more experiments will 

be involved.

8.3 Future Work

As we have seen through this thesis report, there is a lot to be desired in the speech- 

recognition technology. Moreover, every step along the long road is open to philosophical 

debate. As much as we understand that a 100% accuracy and robustness in speech- 

recognition is impractical, we do respect the sufficiency of any trivia! observation and 

improvement. Since the extensive investigation shows the significance of grammar 

design in speech-recognition technology, it deserves further attention in the future work.

Besides the above limitations discussed in sub-section 8.2, we will consider another
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critical issue existing in speech-recognition technology: how to balance the recognition 

accuracy and robustness. In foture work, we would combine the semantics, syntax, and 

word sequence, using probability values, into speech-recognition grammar to achieve a 

flexible combination of accuracy and robustness.

Furthermore, we also expect to construct a speech-recognition system with good 

flexibility in the future. As we showed in sub-section 4.3, flexibility is one of the 

problems in speech-recognition technology. The idea! system is able to accept the user’s 

out-of-range utterances, and provide him/her with some reasonable guidance to direct 

him/her to the correct place to continue using the system. We’d like to set the flexible 

navigation through a speech-web as our foture work.

8.4 Summary of Conclusions

Over the past decades, a lot of work has been carried out on speech-recognition 

technology, a variety of approaches have been proposed, and numerous commercial or 

laboratorial speech-related products have emerged. However, there are a number of 

unsolved problems in speech-recognition technology. In this thesis report, we have 

investigated the significance of grammar design in natural-language speech-recognition.

Supported by the experiments, we conclude as follows:

•  Adding syntactic rules does improve recognition accuracy.

•  Adding semantic constraints further improves accuracy.

•  All of the grammars have advantages and disadvantages, so the application 

characteristics need to be carefolly examined to select the proper grammar. Table 8.4

summarizes the relation between the application characteristics and grammars.

Application
Characteristics

Grammars Accuracy
(%)

Incorrectness
(%)

High accuracy 
for semantic

^  Semantic grammar High (75) Low (4)
Syntactic grammar Median (66) M(14)
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Word-sequence grammar Low (12) H i^  (60)
High robustness 

for syntactic 
queries

Semantic grammar Low (0) Median (22)
^  Syntactic grammar High (65) Low (5)
Word-sequence grammar Median (8) High (44)

Highest 
accuracy for 

word sequences

Semantic grammar Low (0) Low (10)
Syntactic grammar Low (0) Fm  (30)
^  Word-sequence Median (15) High (56)

Table 8.4: application characteristics and grammars (Cont’d)

Table 8.4 shows that if  the application requires high recognition accuracy for 

semantic queries, the semantic grammar should be the best choice with highest 

recognition accuracy and lowest mis-recognition rate; if  the application asks for 

high robustness with syntactic queries, the syntactic grammar should be the 

candidate; if  the application need highest robustness for word sequences, the word- 

sequence grammar could be considered.

•  If the grammar could be combined, using probability values, it would result in a 

flexible combination between accuracy and robustness.
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Appendix A: A Survey of Research on Using Natural 

Language Features to Improve Speech Recognition 

Accuracy

ABSTRACT

With the growing interest and demand for human-machine interaction, more and more 

work conceming speech-recognition has been carried out over the past decades. This 

survey investigates the techniques involved in speech-recognition, including the widely- 

used robust stochastic approaches, the prevalent grammar-based methods, combined N- 

gram and grammar-based techniques, parsing techniques used for speech recognition, the 

approaches of integrating syntax and semantics, and other techniques. Since language 

features play a significant role in speech-recognition, the techniques o f using semantics in 

speech-recognition are emphasized. Although many research prototypes and even 

commercial applications have been deployed, many challenges remain in the 

development of speech-recognition technologies.
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1. THE NEED FOR SPEECH RECOGNITION

Looking back on human history, language marked the evolvement of the humanMad, 

words recorded the civilization of the human society, and speech communication has 

been the most common, convenient, and preferred methods of commmiication of human 

beings. For the majority of human beings, speech commmiication is the easiest way to 

convey information from human to human, for it can make hands free, can proceed in the 

dark, and even can reach very far distance through radio and telephone.

The question is, can machines make use of all of the advantages of human’s natural 

language speech? If a machine can understand natural language, one can easily interact 

with that machine (just like communicating with another human) in natural language to 

retrieve information, conduct transactions, or perform other problem-solving tasks. For 

example, people can direct the machine, in spoken language, to execute commands; with 

the assistance of external equipment (e.g., telephone), activate remote controls or M fill 

remote commercial transactions; visit the speech web with natural spoken language input 

and voice output without text or graphic interfaces; virtuai-reality technology can be 

strengthened with more-real natural-speech interactions; machines can dictate what one 

says and save it as a text document; machines can automatically translate one language 

into other languages and the people with vision disability will suffer less on account of 

the help of machines equipped with a natural-language ability.

Over decades, a number of Artificial Intelligence (AT) researchers have been striving to 

build models to interact between humans and machines with natural-language speech. 

The conversational interfaces in the 1950s marked the origin o f spoken-dialogue systems 

(McTear, 2002), whereas, it is only in the past decade that speech technology has 

achieved advanced progress with the introduction of both research prototypes and 

commercial applications, such as SPHINX (the first accurate large-vocabulary continuous 

speaker-independent speech recognition system, which was developed at Carnegie 

Mellon University (Huang et a t, 1992) (Lee, 1988) (Kita and Ward, 1991)), ATIS (an 

actual spoken language Air Travel Information System (Moore et a!., 1995)) ,
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CommandTalk (a spoken-language interface to a battle-field simulator (Goldwater et a l, 

2000) (Dowding et a l, 1999) (Stent et al., 1999) (Moore et a l, 1997)), and the JUPITER 

weather information system (developed in MIT, (Glass, 1999)).

The potential o f speech technology has aroused the attention of some telecoinmiinicatioii 

and software companies. Some newly-developing areas, e.g. computer-teiephony 

integration, are demanding speech solutions. Subsequently, the corresponding products 

were created, such as, voice portals (McTear, 2002), which provide a  speech-based 

interface between a telephone user and web-based services.

A complete spoken-dialogue system involves the integration of the following components 

(McTear, 2002) (Han, 2000) (Glass, 1999): a speech recognition component, a language 

understanding component, a dialogue management component, a component for 

communication with an external system, a response generation component, and a speech 

output component. These components work in a sequential stream, in which the first 

component receives the user’s input, then the output from that component feeds into the 

next component as the input, and so forth, until the consequent voice output is 

synthesized for the user. An overview of the interaction of the components in spoken 

dialogue system is as follows (McTear, 2002):

The speech-recognition component receives the user’s input utterance and converts the 

continuous-time signal into a sequence of discrete units for the use o f the language- 

understanding component. As the language component receives the information from the 

previous speech-recognition component, it analyzes the discrete units and derives a 

meaning representation for the next dialogue control component. The dialogue- 

management component controls the dialogue flow by determining whether the user has 

provided sufficient information, also communicating with the external application and the 

user. Usually, it is a database that acts as the external system component for the requested 

information retrieval in the spoken-dialogue system. Finally, the response-generation 

component will construct the message retrieved from the external system component 

corresponding to the user’s request and send it to the speech output component to
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synthesize the voice output for the user.

From the above architecture, it can be seen that speech recognition forms the basis, the

fijndamental part, and the gateway of the whole spoken-dialogue system. Recognition 

accuracy directly affects the performance of the subsequent processes. The main task of 

speech-recogoition research is to build a suitable language model to determine the 

individual words of the input utterances and to specify the possible sentences for the 

system (McTear, 2002). The technology of speech recognition is concerned with various 

linguistic features, including syntax and semantics, and statistical or grammar-based 

techniques are also involved.

2. PROBLEMS IN SPEECH RECOGNITION

Since countless human conversations proceed every day without any trouble, people do 

not realize that they have overcome many problems in such conversations, such as, 

disfluencies, interruptions, confirmations, anaphora, and ellipsis. For example, Glass 

(1999) showed a statistic number that almost 50% acknowledgements (e.g., “okay”, 

alright”, ‘hih-huh”) occurred in the customer dialogues. In addition, many utterances can 

be understood only in particular context within some domains. However, al! the above 

challenges and others, such as noise of the background and speaker variation, are very 

difficult for machines to tackle. Due to the large variability and flexibility o f human 

speech and the speciality of machines (compared to human beings), there are various 

problems in the speech-recognition process.

•  Recognition Accuracy.

A human being only makes a few mistakes in interpretation if  he/she knows the 

words. However, it is not the same in human-machine speech interaction. There are 

a variety o f factors that may cause recognition ambiguities or errors that degrade the 

performance of the whole spoken dialogue system. Improved accuracy of the 

speech recognizer is one of the goals that numerous Al researchers have been 

pursuing. High accuracy of speech recognition is very important.
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•  Robustness.

Robustness means 'the extent to which a system handles errors or “unexpected” 

input. Robustness is cracial in language systems for the reason that the inability or 

low performance in processing incorrect utterances will cause unacceptable 

degeneration of the overall system (Baliim and Pallotta, 2000). Like human beings, 

the ideal spoken-language models should tolerate disfluencies, out of vocabulary 

words, incomplete or ungrammatical utterances to some extent in speech 

communication. In reality, various uncertain and flexible factors o f the spontaneous 

dialogue add more difficulties to speech recognition. There is still a lot to be desired 

for the state-of-the-art language models toward the goal o f robustness.

•  Large vocabulary.

Many spoken-language systems are supported by a large vocabulary so that they 

can cover as many as possible of the spontaneous utterances. On the other hand, a 
large vocabulary can make the language system intractable, especially, the large 

number o f categories due to the huge unrelated entries (Rosenfeld, 2000a), is a great 

challenge for speech recognition. For example, in a large vocabulary, there is no 

closer relation between BANK and LOAN than that with COUNTRY. The relative 

independence in a vocabulary leads to the huge intractable parameters. Suppose that 

the related words can be grouped into one category, for example, BANK and LOAN 

belong to the same category FINANCE, the number of the categories in the 

vocabulary must be much fewer than the original individual words. (This idea can 

be found in class N-gram technique, discussed in section 3.2). Some large- 

vocabulary related techniques in speech recognition are discussed in section 9.2.

•  FlexibiMty (Milward, 1999).

An ideal spoken-dialogue system should be able to accept a user’s flexible 

utterances, allow the user to supply extra information and make reasonable 

responses. While the fact is that the user may not realize the bounds of the domain,
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they may make free queries that are out o f flie capability of the system. For example, 

the JUPITER weather infomation system (developed in MIT) can only forecast 

short-term weather (Glass, 1999). So, if  the user asks for “What is the weather in 

two months?” the JUPITER weather information system cannot give an answer. 

Under such circumstance, the system is expected to give the user appropriate help 

to direct him/her to formulate an acceptable query.

•  Brittleness across domains (Rosenfeld, 2000a).

The efficiency of the current language models depends much on the domains on 

which they are trained. For example, a language model trained on business is not 

appropriate to recognize utterances about sports.

•  False independence assumption (Rosenfeld, 2000a).

While building a tractable language model, the state-of-the-art technology assumes 

some independence among different portions of the same document. For example, 

the N-gram model determines the probability o f the current word in a sentence only 

by the identity of the last N-1 words, which loses the long-term dependency. In 

particular, semantic constraints cannot be modeled with small N.

3. STOCHASTIC (STATISTICAL) TECHNIQUES IN 

SPEECH RECOGNITION

At present, there exist various ways to construct language models for speech recognition. 

Roughly, the approaches can be categorized into stochastic (statistical) models (which 

require a large corpus of training data) (discussed in this section), and grammar-based 

models (which uses grammars to specify the utterances) (discussed in section 4) (Rayner 

et al., 2000b). A language model consists o f a vocabulary (a set of words that can be 

recognized by the system) and grammar (a set of rules by which sentences are parsed or 

constructed) (Souto et a l, 2002). The grammar can be a set of linguistic rules or a
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stochastic (statistical) model. Generally, if  a substantial domain corpus is available, a 

stochastic (statistical) language mode! is better as it is more robust; otherwise, a Context- 

Free grammar-based language mode! may be more appropriate.

So far, many language models have been successfully constructed for stochastic 

(statistical or probabilistic) techniques. Stochastic language models are designed and 

evaluated to optimize speech-recognition accuracy. A Statistical Language Model (SLM) 

is simply a probability distribution P(s) over all possible sentences s, or spoken utterances, 

documents, or any other linguistic units (Rosenfeld, 2000a).

The typical architecture of the speech language-understanding system that uses a 

stochastic model is described in (Knight et al, 2001) as follows: firstly a domain corpus 

is collected and used to train the statistical language model; then the statistical language 

model is incorporated into the recognizer; after that, a robust phrase-spotting parser is 

built to analyze the text output of the recognizer and produce semantic representations in 

the form of slot/filter pairs.

3.1 N-grams

The N-gram is the most frequently-used stochastic technique in speech recognition. N- 

gram means, with enough amount of training data, each word can be predicted from the

previous N-1 words (Souto et a l, 2002). Namely, the probability o f a word’s occurrence 

can be predicted by the preceding N-1 words and one or more candidate words are output 

in some ranked “recognition hypothesis list”.

The type of training data to be collected is determined by the task of the model. For 

example, if  it is a model for medical application, the training data should be focused on 

the medical reports, papers and other resource instead of that in sports or fashion. Often, a 

trigram (N=3) is used with large training corpora (million words), whereas a bigram (N=2) 

in the smaller set of training data (Rosenfeld, 2000a).

The primary advantages of the N-gram lie in its robustness.
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3,2 Multi-class Composite N-gram (Class N-gram)

The sparseness (the infrequency of word sequences in a corpus (Magerman and Marcus,

1990)) is a common problem in the N-gram approach, even with the large corpora. For 

example, in some training corpora, many triplets (in trigram) appear only once or few 

times, thus, the strai^tforward estimation of N-gram probabilities from counts is not 

viable. To address the problem of data sparseness, Rosenfeld (2000a) describes various 

techniques, such as the discounting the maximum likelihood estimation (Witten and Bell,

1991) (Good, 1953), recursively backing off to lower order N-grams (Kneser and Ney, 

1995) (Ney et a t, 1994) (Katz, 1987), linearly interpolating N-grams of different order 

(Jelinek and Mercer, 1980), constituent boundary parsing method (discussed in section 

6.6), and using h i ^  level semantic domains (discussed in section 8.7).

According to Rosenfeld (2000a), Yamamoto et al. (2001) propose an effective “class N- 

gram” technique by using vocabulary clustering to battle the sparseness problem. 

Multiple words are assigned to one word class representing either syntactic categories 

(for example, noun or verb) or semantic categories (for example, days of the week, names 

or airports) (McTear, 2002) (Baggia et a l, 1999), thus, the transition probabilities from 

word to word are approximately changed to that from class to class. Consequently, with 

the decreased search space (obviously, the number of classes is much smaller than that of 

the original words), the perplexity is reduced and the recognition accuracy increases. The 

key of this technique lies in the clustering, which determines the quality o f  the model. It 

works better within small domains by manual clustering semantic categories, and it is not 

the same case in the less constrained domains (Rosenfeld, 2000a).

33  Decision-Tree Models and Semantic Classification-Tree Models

Decision-tree models (Rosenfeld, 2000a), as well as semantic classification-tree models 

(Noth et a l, 1996) take the advantage of decision-tree structure. “A decision tree can 

arbitrarily partition the space of histories by asking arbitrary binary questions about the 

history at each of the internal nodes” (Rosenfeld, 2000a). The probability distribution of
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next word is constructed, based on the training data at each leaf. Interpolating leaf 

distribution with intemal-node distribution found along the path can contribute to reduce 

the variance of the estimate (Rosenfeld, 2000a).

Seen from the experiment of (Noth et a l, 1996), the semantic classification-tree model, 

combined with different knowledge sources, improved the recognition rate. However, 

since the tree stracture has space complexity o f 0(bd), where b is the branching factor 

and d is the depth of the tree, the space of the history is very large, and the space of 

possible questions is much larger (Rosenfeld, 2000a). Therefore, techniques to prune the 

large trees are needed. For example, the CART-style LM used a history window of 20 

words and restricts questions to individual words to control the history space (Rosenfeld, 

2000a).

3.4 Adaptive Models

Domain restriction remains one of the problems in speech recognition (discussed in 

section 2). Adaptive models in (Rosenfeld, 2000a) provide the possibility to alleviate the 

domain problem. The Cross-Domain Adaptation model takes advantage of a cache to 

transfer test data to the language mode! without training. In the Within-Domain

Adaptation model, the test data comes from the same source, but this particular source 

consists of many subsets of various topics, styles or both. Then the adaptation can 

proceed among the subsets, and two different domains can be combined to construct a

general model so that the language mode! can cover a wider domain.

A problem with the adaptive models is that an increase in training data does not guarantee 

a corresponding improvement in the accuracy of the language model. The reason is that 

the adaptive models may cover several domains and it is possible that the data increase 

occurs on some domains that have little influence on the model in other domains.

3.5 N-best Filtering or Rescoring

N-best filtering or rescoring is a very simple search technique (Moore, 1999). Just as its
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name implies, this technique always chooses the best one in the sorted recognition 

hypothesis list. According to different criteria or different language models, the order of 

the hypothesis list is different. Section 8.2 discusses several examples o f the N-hest 

technique for the post-processing of the speech recognition output. Some 

implementations require that N be known in advance (Murveit and Moore, 1990), while 

there are also techniques (Seide et a!., 1996) (discussed in section 8.2) that do not have 

this requirement.

The primary advantage of the N-best approach is its simplicity. The disadvantage is high 

computational cost for large N. Generally speaking, if  N is small the computation rate is 

low, but the increase of the length of a sentence may cause an exponential increase o f N 

(Murveit and Moore, 1990).

3 £  Learning Techniques

Stochastic techniques are popular for their good recognition accuracy and robustness.

However, it is not a trivial task to obtain the huge corpus of training data. The following 

are some techniques to obtain the training data.

•  Bootstrapping (Rayner et a l, 2000a) (McCandless and Glass, 1994) (Baggia et al.,

1999).

Bootstrapping is the simplest and cheapest way to collect {xalning data. The main 

idea is to build an initial version of the system using a hand-coded model, then put it 

into practice to collect more data. Recursively, the data is used to constract a new 

language model and that is used to collect new data. This cycle can be repeated until 

satisfactory accuracy is achieved.

•  Use of The World Wide Web

Nowadays, with the boom of the World Wide Web, the information available online 

has been growing at an exponential factor. Undoubtedly, the World Wide Web is 

destined to be the main source for collecting training data for stochastic methods.
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Taking advantage of the World Wide Web access to a huge amount of information 

online and use of effective search engines, Zhu and Rosenfeld (2000a) proposed an 

efficient method to obtain the N-gram (N=3) estimates for statistical language 

modeling. The N -^am  was submitted to the web search engine as a phrase query to 

retrieve the corresponding web pages containing the N-gram data. At the same time, 

the number of the retrieved web pages and the count of the N-gram were calculated.

3.7 Summary

Statistical Language Models (SLMs) have the advantages of simplicity, flexibility, 

adaptation, higher recognition accuracy and robust performance. Also a key advantage of 

SLMs over grammar-based models is the ability to handle the input that is not in the 

language defined by the grammar.

On the other hand, SLMs suffer the unavoidable disadvantage of the costly collection of 

huge amount of training data. In ATIS (Air Travel Information System (Moore et a l, 

1995)), it took over a year and $1M to careMly collect the 20000 utterances (Knight et 

a l, 2001). According to (Rosenfeld, 2000a), an informal estimation by IBM states that an 

effective bigram models needs several hundred million words as training data; and the 

trigram models are probably to absorb a few billion words. The worst is that most of the 

training data comes from written language, which does not really reflect the spontaneous 

nature in spoken language.

Even though the World Wide Web provides a great opportunity for collecting large 

amount of training data in all kinds o f domains, the quality of the statistical language 

models is not improved by a corresponding factor. Actually, the improvement o f SLM is 

asymptotic (Rosenfeld, 2000a), which means that even though the online resource can 

increase at an exponential rate, the quality o f the SLM is not likely to improve by a 

significant factor.

Data sparseness and limited scope dependencies are also two problems existing in the up- 

to-date standard N-gram-based statistical language models (Chappelier et a l, 1999)
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(Weber and GorZj 1999). Section 3.2 describes a possible solution to the data sparseness 

problem, and section 8 discusses the possible solutions to the limited-scope dependencies

problem.

4. GEAMMAM-BASED SPEECH RECOGNITION

As an alternative to Statistical Language Models (SLMs), wMch apply word probabilities

(N-gram) as the only form of language knowledge (Rosenfeld, 2000a), grammar-based 

speech recognition describes the language features in a set of rules to generalize over a 

certain application domain.

According to (Knight et a l, 2001), the up-to-date grammar-based strategy (which is 

usually adopted by commercial organizations) is like this: use Nuance or Speechworks as 

a standard commercial platform; then hand-code a grammar in some subset o f  Context- 

Free Grammar (CFG), and extend the grammar with semantic annotations; later on, using 

a system-initiative dialogue strategy, code in Nuance’s Speech Objects or Speechworks’ 

Dialogue Models or VoiceXML.

4.1 Context-Free Grammars (CFGs)

A Context-Free Grammar (CFG) is a crude, yet well-understood, model o f natural 

language. A CFG consists of a vocabulary, a set of non-terminal symbols, and a set of

production or transition rules. Usually, a CFG can be defined as a set o f roles that have a 

single atomic grammatical category on the left-hand side, and a sequence of atomic 

categories and words on the right-hand side (Moore, 1999), (Amaya et al, 1999). Based 

on the fact that all context-free rales can contain only one symbol on the left hand side, 

and it is free to be replaced by the right side rules, comes the name “Context-Free 

Grammar”.

Unlike the finite-state grammar, a CFG allows recursion (Moore, 1999), which makes it

much more suitable for defining linguistically-based language models. However, it does 

not include more detail o f the language constraints, which may be significant in the
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grammars definition (Moore, 1999). For example, to define the sentence with the 

stracture that a noun phrase followed by a verb phrase, in CFG, the rule can be written as 

S NP VP. In general, a sentence will express the person and number, the verb tense, 

and whether it is interrogative or declarative. The CFG can only define such detail 

information by adding more rules for each person, tense and so on. Obviously, this will 

greatly increase the number of the rales. An alternative is to annotate the CFG grammar 

in some ways, which are discussed in sections 8.4.1 and 8,4.2.

4.2 Statistical or Probabilistic Grammars

•  Probabilistic Context-Free Grammars (PCFG).

The mathematics of Probabilistic Context-Free Grammars (PCFG) is the basis of 

most hybrid approaches in Natural Language Processing. Probabilistic Context-Free 

Grammars (PCFGs) are CFGs with a probability distribution defined over all 

productions that share their left-hand side (Rosenfeld, 2000b), (Moore, 1999), 

(Weber and Gorz, 1999). For the example that the conditional probability o f the rale 

S-^ NP VP is 0.5, Moore (1999) explains that this means: if  there is a phrase S, there 

is 0.5 chance that it consists of a phrase of NP followed by VP.

Rosenfeld (2000b) points out that the consequence of fusing CFGs and bigrams was 

a model with size (number of parameters) comparable to a bigram yet performance 

comparable to a trigram. However, it is necessary to consider about both the CFG 

itself and the context-free production probabilities to use PCFGs for unconstrained 

language. Since the-state-of-the-ait CFG cannot sufficiently cover unconstrained 

English, and it is difficult to globally optimize context-free production probabilities, 

and even with the possible global optimum, the context-free production probabilities 

might not have sufficient expressive power to capture the true distribution of parses, 

PCFGs cannot compete (statically) with the conventional N-gram (Rosenfeld, 2000b).

Furthermore, if  the probability is based on a Unification Grammar instead of a 

Context-Free Grammar, a Probabilistic Unification Grammar is obtained. However,
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Moore (1999) states that there appears to be no published reports of models that 

incorporate all the constraints of a complex unification grammar into a statistical 

model.

•  Probabilistic Dependency Grammars (PDG).

Similar to regular N-gram, in Probabilistic Dependency Grammars (PDG), each word 

is predicted based on a number of other words. The diflference from conventional N- 

gram is that, in the latter, each word is predicated from the N-1 words immediately 

before it; whereas in PDG, the words act as the predictors depend on a hidden 

variable, the dependency graph (Rosenfeld, 2000a). Typically, a sentence s is parsed 

to generate the most likely dependency graphs Gi ( with attendant probabilities 

P(Gi)); then compute each generation probability P(slGi) (either N-gram style or an 

Maximum Entropy (ME) model); finally, the complete sentence probability P(s) ^  E 

i P(Gi)*P(s|Gi) (the reason for the approximation is that the P(Gi) themselves were 

derived from the sentence s). Sometimes P(s) is further approximated as P(s|G*), 

where G* is the single best scoring parse (Rosenfeld, 2000a). Rosenfeld (2000a) 

introduces an example model developed by Chelba et al. (1997), which uses the 

parser of (Collins, 1996) to generate the candidate parses, and uses maximum 

entropy to train the parameters.

43  Discourse Grammars

The notation of Discourse Grammar was proposed by Churcher et al (1996) to break the 

large syntax into smaller syntaxes to improve the performance of the language models 

that have lower perplexity and ambiguity. The idea supporting this approach is that, 

generally, the smaller syntax contains fewer words and less complicated structure than 

the original one, hence is potentially less ambiguous. Furthermore, Churcher et a l (1996) 

broke the discourse into discourse segments that reflect a set of utterances with some 

properties in common. A discourse segment can be the utterances discussing a certain 

topic, or even the discourse between a set of speakers, namely, a dialogue. Using three 

syntaxes based on a corpus of transmissions between the ATC and pilots, Churcher et al
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(1996) explored experiments and achieved 8% increase compared to the original large 

syntax. Also, similar ideas can be found in (Frost and CMtte, 1999) (section 9.1 discusses 

the details).

4*4 Semantic Grammars

Stochastic, syntactic and semantic grammar methods are widely used in speech

recognitions with their respective features. According to Demetriou and Atwell (1994a), 

semantic grammars are usualiy represented as transition networks, and provide stronger 

constraints than pure syntax by integrating semantic conditions closely with the syntactic 

rules o f the grammar. A syntactic grammar is effective in describing the structure of 

phrases and sentences, whereas semantic constraints are more powerftil for languages 

whose phrase orders are not very constrained, such as Japanese (Takezawa et a l,  1991).

For more details about the semantic grammars, refer to sections 8.4 and 8.5.

4.5 Summary

Stochastic (statistical) techniques and grammar-based techniques are two main streams in 

language-model constructions. It was reported in (Knight et a l, 2001) stochastic 

(statistical) language models were popular around 1995, but by 2001, grammar-based 

language models took the prevalent position in commercial products.

Compared to statistical techniques, grammar-based speech recognition is more common 

and easier to use and has reasonable recognition accuracy for small domains. Actually,

within the domain covered by the grammar, the recognition accuracy is pretty high and 

the fact is that the user usually has the rough idea about the system and stays in the 

domain (Rayner et a l, 2000b). In addition, for simple applications, good grammars can 

be constructed quickly and efficiently (Rayner et a l, 2000b). In contrast to the stochastic 

techniques, grammar-based techniques have another compelling advantage that they do 

not require large amount of training data that is difficult and expensive to collect.
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Just as a coin has two sides, the grammar-based technique also has its disadvantage that it 

needs experts to write high-quality grammars and the grammar rules are difficult to 

maintain and extend. Geistert (1998) developed a Grammar Interface Tool (GIT), by 

which the grammar and the lexicon for a specific application can be designed from some 

example sentences annotated with their respective semantic interpretation.

In addition, the grammar-based recognition is not as robust as statistical techniques. For 

example, it will make mistakes while encountering the utterances that are not covered by 

the grammar. Also, the lack of robustness can be a result of over-constraint (Glass, 1999). 

The DARPA AXIS program (Ward and Issar, 1996) (Noord et a l, 1998) successfully 

solved this problem by keyword and phrase spotting methods instead o f the folly 

analyzing the whole utterance. Seneff (1992) proposed another approach that they firstly 

analyzed the complete utterance, then backed off to robust parsing if  no complete parse 

was found.

5 COMBINED STOCHASTIC (STATISTICAL) AND 

GRAMMAR-BASED TECHNIQUES

So far, the success of the stochastic (statistical) language model approach has been 

proved by its simplicity, flexibility, better recognition accuracy and robustness. 

Meanwhile, it suffers from the unavoidable difficulty of collecting large and expensive 

training data corpus. On the other hand, the grammar-based language model adopts a set 

of grammatical rales instead of calculating the word occurrence possibilities from the 

training data in the recognition. For simple applications, the grammar is not too difficult 

to construct, but it is cannot handle out-of-coverage utterances. The question is, is it 

feasible to take their respective advantages and overcome the disadvantages by 

integrating the stochastic techniques and grammar-based techniques?

The AXIS, Air Travel Inforaiation System (Moore, et a l 1995), is one example o f the 

successful language models, which uses a CFG in parsing and produces a sequence of 

grammatical fragments, then, the trigram (N=3) is applied. The results o f such integration
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of CFG and SLM included a 15% reduction in a speech recognition error rate. Using 

syntax on trigram, Chelba (2000) carried out experiments on the Wall Street Journal, 

Switchboard and Broadcast News corpora and achieved the improvement in both 

perplexity and word error rate over the original trigram. Also, Rayner and Carter (1997), 

Geutner (1996), and Jones et al. (1993) achieved robust and efficient performance within 

a linguistically motivated framework by combining the rule-based and statistical methods.

Knight et al. (2001) implemented the preceding idea in the experiment o f a home device 

control system. They firstly applied the Nuance Toolkit Grammar Specification Language 

(GSL) to set up a CFG grammar-based system. As a language model, this grammar-based 

system accepts the user’s input and collects the utterances as the training corpus for a 

Stochastic (Statistical) Language Model (SLM.). The SLM uses a standard back-off 

trigram model over the training corpus obtained from the grammar-based system. The 

results show that the grammar-based language model performs well for in-coverage 

sentences, but very poorly on out-of-coverage ones. However, the SLM makes slightly 

more word errors for in-coverage sentences, but performs much better for out-of­

coverage examples.

Benedi and Sanchez (2000) linearly combined the N-gram models and a stochastic 

grammatical model for language modeling. A classical N-gram model was used to 

capture the local relations between words, then, a stochastic grammatical model is used to 

represent the long-term relations between syntactical structures. A category-based SCFG 

and a probabilistic model of word distribution in the categories are used to define this 

grammatical model for large-vocabulary complex tasks. Experiments using the Penn 

Treebank corpus showed the improvement o f 30% in perplexity with regard to the 

classical N-gram models.

In (McCandless and Glass, 1994), a simple Context-Free Grammar was firstly used to 

decode the training data and iteratively generalize and reduce the grammar. Then this 

grammar was combined with a phrase class N-gram formalism to assign probability to 

test sentences. Compared to traditional trigram, a unified model o f CFG and N-gram
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significantly reduced the perplexity (Wang et al 2000) (McCandless and Glass, 1994) 

and the number of parameters (McCandless and G l^s, 1994).

In addition, Siu, and Ostendorf (2000) integrated a context-dependent phrase grammar in 

a variable N-gram fi-amework, and the experiment result showed the improvement of 

recognition accuracy on the Switchboard corpus in comparison with both the baseline 

trigram and the variable N-gram alone.

6 PARSING TECHNIQUES FOR THE OUTPUT 

FROM A SPEECH RECOGNIZER

Parsing is usually involved in speech recognition to determine whether the word strings 

are valid or not, according to the defined grammar. A parser is responsible to produce the 

grammatically syntactic and semantic interpretation of a sentence. Parsing is used in the 

following two ways: (1) during the recognition process to guide the recognizer and (b) to 

post-process the output firom the recognizer to pick the most likely sentence.

Since the spontaneous speech has its particular features such as containing 

ungrammatical utterances, words or sentences that are not covered by the system’s 

lexicon and grammar, online verbal corrections or other extra-grammaticalities (Kaiser et 

a l, 1999), it is difficult to parse the output ifrom the recognizer if  it is not a grammar- 

directed recognizer. The following are some parsing techniques that were used in some 

speech-recognition systems.

6.1 Finite State Parser

A Finite State Parser explains why the input is accepted by processing the recognition of 

the input sequences one by one and returns the sequence of transitions that was made 

(Blackburn and Striegnitz, 2002). Namely, the output of the Finite State Parser is a 

sequence o f nodes in the recognizing order.

PROPER is a Predictive RObust Finite-state parsER system with the ability to produce
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sequential prediction sets and incrementally build a case-frame representation o f  concepts 

extracted from the input (like PHOENIX, which is discussed in section 8.8) (Kaiser et al., 

1999). FROFER can be used as a stand-alone semantic parser, and as a stand-alone finite- 

state predictor. Compared to the chart-based or generalized left-right (GLR) parsers, 

PROPER'S lower complexity and robustness has been showed in Kaiser (1999). PROPER 

has been used in various limited task domains by providing a higher-level, grammatical 

language model for speech recognition.

The importance of finite-state networks has been stressed in many speech recognition 

systems. Also, Casacuberta et al. (2001) presented the feasibility of the finite state 

transducer (a specific stochastic finite state network) in EUTRANS system (a speech-to- 

speech translation system).

6.2 Word Lattice Parsing

Word lattice parsing is probably the oldest approach to integrate complex language 

models into speech recognition (Moore, 1999). The architecture is as follows (Moore,

1999) (Atwell and Kevitt, 1994) (Hazen et a l, 2000): for the input segment, the 

recognizer produces a set o f word hypotheses and assigns them acoustic scores, then uses 

the natural-language parser or other language model to find the path o f the words with 

best acoustic and language model scores through the word lattice. The disadvantages 

include the heavy computational burden on the system (Murveit and Moore, 1990).

6 3  Left-corner Parsing

It is possible for the pure bottom-up or top-down parsing to make mistakes under some 

circumstances (Blackburn, and Striegnitz, 2002). While the combination o f the preceding 

two methods, obtained left-comer parsing, can get dramatic effect (Blackburn and 

Striegnitz, 2002). A left-comer parser firstly uses a bottom-up parsing technique to look 

at the first word of the input string, and determines its category, and then looks for a rule 

with this category as the first symbol on its right hand side. Then the left-comer parser 

uses this rule as top-down information and tries to recognize the rest o f the right-hand
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side.

6.4 GLR * Parsing

The GLR * parsing algorithm in (Lavie, 1996) was based on Tomita’s Generalized LR 

(GLR) parsing algorithm. The GLR evolved from the LR parsing techniques. The 

mechanism of LR parser is bottom-up parsing, left-to-right scanning. Driven by a table o f 

grammatical parsing actions, LR parsers are deterministic and efficient. Tomita’s 

Generalized LR (GLR) parsing algorithm is an extension of LR for non-LR languages. If 

the actions in the parsing table conflict (non-determinism), the GLR will efficiently try all 

possible actions in a pseudo-parallel fashion. The data structures and the parsing table in 

GLR* are both similar to GLR. GLR* extends GLR only in the run-time parsing way. 

GLR* intends to detect and reject the ungrammatical input at the possible earliest stage. 

It solves the problems of noise input and limited grammar coverage by ignoring the 

unparsable words and fragments and conducting a search for the maximal subset o f the 

original input that is covered by the grammar.

6.5 Feature Stnicture Parser

The FEAture Structure PARser, called FeasPar, which learns parsing spontaneous speech, 

was proposed by Buo and Waibel (1996). The primary elements o f FeasPar are “chunks”, 

their features and relations. They are structured into a neural network collection and a 

search. The neural network divides the input sentence into chunks, which are labeled with 

feature values and chunk relations. Then, depending on the feature structure, which acts 

as the constraint, the search obtains the most probable and consistent feature structure. 

After being trained, tested and evaluated, the FeasPar (with the Spontaneous Scheduling 

Task) was compared with a hand-modeled LR-parser from six aspects. Buo and Waibel 

(1996) concluded that FeasPar performed better than LR-parser

6 J  Constituent Boundary Parsing

Constituent boundary parsing was proposed by Magerman and Marcus (1990) as an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A: Using Natural Language Features to Improve Speech Recognition Accuracy 
____________________      Page 122

alternative to traditional grammar-based parsing methods, though it actually included a 

distituent grammar. The constituent boundary parsing method treats pait-of-speech 

sequences as stochastic events suitable for probabilistic models. The mutual inforaiation 

values of the part-of-speech N-grams within the sentence determine the constituent 

boundaries. Since it computes the tag N-grams for a set of tags (with sufficient frequency) 

rather than word N-grams, the sparseness is not the problem in constituent boundary 

parsing method (Magerman and Marcus, 1990).

6 J  Two-level LR Parsing

To integrate speech and language for an automatic interpreting telephone, Takezawa et al. 

(1991) explored a predictive two-level LR parser based on an inter-phrase grammar, 

which was developed according to a half-million-word-dialogue database on “an 

international conference secretarial service”. Firstly, this inter-phrase LR parser predicts 

next phrasal categories (e.g. Noun Phrase (NP)) depending on the inter-phrase LR parsing 

table. Then, all the phones predicted by the NP initial state are picked up by the intra- 

phrase LR parser and the HMM phone model is invoked to verify the existence of these 

predicted phones. Once the NP candidates have been recognized, the next phrasal 

category (e.g. Verb Phrase (VP)) is predicted by the inter-phrase LR parsing table, and the 

above process continues until the entire speech data has been processed. The experiments 

in (Takezawa et a l, 1991) show the effectiveness of the two-level LR parsing over the 

phrase lattice parsing method.

6.8 History-Based Grammars (HBGs)

A History-Based Grammar (HBG) is essentially a probabilistic model, which 

incorporates the detailed linguistic information such as lexical, syntactic, semantic and 

structural information to resolve the ambiguity (Black et al 1992). HBG combines a 

Treebank (a corpus of bracketed sentences) and a decision tree to determine the correct 

sentence from the parse tree, where the probability depends on the information of the 

partial derivation of decision tree. Black et al (1994) reported an improvement from
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PCFG to HBG of 15% increase of parsing accuracy rate.

7 USE OF SEMANTICS IN SPEECH- 

RECOGNITION

7.1 Introduction

Language features are very effective in any system for reducing the number o f possible 

utterances and for prioritizing utterance hypotheses (Hermaimsdottir, 1996). Takezawa et 

al (1991) said that “the accuracy of speech recognition heavily depends on what kinds of 

linguistic knowledge are used”. At the current state of the art, to achieve high accuracy in 

speech recognition with moderate to large vocabularies (hundreds to tens o f thousands of 

words), language models are necessary (Moore, 1999), (Harper et a l, 2000), (Takezawa 

et a l, 1991) and (Seneff et al, 1995) as discussed earlier. Takezawa et a l (1991) 

categorizes linguistic constraints into syntactic, semantic, pragmatic and contextual 

constraints. The models, including knowledge of syntax, semantics, domain, task and 

current dialogue state, can assist the speech recognition process effectively (Johnson,

2000), (Demetriou et a l, 2000), (Ward, 1996), (Hunt, 1994), and (Loken-Kim, 1988).

One of the features of the spoken language system is its interaction, which requires the 

methods for representing and integrating knowledge from different sources (White, 1990). 

Various linguistic constraints can be incorporated into the speech recognition process 

tightly or loosely. Tight integration means the linguistic constraints are directly 

incorporated into the recognition algorithms (Chappelier, 1999) (Harper et a l, 1994).

The advantage of tight integration is the smaller size of hypotheses space and strong 

restrictions on the grammar. In addition, since the language information usually 

contributes to reduce the perplexity of the system, it is an advantage to tightly integrate; 

however, too tight integration usually reduces robustness. In addition, tight integration 

often makes the big systems intractable and difficult to train.
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Preferred by Chappelier (1999) and Harper et a l (1994), loose integration architecture

means knowledge sources are applied one by one in a sequential order. This modular 

architecture makes it possible to use each language-processing technique with little 

modification. The other advantage is that, the update of a powerful language model will 

not increase the computational cost or the amount o f training data required (Harper et a l, 

2000).

Syntax is the stnicture of expressions in a language. It defines the relationship among 

characters or groups of characters, independent of their meanings or the manner o f their 

interpretation and use. Semantics defines the relationships between symbols and their 

meanings; characters or groups of characters to their meanings. Syntax is responsible for 

the sentence structure. Syntax can be used in conjunction with a statistical model to guide 

the recognizer. Semantics contributes more to the meanings of the words or sentences. 

Appropriate integration of syntax and semantics can help improve the recognition 

performance. However, in many cases syntactic information alone is not sufficient in 

restricting the search space for speech recognition (Takezawa e ta l, 1991). And the fact is 

that almost all language models implicitly or explicitly embody the semantics.

Semantics can be built into language models explicitly or implicitly. Stochastic Language 

Model (SLM) performs its recognition by computing the possibilities o f the word 

occurrences depending on large training data corpus (discussed in section 3). It is 

primarily based on the statistical analysis. However, it actually reflects the semantic 

constraints implicitly. For example, from an astronomic domain training data corpus, the 

possibility o f “who discovers something” must be much higher than “which discovers 

something”, which implies that it is much more possible for the word “discover” to occur 

after a person than after something. Therefore, stochastic language mode! also reflects the 

semantics indirectly.

As for grammar-based language model, usually, it defines more about the syntax than the 

semantics o f the language features. But after the scrutiny, the clue o f the semantics in 

grammar can be found. In the above example, the sample grammar may be more like:
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q::= who discovers something 

1 what orbits something

than

q:;”  (who|what) (discovers|orbits) something

Here, the grammar-based language also induces embodies semantics (Frost, 2002).

Various techniques for use semantics in speech recognition are described in more detail in 

the remainder of this section.

7.2 Use of Large N, N-grams to try and capture semantic Information

In a traditional N-gram (discussed in section 3.1), the current word is predicted by the 

immediately previous N-1 words. This technique is based on the assumption that the 

relevant syntactic information lies in the immediate past. However, the fact is that some 

syntactic or semantic information does exist in the farther past. On the other hand, if use a 

larger N in an N-gram model is used, the free parameters will exponentially increased, 

which is too hard to control.

Huang et al (1992) experimented with long-distance bigrams (the same principle can be 

applied to N-gram) with reduced number of free parameters. In the distance-d bigram, a 

word W i is predicted by the word W j.d (Huang et a l, 1992). The observation is that the 

recognition error has been reduced significantly, and the perplexity is low for d=l; and 

increases significantly for d=2,3,4 and 5; while remains at almost the same for d=6, 7, 8, 

9, 10. Huang et al (1992) made the conclusion that there is some relevant information, 

which is thinly spread across the history, in the distant past.

In (Bonafonte et a/., 1996), the speech was decoded onto an intermediate representation in 

sequence, where the order of semantic units was the same as that o f the words in the 

sentence. Also, the query was modeled as the semantic unit strings, which was suitable
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for N-gram to capture the semantic language.

Considering the fact that, in many languages (e.g. English), multiple words can be unified

together and be treated as a single unit (phrase) in communicatioE, Riccardi and Gorin 

(1998), Riccardi and Bangalore (1996) proposed “phrase-based language models” to 

better (over word-based language models) capture long spanning dependencies between 

words and without the exponential increase of parameters. They acquired the lexical 

features (phrases) from training data and the probability o f the word sequence was 

computed from the process of entropy minimization over the training set and its length 

ranges from 1 to N. The phrase-based N-gram language model significantly outperforms 

a word-based language model (Riccardi and Bangalore, 1996).

7.3 Semantic Post-Processing of Output from Statistical Recognizer

At present, it is impossible to avoid errors in the earlier stage of speech recognition. Since 

the goal of eradicating the speech recognition errors is impractical, many researchers are

working on semantic post-processing techniques for error correction to further improve

the recognition accuracy.

73.1 Post-processing to Choose Best Hypothesis

On account of its simplicity and efficiency, N-best search can be used in a post 

processing stage in the speech recognition to get better performaitce. Tran et a l, (1996) 

firstly constructed a recognition hypothesis word graph, and extracted N-best word 

sequences from the word graph. Combining with the language features, such as syntactic 

and/or semantic analysis, the N candidates can be re-scored with highly-reduced 

computational cost (Rayner et al., 1994), and even many of the top N sentence 

hypotheses could have been eliminated before reaching the end with early syntactic and 

semantic analyses (Seneff et al., 1995). Milward and Knight (2001) applied a class-based 

statistical language model to construct the word-hypothesis graph and then used the 

semantic knowledge which can be obtained by Spoken Language Translator (Rayner et 

a l, 2000c) to choose the hypothesis in the graph. Seneff et al (1995) used an A*
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algorithm to search through the large hypothesis word graph, and Harper et al. (1992) 

used syntactic constraints and a Constraint Dependency Grammar (COG) parser 

(discussed in section 7.6) to effectively prune the hypothesis word graph o f the 

ungrammatical sentence hypotheses and limit the possible parses of the remaining 

sentences.

Stolcke et al (1997) developed an algorithm to explicitly minimize the expected word 

errors for recognition hypotheses. The N-best lists tell the approximation of the posterior 

hypothesis probabilities. Then with respect to the posterior distribution, each hypothesis’ 

expected word error is computed, and the hypothesis with the lowest error is chosen.

Ballim and Pallotta (2000) use domain knowledge to semantically constrain the 

hypothesis space. The architecture contains the following three modules: (!) a speech 

recognition system taking speech signals as input and providing N-best sequences in form 

of a lattice; (2) a stochastic syntactic analyzer (i.e. parser) extracting the k-best analyses; 

(3) a semantic module in charge of filling the frames required to query a database.

Current speech recognizers usually associate the input word with a lattice of word- 

hypotheses rather than a uniquely identified word. Taking into account the linguistic 

context, such as lexis and morphology, parts-of-speech, phrase structure, semantics and 

pragmatics, Atwell and Kevitt (1993) developed a language model to constrain the 

possible choices to the most linguistically plausible words. In (Atwell and Kevitt, 1993) 

(Atwell et a l, 1993), the linguistic knowledge sources include the Longman Dictionary 

of Contemporary English (LDOCE) semantic primitives, semantic tagging (semantic 

subject field markers), non-compositional phrase structure (syntactic phrase structure 

boundaries), wordtag n-grams, word-collocational preferences and the relationship 

between prosody and syntax. Resorting to the machine-readable dictionaries (e.g. the 

LDOCE) for the syntactic and semantic definition, (Atwell et a l, 1993) dealt with the 

word ambiguity by probabilistic ranking.

Stahl et al. (1997), Muller and Stahl (1998), Kawahara (1994) have described a speech 

understanding system, which has the architecture of sequential combination of a signal
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preprocessor, a stochastic-driven one-stage semantic decoder and a rule-based intention 

decoder. Goddeau (1993) proposed a probabilistic language model to integrate the local 

and long-distance language constraints into lexical-access search algorithms. The 

technique adopted the LR parser to map sentence prefixes into equivalence classes, which 

are further used to compute next word probabilities for speech recognition.

In (Stahl et a l, 1996), the semantic information was directly represented in the parse tree. 

This semantic tree structure consists of a finite number o f semantic units (called semuns), 

each semun contains the semantic contribution of one significant word in the sentence. 

Then, an incremental technique, which integrated semantic, syntactic, acoustic-phonetic 

knowledge, and Viterbi-aigorithm (Muller and Stahl, 1998), together with the chart- 

parsing technique and a top-down parsing strategy (Stahl et al, 1996), was applied to 

achieve high efficiency and further the seamless interface between the speech recognition 

and understanding components.

The processing in (Seide et al, 1996) can be sketched as follows: using an acoustic 

model and a word-unigram language model, the plausible word hypotheses are identified 

and scored. Then, a bigram is used to prune the word graph. Since all plausible 

alternative sentence hypotheses have been included in the word graph, every path through 

the graph represents a sentence hypothesis. Subsequently, an attributed stochastic 

grammar parses the word graph and assigns the language-model probability for every 

path (i.e., sentence hypothesis) through the information graph. Finally, taking account of 

the database goal and the consistency constraints, the most likely hypotheses are 

determined. The speciality of the technique not only lies on the consideration of the 

database goal and the consistency constraints, but also lies on the fact that N is not 

required to be known in advance. This technique computes the N best sentences one by 

one and discard those that are inconsistent or referring to invalid database entries.

7.3.2 Post-processing to Correct Errors

Ringger (2000), Ringer and Allen (1996), (1997) have investigated the use o f statistical 

techniques and search algorithms for post-processing the output o f a speech recognizer to
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correct errors. Soltau and Waibel (1998) considered the speaking style is more 

accentuated to disajnbiguate the original mistakes. Hauptmann et al. (1998) conducted 

experiments to assess the effect of words missing from the speech recognition vocabulary. 

Walker et al. (2000) developed a spoken dialogue system to allow some automatic error 

corrections by interacting with the user.

Loken-Mm (1988) developed the Automatic Error Detection and Correction System 

(AutoDac), which is able to parse ill-formed sentences with a combination of left-to-ri^t 

and right-to-left parsing; leam the history of recognition errors and utilize this 

information to subsequently recover from similar recognition errors later; and allow a 

user to manually correct any part of the recognized sentence. Combining automatic and 

manual error correction, a total of 142 out of 192 testing sentences were recovered 

(Loken-kim, 1988).

7 3 3  Post-processing to Modify System for Future Use

For the 10-best hypothesis lists on the 1001 -unseen-utterence subset o f the AXIS corpus, 

the best result of the experiments, which were explored by Rayner et a l (1994), gave a 

proportional reduction of 13% in the word error rate and 11% in the sentence error rate. 

In addition, the hypothesis reordering technique proposed by Rayner et al. (1994) is 

automatically trainable, acquiring information from both positive and negative examples.

In the voice-interactive natural language system, Fink (1984) added a special module, 

called an expectation system, to aid the speech-recognition process. Its basic idea is like 

this; the expectation system accepts the user's utterances, and studies the repetition and 

patterns in the dialogues to create a more general dialogue, then uses this generalized 

dialogue to correct errors in the future sentences by prediction. The results showed that 

the average sentence error rate was decreased from 53% to less than 8%. Furthermore, it 

can be concluded that the expectation system is capable o f predicting what might happen 

in any situation that tends to be repeated.

As any spoken dialogue system aims to fulfill some goals in a particular domain, the user
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operates the system with the intentions in some specific directions. For example, the user 

enters into an automatic exchange board system with the intention of connecting to some 

person specified by name. Based on this observation, Seide et al. (1996) designed a 

system to catch the user’s dialogue goals and restrict the discourse to a narrow 

application domain, hence further constrain the variety of possible user reactions and 

improve future recognition accuracy.

7.4 Grouping of Terminals/ Words/ Lexicon According to Meaning

Demetriou et al. (2000) developed a semantic model of language using an online 

dictionary, Longman Dictionary of Contemporary English (LDOCE), to acquire lexical 

semantic knowledge for speech-recognition modeling. The modeling o f the semantic 

knowledge is based on the association between two words from their meanings in the 

dictionary, then compute how much do the meanings (sets of semantic primitives or 

concepts that are used to define the words in the dictionary) overlap or linkage 

(semantics). Furthermore, the semantic association measure for two words can be 

extended for computing the semantic association of longer word sequences in texts, such 

as phrases, sentences or paragraphs.

The experiments conducted by Demetriou et al. (2000) show that this model is able to 

capture the potential semantic dependencies between the words in texts, and reduce the 

language ambiguity by a considerable factor, and improve the word-recognition rates in 
“noisy-chaimel” applications. Therefore, Demetriou et al. (2000) stated that limited or 

incomplete knowledge from lexical resources such as Machine Readable Dictionaries 

(MRDs) can contribute to domain-independent language modeling.

I S  Integrating Semantics into the Grammar to Better Direct the 

Recognizer -  Unification Grammars

Belonging to the augmented or annotated Context-Free Grammars, Unification Grammar 

is more expressive and more concise than the traditional CFG Unification Grammar is a 

higher-level formalism of Context-Free Grammar, which is obtained by applying some
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restriction properties to the CFG With more constraints unified to the grammar. 

Unification Grammar helps reduce the system's perplexity. To better understand the 

Unification Grammar, refer to the following example extracted fi"om (Moore, 1999);

S: [tensed=yes] NP: [person=P, ni!m= N] VP: [tensed=yes, person=P, num=N]

The distinction from traditional Context-Free Grammar (CFG) is the notion of the feature 

constraints (such as, person=P, num=N). The consequent unique power lies in the fact 

that the Unification Grammar constrains the features to a variable instead of specific 

values. The subsequent advantage can be seen from the above example that Unification 

Grammar guarantees that the person and mim features of Noun Phrase (NP) and Verb 

Phrase (VP) must agree with each other, avoiding enumerating their respective features 

(person = first, num = singular, and so on).

A Unification Grammar can be compiled into a Context-Free Grammar by eliminating 

left recursion (detail instantiating algorithms can be found in Moore, 1999), which can be 

fed directly into the Nuance Toolkit’s language mode! compiler (Rayner et a l, 2000a).

So far. Unification Grammars have been widely used to successfully build substantial 

general grammars for Natural Language Processing (NLP). Gemini, a natural language 

understanding system developed for spoken language applications (Dowding et a l, 1993), 

is such a successful Unification-Grammars-Based system (Moore et a l, 1997), where the 

Unification Grammars are initially specified and later compiled into standard CFG 

descriptions by a model compiler. In Gemini system, firstly all possible features in the 

grammar rules and lexicon entries are enumerated; then, each rule and entry in the 

original Unification Grammar are transformed into a set o f rales in the derived CFG 

(Rayner et a l, 2000b).

Many significant applications, such as CommandTalk (Goldwater et a l, 2000) (Stent et 

al, 1999), are built on the Gemini system. CommandTalk is a spoken-language interface 

to the battle-field simulator, which allows military commanders to interact with simulated 

forces in a manner similar to the way they would command actual forces. The
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unificatioa-based grammar, based on Gemini, in CommandTalk brougbt twofold effects 

(Goldwater et a l, 2000): the negative is the less coverage than a statistical model; while 

the positive is the elimination of the usual discrepancy in coverage between the 

recognizer and the natural language parser.

Based on the Unification Grammars, Dowding et a l (1994) introduced an efficient 

bottom-up parser that interleaved syntactic and semantic structure building. It applied the 

limited left-context constraints to reduce local syntactic ambiguity, and the local semantic 

ambiguity was alleviated by deferred sortal-constraiiit application. The primary 

advantage o f this parser lies in the dramatic reductions in both numbers o f chart edges 

and total parsing time without sacrificing completeness.

Generally, the grammar-based language model suffers from the potential disadvantage of 

over-constraint, which means the grammar might exclude some reasonable utterances. To 

alleviate this problem, the grammar in CommandTalk was broadened to allow the word 

insertions and deletions (Goldwater et a l, 2000) if  the inserted and deleted words 

contribute little to the meaning of the sentence.

Buo and Waibel (1996) introduced a feature structure parser, called FeasPar system 

(discussed in section 6.5), which is able to leam parsing spontaneous speech 

automatically with minor hand labeling, to challenge the unification approaches’ 

drawback of requiring hand-designed lexicon and grammar rales, and rigidity o f the 

grammar encountering ungrammaticality and deviations from linguistic rules.

7.6 Integrating Semantics into the Grammar to Better Direct the 

Recognizer -  Dependency Grammars

A Dependency Grammar (DO) incorporates semantic constraints for large-vocabulary 

continuous-speech recognition (Takezawa et a l, 1991). Dependency Grammar describes 

sentences in terms of asymmetric pairwise relationships among words (Rosenfeld, 2000a), 

which means that each word in the sentence is dependent upon one other word (called its 

head or parent) except the root that serves as the head of the entire sentence.
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7.6.1 Constraint Dependency G ram m ar (CDG) (Harper et a l, 2000), (Harper et al, 

1999a), (Harper e?a/., 1995).

Harper (1999a) states that the Constraint Dependency Grammar (CDG) was first 

proposed by Maruyama in 1990. It is a constraint-based grammatical fonnalism with a 

weak generative capacity beyond Context-Free Grammars (CFG) and supports a very 

flexible parsing algorithm for working with feature grammars (Harper, 1999a). CDG uses 

constraints to determine the grammatical dependencies for a sentence. In CDQ the 

parsing rules are defined as constraints and the solutions are parses, thus, the parsing 

procedure has been transformed into the constraint satisfaction procedure.

A Constraint Dependency Grammar (CDG) (Harper et a l, 2000) (Harper et a l, 1999a) 

(Harper et a l, 1995) consists of four finite sets: Z, R, L and C. E includes lexical 

categories (for example, noun, verb); R contains role types (ti,..., ip}, L constitutes of a 

group of labels {li,...,lq}and C is a finite set of constraints, which determine the 

grammatical dependencies for a sentence. For example, an n-symbol sentence s = 

W1W2.. .Wn is an element of Z*, and each word Wj e Z. A role is a variable with the role 

values, and each label in L indicates a different syntactic function. To successfully 

generate a sentence, there must exist an assignment A that maps a role value to each of 

the n*p roles for 5 such that C is satisfied. If there is more than one assignment o f role 

values satisfies C, ambiguity takes place. If the number of variables in a subformula of C 

is one or two, the subformula is called a unary constraint or binary constraint 

respectively. The max number of variables contained in a subformula o f C is called the 

arity parameter for a CDG.

Compared with Context-Free Grammars (CFG), the Constraint Dependency Grammar 

(CDG) is more flexible and more tractable, but less expressive (Harper, 1999a). CDG 

holds the advantage of supporting a very flexible parsing algorithm for feature grammars. 

However, its disadvantage is the 0(n"^) parsing time complexity (Harper et a l, 1999a). 

Harper et al. (1999b) loosely integrated a CDG parser with an HMM word recognizer to 

reduce the parsing time.
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7.6.2 Enhanced Constraint Dependency Gram niar

Harper et a l (1999a) pointed out two difficulties existing in the original CDG parsing 

mentioned above; (1) the CDG is difficult to analyze the sentence where the lexical 

categories are multiple (for example, the word can belongs to noun, verb, and modal 

categories); (2) or the category has multiple feature values (for example, the word the as a 

determiner can modify nouns of both third person singular and third person plural). The 

second difficulty is its slowness (the time complexity is 0 (n'^)).

Harper et al (1995), Helzerman et al (1996) proposed extensions to the Constraint 

Dependency Grammar to address the first difficulty by allowing the simultaneous parsing 

of alternative sentences from lexical or feature ambiguity. The original CDG creates and 

applies all the possible role values for all roles at one time, which uses much computation 

time. Nevertheless, Harper et al (1999a) adopted an Enhanced CDG to reduce the 

computation time by applying the feature constraints in groups and eliminating the 

ungrammatical role values as many as possible before preparing for another feature. The 

time complexity for Enhanced CDG has been improved from 0(n'^) to O(n^) (Harper et 

a l, 1999a).

7.63 Corpus-Induced Constraint Dependency G ram m ar (Harper et a l , 2000)

Corpus-Induced Constraint Dependency Grammar means extracting CDG constraints 

from a domain-specific corpus of sentences. Harper et al (2000) conducted an 

experiment to test its plausibility and benefits. The result is that the Corpus-Induced

Constraint Dependency Grammar significantly improved recognition accuracy over the 

conventional CDG.

7.6.4 The TINA Framework

TINA is a trainable natural-language model (Chung and Seneff, 1998) developed by 

Seneff et al (1995). The base o f TINA is an augmented Context-Free Grammar, which 

contains a set of features to enforce syntactic and semantic constraints, and a trace
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mecliaiiism to handle movement phenomena. Both features and unification apply are 

associated with category, not on the context-free rale. Terminal words with feature values 

unify them with the feature pattern that is delivered, to them by their parent/left sibling 

during the parse process (Seneff et a l, 1995). Constraints, such as subject-verb 

agreement, and semantic features, are very important syntactic features for constraining 

gaps.

The hand-coded grammar rales are automatically broken apart into a set of trigram 

sibling-sibling transition probabilities to capture both spatial (parent) and temporal (left- 

sibling) conditioning context. The top-level rules of the grammar are very flexible, for 

they permit the parser to derive a partial parse (Seneff et a l, 1995). A sentence can be 

fully parsed, also, it may be parsed by skipping one or more non-content or unknown 

words. The probabilities are calculated by tabulating counts in the parse trees, which are 

automatically built up from the training corpus. Similarly, the top-level transition 

probabilities are based on the tabulations on counts for the top-level transitions. In this 

way, full-parsed and partial-parse theories can compete side-by-side according to their 

probabilities (Seneff et a l, 1995). Seneff et al (1995) showed the favorable recognition 

performance of TINA over a traditional word class 4-gram language model.

7 .65 Techniques Related to Underspecified Semantic Representation

Investigating the ambiguity existing in a compact “underspecified semantic 

representation” (which means there are multiple meaning options for one sentence 

instead of a specific one) for sentences, Dorre (1997), and Milward and Knight (2001) 

proposed a method which constructs the compact semantic representation from input 

syntactic parse forests and constraint-based semantic construction rales. Milward and 

Knight (2001) state that this approach can improve keyword- or phrase- spotting 

approaches, because it can avoid many pitfalls of “over-early commitment” (e.g. to 

longest fragments) existing in many grammar-based systems. Dorre (1997) has fully 

implemented the algorithm with time complexity of 0(n ‘̂ log(n)) with respect to sentence 

length.
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The DELTA project at Tilburg University is about semantic and pragmatic interpretation 

o f utterances in human-computer natural-language infomiation dialogues (Bunt, 1995). It 

uses context-independent versus context-dependent aspects of semantic interpretation. 

The interpretation process calls for underspecified semantic representations, which can be 

forther specified as contextual constraints. Bunt (1995) shows several instances of 

developing such representations for a variety of cases of ambiguity and vagueness.

7«7 Integrating Semantics into the Grammar to Better Direct the 

Recognizer- Direct Encoding of Semantics as Syntax Rules

Appropriate use of constraints can restrict the search space of input utterances, and 

reduce the perplexity of the speech recognition (Murveit and Moore, 1990), thereby, 

improving the speech recognition accuracy. Usually, recognizers return a couple of 

guesses of the input utterances, then, use semantic post-processing techniques to help find 

the most plausible guesses.

Moreover, an alternative approach is to encode the semantic rules directly in the syntax of 

the grammar (Frost, 2002). This technique is based on the observation that some 

syntactically correct utterances may be semantically wrong. Frost (2002) presented the 

example that the sentence “which man orbits kuiper” may be accepted by a simple 

grammar for its correct syntax, but in the domain used as example, people cannot orbit 

other people, thus it is semantically incorrect. The simple syntax that accepts the above 

example sentence might be as follows:

question ‘"which” nounphrase verbphrase

If we replace it with the following:

question ::= “which” animatenounphrase animateverbphrase

1 “which” inanimatenounphrase inanimateverbphrase

then the semantically incorrect utterance above is not accepted as a possible utterance by
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the recognizer, hence the speech recognition accuracy has been improved.

The primary advantage of this technique is an improvement in speech recognition 

accuracy without unnaturally restricting the input utterances. However, this technique has 

the disadvantage that the increase of complexity and the size of the grammar by encoding 

semantic rales in the syntax make the system difficult to maintain. This can be overcome 

to some extent by combining this technique with the use of hyperlinks to create a Speech 

Web of speech-accessible objects, and further improve recognition accuracy by moving 

between domain-dependent grammars (Frost, 2002).

7 J  Integrating Semantics in Statistical Language Modeling

Coccaro and Jurafsky (1998) and Chappelier et al. (1999) introduced a number of 

techniques to help integrate semantic knowledge with N-gram language models for 

automatic speech recognition. The techniques in (Coccaro and Jurafsky, 1998) are able to 

integrate Latent Semantic Analysis (LSA), a word-similarity algorithm based on word co­

occurrence information, with N-gram models. LSA can tell the presence of words in the 

domain of the text, but cannot tell their exact location. Since the N-gram model has the 

ability to work out the word location, it can complement the LSA model by filling in the 

missing information.

In addition, LSA performs better in predicting coherent content words than frequent

words in a low dynamic range. However, the linear combination of LSA and N-gram has 

the poor performance. To address this problem, Coccaro and Jurafsky (1998) modified 

the dynamic range, applied a per-word confidence metric, and used geometric rather than 

linear combinations with N-grams, and the result is a more robust language model with a 

lower perplexity on a Wall Street Journal Test-set than a baseline N-gram model.

7.9 Semantics in Topics»High Level Semantic Domains

The frequently-used N-gram mode! suffers from a lack of long-term information for the 

reason that the next word is predicted by the preceding N-1 words (typically 2 ^ N ^ 4 ) .
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In addition, the disorganization of the words in a large vocabulary constitutes the large

number of intractable parameters (which is discussed in section 2). To capture the 

relationships between the words and extract the topics can not only build up the long­

term context information about the topic (Mahajan et a!., 1999), but also dramatically 

reduces the dimensions (parameters), and consequently improves the performance of 

speech recognition.

Reynar (1998) proposed a technique to segment different topics in one document. What 

Rosenfeld (2000a) did was to firstly tabulated the occurrence of every word in the 

document; then, reduce the large matrix by Singular Value Decomposition to a lower 

dimension. Then, the correlations between words were captured in the smaller matrix and 

consequently the new document, structured by topics, was obtained. It was reported in 

(Rosenfeld, 2000a) that combining this adaptation with an N-gram could reduce the 

perplexity and obtain lower recognition errors. Using the experiments on the Wall Street 

Journal text corpus, Mahajan et a l, (1999) demonstrates the effectiveness of this 

technique of perplexity reduction by 37% compared to the baseline language models.

7.10 Semantic Networks

A semantic network is another powerful technique to assist in speech recognition, which 

is usually represented in the form of a directed graph where nodes represent word senses 

and links represent the types of conceptual relationships. A traversal through the network 

defines a sentence. Semantic networks have been used for the construction of sentence 

hypotheses guided by concept-relation judgements of content words (Demetriou and 

Atwell, 1994a).

Demetriou and Atwell (1994b) developed a large-vocabulary semantic network by 

systematically using semantic information on nouns and verbs from the Longman 

Dictionary of Contemporary English (LDOCE) using pattern-matching rules. Using 

semantic networks, Ahlrichs et al (1999) proposed a knowledge-based approach for 

spoken diaisogue. Dupont (1993), Jurafsky et al (1995) and Fischer et a l, 1999) built a 

semantic network as a stochastic finite-state network (called a Stochastic Context-Free
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Grammar (SCFG)), where ^ammars, probabilities and other linguistic constraints can be 

added to the word connections (Savage-Carmona et al., 1995) (Dupont, 1993) to 

minimize the perplexity (the average word branching factor).

In PHOENIX, a robust semantic parser is used in the speech recognizer o f SPHINX-II, 

which was developed in Carnegie Mellon University, the semantic relations are 

represented by concept frames and the patterns for semantic fragments are represented in 

Recursive Transition Networks (RTNs) (Kaiser et a l, 1999). The patterns are used to fill 

the slots in semantic frames (Ward and Young, 1993). Out-of-grammar words that occur 

between slots can be skipped and the resulting partial parses (only some slots in the frame 

have been filled) are returned.

In this architecture, word strings with the same meaning are determined from the network, 

which is generated from the semantic grammar. Ward and Issar (1994) compiled the 

grammars into many small “phrase level” nets, instead of a single large network (which is 

common in other standard RTNs). For example, the words representing departure and 

arrival cities will respectively be assigned to two different networks. Thus, the utterance 

“I want to see flights from Boston to Denver after 5pm” would be interpreted as the 

concept sequence [list] [select_field] [fromjocation] [tojocation] [depart_time_range], 

where the concept sequences are specified by RTN (Ward and Young, 1993).

The semantic hierarchy contributes to restrictions in the way that the inheritance of the 

networks can help generalize role fillers (Demetriou and Atwell, 1994a). Also taking 

advantage of the finite-state language constraints (Murveit and Moore, 1990), various 

search algorithms can be used here, such as a beam search and A* search algorithms 

(Kaiser et a l, 1999). Also, it can be combined with context-free grammars and word 

bigram methods (Ward and Young, 1993) (Ward and Issar, 1994). The “concept-spotting” 

approach in PHOENIX is considerably robust and has been widely used in spoken 

language information systems (Kaiser et al., 1999). Dupont (1993) applied a beam- 

pruning technique and Savage-Carmona et al (1995) used a Viterbi algorithm to further 

limit the search space growth, consequently, the complexity of the network expansion
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decreased dramatically.

In addition, Jurafsky et a l, (1995) mentioned another advantage of the above SCFG that 

it included the language model at the frame level of the acoustic decoding, hence 

significantly improved the recognition accuracy of decreasing the word error rate from

34.6% (bigram) to 29.6% (SCFG).

However, even though SCFGs are good at modeling long-term relations and limited- 

domaia tasks of low perplexity, it may he intractable if  the lexicon size or the language 

mode! is too large due to the difficulty of the computation of word transition probabilities 

for complex real tasks (Benedi and Sanchez, 2000). The worst is that if there exists self- 

embedded recursion in the language model, it will result in the corresponding network 

with infinite states and transitions.

8 OTHER APPROACHES WHICH INTEGRATE 

NATURAL-LANGUAGE FEATURES INTO THE 

RECOGNITION PROCESS

8.1 Speech Webs

It is not easy to construct speech interfaces to large knowledge bases for the reason that 

large knowledge source require large and complicated grammars, which are not trivial to 

implement and which have high perplexity and therefore low accuracy (Frost and Chitte, 

1999). Instead, Frost and Chitte (1999) proposes a new approach of dividing large

knowledge sources into several smaller domain-based knowledge bases, called “sihlos”, 

and using relatively narrow grammars in each individual siMo. Only when the sihlo is 

visited, are its grammar and other related properties downloaded to respond to the user. 

With the decrease of the scope of the knowledge source, the query language is shrunk, 

which can significantly contribute to the speech recognition accuracy.

The user can move from sihlo to sihlo by “speaking” hyperlinks. Under such a schema,
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the semantic constraints in syntax (the techniques are discussed in section 7.7) of each 

siMo have to be considered for the fact that some semantic constraints are appropriate in 

one context and might be inappropriate in another one. Frost (2002) gave the example 

that the constraint that “people cannot orbit anything” is appropriate in the “solarman 

object”, while not appropriate in the object about astronauts.

In addition, a spoken-dialogue system may perform differently for different users and 
even the same user during different dialogues. To solve this problem, Litman and Pan 

(2000) (1999) developed TOOT, a spoken-dialogue system for retrieving train schedule 

on the web which predicts a user’s behaviour in a particular dialogue process. According 

to such predictions whether he/she is having speech-recognition problems, TOOT will 

automatically adapt its dialogue strategies.

8.2 Large Vocabulary Related Techniques

Large vocabularies have been one of the major challenges for speech-recognition 

researchers (discussed in section 2). So far, a lot of work has been conducted on this point, 

such as the dependency grammars (discussed in section 7.6), semantics in topics -  high- 

level semantic domains (discussed in section 7.9), and semantic networks (discussed in 

section 7.10) might be possible solutions to this problem. The following are some other 

techniques related to this problem:

•  Miller (1988) describes a CFG-based syntactic component for large vocabulary 

speech recognition as the language model. Benedi and Sanchez (2000) proposed an 

approach, which is capable of capturing both local and long-term relations between 

words and syntactical structures (details are discussed in section 5).

•  Beliegarda (1998) proposed a new framework of integrating both local and global 

constraints for multi-span statistical language modeling. Local constraints are 

captured via language modeling, while global constraints are taken into account 

through latent semantic analysis. The integration of these two paradigms results in 

several families of multi-span language for large vocabulary speech recognition.

•  Moody (1988) conducted experiments to test the effects of restricted vocabulary size
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in speech-recognition and natural language nnderstanding process, and the results 

show the advantages of the restricted vocabulary over unrestricted vocabulary in the 

ways that the shorter completing time, the fewer word usage, and better recognition 

accuracy is achieved, especially in goal directed utterances.

Valverde-Albacete and Pardo (1996) presented a multi-level lexical-semantics based 

language-mode! design for guided integrated continuous-speech recognition to 

decrease the search space when the lexicon size grows. This approach consists of two 

mutually-recursive functions. Firstly, an auxiliary retrieval fiinction is used to obtain 

lexicalized (already built) solutions to the problem, which are merged with the ones 

built by the second function. This second fiinction describes the acoustical and 

semantic recognition process as a search problem, which is defined in the first 

fimction, and solved with the help of the A* strategy. A hierarchy o f linguistic levels 

is used. And each level contains a particular meaning structure, a lexicon of 

lexicalized forms, the lexicalization probabilities, and a local lexical grammar 

describing how the semantic categories of the level can be built. This speech 

recognition architecture is tested a DARPA RM-like application by Valverde- 

Albacete and Pardo (1996).

8 3  Language Models for Languages Other Than English

Xu et al. (1988) integrated syntactic, semantic and vocabulary knowledge constraints into 

a linguistic processor to improve the performance of a Chinese speech-recognition

system. One feature of this processor is that both sentences and phrases can become its 

speech input. In addition, some unique characteristics of Chinese language are taken into 

account.

9. OTHER SUM¥EYS ON THE USE OF NATUMAL- 

LANGUAGE FEATURES IN SPEECH 

RECOGNITION
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A great deal of work has been carried out on the use of Natural-Language features in 

speech reco^ition. Correspondingly, a number of other surveys have been done on this 

topic.

•  Rosenfeld (2000) primariiy focused on Statistical Language Model (SLM) 

techniques, such as N-grams, Class N-gram, Decision Tree Models, and Adaptive 

Models. Also, in Rosenfeld’s (2000a) opinion, the Probabilistic Dependency 

Grammars belong to the promising current directions. In addition, Rosenfeld (2000a) 

mentioned that the World Wide Web is an efficient resource for obtaining the training 

data.

•  Demetriou and Atwell (1994a) summarized the current semantic methods in speech 

recognition and understanding research and classified the approaches into six main 

categories: (1) Semantic networks, which are discussed in section 7.10. (2) Semantic 

grammars, which are discussed in sections 4.4, 7.5, 7.6 and 7.7. (3) Caseframe 

approaches, in which, the semantic constraints are expressed in the form of 

caseframes. These methods can be used for the production of sentence hypotheses 

from a word lattice and the choice of the most likely one, or for filling gaps of 

missing words or for post-processing correction, as well as for making word 

predictions during recognition. (4) Statistical approaches, which are discussed in 

section 3. (5) Unification-based approaches, which are discussed in section 7.5. (6) 

In neural networks, processing elements or nodes are connected by links with 

variable weights, which are adapted from training data and are continuously 

modified during use.

•  Based on the observation that the successful SLM techniques use very little language 

knowledge, Rosenfeld (2000b) reviewed the extent to which aspects o f natural 

language are captured in current models. Rosenfeld (2000b) mentioned three 

approaches of integrating syntax into language modeling. (1) Probabilistic Context- 

Free Grammars (FCFG) (discussed in section 4.2); (2) Probabilistic link grammars, 

which use lexicalized grammar formalism. Specific link grammars are constructed by 

hand. Based on the link grammar, a word can be predicted from any pair o f adjacent 

words that precede it in the sentence. A specialized form of the grammar, called a
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Grammatical trigram, has achieved a modest yet consistent perplexity improvement 

over the current trigram. (3) In structured language model, the next word is predicted 

based on a set of linguistic equivalence classification of the history.

Rosenfeld (2000b) also introduced four ways to capture topic coherence, (i) Model 

interpolation. The training data were partitioned into multiple sets by topic(s). Then, 

a separate topic-specific language model is created on each such set, and the 

interpolations between the various models takes place at the word level. This method 

achieves moderate yet consistent reductions in perplexity and speech recognition 

error rates, (ii) The N-gram cache, which has been implemented in many systems 

with a modest reduction in word recognition error rate, is easy to implement and 

capture word auto-correlations, (iii) Word triggers are the outcome of the 

generalization of the cache idea, (iv) The dimensionality reduction of the topic space, 

which can be achieved by Singular Value Decomposition (SYD), improves the 

modeling individual word correlations.

According to Rosenfeld (2000b), it is almost impossible to think about linguistic 

aspects of sentences, such as their grammar syntax, semantics or pragmatics, and say 

nothing of encoding in a conditional framework. Rosenfeld (2000b) proposed the 

exponential model, which directly models the probability of an entire sentence or 

utterance. In this model, each sentence or utterance is treated as a bag of features, 

which are arbitrary computable properties of the sentence. Furthermore, the unified 

structure of the model makes it possible that any linguistic theory can be 

incorporated without any change to the model itself.

Rosenfeld (2000b) has discussed the reason for the difficulty of integrating linguistic 

features with statistical language models as the following: (1) linguistic theories and 

statistical models have different goals. The former deal with existence, whereas the 

latter deal with prevalence. (2) lack of a general framework. (3) mental straight- 

jacket of the conditional formulation. (4) Impoverished priors. A prior is supposed to 

capture everything that is known about the domain before any data are observed.
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However, the language (e.g. English) has such a large parameter space that any 

feasible amount of training data is insufficient.

•  Lavie (1996) mentioned the follov/ing techniques:

Carboneil and Hayes (1984) suggested a case-frame approach to handle the extra- 

grammaticality. After examining the main semantic concept of the sentence, the 

semantic interpretation of the input is obtained. Then, search the sentence for 

components that instantiate the semantic frames that are associated with the main 

concept. This approach is flexible to the order of the semantic frames to the input, but 

it is domain dependent and hard to capture syntactic and other grammatical 

knowledge.

McDonald (1992) described an approach based on chart parsing. Semantic grammars 

are used to combine the lower level phrases into phrases that represent semantic 

concepts, and then applied to a coherent analysis by the conceptual analyzer, which 

allowed gaps of unanalyzed segments of text between the combined phrases. The 

system unified bottom-up syntactic parsing with top-down conceptual expectation- 

driven parsing into a flexible multi-layer parser. Thus comes the drawback of 

complexity.

Menzel (1995) suggested a unified approach by using the constraint grammar 

formalism to express syntactic, semantic and pragmatic linguistic constraints. Thus, 

the violation of the constraints is regarded as penalties, and the importance of 

satisfying a constraint can be modeled via penalty weights. Then the minimal penalty 

means satisfying the constraints best. Unfortunately, this approach has not been M ly 

implemented in a large application.

10. CONCLUSION

With the growing interest and demand for the human-machine interaction, more and more 

work concerning speech-recognition has been carried out over the past decades.
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Chappelia: et al. (1999) has stated that, over the past decade, speech-recognition 

technology has made significant progress: with twofold reduction every two years, in 

word-recognition errors (Rabiner et a l, 1996), and the emergence of high-performance 

language systems. A variety of approaches have been proposed to address speech- 

recognition issues, such as the stochastic (statistical) techniques, grammar-based 

techniques, combined N-gram and grammar-based techniques, techniques integrated with 

linguistic features, and other approaches. Furthermore, it has been widely accepted that 

language features are playing significant roles to achieve high accuracy in speech 

recognition (Harper et a l, 2000), (Moore, 1999), (Seneff et a l, 1995), (Hermannsdottir, 

1996), (Takezawa et al, 1991). However, there are still a lot of challenges on the way of 

developing Mgh-accuracy, and user-friendly speech-recognition technologies (Glass, 

1999).

This survey also indicates that Rosenfeld is the person who is making significant 

contribution to the integramion of grammar-based and stochastical-based techniques.
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Appendix B: Computation of Language Size in Detail

Note: superscripts are used to denote the obtained size o f the sub-language defined by the 

expressions; the following comments (starting with “//”) denote the computation used to 

calculate the size.

Figure Appendix B (1): Imgmgesize computation of semantic grammar

/* semantics_^ain_extl.gram */ 
grammar semantics 2ram_extl;
public = <linkmgvb>'* <termplirase_verbphrase>̂ ^̂ *̂̂ *̂ ®**̂

I is <pnoim>*̂  ̂<pnoua>̂ ’̂
I is <pnooa>*^’ ( a|an f  <nonmcla>*®̂  
is <pnouji>’̂ ’ ( a an) ̂  <nouiicla>̂ ®® or ( alan) ̂  <nouQcla>'”®

I ( who ) <animate_verbph>̂ '̂ '̂ ^®̂ ^
I { what) <inanimate_verbph>̂ *̂ "̂̂ ^̂
I ( which I how many ) <nouncla_verbph>*̂ *̂®̂ ^̂ ®
j ( which I how many) <no‘uncla_verbph_other>*^®®^®'‘
I <simple>

7/4=̂ 455684689185+ 121*121 + 121*2*108 + 121*2*108*2*108 + 3*294403057132+ 8772934 +
// + 3837429 + 126895596 + 156297624 + 26 =
//=  1822738756740 + 14641 + 26136 + 5645376 +820116752331 + 295803609 
// = 2706249417898 = 2.70 * lO'̂
<simple>^  ̂= I ask them to be quite 

I please introduce yourself 
1 hello there 
1 goodbye
I goodbye solar man 
I fine thanks 
I thanks
i thanks solar man 
i yes please 
I what is your name 
I who are you 
1 where do youlive 
1 what do youknow 
I how old are you 
I what is your favoiite band
j who is the vice president at the university of Windsor 
I who is the dean of science at the university of Windsor 
i tell me a poem 
I know any poems 
I tell me a joke 
j know any jokes 
j who is Judy 
I can i talk to Judy
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I can i talk to solar man 
i who is moBty 
j can i talk to monty;

<termphrase_verbphrase>̂ ^̂ ®®'*®®®*̂  ̂= <nonhnman_termpli_pIaiiet>®^  ̂<transvb_by_termpli>̂ '*̂ '̂ '̂*̂
I <Eonliiiinan_termph_moon>’'̂ *̂ ® <animate_txansvb>® by <hiimatt_temipli>^^®̂ ’ 
j <nonhuman_termph_otlier>^^®'*̂ '’ <animate_transvb>® by <hninaii_termph>̂ ^®̂ *
I <iionhuman_termph_otlier>'°®'*^  ̂<animate_transvb>® <preposition>  ̂

<nonhuman_termph_planet>®^^^
1 <nonhiimaii_tennph_other>^‘̂ ®'*̂  ̂<aHimate_transvb>  ̂<preposMon>  ̂

<aoahiimaiL_termpli_mooii> '̂*’®̂ ;
//6555*3447441+ 14196*6*25651+ 1069453*6*25651 + 1069453*6*2*6555 + 1069453*6*2*14196 
// = 22597975755 + 2184849576+ 164595233418 + 84123172980 + 182183457456 -  455684689185 
<transvb_by_termph>̂ "̂ '̂ "*̂ ' = <aniniate_transvb>  ̂by <hnmanLtermpli>̂ ^^̂ ‘

I <inanimate_transvb>® by <noiil«mian._termph_moon>̂ '*̂ ^®
! <inanimate_transvb_other>^ by <nonliumaii_tennph_other>*°®'*^ ;̂
// 6 * 2565! + 6 * 14196 + 3 * 1069453 = 153906 + 85176 + 3208359 = 3447441 

= <human_termph>̂ *̂̂ ' <animate_verbph>̂ ^̂ ^̂ '̂̂
1 <nonhumaii_termph_moon>‘‘*’®f <inanimate_verbph_active>^^^ ’̂
I <noniiumaii_termph_r>laiiet>®^̂  ̂<inanimate_verbph_passive>^"^ '̂̂
I <nonhuman_termph_moon> <inanimate_verbph_active_other>
I <nonhuman_termph_4>lanet> <inanimate_verbph_active__other> ;
// 25651*8772934 + 14196*39337 + 6555*340717 + 14196 * 3208361 + 6555 *3208361 
// = 225034530034 +558428052 + 2233399935 + 45545892756 +21030806355 
//=  294403057132 

<nouncla_verbph>'̂ ^^^^^  ̂= <human_nouncla>*  ̂<animate_verbph>®™®̂ '̂
I <aonhumaii_!ioimcla_mooii>® <animate_verbph_jjassive>^ 
i <nonhuman_nouncla_45lanet>* <aniniate_verbph_passive>'^”^̂^
I <nonhuman_nouncla_inoon>® <inammate_verbph_active>^^^^  ̂
j <nonhuman_nouncla_planet>  ̂<inanimate_verbpli_passive>^^'‘ ̂ ;
7/12*8772934 + 6*1611672 + 6*1611672 +6*39337 + 6*340717 =
// = 105275208 + 9670032 + 9670032 + 236022 + 2044302 =126895596 

<nouncla_verbph_other>’ = <nonhuman_nouncla_other>*^ <animate_verbph_passive>^^"^^  ̂
j <nonhuman_noimcla_other>*  ̂<inanimate_verbph_j)assive_other>^‘*®
// 84 * 16H 672 + 84*249014 = 135380448 +20917176 = 156297624 

<inanimate_verbph>̂ ®̂ '̂ '*̂ ® = <inaiiimate_verbph_active>^®^^^
I <inanimate_v€5rbph_passive>  ̂
i<inanimate_verbpli_active_other>^ °̂® *̂*
|<inanimate_verbph_passive_other>^‘*̂ ''̂ ;
7/39337 +340717+3208361+ 249014=3837429 

<human_stermph>”  ̂= <hiiman_j)noun>‘’
I <human_detph>^ ; 17+96 =113 

<nonhuman_stennph__planet>  ̂= <nonhumanj>nouii_j)Ianet>^
I <nonhuman_detph_j)Ianet>'̂ *; 77 9 + 48 = 57 

<nonliiimaii_stennpli_moon>  ̂= <nonhuman_pnoun_moon>^®
I <nonhuman_detph_mooii>^*; 77 36+48 =84 

<noiihumaa_stennph_other>”̂ * = <nonhiiman_pnoun_other>^®
I <nonhiiman_detpli_other>*’^; 7759 + 672 =731 

<human_termph>̂ ^®̂  ® = <huinan_stemiph>*
I <human_stemiph> ( and | or ) <human_stermph>’ '̂’ ; 77113+113*2* 113=25651 

<nonhiimaii_termph_planet>*̂ ^^  ̂= <nonliiimac_stennph_plaiiet>^^
j <nonlraman_stermph_planet>^’ ( and | or) <nonhi[man_stermph_planet>”  ;
77 57 + (57*2*57) = 6555
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<nonh.uman_termphjiiooE>^^*^® = <nonliiimaii_stemph_mooii>*'*
I <noQlininan_stermpli_mooii>®'* ( and j  o r )  <nonhuiiian_stermpii_moon>®^ ;
7/84 + 84*2*84=14196 

<noniiiiman_ternipli_otlier>’®®®̂̂  ̂= <nonhiimaii_stemph_other>'^^*
I  <nonlniman_stermph_other>'^ '̂ ( and [ or) <aontomaii_stermph_otlier>’^̂ ;
//731 +731*2*731 = 1069453 

<aaimate_vsrbph>*™* '̂* = <aaimate_traiisvbpli>®’̂'̂ ®̂̂ ;̂
<manimate_verbph_ac{ive>^®^ ’̂ = <inanimate_transvbph_active>^® '̂^®

I <mtransvb>^ //39330+ 7 =39337
i  t  • ^40717  . . ^  . ■^40704<inanimate_verbph_passive> = <inanimate_transvbph_passive>

j <intransvb>^
<inanimate_transvb>® sun; // 340704 + 7 + 6 = 340717 

<inanimate_verbpli_active_other>^ ' = <inanimate_lxaosvbpli_active_ot}ier>"
j <intransvb„otlier>^; // 3208359 + 2 =3208361 

<iDanimate_verbph_passive_other> = <inanimate_transvbph._passive_other>
I <mtransvb_other>^; / /  249012 +  2 =  249014 

<animate_verbph_passive>’®” ®'̂  ̂= <linkmgvb>^ <animate_traDSvb>® by <liuman_termph>^^®^* |
<li!ikingvb>"  ̂<animate_transvb>^ <preposition>^ <noiihuman_temiph_planet> | 
<linkingvb>'* <aQimate_transvb>* <preposition>^ <nonlmman_termpli_moon>^^*®^;

// 4*6*25651 + 4*6*2*6555 + 4*6*2*14196 = 615624 + 314640 + 681408 = 1611672 
<animate„transvbpli>®"̂ '̂ ^®̂  ̂= <animate_transvb>^ ( <nonhnmaii_temipli_jjlaiiet>®^^^

I <nonlii!man_temiph_mooii>*^*®®
I <nonliuman_temi|)b_otlier>*°®'^^^)

I <animate_transvb_other>^ (<human_termph>^*
I <nonhnman_tennpli_j>lanet>®^*®
I <nonhuman_termph_moon>’'**̂  ̂
j <nonhiimaii„termph_otlier>*°^^‘̂ ^̂ ); 

//6*(6555+14196+1069453)+2*(25651+6555+14I96+1069453)=6541224+22317i0=8772934 
<maEimate_transvbpii_active>^®  ̂  ̂= <inanimate_transvb>® <nonhmnaii_tennph_plaiiet>^^^^;

1/6 * 6555 = 39330
<inaQimate_transvbph_passive>^^°™'* = <linkingvb>'* <inanimate_traiisvb>^ by

<nonlmmaE_tennph_mooii>*‘**®®; //4 * 6 * 14196 =340704

<inanimate_traBsvbph_active_otlier>^^®®^^® = <maiiimate_transvb_other>^
<nontoman_termpli_otlier>*®®®‘*̂ ;̂ // 3 * 1069453 = 3208359 

<inanimate_transvbpli_passive_pther>"‘*®”*̂ = <!inkiagvb>'* <inanimate_transvb_other>^ by
<nonliiiman_temiph_plaiiet>®^^^

(<linkingvb>'* <manimate_traiisvb_ofher>^ by
<nonlnimaii_tesmph_inoon>*^*®® ; // 4*3*6555+4*3*14196 = 249012 

<human_detph>®  ̂= <det>® <lramaii_aouncla>’‘‘ ; // 8*12 = 96 
<nonliuinan_detph_p!aaet>'*® = <det>  ̂<noRliiiman_nou!ic!a_j>lanet> ;̂ // 8*6 = 48 
<nonhumaji_detph_iiioon>'** = <det>  ̂<nonhi2man_iiOTJJicla_mooa>*; //8*6 = 48 
<nonliijmaiijietpli_otlier>®'^  ̂= <det>® <nonhimian_nouiicla_otlier>®^; 7/8*84=672 
<prq30sition>^ = on | in ;
<norracla>̂ °® = <liiimaii_nouncla>*  ̂1 

<noQhyman_iiouacla_jslanet>* |
<nonhnman„noiiiicla_moon>® |
<noiili«maii_noancla_other>*'^; //12+6+6+84=108 

<liiiman_jioiiiic!a>’  ̂= <adj>  ̂<htiman_cnoiiii>'^
j <toman_cEoun>'*; 772*4+4 = 12

<nonhiimaiijiouiicla_j5ianet>^ = <adj>  ̂<nonhuinaii_cnoun olanet>^
i <nonhuman_cnouii_plaiiet> ; 7/ 2*2 +2 = 6
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<noiitiTO!ian_iiouiicla_moon>* = <adj>̂ <noEhuman_CEorai_moon>^
I <nonliuman_cnouiijiiooii>^; // 2*2+2=6

<nonliumaii_iioiiiicla_other>*  ̂= <adj>  ̂<nonliiimaii_cnoiin_otlier>^*
I <nonhuma!i„ciioim_ptlier>̂®; //2*28-t-28=84

<liiiman_ciioan>̂  = man | men | person | people;
<noiiliuman_caoun_planet>^ = planet | planets ;
<nonhuman_cnoiin_mooii>^ = moon j moons;
<nonliuman_caoiin._other>^* = mountain | mountains | crater | craters | sea | seas | ocean | oceans |

chemical j chemicals | gas | gases | metai | metals ] nonmetal} nonmetais | 
country ] countries | capital | capitals } city | cities | continent icontinentsj 
river! rivers | lake | lakes ;

<adj>  ̂= red | atmospheric;
<intransvb>'  ̂= spin | spins | orbit | orbits | orbited | exist |exists ;
<inlxansvb_other>  ̂= exist 1 exists;
<animate_transvb>^ = discover | discovers | discovered | find | finds | found; 
<animate_transvb_other>^ = worship j worshiped;
<inanimate_transvb>̂ = orbit | orbits j orbited | neighbour | neighbours j neighboured; 
<inanimate_transvb_other>̂ = contain | contains j contained;
<Hnkingvb>'  ̂= is j was | are | were;
<questl>^ = did | do | does;
<det>* = a J an I every | one j two | three | four j five;
<pnoim>’̂  = <nonhumaQ_pnoun_planet>^

I <nonhuman_pnouii_moon>
I <toman_j)noim>
I <nonhaman_j)noun_other>^®; //9+36+17+59=121 

<nonhuman_pnoun_planet>^ = earth | jupiter | mars | mercury | neptune j pluto | satum i uranus |
veous;

<nonlium an_j>iioim_moon>^* =  a lm athea | arie i |caliisto  | charon  | deim os | d io n e  | en ce lad u s | eu ropa  | 
ganym ede | hyperion | iapetus | io | janus {jupitereighth j jupitereleventh | 
ju p ite rfo u rteen th  | jupiteminth | jupiterseventh | jupitersixth | jupitertenth | 
jupiterthirteenth | jupitertwelfth | luna | mimasj miranda | n e re id  | oberon  | phobos | 
phoebe | rh ea  | satumfirst j tethys | titan | titania | triton | umbriel; 

<human_pnoun>'’ = b em ard  | bond j cassini | doll&s | foun tain  | galileo | h a ll | herschel | huygens | 
kowal I kuiper | larsen | lassell | melotte j nicholson j perrine | pickering ; 

<nonhuman_j)noun_other>̂  ̂= <nonhuman_pnoun_chemical>̂®
I <space_program>^
j <earth_geography_domain>̂ ;̂ /720+6+33=59 

<nonhuman_pnoun_chemical>̂° = <nonhuman_pnoun__gas>®
I <nonhuman_pnoun_metal>^
1 <nonhuman_pnoim_nonmetal>̂ ; 7/6+9+5=20 

<nonhuman__pnoun_gas>® = oxygen | hydrogen j nitrogen 1 dioxide | monoxide | helium; 
<nonhuman_pnoun_metal>® = gold | silver j copper} iron ] stannum j nickel j  potassium | natrium |

hydrargyrum;
<nonhuman_pnoun_nomnetal>̂  = water j sulphur j carbon | phosphorus | calcium;
<space_program>* = shuttle j rocket 1 launch | telescope | station] astronaut;
<earth_^eography_domain>^^ = <country>^ | <capital>® | <city> j <coEtinent>* | <ocean>'* | <river>  ̂|

<lake>' I <mountain>*; 6+6+6+6+4+3+1+1=33 
<country>® = Canada | china | England | France | Germany | united states;
<capital>^ = Ottawa | Beijing | london | pans j berlin | Washington;
<city>® = toronto [ shanghai | manchester | iyon j Frankfurt j New York;
<contineiit>® = Affica | Asia | Austrilia | Europe | North America j South America;
<ocean>^ = Arctic | Atlantic | India | Pacific;
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<iiver>^ = Yangtse j Nile | Danube ;
<Iake>^ = Ontario lake;
<inoiintaia>* = rocky mountain;

Figure Appendix B (!): language-size computation of semantic grammar (Cont’d) 

Figure Appendix B  (2): ianguage-size computation o f syntactic grammar

I*  syn tax_g ra in_ex tL gran i */ 
g ram m ar sy n tax _ g ram „ex tl ;
public 5638237 „  <ii|j]angy|)>‘* [<transvb>*  ̂by ]

i <linM ngvb>^ f< transvb> ’  ̂< p reposition>  1 <termpli>^®"**'^^^

j ( w ho  |w hat) ̂  <verbph>'*'’'̂ ™*̂ '̂̂
I ( which I how many) ̂  <nouncla>*°®<verbph>'*‘̂’̂™’^̂ ’̂ 
j <simple>^®;

//4*1941435*15*1941435 + 4*1941435*15*2*1941435 + 3*791525684027295 + 2*407701357 +
// + 2*108*407701357 +26 =

■ //=226150191553500 + 452300383107000 + 2374577052081885 + 815402714 + 88063493112+26 
//= 3053116505638237 = 3.05 * 10*̂

<simple>^® = I ask them to be quite 
I please introduce yourself 
I hello there 
I goodbye
1 goodbye solar man 
I fine thanks 
I thanks
I thanks solar man 
I yes please 
j what is your name 
I who are you 
j where do youlive 
I what do youknow 
I how old are you 
I what is your favorite band
I who is the vice president at the university of Windsor 
j who is the dean of science at the university of Windsor 
i tel! me a poem 
I know any poems 
I  tel! me a joke 
I know any jokes 
I who is Judy 
I can i talk to Judy 
I can i talk to solar man 
I who is monty 
I can i talk to monty;

<verbph>̂°™‘̂ ’̂; // 407701357 * 1941435= 791525684027295 
<stermph>®̂  ̂= <pnoun>“ ‘ | <detph>®®'̂ ; //121+864 = 985
<termph>’” “ ^̂  = <steimph>®®̂  | <stemiph>®^̂  (and | or) ̂  <stermph>®®̂ ; //985+985*2*985 = 1941435 
<verbph>'*‘’̂ ™̂ ”̂  = <transvbph> °̂'^™’̂ °̂ | <mtransvb>’; //407701350 +7 =407701357
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<transvbph>'^°’ '̂*̂ ^̂ ° = ( <transvb>'^ i <iinkingvb>^ <fransvb>*® by) <termpli>‘®̂” ^̂  |
( <transvb>*  ̂| <linkingvb>"  ̂<transvb>*  ̂<preposition>^) ;

// (15 + 4=*=15)  ̂1941435 + g5+4*15*2)*194i435 = 145607625 + 262093725 =407701350 
<detpli>®®̂  = <det>® <noimcla>“ ^ 8*108 = 864 
<jiounda>’*̂® = <adj>  ̂<ciionn>̂ ® j <cnoun>^ ;̂ // 2*36+36 = 108
<caoun>^® = man j men | person | people | planet | planets | moon | mooes | mountain | mountains | 

crater | craters | sea | seas [ ocean ] oceans | chemical | chemicals ] gas | gases 1 metal]
metals] noijinetal | nonmetais | country j countries ] capital | capitals | city icities |coatinentj 

continents | river | rivers | lake | lakes ;
<adj>^ = red | atmospheric;
<intransvb>'  ̂= spin | spins j orbit | orbits] orbited j exist | exists ;
<det>* = a I an I every j one j two | three | four | five;
<pnoiin>’" = <pnouii_j)lanet_mooii_human>^^

I <nonhuman_|5iioiiii_chemical>^*^
I <space_program>®
j <earth_geography_dom ain>^^; // 62+20+6+33 =  121 

<pnoiHi_j»lanet_moon_humaii>®^ =  earth  | ju p ite r  | m ars | m ercu ry  | n ep tune  | p lu to  | sa tu m  | u ran u s | 
venus j a lm athea | a rie i | ca llisto  j charon  | deim os j d io n e  | enceladus | eu ro p a  | g an y m ed e | 
hyperion  ] iapetus | io  | ja n u s  | ju p ite re ig h th  | Jup itere leven th  | ju p ite rfo u rteen th  | ju p ite m in th  | 
ju p ite rsev en th  j ju p ite rs ix th  j ju p ite r ten th  iJup ite rth irteen th  | ju p ite rtw e lfth  | lu n a  | m im as ] 
m iranda | n ere id  j o b eron  ] p h obos j p h o eb e  j rh ea  | sa tu m firs t j te thys | titan  | titan ia  | 
triton  j um brie l | b em a rd  | bo n d  | cassin i | do llfbs | foun tain  | galileo  | h a ll ] h e rsch e l | 
huygens | kow al ] k u ip e r j  larsen  | lassell ] m elo tte  | n ich o lso n  | p e rrin e  j p ic k e r in g ; 

< nonhiB naa_pnoun_chem ical>^ =  <nonhumaE_4)noun_gas>^
I <nonhuman_pnoun_metal>̂
I <nonhiiman_|)iioun_nonmetal>^; // 6+9+5 = 20 

<nonhuman_pnoun_gas>* = oxygen {hydrogen | nitrogen ] dioxide ] monoxide | helium; 
<noiihumaii_pnouii_metal>® = gold | silver | copper | iron | stannum ] nickel | potassium ] natrium [

hydrargyrum;
<nonhuman_pnoun_nonmetal>^ = water | sulphur j carbon | phosphorus | calcium;
<space_4 >rogram>̂ = shuttle | rocket | launch | telescope | station] astronaut;
<earth_geography_domain>̂  ̂= <country>® | <capital>* | <city> | <continent>̂  \ <ocean>'‘ | <river>̂ |

<lake>’ 1 <mountain>'; // 6+6+6+6+4+3+1+1 =33 
<country>® = Canada | china ] England j France ] Gemany j united states;
<capital>® = O ttaw a  | Beijing | loadoa ] p a r is  | berlin j Washington;
<city>® = toronto ] shanghai | manchester | iyon j Frankfurt | New York;
<continent>* = AMca | Asia j Austrilia j Europe | North America | South America;
<oceaii>^ = Arctic | Artlanfic | India | Pacific;
<river>''* = Yangtse | Nile | Danube;
<lake>’ = O n ta rio  lake;
<mountain>* = rocky mountain;
<transvb>*  ̂= orbit | orbits j discover | discovered | neighbour | neighbours | neighboured | worship | 

worshiped | contain | contains | contained j find ] finds j found;
<preposition>^ = in | on ;
<linkingvb>"’' = is | was | are ] were ;
<questl>^ = did | do [ does ;

Figure Appendix B (2): language-size computation o f syntactic grammar (Cant’d)
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Figure Appendix B (3): language-size computation o f word-sequence grammar

/* 10-word word-sequence grammar 
wordSequeace_gram_ext 1 .gram

t-i
gram m ar w ordS equence CTam _extl;
p u H ic  <s>2307917l?483l03775f893S82 ^

i<word> <word>
!<word> < w ord>  < w ord>
|<w ord>  < w ord>  < w ord>  <w ord>
|<w ord>  < w o rd x w o r d >  < w ord> < w ord>
|< w ord>  < w o rd x w o r d >  < w ord> < w ord>  < w ord>
|<word> <word><word> <wordxword> <wordxword> 
j<word> <wordxword> <word><word> <wordxword> <word>
|<word> <word><word> <word><word> <wordXword> <word><word> 
l<word> <wordxword> <word><word> <wordxword> <wordxword> <word> 
|<simple>^*;

// 273 + 21f  + 273̂  + I l f  + 273  ̂+273® + I l f  + 273® + 273® +273“ =
// 273 + 74529 + 20346417 + 5554571841 + 1516398112593 + 413976684737889 +
// + 113015634933443697 + 30853268336830129281 + 8422942255954625293713 +
// + 2299463235875612705183649 =
// = 2307917144831037751893882 = 2.31 ♦ 10̂ ^
<simple>^® =  I ask  them  to  b e  qu ite 

I p lease  in troduce y o u rse lf  
j h e llo  there 
I goodbye
I goodbye so la r m an  
I fine  thanks 
I thanks
I thanks so lar m an  
1 yes p lease  
I w h at is you r nam e 
I w ho  are  you  
I w h ere  do  youlive 
I w h at do  youknow  
I h o w  o ld  a re  you  
I w hat is  your favo rite  b and
I w h o  is the v ice  p residen t a t the  un iversity  o f  W indsor 
I w ho  is the  dean  o f  sc ience  a t th e  un ivers ity  o f  W indsor
I te ll m e  a p oem  
I k n o w  an y  poem s 
I te ll m e  a jo k e  
I k n o w  any  jo k e s  
I w h o  is Judy  
I can  i ta lk  to  ju d y  
I can  i ta lk  to  so la r m an 
I w ho  is m onty  
I can  i  ta lk  to  m o n ty ;

<w ord>^’  ̂=  <cnoun>^® | <adj>^ j <verb>^® | < q u estl> ^  ] <det>® j <preposition>^ j < p n o u n > ’^*!
< nonhiim an_piio iiii_cliem ical>  |<space_program >®  j < earth_geog raphy_dom ain>  
< o ther_w ord> ^^ ; / /  36+2+30+3+8+2+121+20+6+33+12 =  273

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B: Computation of Language Size in Detail   Page 154

<cnoim>^* = man | men | person \ people j planet j planets | moon | moons j moxmiain | mountams | 
crater | craters | sea | seas [ ocean | oceans | chemical | chemicals I gas | gases | metal|

metalsj nonmetal i nonmetais j country 1 countries | capita! | capitals i city icities icontinentj 
continents | river j rivers 1 lake | lakes ;

<adj>  ̂= red | atniospheric;
<verb>̂ ® — <intraasvb>^

1 <intraBsvb other>^
j <animate_transvb>®
I <animate_tratisvb_o 
I <inanimate_transvb>®
I < inan im ate_traasvb_othef>^ 
i <linkijigvb>^; / /  7T-2+6-f-2+6+3+4 =  30 

<intransvb>'^ =  sp in  j spins ] o rb it j o rb its | o rb ited  | ex is t [exists ;
< in transvb_other>^ =  ex ist | exists;
< a n im a te _ tra n sv b > ®  =  discover j discovers j d is c o v e r e d  | f in d  [finds [ fo u n d ;
< a n im a te _ t r a n s v b _ o th e r > ^  =  w o r s h ip  | w o r s h ip e d ;
<m anim ate_transvb>®  =  orb it j o rb its | o rb ited  | n e ig h b o u r | neighbours j neighboured ; 
<inanimate_transvb_other>  ̂=  con ta in  [ contains | contained;
< l in k in g v b > ^  =  i s  | w a s  [ a r e  | w e r e ;
<questl>^ =  did | do j does;
<det>^ == a  I a n  1 every  | on e  [ tw o  | th ree  | fo u r | five;
<preposition>^ =  in  {on;
< p n o u n > ’^’ =  <nonhum an_pnoun_planet>®

I <nonhim aii_4)noun_m oon>
I <human_pnoun>
I <nonhum an_4)noun_other>^^; //9+36+17+59=121 

< nonhum an_pnoun_planet> ^ =  earth  j ju p ite r  | m ars | m ercu ry  j nep tune  | p lu to  | sa tu m  j u ran u s |
venus;

<nonhuman_paoun_mooE>^® = almathea [ ariei [callisto | charon | deimos j dione | enceladus j europa j 
ganymede |hyperion | iapetus | io [janus [jupitereighth |jupitereleventh | 
jupiterfourteenth |jupiteminth [jupiterseventh [jupitersixlh [jupitertenth j 

jupiterthirteenth [ jupitertwelfth | luna | mimas| miranda [ nereid [ oberon (phobos| 
phoebe | rhea j satumfirst [ tethys j titan | titania | triton | umbriel; 

<human_pnoun>‘'̂  = bemard | bond | cassini [ dollfos [ fountain j galileo | hall [ herschel | huygens [ 
kowal I kuiper | larsen | lassell | melotte | nicholson j perrine | pickering ; 

<nonhumaii_jiiouii_.other>*® = <nonhumanj3noun_chemicaI>^°
I <space_program >®
i <earth_geography_dom aiji>^^; //2(H-6+33=59 

<nonlium aii_pnoim _chem ical>^° =  <nonhum an_piioiin_gas>®
I <nonhuman_j)noun_metal>®
I <nonhum an_p!E oun_nonm etaI>^; 7/6+9+5=20 

< non tom an_pno im _gas> *  =  oxygen  | hyd rogen  | n itro g en  | d io x id e  | m onox ide  [ h e l iu m ; 
<nonhum an_pnoun_m etal>®  =  go ld  | s ilv er | co p p e r | iro n  | stannum  j n ick e l | p o ta ss iu m  j n a trium  [

h y d r a r g y r u m ;
<nonhiiJinaa_pnoua_nonm etal>^ =  w ate r | su lphu r | ca rbon  | phospho rus | calcium ;
<space_program>® = shuttle J rocket | launch | telescope | station J astronaut;
< earth_geog raphy_d0m ain> '’̂  =  <country>* | <capital>^ | < city>  | < continent>^ | < o cean > ‘̂  j  <river>^ |

< la k e> ’ j <m ountain>* ; 6+6+6+6+4+3+1+1=33 
<countiy>* =  Canada | ch in a  j E n g la n d  | F rance  | G erm any  j u n ited  states;
< c a p ita l> ^  =  O tta w a  | B e i j i n g  j l o n d o n  | p a r i s  | b e r l i n  [ W a s h in g to n ;
<city>® =  to ron to  [ shanghai | m an ch ester | Iyon | F rankfiirt | N ew  York;
<continent>  ̂=  A fiic a  [ Asia | Austrilia [ E u rope | North America [ South America;
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<ocean>^ -  Arctic j Atlantic | India! Pacific;
<river>  ̂= Yangtse | Nile j Danube;
<lake>* = Ontario lake;
<moimtain>' = rocky mountain;
<other_word>*  ̂= sun | or | and | by | which | who | what j how j many j monty | judy j solar;

Figure Appendix B (3): language-size computation of word-sequence grammar (Cont’d)

Figure Appendix B (4): ianguage-size computation o f extended semantic grammar

/* semantics_gram_ext2 .gram */
granmiar semantics_eram_ext2;

^55503337768TO_public <s> <linkingvb>  ̂<termphrase_verbphrase>'857815517151

I i s  <pnoim >^® ^ <pnoun>^® ^
I is < pnoun>^® ^ ( a | a n )  ^ < n o x m c la > ’°®
is <pnoun>̂ ®̂  ( a|an) ̂  <nouncla>“̂*‘ or ( aian) ̂  <nouncla>*

I ( w h o ) <animate_verbph>^^^**'‘ ®̂
I ( w h a t ) <inanimate_verbph>®®^^^^
I ( w hich  i h o w  m a n y )  ̂<nouncia_verbph>^®''^^^°''
I ( which I how many ) ̂  <nouncla_verbph_other>^^®^^^^
1 < s i m p l e > ^ ^ ;

//4«857815517151 + 395*395 + 395*2*108 + 395*2*108*2*108 +3*706042576772 + 22511168+ 
// + 6692235 + 2*291754404 + 2*156297624 + 26 =
// = 3431262068604 +156025 +85320 + 18429120 +2118127730316 +29203403 +583508808+
//+312595248 +26 = 5550333776870 = 5.55 *10‘̂  

ask them to be quite 
p lease  in troduce y o u rse lf  
hello there 
goodbye
goodbye solar man
fin e  thanks 
thanks
thanks so lar m an 
yes p lease  
w h a t is your nam e 
w ho  are  you 
w h ere  do youlive 
w h at do  youknow  
h o w  o ld  a re  yon 
w h a t is  your favorite  b and
w ho  is  the  v ice  p resid en t a t the  un iversity  of W indsor 
w ho  is  the d ean  of sc ience a t the  un ivers ity  of W indsor 
te ll m e  a poem  
k n o w  an y  poem s 
te ll m e  a jo k e  
k n o w  an y  jo k e s  
w h o  is ju d y  
can i ta lk  to  judy 
can  i ta lk  to  so la r m an

!08
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j wlio is monty 
I can i talk to monty;

<temiphrase_verbphrase>*̂'̂ ®’̂ ”̂’̂* = <nonhiiinan_termpii_planet>*̂^̂ <transvb_by_t®3iiph>®°̂ "̂'’ 
j <nonliuinan_temipli_niooa>̂ ‘**̂* <animate_transvb>̂ by <human._temipli>̂^̂ *̂
I <aonliuman_tennph_other>̂°̂ *°̂  ̂<animate_traiisvb>‘̂ by <lKiinaii_teiiiiph>̂ ®̂*
1 <noolnimaii_temipli_otlier>̂®*°̂  ̂<animate_transvb>® <preposition>̂  

<noaliumaii_tennph_planel>®*̂  ̂
j <noaii'{iman„termpii_otlier>̂®*°̂  ̂<aniinate_lxamvb>® <preposition>̂  

<iionliumaiLj;ermpli_mooa>‘̂^̂ ;̂
// 6555*6302247 +14196*6*25651+2021055*6*25651 +2021055*6*2*6555 + 2021055*6*2*14196 
//= 41311229085 + 2184849576 + 311052490830+ 158976186300 + 344290761360 =
//= 857815517151
<transvb_by_termpli>®°̂ ^̂’ = <animate_transvb>® by <human_termph>̂ ®̂’

{<inanimate_transvb>̂ by <nonhiiman_temiph_inoon>‘'*’®̂
I <kanimate_traiisvb_other>̂  by <nonhumaii_teniiph_other>̂®̂“̂ ;̂
// 6*25651 + 6*14196 + 3*2021055 = 153906 + 85176 + 6063165 = 6302247 

= <taman_termph>̂ *̂̂’ <animate_verbpli>̂ '̂ "‘«̂
I <fioahimianJ;emiph_mooii>”*̂® <inanimate_verbph_active>̂®̂ ’̂ _
I <nontaman_tennph_j)lanet>®̂  ̂<iiianimate_verbph._passive>̂ ‘̂’’̂‘' 
j <nonhuman_termph_moon>*̂*®* <inanimate_verbpb_active_other>®'̂ ®'®'̂  
j <nontoman_temph_planet>̂^̂  ̂<inanimate_verbpli_active_otlier>®°*̂ ‘*’;
//25651*22511168+ 14196*39337+6555*340717+ 14196*6063167+ 6555*6063167=
//= 577433970368 + 558428052 +2233399935 + 86072718732 +39744059685 =
//= 706042576772 

<nouncla_verbph>̂* * 754404 _ <animate_verbph>̂^̂"
I <nonhuman_aouQcla_mooii>® <animate_verbph_passive>’®*'®’̂̂
I <nonhuman_nounck_j5laiiet>* <animate_verbpli_passive>*®*
I <nonhuman_nouncla_moon>® <inanimate_verbph_active>̂^̂ ’̂ 
j <nonhuman_nouncla_j)lanet>* <inanimate_verbpb_passive>̂ ’̂’̂ ;
//12*22511168 + 6*1611672 + 6*1611672 + 6*39337 + 6*340717 =
// 270134016 + 19340064+ 236022 + 2044302 = 291754404 

<nouncla_verbph_other>*̂®®™̂'* = <nonhuman_nouncia_other>*̂  <animate_verbph_passive>'®*'̂ ’̂
I <nonhuman_nouncla_other> <manimate_verbph_passive_other> ;
It 84*1611672 + 84*249014 = 135380448+ 20917176 = 156297624 

<inanimate_verbph>®®®̂^̂ = <inanimate_verbph_active>̂^̂ ’̂
I <manimate_verbph_passive>̂'’̂ ’̂
1 <manimate_verbph_active_other>̂ '̂®̂
I <iiianimate_verbph45assive_other>̂'̂ ^̂'*;

// 39337 +340717+ 6063167+249014 = 6692235 
<human_stemiph>"̂  = <human_pno'un>*̂

I <toman_detpii>®*;//17+ 96=113 
<nonliuman_stemiph_pIanet>̂'̂  = <nonhiiman_pnoun_planet>®

I <nonhuman_detpli_pIanet>'**; // 9+48 =57 
<nonhuman_stermph_mooii>̂  = <noahuman_pnoun_mooii>̂^

I <nonhi!man_detph._moon>'‘®; // 36+48 =84 
<nonhuniaii_stennpli_other>’ = <nonhuman_pnoun_other>̂

i n _ u c i p n _ o i n c r - '

<buman_termph>'̂ ^®̂ ‘ = <human_stennph>
I <nonhmnan_detph_other> ; 7/333+672 = 1005

I <human_stermph>”  ̂( and | or <human_stermph>” ^;
//113+113*2*113=25651 

<nonhumaii_termph,_planet>^^^  ̂= <nonliuman_stermpli__planet> '̂̂
I <nonhuman_stermph_planet>^  ̂( and j or ~f <nonhuman_stermphj>lanet>^^:
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// 57+57*2*57 = 6555 
<nonliiimaii„temiph_moon> '̂**^® = <noalBjmaii_stennpii_mooii>®^

I <nonhuniaii_stermpli_iiaooii>*  ̂( and j o r) <noiihuman_stexiiipli_moon>® ;̂
//84+84*2*84= 14196 

<nonl«imaii_tennph_otlier>^*’̂ ®̂̂  ̂= <nonhumaa_steriBp!i_other>'°®^
I <iioiiliumaii_stermph_other>^°®' ( and | o r) ̂  <noiihuinan_stermph_other>^™^;

//1005 + 1005*2*1005 = 2021055 
<animate_verbpli>^^^’” ®* = <animate_tensvbph>^^^“ *®̂;
<inanimate_verbph_active>^®^ '̂ = <manimate_transvbph_active>^^^^‘''

I <intraiisvb>’ ; // 39330+7 = 39337 
<inanimate_verbphj}assive> '̂*®’’’̂ = <inanimate_ixansvbpli_45assive>^ °̂™^

I <intransvb>̂
i  <inanimatejxansvb>® sun; // 340704 +7 +6 = 340717 

<inaiiimate_verbpli_active_other>“ ®*̂  ̂= <inaminatsJxansvbpii_actiYe_other>“ ®*®
I <intransvb_other>̂; // 6063165 + 2 =6063167

A/> ■? A OvBOAt O

<iaaaimate_verbph_passive_other> = <iiiaiiimate_transvbph_passive_other>
I <intransvb_other>̂; // 249012 +2 = 249014 

<aiiimate_verbph_j)assive>*^” *’  ̂= <iinkingvb>"* <ammate_transvb>® by <liiiman_termph>̂ ^®̂ ^
I <!inkingvb>̂ <animate_transvb>̂ <preposition>̂  <nonbui!iaii_termpli_p!anet>̂^̂^
I <lmkingvb>‘’ <animate_transvb>® <preposition>^ <nonliuman_temip!i_nioon> '̂**^ :̂ 
7/4*6*25651 + 4*6*2*6555 + 4*6*2*14196 = 1611672 

<animate_ixansvbph>^^^*“ ®* = <animate_transvb>® ( <nonhiimaii_termph_j)lanet>®^^^
I <nonhiiman_termph_mooii>*‘**®® 
j <nonliiimaii_tempb_otlier>̂®̂ °̂̂ )̂ 

i <animate_transvb_other>̂ (<human_termph>̂^̂ ‘̂
1 <nontoman„tennpli_planet>®*̂  
j <noidiiiman_teimpli_moon>̂^̂®̂
I <nonliuman_tennpli_otiier>̂ °̂ ’°̂ )̂;

// 9*(6555+14196+2021055) + 2*(25651+6555+14196+2021055) =
I I9*2041806 + 2*2067457= 18376254 + 4134914 = 22511168 

<manimate_transvbph_active>^^^^*  ̂= <manimate_transvb>* <nonhumaii_termph_j)laiiet>^^*^;
7/6*6555=39330 

<inanimate_transvbph._passive> '̂*°™‘* =
<linkingvb>'  ̂<iQaQimate_traiisvb>® by <iionliumaii_temiph_mooii>*^*’®; 
7/4*6*14196 = 340704 

<inaiiimateJransvbph_active_otlier>^®®^’®̂ =
<manimate_traiisvb_ot!ier>^ <nontoman_termph_other>^®'®^*;
7/3*2021055 = 6063165 

<inaHimate_transvbph_passive_other> '̂*®°^  ̂=
<linkingvb>'* <inaiiiiiiate_transvb_other>^ by <nonhuman_ternipli_planet>®^^

I <lmkingvb>'* <inanimate_traiisvb_other>^ by <nonhuman_termph_moon>*'^*^*; 
7/4*3*6555 + 4*3+14196 = 78660 + 170352 = 249012 

<immaii_detph>®® = <det>® <liuman_iiouiicla>‘̂ ; 7/8*12 = 96 
<nonlHimaii_detph_pianet>^* = <det>* <nonhumaE_nouncla_j)lariet>* ; 7/8*6 =48 
<nonhuman_detpli_moon>'** = <det>® <nonhimiaii_nouncla_inooii>^; //6*8 =48 
<nonhuman_detph_other>^’  ̂= <det>® <nonhuman_nouncla_other>®^ ; 7/8*84 =672 
<preposition>^ = on | in ;
<noimda>^®* = <hisman_aouncla>'^

I <nonhiiman_noiincla_planet>^
I <nonln3inaQ_noiinda_moon>'’
I <nonhuman_nouiicla_other>*̂ ; //12+6+6+84 = 108 

<humaii_iiouncia>*̂  = <adj>̂ <liiiman_cnouii>'*
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I <Iiiiman_caoun>^ ; I 12*4+4 =12 
<noalHiman_fioimcla_ îaiiet>® = <adj>  ̂<!ionhumaii_ciioun_planet>^

i <nonliiiman_cnoim_planet> ; 112*2+2 =6 
<nonhumaii_EO'uiida_jQooii>® = <adj>  ̂<nonliuinaii_cnoim_moon>^

I  <Eonhuman_cnoiiii_mooii>^;  111* 1+2 = 6  
<Qonhumanjioiiada_other>®'* = <adj>^ <nonhijmaii_.cnoun_otiier>^^

1 <aon}iiiman_,cnoTin_otiier>^*; // 2*28 + 28 = 84 
<liy.man_cnouii>‘* = man 1 men \ person [ people;
<n.onliumaii_cnouii_planet>  ̂= planet \ planets ;
<nonlniman„ciioiin_moon>" = moon | moons;
<nonliiiman_ciioun_other>^^ = mountain | mountains 1 crater j craters j sea j seas j ocean | oceans i

chemical | chemicals | gas | gases i metai \ metals j nonmetal (nonmetais j 
country | countries | capital | capitals | city | cities | continent | 

continents | river | rivers [ lake j lakes ;
<adj>  ̂= red | atmospheric;
<intransvb>'  ̂= spin | spins | orbit j orbits | orbited [ exist [exists ;
<intransvb_other>  ̂= exist | exists;
<animate_transvb>® = discover {discovers j discovered | find | finds | found;
<animate_transvb_other>^ = worship | woisMped;
<inanimate_transvb>® = orbit ] orbits j orbited i neighbour ] neighbours | neighboured; 
<inanimate_Jransvb_other>^ = contain | contains | contained ;
<linkingvb>'* = is j was | are | were;
<questi>^ = did i do j does;
<det>* = al an j every | one | two | three | four | five;
<pnoun>^® = <nonhuman_pnoun_j5lanet>^

I <nonhumaii_pnouii_moon>^® 
j <human_pnoim> '̂^
j <nonhuman_pnoun_other>^^ ;̂ // 9+36+17+333 = 395 

<nonhumaii_pnoiim_piaiiet>® = urth [jupiter | mars | mercury | neptune j pluto | satum | uranus j venus ; 
<nonhuman_pnoun_moon>^* = alma&ea | ariei [callisto | charon | deimos | dione j enceladus |

europa | ganymede | hyperion | iapetus | io |janus |jupitereighth |jupitereleventh | 
Jupiterfourteenth |jupiteminth Ijupitersevenfli ]jupitersixth |jupitertenth | 
jupiterthirteenth | jupitertwelfth | luna j mimas] miranda | nereid | oberon | phobos j 
phoebe ] rhea ] satumfirst j tethys j titan j titania | triton j umbriel;

<human_pnoun> = bemard [ bond | cassini | dollfos j fountain | galileo [ hall | herschel | huygens j 
kowal I kuiper | larsen | lassell | melotte | nicholson j perrine | pickering ; 

<nonhuman_pnouii_other>^^ = <nonhuniaii_piiouB._chemical> '̂^
I <space_program>^
I <earth_^eography_domain>^°'^; // 20+6+207 =333 

<nonhuman_pnoua_chemica!>^° = <nonhumaE_pnouii__gas>®
i <nonhumaii_|)nouii_metal>®
I <noiihiimaii_piiouii_nonmetal>^; //6+9+S =20 

<noifoumaii_piioiiii_gas>® = oxygen [ hydrogen | nitrogen | dioxide ] monoxide | helium; 
<nonhuman_jnouQ_nietal>® = gold \ silver | copper | iron | stannum | nickel | potassium j natrium \

hydrargymm;
<nonhuman_jiiouiijioiimetal>^ = water | sulphur j carbon | phosphorus | calcium;
<space_prograin>® = shuttle j rocket | launchj telescope ] station | astronaut;
<eaith geography domain>^°'  ̂= <country>* | <capita!>®® | <city>® | <continent>'^ | <ocean>^ |

<river>  ̂| <lake> ) <inountain>’ ; / / 187+98+6+7+4+3+1+1 =307 
<co«ntry>*®’̂ = Afghanistan j Albania | Algeria j American Samoa ] Andorra | Angola | Anguilla j 

Antigua and Barbuda j Argentina | Armenia | Aruba | Australia | Austria j Azerbaijan | 
Bahrain |Bangladesh | Barbados | Bassas da India | Belarus ] Belgium | Belize | Benin |
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Bermuda | Btotan j Bolivia jBosnia and Herzego\mia | Botswana [Boavet Island | Brazil]
Brunei |Bulgaiia | Burkina Faso | Bunna | Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands ] Central African Republic | Chad | Chile |
China | Clipperton Island | Colombia | Comoros ] Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands ] Costa Rica | Croatia ] Cuba | Cyprus j 
Czech Republic i Denmark | Djibouti | Dominica | Dominica Republic | Ecuador j Egypt |
Ei Salvador | Equatorial Guinea ] Eritrea | Estonia ] Ethiopia j Europe Maud 1 Fiji j Finland | 
France |French Guiana | Gabon j Gambia \ Gaza Strip jGeorgia i Geimany | Ghana |
Gibraltar | Glorioso Island ] Greece ] Greenland | Grenada ] Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana j Haiti | Heard and McdonaM Island jHoly See | 
Honduras | Howland Island | Hungary [Iceland [India iM on^ia | Iran jlraq | Ireland [ Israel]
Italy I Jamaica | Jan Mayen jJapan | Jarvis Island | Jersey ] Johnston Atoll j Jordan |
Kazakhstan j Kenya [Kingman Reef | Kiribati j North Korea | South Korea [ Kuwait |
KyrgyzStan | Laos | Latvia [Lebanon | Lesotho [Liberia [Libya j Liechtenstein | Lithuania [ 
Luxembourg | Macedonia | Madagascar | Malawi j Malaysia | Maldives | Mali | Malta |
Isle of Man | Marshall Islands | Martinique j Mauritania [Mauritius | Mayottej Mexico]
Micronesia | Midway Island [Moldova | Monaco j Mongolia | Montserrat | Morocco j 
Mozambique |Myanmar | Netherlands | Norway | New Zealand | Nigeria | Oman j Portugal |

Poland I Romania | Russia j Rwanda | Tajikistan j Tanzania | Syria j Swede | Switzerland | 
Sudan j Spain [ Singapore | Thailand | Togo [Tokelau | Tonga [Tunisia | Turkey j 
Turkmenistan [ Tuvalu | Uganda | Ukraine [united Arab Emirates j United Kingdom | 
United States of Amerima [Uruguay | Uzbekistan [Vietnam | Yemen | Yugoslavia [Zambiaj 
Zimbabwe;

<capital>^^ =  Ottawa | B eijing  j london  [ paris  | b erlin  | W ashington] K abu l [Tirana [Algiers | P ago  Pago] 
L uanda | A n d o rra  la  V ella  | B uenos A ires | Y erevan  | O ran jestad  [ C an b erra  | V ien n a  [ 
Baku] Dhaka [Manama [ B ridgeT ow n | Brussels [ Belmopan [ Portonovo [ Hamilton | 
Thimphu [ L aP az [G aborone [Brasilia[ Phnom Penh [Yaounde [ Praia | Prague j S an tiago  [ 
Bogota I Moroni ] H avana  [ Nicosia [ Copenhagen [ Roseau | Cairo | Asmara [Addis A baba[ 
Suva I Helsinki | Libreville | Banjul | G o regeT ow n  | Tbilisi [Accra | Athens [
Saint George’s | Conakry [ Port-au-prince [ Budapest | New Delhi j Jakarta | Tehran [ 
Baghdad [ Dublin [ Jerusalem [ Rome | Tokyo | Amman | PYong Yang [ Seoul | Kuwait j 
Beirut | Maseru | Monrovia [ Tripoli | Skopje | Amsterdam | Kuala Lumpur [ Bamako | 

Velletta [ Mexico | Ulaanbaatar [ Windhoek | Abuja [ Wellington [ Oslo [ Warsaw | Lisbon | 
Moscow I Stockholm [ Bucharest | Singapore | Madrid [ Khartoum | Bern [ Damascus [ 
Hanoi [Ankara | Sanaa [ Harare | Belgrade | Lusaka;

<city>® = toronto | shanghai | manchester | Iyon [ Frankfurt | New York;
<contineat>"  ̂= Africa | Asia | Austrilia | Europe [ North America [ South America;
<ocean>'* == Arctic [ Atlantic | India | Pacific;
<river>'* = Yangtse | Nile | Danube;
<lake>’ =  Ontario lake;
<mountam>' = rocky mountain;

Figure Appendix B (4): language-size computation of extended semantic grammar (Cont’d)

Figure Appendix B (5): language-size computation o f extended syntactic grammar

/* syntax_gram_ext2 .gram */ 
grammar syntax_gram_ext2 ;
public <s>8i72%29fi6420i2 ^ <u^g^b>4 <temph>^‘̂ «“  [<transvb>‘  ̂by ] <termph>' ’̂^

I <linkingvb>'* <termph>^*^^^ [<transvb>’̂  <preposition> ] <termph>^’"̂ *̂ °̂
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2118878629871220I <questl>^ <sent>'
( who jwhat) ̂  <verbph>‘667056607

^667056607

■ 3*2118878629871220 + 2*667056607+

! ( which I how many) <nouncla> °<verbph>
I <simple>^®;

//4*3176460*15*3176460 + 4*3176460*15*2*3176460■
// + 2*108*667056607 +26
//=605393887896000+12!0787775792000+6356635889613660 +1334113214+144084227112+26 
//= 8172962971642012 = 8.17 *10'^

<simple>^® = I ask them to be quite
I please introduce yourself 
i hello there 
I goodbye
I goodbye solar man 
I fine thanks 
I thanks
I  thanks solar man 
1 yes please 
! what is your name 
I who are you 
I where do youlive 
I what do youknow 
I how old are you 
I what is your favorite band
I who is the vice president at the university of Windsor 
I who is the dean of science at the university of Windsor 
I tell me a poem 
I know any poems 
I tell me a joke 
I know any jokes 
I who is judy 
j can i talk to judy 
I can i talk to solar man 
I who is monty 
I can i talk to monty;

[878629871220 _  ____ .^3176460<sent>'"»' 
2118878629871220

= <termph> ' <verbph>®̂ ™“ “ ;̂ // 3176460 * 667056607 =

//396+ 864= 1260<sterm ph>*^^ =  <pnoun>^®* I <detph>®^:
<termph>^*"^®^® =  < sterm ph>

I < ste rm ph> ’^® (and  j or)  ̂<sterm ph> '^® ; //1260 +1260*2*1260= 3176460 
< v erb p h > “ ™ ^^’ = < fransvbph> “ ™“ ®® | < in transvb> ’ ; II667056600 + 7 = 667056607
<transvbph>®^^®^®® =  ( <transvb>*^ | <linkmgvb>"* <transvb>*^ b y ) < term ph> ^‘'^̂ *̂ °

I ( <transvb>* ' j  <linkingvb>^ <transvb>*^ < p rep o sitio n > ^ ) <term ph>^*^^®  ;
// (15 + 4*15)*3176460 + (15+4* 15*2)*3176460 = 238234500 +428822100 = 667056600 

< d e tp h > * ^  = <det>® < n o u n c la> ’“ ; II 8*108 = 864 
<nouncla>*°® = <adj>^ <cnoun>^® | <cnoun>^ ;̂ 112*36 +36 = 108
<cnoim>^* = man | men | person | people [ planet | planets | moon ] moons | mountain j mountains j 

crater j craters | sea ] seas | ocean j oceans j chemical j chemicals | gas | gases j metal | 
metals | nonmetal | nonmetais | country | countries j capital j capitals | city | cities | 
continent | continents | river j rivers | lake | lakes ;

<adj>^ =  red  j atm ospheric ;
<intransvb>  ̂= spin I spins I o rb it 1 orbitsl o rb ited  I exist I exists: ̂spin j spins 
<det>* = a I an I every | one

orbit I orbitsl orbited j exist j 
I two I three | four | five;
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<pnoiin>̂ ^® = <pnoun_j)lanet_mooiiJi™ian>® 
j <noah.uman_j3noun_chemical>^*  ̂
i <space_program>®
j <eartii_geography_domain> '̂’’; //63+20+6+307 = 396 

<pnoun_j>lanet_moon_huiiiaii>® = urtli i jupiter j  mars | mercury | neptune | pluto | satum j  uranus I 
venus I almathea | arid 1 callisto 1 charon | deimos | dione j enceladus 1 europa j 
ganymede | hyperion | iapetus | io ] janus j jupiter eighth | jupitereleventh j 
Jupiterfourteeath I jupiteminth | jupiterseventh |jupitersixth Ijupitertenth \ 
jupiterthirteenth | jupitertwelfth | luna | mimas | miras | miranda | nereid | oberon | 
phobos I phoebe | rhea j satumfirst | tethys | titan j titania | triton | umbriel | bemardj 
bond 1 cassini | dollfus | fountain | galileo | hall 1 herschel j  huygens | kowal jkuiperj 
larsen | lassell j melotte | nicholson j perrine j pickering ; 

<Qoiihiiman,_j)nouE_cliemical>^® = <nonhuman_j)nouii_gas>*’
I <nonhimiaE_jiiioun_metal>®
I <nonhuman_pnoun_ncnmetai>^;

<nonhuman_pn.oun_gas>^ = oxygen | hydrogen | nitrogea | dioxide | monoxide | helium ; 
<nonliuman_j)noun_metal>® = gold | silver | copper | iron [ stannum | nickei | potassium j natrium | 

hydrargyrum;
<nonhuman_j5noun_iionmetal>  ̂= water | sulphur} carbon j phosphorus | calcium;
<space_program>^ = shuttle | rocket \ launchj telescope \ station | astronaut; 
<earth_geography_domain>^°’ = <country>’ j <capita!>®® | <city>® | <continent>’ ] <ocean>'* |

<river>  ̂ | <lake>* j <mountain>*; //187+98+6+7+4+3+1+1=307 
<coimtry>*®’̂ = Afghanistan [ Albania {Algeria | American Samoa | Andorra j Angola 1 Anguilla | 

Antigua and Barbuda [ Argentina | Armenia j Aruba [ Australia | Austria | Azerbaijan | 
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus | Belgium | Belize j Benin |
Bermuda | Bhutan | Bolivia [Bosnia and Herzegovina | Botswana [Bouvet Island [ Brazilj 
Brunei [Bulgaria [ Burkina Faso [ Burma [ Burundi | Cambodia [ Caneriib | Canada [

Cape Verde j Cayman Islands | Central African Republic [ Chad j Chile |
China | Clipperton Island [ Colombia | Comoros | Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands j Costa Rica | Croatia j Cuba | Cyprus |
Czech Republic | Denmark | Djibouti | Dominica j Dominica Republic | Ecuador [ Egypt |
El Salvador | Equatorial Guinea | Eritrea | Estonia | Ethiopia j Europe Island | Fiji |Finland| 

France [French Guiana | Gabon | Gambia | Gaza Strip [Georgia | Germany j Ghana |
Gibraltar j Glorioso Island | Greece | Greenland [ Grenada | Guadeloupe | Guam |
Guatemala | Guernsey (Guinea | Guyana j Haiti | Heard and Mcdonald Island [Holy See | 
Honduras | Howland Island | Hungary [Iceland [India [Indonesia | Iran [Iraq j Ireland | Israeli 
Italy i Jamaica [ Jan Mayen [Japan | Jarvis Island | Jersey [ Johnston Atoll (Jordan j 
Kazakhstan [ Kenya [Kingman Reef [ Kiribati | North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia [Lebanon [ Lesotho [Liberia [Libya [ Liechtenstein | Lithuania ( 
Luxembourg [ Macedonia | Madagascar j Malawi [ Malaysia [ Maldives j Mali j Malta [
Isle of Man [ Marshall Islands j Martinique [ Mauritania [Mauritius [ Mayottej Mexico[ 
Micronesia | Midway Island [Moldova j Monaco [ Mongolia | Montserrat [ Morocco [ 
Mozambique [Myanmar [ Netherlands [ Norway [ New Zealand | Nigeria j 
Oman [ Portugal | Poland [ Romania [ Russia [ Rwanda | Tajikistan [ Tanzania |
Syria I Swede [ Switzerland [ Sudan [ Spain [ Singapore |
Thailand [ Togo (Tokelau [ Tonga [Tunisia | Turkey [ Turkmenistan [Tuvalu [ Uganda [
Ukraine [united Arab Emirates | United Kingdom | United States of Amerima [ Uruguay | 
Uzbekistan [Vietnam | Yemen [ Yugoslavia [Zambia [ Zimbabwe;

<capital>®* = Ottawa [ Beijing j london j paris [ berlin | Washington |
Kabul I Tirana [Algiers [ Pago Pago j Luanda [ Andorra la Vella [ Buenos Aires |
Yerevan | Oranjestad [ Canberra | Vienna j Baku [ Dhaka [Manama | BridgeTown [
Brussels | Belmopan | Portonovo | Hamilton | Thimphu | LaPaz [Gaborone [Brasilia!
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P hnom  P e a h  jY aouiide | P ra ia  | P rague | San tiago  j B o g o ta  j M oron i | H avana  |
N ico sia  | C openhagen  | R oseau  | C airo  | A sm ara  | A dd is A b ab a  | S uva | H els ink i j 
L ibrev ille  ] B an ju l | G oregeT ow n j 'Tbilisi (Accra | A thens j S ain t G eo rg e’s | C onak ry  | 
P o rt-au -p rince | B udapest j N ew  D elh i | Jakarta  | T eh ran  ] B ag h d ad  | D ub lin  |

Je ru sa lem  | R om e | T okyo  j A m m an | P Y ong  Y ang  | S eoul | K uw ait | B eiru t |
M aseru  ( M o n ro v ia  ] T ripo li | Skopje | A m sterdam  | K u a la  L um pur ( B am ako  j 
V e lle tta  i M ex ico  j U laanbaatar | W indhoek  | A bu ja  | W elling ton  | O slo  j 
W arsaw ' | L isbon  I M oscow  | S tockholm  | B ucharest j S ingapore  | M ad rid  |
K hartoum  | B ern  | D am ascus | H ano i (Ankara | S anaa | H arare  j B e lg rade  | L u s a k a ;

<city>® =  to ron to  j shanghai j m anchester | iyon j F rank fu rt j N ew  Y ork ;
< con tinen t> ’ =  A fiica  | A sia  | A ustrilia  ( E u ro p e  I N o rth  A m erica  I S outh  A m erica  | A ntarc tica; 
< ocean>^ =  A rc tic  | A tlan tic  ] Ind ia  | Pacific;
<river>^ =  Y an g tse  j N ile  | D a n u b e ;
< ! a k e > ’ =  O n ta r io  la k e ;
<m ountain>* =  ro ck y  m ountain ;
< tran sv b > ’  ̂=  o rb it | o rb its | d iscover j d iscovered  | n e ig h b o u r | neighbours | neig h b o u red  

w o rsh ip ed  j con tain  | con tains | con ta ined  | find  | finds j found;
< preposition>^ =  in  | on  ;
<!inkingvb>'* =  is | w as j are | w ere  ;
<questl>^ =  did | do j does ;

Figure Appendix B (5): language-size computation of extended syntactic grammar (Cont’d)

Figure Appendix B (6); language-size computation of extended word-sequence grammar

I* ex ten d ed  10-w ord w ord-sequence gram m ar 
w o rd S eq u en ce_ g ram _ ex tl.g ram  */ 

g ram m ar w ordS equence  CTam _extl;
p u b lic  < s>24025251^99620334?833004636 ^

|<word> <word> 
j<word> <word> <word>
|< w ord>  < w ord>  < w ord>  < w ord>
|<word> <wordxword> <wordxword>
|< w ord>  < w o rd x w o r d >  < w o rd x w o r d >  < w ord>
{<word> <word><word> <wordxword> <wordXword>
|< w ord>  < w ord> < w ord>  < w ord> < w ord>  < w ord> < w ord>  < w ord>
{<word> < w ord> < w ord>  < w ord> < w ord>  < w ord> < w ord>  < w ord> < w ord>
|< w ord>  < w o rd x w o r d >  < w ord> < w ord>  < w o rd X w o rd >  < w ord> < w ord>  < w ord>  
|<simple>^®;

// 547 + 547  ̂+ 5 4 f  + 547̂ * + 547® +547® + 547’ + 547® + 547® +547*° =
// 547 + 299209 + 163667323 + 89526025681 + 48970736047507 +26786992617986329 +
//+ 14652484962038521963 + 8014909274235071513761 + 4384155373006584118027267 +
// + 2398132989034601512560915049 =
//= 2402525173996203345833004636 = 2.40* lO”
<sim p!e> ’® =  ( ask  them  to  b e  qu ite  

I p lease  in troduce y o u rse lf  
I h ello  there 
I  goodbye
I  g oodbye so la r m an  
I  fin e  thanks
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307 I

I thanks
I thanks so lar m an  
I yes please
I w h a t is y o u r nam e 
I who are you 
I w here  do youlive 
j w hat do  youknow  
I h o w  o ld  a re  you  
j w h a t is you r favorite  b an d
I w h o  is the v ice  p residen t a t the  un iversity  o f  W indsor 
I w ho  is the  dean  o f  sc ience at th e  u n iversity  o f  W indsor 
I te ll me a poem 
I k n o w  any poems 
I te ll me a joke 
I know a n y jo k e s  
I w ho  is judy 
I can i talk to judy 
I can i ta lk  to solar man 
I who is monty 
I can i talk to m o n ty ;

<word> '̂*  ̂=  <cnoun>^^ | <adj>^ | <verb>^° I < q u estl> ^  | <det>^ | <preposition>^ | <pnoun>
<nonhuman_pnoun_chemical> ° j<space_program>® | <earth_geography_domain> 
<other_word>*^; // 36+2+30+3+8+2+121+20+6+33+12 = 547 

<CEOun>̂ ® = man | men | person | people | planet | planets | moon | moons | mountain | mountains [ 
crater | craters j sea j seas | ocean | oceans | chemical j chemicals j gas | gases | metal]

m etals] nonm etal | nonm etais j coun try  | coun tries | cap ita l | cap ita ls  | c ity  jcities |continentj 
continettts | r iv er | rivere | lak e  | l a k e s ;

<adj>^ = red | atmospheric;
<verb>^° = <intransvb>’

] <intransvb_other>^ 
j <animate_transvb>®
! <animate_transvb_other>^
I < inanim ate_transvb>*
I <inanimate_transvb_other>^ 
j <Iinkingvb>^; // 7+2+6+2+6+B+4 = 30 

<intransvb>’ =  spin | spins ] orbit ] orbits {orb ited  ] ex is t ]exists ;
<intransvb_other>^ = exist ] exists;
<animate_transvb>^ = discover | discovers ] discovered ] find ]finds jfound;
<animate_transvb_other>^ = worship ] worshiped;
<inanimate_transvb>® =  orbit ] orbits ] o rb ited  ] neighbour ] neig h b o u rs  ] neighboured ; 
<manimate_transvb_other>^ =  contain | con tains | contained;
< liak ingvb> ^ =  is | was j a re  | w ere  ;
<questl>^ =  d id  ] do | does;
<det>® =  a  I an  I ev e ry  j on e  | tw o | th ree  | fou r | five;
<preposition>^ =  in  j on;
<pnoun>^^* =  <nonhuman_j>noun__planet>®

I < n o n h u m a a j)n o u ii_ m o o n >
{ <human_pnouE>
I <nonhum an_pnoim _other>^® ; //9+36+17+59=121 

<nonhum an_pnoun_j)lanet>®  =  earth  j ju p ite r  | m a is  j m ercu ry  | nep tune  | p lu to  | sa tu m  | u ranus j
v e n u s ;

<nonhum an_pnouii_m oon>^®  =  alm athea | arie i jcallisto  ] ch a ro n  | deim os ] d io n e  | enceladus | eu ro p a  |
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ganymede | hyperion | iapetas | io | janus | jupitereighth Ijupitereleventh | 
jupiterfourteenth | jupiteminth j jupiterseventh | Jupitersixth Ijupitertenth ( 
jupiterthirteenth j jupitertwelfth | luna j mimasj miranda 1 nereid | oberon jphobosj 
phoebe j rhea | satumfirst | tethys | titan [ titania j triton ] umbriel; 

<human_pnoun>*’ = bemard | bond | cassini | dollfcs | fountain | galileo 1 hall | herschel | huygens ] 
kowal i kuiper | larsen j lassell i melotte | nicholson | perrine | pickering ; 

<nonhuman_pnoun_other>® = <nonhuman_pnoun_chemical>^‘'
I <space__program>^
I <earth_geography_domaia>^°'^; //20+6+33=59 

<noiihiimaii_|)noiin_chemical>^° = <nonhuman_pnoun_gas>®
I <nonhuman_pnoun_meta!>®
I <nonhuman_piioun_nonmetal>^; 7/6+9+5=20 

<nonhunian_pnoun_gas>® = oxygen | hydrogen j nitrogen | dioxide | monoxide | helium; 
<nonliuman_pjioun_metal>® = gold j silver | copper j iron | stannum | nickel j potassium | natrium |

hydrargyrum;
<nonliuinaii_piioun_nonmetal>^ = water | sulphur | carbon | phosphorus j calcium;
<space_program>® = shuttle | rocket | launchj telescope j station | astronaut; 
<eaith_j:eography_domain>^°'  ̂= <country>* ’ j <capital>^® | <city>® | <continent>'  ̂| <ocean>'* |

<river>  ̂I <lake>  ̂| <mountain>*; //187+98+6+7+4+3+l+l=307 
<country>̂ ®'̂  = Afghanistan | Albania | Algeria | American Samoa | Andorra | Angola {Anguilla | 

Antigua and Barbuda j Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan j 
Bahrain |Bang!adesh | Barbados [ Bassas da India | Belarus | Belgium | Belize | Benin \
Bermuda | Bhutan | Bolivia jBosnia and Herzegovina j Botswana jBouvet Island j Brazilj 
Brunei jBulgaria | Burkina Faso | Burma | Burundi | Cambodia | Caneriib | Cana^ |
Cape Verde | Cayman Islands | Central African Republic | Chad | Chile |

China | Clipperton Island | Colombia | Comoros j Congo Democratic Republic |
Congo Republic | Cook Islands | Coral Sea Islands j Costa Rica | Croatia | Cuba | Cyprus | 
Czech Republic j Denmark | Djibouti | Dominica | Dominica Republic | Ecuador | Egypt |
El Salvador j Equatorial Guinea j Eritrea j Estonia | Ethiopia | Europe Island j Fiji jFinlandj 
France [French Guiana j Gabon j Gambia | Gaza Strip (Georgia | Germany | Ghana j 

Gibraltar [ Glorioso Island | Greece | Greenland j Grenada | Guadeloupe j Guam |
Guatemala j Guernsey j Guinea | Guyana j Haiti | Heard and Mcdonald Island (Holy See | 
Honduras | Howland Island | Hungary (Iceland (India (Indonesia (Iran (Iraq (Ireland (Israel(
Italy I Jamaica (Jan Mayen (Japan (Jarvis Island j Jersey j Johnston Atoll (Jordan |
Kazakhstan (Kenya (Kingman Reef (Kiribati | North Korea ( South Korea j Kuwait | 
KyrgyzStan | Laos (Latvia (Lebanon (Lesotho (Liberia (Libya (Liechtenstein (Lithuania ( 
Luxembourg (Macedonia (Madagascar (Malawi (Malaysia j Maldives | Mali | Malta |
Isle of Man | Marshall Islands (Martinique j Mauritania (Mauritius | Mayottej Mexico} 
Micronesia (Midway Island (Moldova (Monaco (Mongolia (Montserrat | Morocco ( 
Mozambique (Myanmar (Netherlands (Norway | New Zealand (Nigeria {
Oman | Portugal | Poland j Romania | Russia | Rwanda (Tajikistan | Tanzania |
Syria I Swede j Switzerland ( Sudan ( Spain ( Singapore (
Thailand j Togo (Tokelau (Tonga (Tunisia (Turkey j Turkmenistan (Tuvalu j Uganda (
Ukraine (united Arab Emirates | United Kingdom (United States of Amerima (Uruguay j 
Uzbekistan (Vietnam | Yemen (Yugoslavia (Zambia (Zimbabwe;

<capital>®® = Ottawa (Beijing j london | paris (berlin | Washington (
Kabul (Tirana (Algiers j Pago Pago (Luanda (Andorra la Vella (Buenos Aires |
Yerevan (Oranjestad j Canberra (Vienna (Baku j Dhaka (Manama (BridgeTown (
Brussels j Belmopan | Portonovo (Hamilton (Thimphu (LaPaz (Gaborone (Brasiliaj 
Phnom Penh [Yaounde (Praia | Prague | Santiago (Bogota (Moroni | Havana (
Nicosia (Copenhagen (Roseau (Cairo [ Asmara (Addis Ababa j Suva | Helsinki (
Libreville (Banjul j GoregeTown (Tbilisi (Accra (Athens ( Saint George’s j Conakry (
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P ort-an -p rince  j B udapest | N ew  D elh i | Jakarta  j T eh ran  | B ag h d ad  j D ub lin  \

Jerusa lem  | R om e ] T okyo  {A m m an ] P Y ong  Y an g  | S eoul | K uw ait j B eiru t |
M aseru  j M onrov ia  | T ripo li | S kop je j A m sterdam  | K u ala  L um pijr | B am ako  j 
V elle tta  | M ex ico  j  U laanbaatar j W indhoek  | A b u ja  | W elling ton  | O slo  j 
W arsaw  j L isbon  | M oscow  | S tockholm  | B uchares t | S ingapore  j M ad rid  |
K hartoum  | B e rn  j D am ascus | H ano i jA nkara | S anaa j H arare  ] B e lg rade  | L u s a k a ;

<city>* =  to ron to  ] shanghai | m anchester | iyon | F rank fo rt j N e w  York;
<coatinent>^ =  A frica  j  A sia  ] A ustrilia  j E u ro p e  | N o rth  A m erica  | S outh  A m erica;
<ocean>'^ =  A rc tic  | A tlan tic  j Ind ia  | Pacific;
<river>^ =  Y angtse | N ile  j D an u b e  ;
< la k e> ' =  Ontario lake;
< m o u n ta in > ’ =  ro ck y  m ountain ;
<other__word>'^ =sim|or j and | by i which | who | what | how | many | monty j Judy | solar; 

Figure Appendix B (6): language-size computation of extended word-sequence grammar (Cont’d)
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Appendix C: Computation of Branching Factor in 

Detail

Notes superscripts are used to denote the branching factors of the preceding expressions; 

the underlined superscripts are used for average brancMng-factor computation..

Figure Appendix C (1): branching-factor computatim &f semantic gmmmmr

I *  semantics_gram_extl.gram * /  
grammar semantics_gram_exti; 
public <s>^ = <linMagvb>"* <termphrase_verbphrase>^

! is* <pnoun>^ <pnoua>^
I is* < p n o u n > ^  (  a |an  <noim cla>“
I is* < p n o u G > ^  (  ajan <nouncla>*^ o r i ( a |an  < a o u n c la > ^
j < q u estl> ^  < s e n t > ^
{( w h o ) * <anim ate_verbph>^ 
j ( w h a t ) * < ina iiim ate_verbph> ^
I ( w h ich  I h o w  m a n y )  ̂< n o u n c la_ v erb p h > ^  
j (  which 1 how  many)  ̂<nouncIa_verbph_other>^ 
j < sim p le>

<sim ple>^^ =  1 ask  them to b e  qu ite  
I please introduce yourself 
I hello  there 
1 goodbye
I goodbye so la r m an 
I fin e  thanks 
I thanks
I tlianks so la r m an  
I yes please 
j w hat is  y o u r nam e 
I w ho are you  
I where do youlive 
1 w hat do  y o u k ao w  
I h o w  o ld  a re  you  
I what is  your favorite band
i w ho  is th e  v ic e  p resid en t a t th e  un iversity  o f  W indsor 
j w ho  is  th e  d ea n  o f  sc ience a t the  un ivere ity  o f  W indsor 
I  te ll m e  a p o em  
I  know  an y  poem s 
j tell m e a joke 
I k n o w  an y  jo k e s  
I  w ho  is  Judy  
1 can i ta lk  to judy 
1 can  i ta lk  to  so la r m an 
I w ho is  m on ty
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j can i talk to monty;
<te0nphrase_yerbphrase>'^'* = <nonlniman_termpli_piaiiet>^‘* <transvb_by_tennph>^

I <noiilKiinaG_ter!iiph_moon>®* <animate_traiisvb>^ by^ <!i«inan_terKiph>^
I <nonhnjiianJ:eniiph_other>*^'^ <aniinate_transvb>^ by^ <human_termph>^
I <aonhiiinaii_temiph_otlier>’̂ "* <animate_transvb>^ <prepositioa>^

<nonlmman_terinpli_j)ianet>^
! <noiihiiii3aii_termph._otber>'^^ <animate_transvb>^ <prepositio!i>^

<nonhijmaii_temiph_mooa>^; 
<transvb_by__temph>‘̂  = <animate_transvb>® by^ <humaQ_termph>^

I <inanimate_transvb>® bjA <nonliuman_termph_moon>^
I <iaanimate_transvb_other>^ bjr <nonhiimanJermpli_other>^;

<sent>̂ ®̂  = <hiimaii_temiph>“  <animate_verbph>^
j <nonhuman_termph_naoon>®® < in an im ate_ v e rb p h _ ac tiv e> ^  
i <nonhi!man_temiph._planet>^"* < in an im ate_ v e rb p h _ p assiv e> ^
I <nonhuman_temiph_moon>®^ <inammate_verbplijactive_otlier>^
I <nonhumaii_termph_pIaiiet>^'^ <inanimate_verbpli_active_otlier>^;

<noimcla_verbpli>^^ = <huniaii_iiouncla>® <animate_verbpli>^
I <nonhum an_noim cla_niooii> '* < an im ate_ v erb p h _ p assiv e> ^
I <noiihumai!jiOTincla_plaiiet>'‘ <animate_verbpli_j)assive>^
I <aonhum£ffi._jaoimcla_moon>'* <maiiimate_verbph_active>^
I <noahumaa_iiouncla_j?lanet>'* <inanimate_verbph_passive>^; 

<noniicla_verbph_otlier>® = <nonhumaii_nouiicla_other>^° <animate_verbph_passive>~
I <nonhumaiijiouncla_otlier>^® <inanimate_verbpii_passive_other>'^; 

<inanimate_verbpli>'*^ = <inanimate_verbph_active>’̂  
j <iiiaQimate_verbph._passive>”
I <inanimate_verbph_active_other>^
I <inanimate_verbph_j)assive_other>*°;

<humaii_steinipli>^^ = <hnmaii_j5noim>”  
i <human_detph>*;

< iion liiim an_sterm ph_planet> ’  ̂=  <nonlium an_piioufL4 )lanet>^
J <nonlmman_detph_planet>®;

<nonlnim aii_stem iph_m ooia>   ̂=  <noiihum an_pnoiiii_m oon>^®
I <iionhu3naa_detph_moon>^;

<aonbuman_stemipli_otlier>® = <nonlnimaji_j)nonii_other>^®
j <nonhiiman_detph_other>^;

<hummi_termpli>^° = <human_stemipli>^^
I <human_stennph>^* ( and j or <human_stermpb>^; 

<nonliaman_temiph._jlanet>^^ = <EOnhuman__stemipli_j}!anet>*'^
I <nonhnman_stermplij)ianet> ( and | or <nonliiimaa_stemipli_planet>~; 

<nonhuman_tennph_inoon>^® = <nonhiun.an_stermpb_mooii>^
I <sionhumaa_stermph_moon>'^ ( and ] or <Honhnman_stermpli_mooia>^; 

<Qoiihumaii_temipli_other>* '̂* = <nonh«man_stennph_other>®'^
I <noahiiman_stennph_otlier>^' ( and ] o r) ̂  <nonhumaii_stermph_other>®; 

<animate_verbpli>^ = <animate_transvbph>®;
<iQanimate_verbpli_active>’̂  = <inaniniate_traiisvbph_active>^

I <intransvb>^;
<inanimate_,verbph_passive>*’ = <inanimate_trans¥bph_passive>^

I <intransvb>'^
I <inanimate_.transvb>* sim-^;

<inanimate_verbph_active_otlier>^ = <inaiiimate_traiisvbph_active_otlier>^
I <intrans¥b_other>^;

<inanimate_verbph_passive_other>*° = <inanimate_transvbph__passive_other>®
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I < in traiisvb_other> '‘;
<snim ate_verbph_passive>^^ =  <linkm g¥b>'* <anim ate_ transvb>^ by^ < h u in an _ te rm p li> ^

i < lm kingvb> ‘* <anim ate_ transvb>^ < preposition>^ 
< E onhum aii_ term ph_p lanet> ^

! <lmkingvb>'^ < an im ate_ traasvb> ^  < preposition>^ 
< n o n h iim a n _ te n n p h _ m o o ii> ^ ;

< an ii!iate jxansvbp li> *  =  <anim ate_transvb>®  ( < iion lK im an_term p]i_plaaet>^
1 <noBhumaii_temiph_mooa>^
I < n o iih u m a n _ te n iip li_ o ih e r> ^ )

I < an im ate_transvb_other>^ (< h u m an _ te m ip h > ^
1 < n o a lra m a ii_ te m ip ii_ p la jie t^
I < n o n h i!m an Jerm p li_ m o o n>7 
j < n o n lH jm a iiJe m ip li_ o th e r> ^ ); 

< inanim ate_transvbph_active>®  =  < inanim ate_transvb>^ < n o n h u m an _ ten n p h _ p lan e t> ^ ; 
< inanim ate_ transvbph_passive>^ =  < linJdngvb>‘* < inaaim ate_tram svb>^ by^

<nonhum aii_tem iph_m ooii>® ® ; 
< inanim ate_ traiisvbph_active„o tlier>^ =  < inanim ate_txansvb_other>^ < n o n h \m ian j! :e rm p h _ o th e r> ^ ; 
<iiiaQ im ate_transvbph_j)assive_otlier>* =  <lm kingvb>'* < inanim ate_ transvb_otlier>^ by"

<nonhumaii_termph_planet>^
I < liiik iiigvb> '' < inaiiim ate_ transvb_other> ^ b y   ̂

<nonhnm an_term ph._m oon>® ^;
<hum an_detph>^ =  <det>® < h ran an _ n o n n c la> ^ ;
<nonhum an_detph_plaaet>®  =  <det>^ <nonhum an„nouiicia_4)lanet>^;
<nonhuman_detph_mooQ>® = <det>^ <nonliiiman_noiincla_mooii>“ ;
<nonhum aH _detph_other>* =  <det>* < n o n h u m a ii_ n o u n c la_ o tlie r> ^ ;
<preposition>^ =  on  | in  ;
<noimcla>'*^ =  <h«m an_iiounda>®

i <iion]ii'um an_nouncla_planet>‘*
1 < noiihum an_iiouncla_m oon>^
1 <nonhum an_noiiacla_otlier>^°;

<human_nouiicla>* == <adj>^ <human_cnoun>^ 
I <human_cnoi«i>^;

< nonhum an_nouncla_ |)lanet> ^ =  <adj>^ <nonhum an_cnoim _D lajiet>^
J <jionhuman_cnoim_pIaaet> ; 

<noiihiiman_noniicla_moon> = <adj>^ <nonhmiian_cnoim_moon>^
I < nonhum aii_cnouE _m ooii> ^ ;

<nonhiim aa_iioim cla_.other>^° =  <adj>^ < n o n h am an _ cn o u ii_ o tlie r> ^
j <nonhum an_cnoiiii_oth .er>^*;

<lK Enac_cnom i>‘̂  =  m an  | m en  | p e rso n  j people;
<nonhum aii_cnoiiJi_j5laiiet>^ =  p la n e t | p lanets ;
< nonhum an_cnoun_nioo!i>^ =  m o o n  j m oons;
<nonhum an_ciioun_other>^®  =  m ounta in  j m ou n ta in s  | c ra te r j craters | sea  | seas | ocean  |  oceans |

chem ical | d ie m ic a ls  | gas | gases | m etal | m etals | nonm etal j no im ieta ls  | 
co u n try  | coun tries | capita! | cap ita ls | c ity  | c itie s | con tin en t jcontiaentsj 
r iv e r  \ rivers | lak e  | lakes ;

<adj>^ =  red  | a tm ospheric:
<iBtransvb>'^ =  sp in  | sp ins | o rb it | o rb its | o rb ited  | ex is t |ex ists ;
< in transvb_other>^ =  ex is t | ex ists;
<anim ate_transvb>®  =  d iscover | d iscovers | d iscovered  j f in d  j finds | f o u n d ; 
<anim ate_ transvb_other>^ =  w orsh ip  | w orsh iped ;
< inanim ate_transvb>* =  o rb it j o rb its  j o rb ited  ] n e ig h b o u r | n eighbours \ neighboured ; 
< inan im ate_ transvb_other>^ -  co n ta in  | con ta in s j con tained  ;
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<liiiking\'b>^ -  is | was j are | were ;
<questl>^ = did | do | does;
<det>* = a I an 1 every | one j tufo | three | four | five;
<pnoun>’̂  = <nonhitmaiij)nouii_planet>* 

i <noahuman_pnoiin_niooii> 
j <hmnan_pnoiia> 
i <nonhiiinan_|)iioun_other>^ ;̂

<nonhimaaiij)aoun_planet>^ = earth | jupiter | mars j mercury ( neptune | piuto | satum | uranus |
venus;

<noi!hum aii_piioun_m ooG>^^ =  a lm athea | ariel [callisto | charon  | deim os | d ione  | enceladus | eu ro p a  j 
ganym ede | hyperion  {iape tas  j io  | ja n u s  | ju p ite re ig h th  \ ju p ite re ie v ea th  | 
jup ite rfo u rteen th  i ju p item in th  | ju p ite rsev en th  | ju p ite rs ix th  | ju p ite r ten th  j 

jup ite rth irteen th  j ju p ite itw e lfth  | luna | m im asi m iranda  \ n e re id  | o b ero n  | p h o b o s | 
p ho eb e  j rhea  | sa tum firs t j te l iy s  | titan  | titan ia  | triton  | u m b r ie l ; 

<humaii_pnoim>*'^ =  b em ard  j b o n d  | cassin i | do ll& s | foun ta in  | galileo  j hail ] hersch el | h u y g en s | 
kow al I k u ip e r | la rsen  | lassell | m e lo tte  | n icho ison  | p errin e  | p ick erin g  ; 

<nohhum an_pnoun„other>^®  =  <nonhum aii_pnoiiii_chem ical>^°
I < space_program >^ 
j <earth_geography_domain>^^;

<nonhuman_j)!ioun_cheniical>^° = <nonhuman_pnoun_gas>^
1 <nonhuman_piioun_metal>^ 
j <nonbuman_pooun_noiimetaI>^;

<nonhuman_paou!i_gas>* = oxygen j hydrogen j nitrogen | dioxide | monoxide | helium; 
<nonhuman_j)noun_metal>® = gold | silver j copper | iron | staiuium | nickel | potassium | natrium |

hydrargyrum;
<nonhuman_paoun_nonmetal>^ = water j sulphur i carbon | phosphorus | calcium;
<space_program>* = shuttle | rocket j launch | telescope | station! astronaut;
<earth__geograpliy_domam>^  ̂= <country>® 1 <capital>® | <city> j <continent>® | <ocean>'  ̂| <river>^

<lake>* I <mountain>' ;
<country>* = Canada | china j England | France | Germany | united states;
<capital>® = Ottawa | Beijing | london j paris | berlin j Washington;
<city>® = toronto | shanghai | manchester {lyon | Frankftut | New York;
<continent>‘̂ = Affica | Asia j Austrilia | Europe | North America ] South America;
<ocean>"* = Arctic | Atlantic j India | Pacific;
<river>  ̂= Yangtse | Nile j Danube ;
<iake>  ̂= Ontario lake;
<mountain>* = roclcy mountain;

The average branching factor for semantic grammar
h=((42+524)+(121+i21)+(121+2+44)+(121+2+44+l+2+44)+(260+8+45+22+60)+

(15+6+1+50+6+1+50+6+2+34+6+2+88)+( I+50+1+88+1+134)+(8+13+17+5+5)+ 
(8+12+12+13+17)+(12+10)+(2+25)+(2+17)+(2+44)+(2+67+!)+(6+l+50+6+2+34+6+2+88)+ 
(34+88+134)+(50+34+88+134)+(34)+(6+l+88)+(134)+(3+l+34+3+l+88)+(6)+(4+4+30)+ 
(4+2+2+28)) / 92 

= 3684/93 
= 39.6

Figure Appendix C (I): branching-factor computation of semantic grammar (Cant’d)
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Figure Appendix C (2): branchmg-fsctor computatim o f  syntactic grammar

/* sjmtax_gram_extl .gram */ 
grammar syntax_graia__extl ;
public <s>^ = <linkingyb>‘‘ <temipli>^ [<transvb>^ ] <tennph>^

I <lmkingvb>'* <termph>^ [<transvb>^ <preposition>'^ ] <termpli>^- 
I <questl>^ <seat>^  
i ( who |what) ̂  <verbph>^
I ( which {how many) ̂  <noimcia>^verbph>^
<simple>^®;
1 ask them to be quite 

! please introduce yourself 
I hello there 
I goodbye
j goodbye solar man 
I fine thanks 
I thanks
I thanks solar man 
I yes please 
I what is your name 
I who are you 
I where do youlive 
I what do youknow 
I how old are you 
I what is your favorite band
! who is the vice president at the university of Windsor 
I who is the dean of science at the university of Windsor 
I tell me a poem 
I know any poems 
I tell me a joke 
I know any jokes 
I who is judy 
1 can i talk to judy 
I can i talk to solar man 
I who is monty 
[ can i talk to monty;

<seiit> = <termpli>^^® <verbph>^;
<stennph>^^® = <pnoun>*"^ 

j <detph>®;
<termph>^^® = <stermph>^^®

I <stermph>’̂ ® (and | or)-̂  <stermph>^;
<verbph>^^ = <transvbpli>^*

I <intransvb>^;
<transvbph> ® = ( <transvb>*® j <iinkmgvb>^ <transvb>^ bjA) <termph>^

I ( <transvb>^ j <Iinkingvb>'* <transvb>^ <preposition>^) <term ph>^;
<detpli>® = <det>® <nouncla>^;
<nouncla>'’® = <adj>^ <cnoun>^

I <cnoun>^®;
<cnoun>^® == man 1 men | person j people j planet i planets | moon | moons | mountain 1 mountains | 

crater | craters {sea {seas j ocean [ oceans | chemical | chemicals | gas j gases | metalj
metalsj nonmetal | nonmetals | country j countries \ capital j capitals j city jcities |continentl
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coiitiaents ] river j rivers j lake \ lak e s ;
<adj>  ̂= red | atmospheric;
<intra!isvb>'  ̂= spin j  spins j  orbit | orbits| orbited | exist | exists;
<det>® = a I an 1 every | one | two \ three | four | five;
<pnoim>*^‘ = <pnoim_plaiiet_mooiiJiunian>^^

I <ttoiihuiiiaii_j)iioiin_cheniical>^°
I <space_program>^
I <earth_^eography_domain>^ ;̂

<pnouiLjjlaiietjnoonjMiman>'^^ = earth | jupiter | mars j mercury j neptune | pluto | satum | uranus | 
vemis I almathea | arie! | callisto | charon j deimos | dione | enceiadus | europa | ganymede | 
hyperion | iapetus ] io j janus | jupitereighth | jupitereleventh | jupiterfourteenth | jupiteminth | 
jupiterseventh iJupitersixth Ijupitertenth jjupitertMrteenth jjupitertwelfth | luna | mimas j 
miranda | nereid | oberon j phobos \ phoebe | rhea | satumfirst | tethys | titan j titania | 
triton 1 umbriel | bemard | bond | cassini | doll&s j fountain j galileo | hall j herschel | 
huygens j kowal | kuiper I larsen j lassell j melotte j nichoison | perrine j picketing; 

<nonhuman_j)noun_cliemical>^ = <nonhiiman_pnoun_gas>®
I < a o n h i im a n _ p n o u n _ m e ta l> ^  
j < n o n h u m .a n _ jn o u n _ n o gTae t a l > ^ ;

<nonhuman_pnoim_gas>^ = oxygen | hydrogen | nitrogen ] dioxide | monoxide | helium; 
<nonhuman_piioun_metal>® = gold | silver j copper j  iron j stanniim j  nickel | potassium | natrium |

hydrargyrum;
<nonhuman_pnoun_nonmeta!>  ̂= water j sulphur | carbon j phosphorus | calcium;
<space_program>® = shuttle | rocket j launch | telescope | station! astronaut;
<earth_geography_domain>^^ = <country>  ̂j  <capital>^ | <city> | <contineiit>^ j <ocean>^ | <river>^

<!ake>* i <mountain>^;
<country>® = Canada | china j England | France | Germany j united states;
< c a p ita l> ^  =  O ttaw a  | B e i j in g  | l o n d o n  | p a r is  | b e r l in  | W a s h in g to n ;
<city>  ̂= toronto [ shanghai | manchester | iyon | Frankfort j New York;
<continent>® = AMca | Asia | Austrilia | Europe 1 North America | South America;
<oceaa>‘* = Arctic [ Atlantic 1 India | Pacific;
<river>  ̂= Yangtse | Nile | Danube;
<lake>' = Ontario lake;
<moimtain>* = rocky mountain;
<transvb>*’ = orbit j orbits j discover | discovered | neighbour | neighbours | neighboured | worship |

worshiped | contain | contains | contained i find | finds | found;
<preposition>^ = in | on ;
<linkingvb>‘* = is | was | are | were;
<questl>^ = did I do i does ;

The average branching factor for syntactic grammar
b -  ( (4!+2584-15+l+258)+(258+15+2+258)+(258+45+38+45)+(45)+(2+129)+(15+i+258)+ 

(15+2+258)+(38)-f(36))/24 
= 2291/24 
= 95.5

Figure Appendix C (2): branching-factor computation of syntactic grammar (Cant’d)
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Figure Appendix C (3); branchmg-fuctor computation of extended semantic grammar

!* semantics_gram_ext2.grain */ 
grammar semantics gram ext2 ;
public <s>^ = <lmkingvb>^ <termphrase_verbphrase>^

I is* <piioiiii>^ <pnouE>^
I is‘ <pnoun>^ ( aJan )‘̂  <noimcIa>^
I is* <pnoua>^ ( ajan) ̂  <nouncla>^ or  ̂( a|an) ̂  <Qouncla>^
I <questl>^ <sent>^
I ( who) * <aniniate_verbph>®
I ( what) * <inammate_verbpli>^ 
j ( which I how many) ̂  <noimcla_verbph>^
I ( which 1 how many) ̂  <nouncla_verbph_other>^ 
j <simple>^*;

<simple>^® = I ask them to be quite 
I please introduce yourself 
I hello there 
1 goodbye
I goodbye solar man 
I fine thanks 
I thanks
I thanks solar man 
I yes please 
I what is your name 
I who are you 
j where do youlive 
I what do youknow 
j how old are you 
I what is your favorite band
j who is the vice president at the university of Windsor 
I who is the dean of science at the university of Windsor
{tell me a poem 
I know any poems 
I tell me a joke 
I know any jokes
I who is judy 
j can i talk to judy 
I can i talk to solar man 
I who is monty 
I can i talk to monty ■

<termphrase_verbphrase>^ = <nonhuman_termph_j>lanet>^'* <transvb_by_tennph>^
I <nonhuman_termph_moon>^^ <animate_transvb>^ <human_termph>^ 
I <nonhuman_termph_other>®^ <animate_transvb>^ by^ <human_termph>^ 
I <noQhuman_termph_other>®*^ <animate_traasvb>^ <preposition>^ 

<nonhuman_termph_planet>^
1 <nonhuman_termph_other>^*^ <animate_transvb>^ <preposition>^ 

<nonhuman_termph_moon>^;
<transvb_by_tennph>*^ = <animate_transvb>® by*- <human_termph>^

I <inanimate_transvb>® b jr <nonhuman_termph_moon>^
I <inanimate_transvb_other>^ by*- <nonhuman_termph_other>^; 

<sent>̂ ®'* = <humaE_termph>*° <aaimate_verbph>®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C: Computation of Branchiag Factor in Detail Page 173

I <noahumaii_teniipjijiiooii>®® <inanimate_verbph_active>^ 
j <!ionliumaji_temiph_planet>^‘* <inaQimate_verbplj._passive>^
1 <noatomaBjermpli_mooa>®® <maiiimate„verbpii_active_ot!ier>^
I <noniiiimaii__temip!ij)lanet>'’ <inanimate_verbph,_active_other>‘̂; 

<nouQcla_verbph>^^ = <human._noTiiicla>® <animate_verbph>®
j <Honhiimaii_noiiiicla_mooii>^ <animate_verbph_passi¥e>^
I <nonhumaii_nouQcla_plaiiet>^ <animate_verbph_j5assive>^
I <nonhuman_nouncla_moon>'^ <inanimate„verbph_active>-^^ 
j <nonliumaii_iioimck_j)laiiet>^ <inanimate_verbph_passive>^; 

<aouncla_ver1:^h_other>®® = <nonhuman_noimda_other>^° <animate__verbph_passi¥e>^ 
i <noahumaa_iiouiicla_otlier>^° <inanimate_verbph._passive_other>—; 

<inanimate_verbph>"^* = <iaanimate__verbph_active>’^
I <iaanimate_verbph_passive>*'^
I <inanimate_verbph_active_other>^ 
i <inanimate_verbph_passive_other>^

<hnman_stennph>^^ = <huinaiij)noim>
JO.

I <human_detpli>
<aonhuman_stermpb_planet>" = <noiiiiumaii_pnoijn_planet>

I <nonlnjmaii_detph__planet>*; 
<iioiihiiiiiao._stemipli_moon>^ = <nonhumaQ_j)iioun_moon>^^

I <nonlminan_detph_mooii>*; 
<nonhiimaii_stennp}i_other>^‘** = <nonhuman_pnouii_other>^^^

I <nonliumaii_detph_other>^; 
<human_termpli>^*’ = <hiimaii_stermph>^^

I <human_stennph> '̂ ( an d  j o r f  <human stermph>2^;
< nonhira ian_ term ph_p lanet>  =  <nonhiim an_stesm ph o iane t>

I < n o n h u m an _ stem p h _ p laae t> ''^  ( an d  [ o r)~  <no!ihum aa_sterm ph_43lanet>-^;
< n o n to m a n _ te r m p h _ m o o i i> “*‘ =  < n o n h u m a ii_ s te rm p h _ m o o n > '^ ^

I <nonliuman_stemiph._moon>^ ( and | or <nonhuman_stermph_moon>^; 
<noahumaQ_termpli_other>^^^ = <nonhuman_stemipli_other>^^^

I <nonhuman_stemiph_other> '̂^* ( and | or <nonhunian_stermph_ot!ier>^; 
<animate_verbph>® = <animate_transvbph>®;
<inanimate_veibph_active>*^ = <inanimate_transvbph_active>®

i <intransvb>^;
<inanimate_verbph_passive>*'  ̂= <inanimate_transvbph_passive>^

I <intransvb>^
i <inaiiimate_transvb>^ sun-;

<inanimate_verbph._acti¥e_otlier>^ = <maiiii3iate_transvbph_active_other>^
I <intransvb_other>^;

<inanimate_verbph_passive_other>*° = <manimate_transvbph_passive_other>*
1 <intransvb_other>^;

<animate_verbph_passive>^^ = <!inkingvb>^ <animate_transvb>^ by  ̂<human„termph>^
I <liuMngvb>'* <animate_transvb>^ <preposition>^ <nonlKiman__termph_plaiiet>^
I <linkingvb>‘* <animate_traagvb>^ <prq50sitioii>^ <nonhuniaii_temiph_moon>^ ; 

<aiiimate_transvbph>^ = <animate_transvb>^ ( <nonhiimaii_termph_planet>^
I <nonhaman_teniiph_mooii>^ 
j <nontaman_termpb_other>®)

I <animate_transvb_other>^ (<humaii_termph>^
I < n o n h u m a i i_ t e n n p h _ p l a a e t > ^  
I < n o n h u m a n _ te r m p h _ m o o i i> ^  
j < n o i i h i im a i i J : e r n i p h _ o t h e r > ^ ) ;  

< in a i i im a te _ tr a n s v b p h _ a c t iv e > ®  =  < in a n im a te _ tra n s v b > ®  < n o n h i i m a n _ t e r m p h _ p l a n e t > ^ ;
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<inanimate_transvbph_passive>'* =
<linMngvb>^ <manimate_traBsvb>  ̂by  ̂<nonhainaii_temiph_mooB>^; 

<inaniiEate_traQSvbpli_active_other>  ̂=
<inanimate_transvb_other>^ <noahuman_termph_other>^; 

<inanimate_tensvbpli_passive_other>® =
<linMngvb>  ̂<inaniiiiate_transvb_.otheF>  ̂ <nonhun2an_tennph_^Ianet>^

I <linMngvb>'  ̂<inanimateJxansvb_otlier>^ by  ̂<noEliiiman_temip!i_inooii>—; 
<human_detph>®® = <det>® <human_aouncla>^;
<nonliiimaii_detph_pianet>* = <det>^ <aonhumaii_iioimcla_45lanet>” ;
<noiihiimaii_detpli_mooii>* = <det>* <nonhuman_noimcla_mooii>^;
<nonhuman_detpli_other>®= <det>* <nonhiimaii_noiincla_otlier>^;
<preposition>^ = on | in ;
<noitiicla>^‘* = <human_noimcla>^

I <noiihiimaii_!iouncla_planet>"* 
j <nonh'umaii_no'ancla_inoon>"  ̂
j <nonlmman_noimck_other>^*’;

<liximan_aouncla>* = <adj>^ <!mnian_cnoiiii>^
I <human._cnoun>‘*;

<aonliuniaii_noimcla_j5!aiiet>'^ = <adj>^ <noniramaQ_cnouii_nlaQet>^
I <nonhuman_cnoiiii_planet> ;

<noidnimaii_noimcla_mooii>‘̂ = <adj>  ̂<nonhuman_cnoim_mooii>^
I <nonliiiman_cnoim_moon>^;

<nonhuman_noimcla_other>^® = <adj>  ̂<nonhuman_cnoiin_other>^
I <nonhimian_cnoun_other>^®;

<hitman_cnouii>‘* = man j men | person | people;
<jioiihuman_cnouii_plaiiet>^ = planet | planets ;
<nonhiiman_cnoun_moon>^ = moon | moons;
<nonlniman_cnoim_otlier>^* = mountain | mountains j crater | craters | sea | seas | ocean | oceans ]

chemical | chemicals | gas | gases j metal | metals | nonmetal | nonmetals j 
country | countries | capita! | capitals 1 city | cities | continent | 
continents | river {rivers | lake | lakes ;

<adj>  ̂= red | atmospheric;
<intransvb>’ = spin ] spins | orbit | orbits | orbited | exist jexists ;
<intransvb_other>^ = exist | exists;
<animate_transvb>® = discover | discovers | discovered ] find | finds | found;
<animate_transvb_other>^ = worship | worshiped;
<inanimate_transvb>^ = orbit 1 orbits | orbited | neighbour | neighbours | neighboured; 
<inanimate_transvb_other>^ = contain ] contains | contained;
<linkingvb>"* = is j was | are | were;
<questl>^ = did I do j does;
<det>® = a J an j every | one | two | three | four | five;
< p n o u n > ^®  =  < n o ah u m a D ,_ j5 n o u E _ p la n e t> ^

I <nonhuman_pnouji_moon>^*
1 <human_pnouE>’’
1 <nonhuinaii_pnouii_other>^^ ;̂

<nonhumaii_piiouii_^lanet>® = arth | jupiter j mars | mercury | neptune | pluto | satum | uranus | venus ; 
<nonliiHnaiij5noun_moon>^® = almathea {ariel jcailisto | charon | deimos {dione j enceladus |

europa \ ganymede j hyperion | iapetus i io | janus jjupitereighth jjupitereleventh) 
jupiterfourteenth | jupiteminth | jupiterseventh | jupitersixth | jupitertenth j 
jupiterthirteenth | jupitertwelfth j  luna | mimas| miranda | nereid \ oberon | phobos | 
phoebe | rhea | satumfirst | tethys j titan | titania | triton j umbriel;

<human_pnouii> ’ = bemard | bond ] cassini | dollflis j fountain j galileo 1 hall | herschel | huygens |
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kowal I kuiper | larsen j lassell | melotte | nichoison 1 perrine | pickering ; 
<noQliuinan_piiouii„other>^  ̂ = <nonliumaii_pnouJi_cheiiiica!>^® 

1 <space_program>^ 
I <earth_geography_domain>^® ;̂

<nonhuinan_pnoiia_chemical>^° = <nonliuman_pnoiin_g^>^
I <nonhiimaii_jiioim_iiietal>®
I <noidiumanj)noiJiijioametal>^;

<iionhiJinaii_pnowi_gas>® = oxygen | hydrogen j nitrogen | dioxide | monoxide | helimn ; 
<nonliuman_piiouii_metal>® == gold j silver i copper | iron | stannum | nickel | potassium j natrium |

hydrargyram;
<nonhiimaii_j?iioiua_iioiimetal>  ̂= water | sulphur | carbon j phosphoras j calcium; 
<space_program>® = shuttle j rocket j launch J  telescope | station | astronaut; 
<eartli_5 eograpliy_domain>^°’̂ = <country>*  ̂| <capital>®® | <dty>® | <continent>^ j <ocean>‘* ]

<river>  ̂! <lake> | <mountaiii>* ;
<country>*®'̂  = Afghanistan j Albania j Algeria | American Samoa | Andorra | Angola | Anguilla | 

Antigua and Barbuda | Argentina | Armenia | Aruba | Australia | Austria | Azerbaijan | 
Bahrain |Bangladesh j Barbados j Bassas da India | Belarus ] Belgium | Belize j Benin | 

Bermuda | Bhutan j Bolivia |Bosnia and Herzegovina j Botswana |Bouvet Island | Brazil| 
Brunei |Bulgaria | Burkina Faso | Burma | Burundi j Cambodia [ Caneriib j Canada |
Cape Verde | Cayman Islands | Central African Republic j Chad j Chile |
China ] Clipperton Island | Colombia 1 Comoros | Congo Democratic Republic j 
Congo Republic | Cook Islands i Coral Sea Islands | Costa Rica j Croatia | Cuba | Cyprus | 
Czech Republic j Denmark | Djibouti j Dominica | Dominica Republic | Ecuador | Egypt j 
El Salvador | Equatorial Guinea | Eritrea j Estonia | Ethiopia | Europe Island | Fiji j Finland \ 
France jPrench Guiana | Gabon | Gambia j Gaza Strip |Georgia j Germany | Ghana | 
Gibraltar j Glorioso Island j Greece i Greenland | Grenada | Guadeloupe | Guam |
Guatemala j Guernsey | Guinea | Guyana j Haiti [ Heard and Mcdonald Island jHoly See j 
Honduras j Howland Island | Hungary jlceland jlndia jlndonesia | Iran |Iraq | Ireland | Israelj 
Italy I Jamaica | Ian Mayen jJapan j Jarvis Island | Jersey | Johnston Atoll j Jordan ( 
Kazakhstan | Kenya |Klngman Reef | Kiribati | North Korea | South Korea | Kuwait | 
KyrgyzStan | Laos | Latvia iLebanon | Lesotho jLiberia |Libya | Liechtenstein | Lithuania | 
Luxembourg | Macedonia j Madagascar | Malawi | Malaysia j Maldives | Mali | Malta ]
Isle of Man | Marshal! Islands ] Martinique j Mauritania |Mauritius 1 Mayottej Mexico| 
Micronesia j Midway Island |Moldova | Monaco | Mongolia j Montserrat | Morocco \ 
Mozambique |Myanmar j Netherlands | Norway j New Zealand {Nigeria i Oman | Portugal | 
Poland I Romania | Russia [ Rwanda | Tajikistan | Tanzania | Syria j Swede \ Switzerland j 
Sudan | Spain | Singapore | Thailand j Togo [Tokelau j Tonga [Tunisia | Turkey | 
Turkmenistan ] Tuvalu | Uganda | Ukraine |unitcd Arab Emirates j United Kingdom | 
United States of Amerima [Uruguay [ Uzbekistan [Vietnam | Yemen | Yugoslavia jZambia] 
Zimbabwe;

<capital>®® = Ottawa | Beijing | london j paris | berlin | W^Mngton( Kabul [Tirana [Algiers [
Pago Pago I Luanda [ Andorra la Vella | Buenos Aires | Yerevan [ Oranjestad | Canberra [ 
Vienna | Baku| Dhaka [Manama | BridgeTown | Brussels [ Belmopan | Portonovo | 
Hamilton {Thimphu | LaPaz [Gaborone [Brasiliaj Phnom Penh [Yaounde | Praia | Prague | 
Santiago j Bogota | Moroni | Havana [ Nicosia | Copenhagen | Roseau | Cairo [ Asxnaraj 
Addis Ababal Suva | Helsinki [ Libreville | Banjul | GoregeTown | Tbilisi [Accra | Athens j 
Saint George’s j Conakry | Fort-au-prince | Budapest | New Delhi | Jakarta j Tehran | 
Baghdad | Dublin | Jemsalem | Rome [ Tokyo | Amman | PYong Yang | Seoul | Kuwait | 
Beirut | Maseru | Monrovia | Tripoli [ Skopje | Amsterdam | Kuala Lumpur | Bamako [ 
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo [ Warsaw [ Lisbon [ 
Moscow I Stockholm [ Bucharest [ Singapore | Madrid | Khartoum | Bern | Damascus j 
Hanoi [Ankara | Sanaa | Harare | Belgrade | Lusaka ;
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<city>® = toronto | shanghai | manchester | lyon | Frankfurt \ New York;
<continent>'  ̂= AMca | Asia | Austriiia | Europe | North America) South America;
<oceaa>'* = Arctic | Atlantic | M ia j  Pacific;
<river>  ̂= Yangtse | Nile j Danube;
<lake>* = O n ta r io  lake;
<mountain>* = rocky mountain;

The average branching factor for extended semantic grammar
b = ((42^-2i68)4-(395+395)+(395+2+44)+(395+2+44+l+2+44)+(294)4•(8+45+22+60)+

(15)+(6+1+50)+(6+1 +50)+(6+2+34)+(6+2+88)+(1+50)+( i+88+1 +682)+{8+13+17+5+5)+ 
(8+12+12+13+i7)+(12+10)+(2+25)+(2+17)+(2+44)+(2+341)+l+(6+l+50)+(6+2+34)+(6+2+88)+ 
(34+88+682)+(5O+34+88+682)+34+(6+i+88)+682+(3+l+34)+(3+l+88)+(6+4+4+30)+ 
(4+2+2+28)) / 93 

= 8890/93 
= 95.6

Figure Appendix C (3): branching-factor computation o f extended semantic grammar (Cont’d) 

Figure Appendix C (4); branching-factor computation o f extended syntactic grammar

/* syntax_gram_ext2.gram */ 
grammar syntax gram ext2 ;
public <s>^ = <linkingvb>^ <termpli>^ [<transvb>^ by^ ] <termph>®

I <Iinkingvb>^ <tennph>®^ [<transvb>^ <preposition>^ ] <termph>~ 
I <questl>^ <sent>®
I ( who jwhat) ̂  <verbph>^
I ( which I how many) ̂  <nouncla>^verbph>^
I <simpie>^®;

ask them to be quite 
1 please introduce yourself 
i hello there 
I goodbye
1 goodbye solar man 
I fine thanks 
I thanks
j thanks solar man 
I yes please 
I what is your name 
j who are you 
1 where do youlive 
I what do youknow- 
I how old are you 
I what is your favorite band
I who is the vice president at the university of Windsor
I who is the dean of science at the university of Windsor 
I tell me a poem 
I know any poems 
I tell me a joke 
1 know any jokes 
1 who is judy
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I can i talk to judy 
1 can i talk to solar man 
{who is monty 
I can i talk to monty; 

<sent>®® = <verbpli>^;
<stermpli>̂ ®  ̂= <pnoun>̂ ^®

I <detph>“; 
<termph>*®* = <stennph>'̂ ®'*

I <stermph>̂ ®̂  {and \ or)~ <stermpli>^;
<verbph>^  ̂= <transvbpli>^*

I <mtrafisvb>'^;
<traiKvbph> ® = ( <transvb>^  ̂| <linkingvb>^ <transvb>^ hy^) <termpli>^

I ( <transvb>*  ̂| <linkingvb>^ <transvb>~  ̂<prq}osition>^) <tennpli>^; 
<detpli>  ̂= <det>® <nounc!a>^;
<nouncla>^® = <adj>  ̂<cnoun>^

I <cnoun>^ ;̂
<cnoun>^® = man j men 1 person ] people [ planet | planets | moon 1 moons ] mountain ] mountains | 

crater j craters | sea | seas | ocean [ oceans j chemical j chemicals | gas ] gases j metal | 
metals | nonmetal | nonmetals | cmmtry | countries | capital j capitals | city j cities | 
continent | continents j river ] rivers | lake ] lakes ;

<adj>^ = red [ atmospheric;
<intransvb>'  ̂= spin | spins j orbit | orbitsj orbited j exist j exists ;
<det>^ = a j an ! every | one j two | three j four j five;
<pnoun>^® = <pnoun_planet_mooG_human>®

I <nonhuman_4 )aoun_chemical>^°
I <space_program>®
I <earth_^eography_domam>^‘’'̂ ;

<pnoim_planet_moon_human>® = urth j jupiter | mars | mercury | neptune | pluto | satum | uranus | 
venus I almathea | ariel ] callisto | charon | deimos j dione | enceladus | europa | 
ganymede | hyperion | iapetus | io jjanus j jupiter eighth | jupitereleventh | 
jupiterfourteenth Ijupiteminth |jupiterseventh [jupitersixth | jupitertenth [ 
jupiterthirteenth | jupitertwelfth j luna j mimas | miras | miranda | nereid j oberon | 
phobos j phoebe | rhea | satumfirst | tethys | titan j titania | triton | umbriel | bemard] 
bond I cassini ] dollfas j fountain | galileo | hall [ herschel [ huygens ] kowal [kuiperj 
larsen | lassell [ melotte | nichoison | perrine [ pickering; 

<nonhumaii_pnoun_chemical>^® = <nonhuman_pnoun_gas>®
1 <nonhumaa_pnoim_metal>®
1 <nonhuman_j)nouii_3ioiimetal>^;

<nonhuman_pnoun_gas>^ = oxygen | hydrogen | nitrogen | dioxide | monoxide | helium; 
<nonhuman_pnoun_metai>^ = gold | silver ] copper | iron ] staimum j nickel | potassium j natrium | 

hydrargyrum;
<nonhuman_j5noun_noiimetai>^ = water | sulphur | carbon | phosphorus | calcium;
<space_program>® = shuttle j rocket | launch | telescope | station | astronaut; 
<earth_geography_domain>^®’̂ = <country>̂ ®'’' [ <capital>®  ̂| <city>* | <contineiat>'  ̂| <ocean>^ |

<river>  ̂I <lake>’‘ | <moiintain>*;
<comtry>*®' = Afghanistan (Albania j Algeria | American Samoa j Andorra j Angola | Anguilla j 

Antigua and Barbuda | Argentina | Armenia | Aruba j Australia | Austria | Azerbaijan | 
Bahrain [Bangladesh | Barbados | Bassas da India | Belarus j Belgium | Belize | Benin |
Bermuda [ Bhutan [ Bolivia [Bosnia and Herzegovina | Botswana jBouvet Island | Brazil]
Brunei [Bulgaria j Burkina Faso | Burma [ Burundi | Cambodia | Caneriib | Canada |
Cape Verde | Cayman Islands j Central African Republic | Chad | Chile |

China | Clipperton Island j Colombia | Comoros | Congo Democratic Republic j
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Congo Republic j Cook Islands | Coral Sea Islands j Costa Rica | Croatia | Cuba j Cyprus |
Czech Republic j Denmark | Djibouti j Dominica | Dominica Republic | Ecuador j Egypt j 
El Salvador | Equatorial Guinea | Eritrea ] Estonia | Ethiopia j Europe Island j Fiji iFMandl 
France |French Guiana | Gabon | Gambia | Gaza Strip |Georgia | Gennany j Ghana |

Gibraltar | Glorioso Island | Greece [ Greenland | Grenada j Guadeloupe | Guam |
Guatemala | Guernsey | Guinea | Guyana | Haiti j Heard and Mcdonald Island |Holy See | 
Honduras | Howland Island | Hungary [Iceland [India |Indonesia [ Iran [Iraq [ Ireland) Israeli 
Italy I Jamaica j Jan Mayen jJapan | Jarvis Island j Jereey j Johnston Atoll | Jordan |
Kazakhstan | Kenya [Kingman Reef | Kiribati j North Korea | South Korea | Kuwait |
KyrgyzStan | Laos | Latvia |Lebanon j Lesotho [Liberia [Libya j Liechtenstein | Lithuania [ 
Luxembourg | Macedonia [ Madagascar | Malawi | Malaysia j Maldives | Mali | Malta |
Isle of Man [ Marshall Islands | Martinique I Mauritania [Mauritius ] Mayottej Mexicoj 
Micronesia | Midway Island [Moldova j Monaco | Mongolia | Montserrat j Morocco |
Mozambique [Myanmar j Netherlands | Norway | New Zealand | Nigeria |
Oman j Portugal | Poland | Romania j Russia j Rwanda | Tajikistan j Tanzania j 
Syria j Swede { Switzerland | Sudan | Spain | Singapore j
Thailand j Togo [Tokelau | Tonga [Tunisia | Turkey j Turkmenistan [Tuvalu | Uganda |
Ukraine [united Arab Emirates | United Kingdom | United States of Amerima {Uruguay | 
Uzbekistan [Vietnam | Yemen j Yugoslavia [Zambia | Zimbabwe;

<capital>®  ̂= Ottawa | Beijing j london j paris | berlin [ Washington |
Kabul I Tirana [Algiers | Pago Pago | Luanda | Andorra la Vella [ Buenos Aires |
Yerevan | Oranjestad | Canberra | Vienna | Baku | Dhaka [Manama [ BridgeTown |
Brussels j Belmopan | Portonovo | Hamilton | Thimphu | LaPaz [Galsorone [Brasiliaj 
Phnom Penh [Yaounde [ Praia [ Prague [ Santiago | Bogota [ Moroni [ Havana [
Nicosia | Copenhagen [ Roseau [ Cairo | Asmara [ Addis Ababa [ Suva [ Helsinki [
Libreville [ Banjul | GoregeTown | Tbilisi [Accra [ Athens | Saint George’s [ Conakry [ 
Port-au-prince | Budapest | New Delhi | Jakarta | Tehran | Baghdad [ Dublin |
Jerusalem | Rome | Tokyo | Amman | PYong Yang | Seoul | Kuwait | Beirut |
Maseru [ Monrovia [ Tripoli [ Skopje [ Amsterdam | Kuala Lumpur | Bamako [
Velletta | Mexico | Ulaanbaatar | Windhoek | Abuja | Wellington | Oslo |
Warsaw | Lisbon | Moscow [ Stockholm [ Bucharest [ Singapore [ Madrid |
Khartoum [ Bern [ Damascus | Hanoi [Ankara [ Sanaa | Harare [ Belgrade [ Lusaka;

<city>® = toronto | shanghai [ manchester [ lyon [ Fraiifiirt j New York;
<continent>  ̂= Africa [ Asia [ Austrilia | Europe | North America [ South America | Antarctica; 
<ocean>"* = Arctic | Atlantic | India [ Pacific;
<river>  ̂= Yangtse | Nile | Danube;
<lake>' = Ontario lake;
<mountain>’ = rocky mountain;
<transvb>^* = orbit | orbits | discover [ discovered | neighbour | neighbours | neighboured [ worship | 

worshiped [ contain | contains [ contained [ find | finds [ found;
<preposition>^ = in [ on ;
<linkingvb>'* = is [ was [ are [ were ;
<questl>^ = did [ do \ does ;

The average branching factor for extended syntactic grammar
i* = ((41+808+15+l+808)+(808+15+2+808)+(808+45+38+45)+45+(2+404)+(15+i+808+15+2+808)+ 

38+36)724 
= 6416/24 
= 267.3

Figure Appendix C (4): branching-factor computation of extended syntactic grammar (Cant’d)
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Appendix D: Partial Experiment Result in Detail

(1) Notes for the experiment:
Semantics set: a set of utterances that are both semantically and syntactically correct. 
Syntax set: a set of utterances that are syntactically correct, but semantically incoiTect. 
Word-sequence set: word sequences that are neither semantically, nor syntactically 
correct, but consist of words from the defined vocabulary.

(2) Notations for recording experiment-recognition results.
C: recognized Correctly;
I: recognized Incorrectly;
N: Not recognized at all.

(3) Note for the heading line in the table. The heading line indicates which grammar is u 
sed, the testing order, etc.

sem: semantic grammar;
syn: syntactic grammar;
wd seq: word-sequence grammar.
sem ext: extended semantic grammar;
syn ext: extended syntactic grammar;
wd seq ext: extended word-sequence grammar.
# i: testing order
(n/m ): n utterances are correctly recognized out of m utterances.
(N: X, I: y): x  utterances are not recognized at all, y  utterances are recognized
incorrectly.

e.g.: Sem #l (60/73) (N:10,1: 3)
means the semantic grammar was the first grammar to be tested, 60 utterances were 
recognized correctly out o f total 73 utterances, 10 utterances were not recognized at 
ail, 3 utterances were recognized incorrectly.
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Table Appendix D (1): experiment result of Person #1 on grammars before extended using semantics set
Person #1 (English Male);

3-

CD■D
O
Q .C
a
o

■o
o

CD
Q .

■D
CD

C/)
C/)

N
0

Testing Utterances Sem #1(60/73) 
(N:10,1: 3)

Sem # 3 ( 6 0 / 7 3 )  
(N:9,1:4)

Syn #2(60/73)

1 . Was phobos discovered by a person C C M N:
2 . Is titania a mountain C C W e
3. Is cassini a moon c c m c
4. Is pluto a mountain or a moon c c c
5. Is pluto an atmospheric crater c c ■ e  ■
6. Does pluto exist c c G c
7. Does ariel neighbour pluto c c € C ;
8. Does a moon neighbour a planet N c € I
9. Does every person worship a planet c c
10, Does satum contain a crater c c e c
11, Does phobos contain a red mountain c c e  . c
12, Does janus contain nitrogen c c e  ̂ c
13, Did bemard discover a mountain N c c c
14, Who discovered a crater c c e c
15, Which mountain is found on uranus c c e f c
16, Which gas is found on a moon c c G
17, What is contained by venus c c C €  ,

18, What is contained by phobos c c c  . c . . .  , ,
19, Which mountain is found on janus c c c . . c .,
20, Which sea exists c c e  . . c
21 Which mountains are discovered by hall c c c c
22J Which moon orbits a planet N c .c c
23. How many moons neighbour satum c c e c
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24. Was neptune discovered by dollfus or cassini C c f e C '
25 Does triton orbit pluto or satum C c i c  ' . ' "G' - ,
26. Was neptune contained by hydrogen or nitrogen c c M c
27. Does jupitereighth contain a sea or a mountain I N 9 m: '  :  ^
28, Does jupiter contain hydrogen or oxygen c c
29. Does earth contain oxygen c c I I
30 Does a moon contain hydrogen c c € :-C. .
31, Does a moon neighbour a planet c c e I
32, How many gases are found on mars c I 1 I
33, How many craters are found on a moon c c c c
34, How many oceans are discovered by hall c c c
35, How many mountains are found on earth c N I : I
36, Is gold found on earth c I I I
37, Is silver found on janus c c c
38, Is a chemical found on triton c I I c
39, Is dioxide found on phoebe c c c .. c
40, Is sulphur found on luna c c c  , :€ , .
41, Is oxygen found on mars I I . I I
42. Is a metal found on a planet c c c €
43, Is a nonmetal found on pluto c c c c
44, Is a river foimd on neptune c c c €
45, Is a lake found on venus c c c ;G ■■ '■
46J Which gas is found on titan c c G €
47. Which chemicals are found on rhea N c c €
48, Which nonmetals are found on jupiter c c c c
49, Which metals are found on a moon c c c c
50. Which river is found on hyperion c c c
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51. Which mountains are found on rhea C C c52. How many chemicals are found on pluto N N c  . . ■ 0  ■53, How many metals are found on a moon C C c
5 f How many nonmetals are found on jupiter N N '.C' ,

_ _

55. How many gases are found on mars C C I 1
56. How many continents are found on earth c N I I
57, Is berlin a capital c C c C.58, Is beijing a city c C c 059, Is lyon a moon c c c C
60, Is india an ocean or a country c c G N
61, Is Canada a mountain c c c C
62 Is england an atmospheric planet c c C ' 0 -
63, Which mountain is found on jupiter IC c , ,

c
64, Which rivers are found on io c c c e
65, Which nonmetals are found on a planet N N c N
66 Which gases are found on a moon c c c
67, Is an ocean found on mercury c c c c .
68, How many rivers are found on miranda c c c G
69. How many chemicals are found on phoebe N N C I 070, How many continents are found on earth N N i N
71, Is an ocean found on mercury C C c c
72, How many gases are contained by earth N c r I
73, How many gases are found on earth I N I I

Table Appendix D (1): experiment result o f Person #1 on grammars before extended using semantics set (Cont’d)
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Table Appendix D (2): experiment result of Person #1 on grammars before extended using syntax set 
Person #1 (English Male);
N
o

Testing Utterances Sem #1 (0/25) 
(N:20,1:5)

Sem #3 (0/25) 
(N: 17,1:8)

n jrn m m a s i
m M . m -

S y n « -# i /2 5 |

1 Does a mountain contain a moon N N '€
2 Does a gas contain a planet N N c €
3 Does a river contain a continent N I c C
4 Was phobos discovered by a moon I I c ...................  ..

5 Does water contain a river N N c €
6 Is a crater found in nitrogen N I c c
7 Does ariel neighbour hall N N -c c
8 Does a moon neighbour a people N N c N
9 Does a crater contain satum N N c C
10 Does a red mountain contain phobos I N c c
11 Does nitrogen contain janus N N c c
12 Does berlin discover a moon N N c  .

13 Which mountain is found on bond N I e
14 Which moon is found in a gas I I c rc
15 Which mountains are discovered by pacific I I c
16 Which river orbits a planet N N c . c
17 How many people neighbour Satum N N c c
18 Was neptune discovered by dollfus or lyon N I c c
19 Does triton orbit piuto or frankfurt N N N
20 Does gold contain a sea or a mountain N I N N - ^
21 How many moons are found in atlantic N N . C
22 How many craters are discovered by nile I N C . C
23 Is gold found in cassini N N ,c c
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C/)(/) 24 Which chemicals are found on bond N N c
25 How many chemicals are found on galileo N N N N ^

Table Appendix D (2): experiment result of Person #1 on grammars before extended using syntax set (Cont d)

oo■D
c q '

Table Appendix D (3): experiment result o f Person #2 on grammars before extended using semantics set
Person #2 (iioii^Eiiglish Female)!

O’Q
CD■D
O
Q .C
a
o

■o
o

CD
Q .

■D
CD

C/)
C/)

N
o

Testing Utterances Sem#l 
(48 /73)
N:23,1: 2

Sem #4 
(52 /73 )
N:19,1:2

S yn ^  m  
/73)N:27,I:
10

S p iiS  
( 4 M )  
M:.22l:i0- ^

WdSeq 
#3(9/73) 
N: 18 1:46

Wd Seq
#6(9/73) 
N:23 1:41

1 Was phobos discovered by a person N N W U I I
2 Is titania a mountain C C H N I N
3 Is cassini a moon C C c  .. C C C
4 Is pluto a mountain or a moon N N m N I
5 Is pluto an atmospheric crater C C c I I
6 Does pluto exist C C G c C c
7 Does ariel neighbour pluto c c :m N I N
8 Does a moon neighbour a planet c c M I , c I
9 Does every person worship a planet c c c I C
10 Does satum contain a crater I c f I . c I
11 Does phobos contain a red mountain c c € c I I
12 Does janus contain nitrogen c c c I c I
13 Did bemard discover a mountain c N c I N N
14 Who discovered a crater c c e c I C
15 Which mountain is found on uranus N c c c I N
16 Which gas is found on a moon c c c c I I
17 What is contained by venus N N n I I
18 What is contained by phobos C N M ; C c I
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19 Which mountain is found on janus C c c C I I
20 Which sea exists C c c C c C
21 Which mountains were discovered by hall N N N N I I
22 Which moon orbits a planet C c 1; ■€ N C
23 How many moons neighbour satum c c I . I I
24 Was neptune discovered by dollfus or cassini N N M g N I
25 Does triton orbit pluto or satum N N M ■ ::n N N
26 Does neptune contain hydrogen or nitrogen N N ■m e I I
27 Does phobos contain a sea or a moimtain N C c G I I
28 Does phoebe contain hydrogen or oxygen N N N M I I
29 Does oberon contain oxygen C C c C I C
30 Does a moon contain hydrogen C C € c I I
31 Does a moon neighbour a planet c c c  , I c
32 How many gases are found on mars c c N N I I
33 How many craters are found on a moon c c c C I I
34 How many oceans were discovered by hall N c N N I N
35 How many mountains are found on earth c c I I I N
36 Is gold found on earth c c I I I I
37 Is silver found on janus c c c C I I
38 Is a chemical found on triton c c c C N N
39 Is dioxide found on phoebe c c c  . c N N
40 Is sulphur found on luna c c c c I N
41 Is oxygen found on mars c c I c I I
42 Is a metal found on a planet c c c N N N
43 Is a nonmetal found on Pluto c c I C.'" I I
44 Is a river found on Neptune N N N N I N
45 Is a lake found on venus c c :C C I N
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46 Which gas is found on titan C c c  , c  ■ I I
47 Which chemicals are found on rhea C c » N N
48 Which nonmetals are found on jupiter N c €  . I N I
49 Which metals are found on a moon C c i - : ■c I N
50 Which river is found on hyperion N N N N ^ N N
51 Which mountains are found on rhea C N I C I I
52 How many chemicals are found on pluto C c C : :N N I
53 How many metals are found on a moon c I c e N N
54 How many nonmetals are found on jupiter c N c c I N
55 How many gases are found on mars N C I N I I
56 How many continents are found on charon c c N I I I
57 Is berlin a capital I I I C I I
58 Is beijing a city c c c € . I I
59 Is lyon a moon c c c € C C
60 Is india an ocean or a country N c N N I N
61 Is Canada a mountain c c € C I I
62 Is england an atmospheric planet N N N N C N
63 Which mountain is found on jupiter C I C C N I
64 Which rivers are found on io N N N N N I
65 Which nonmetals are found on a planet N C N C ' . ■N N
66 Which gases are found on a moon N C M c I N
67 Is an ocean found on mercury C c c N N
68 How many rivers are found on miranda N N N N I I
69 How many chemicals are found on phoebe C c C c  . ■. I I
70 How many continents are found on earth C c I N I I
71 Is an ocean found on mercury c c c : N ' n

72 How many gases are contained by earth N N N N I I
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(/)(/) 73 How many gases are found on earth N N S ' 1 ; I I
Table Appendix D (3): experiment result of Person #2 on grammars before extended using semantics set (Cont Wj

CD
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Table Appendix D (4)t experiment result o f Person #2 on grammars before extended using syntax set
Person #2 (n0Bi-Eiiglish Female) i

CD■D
O
Q .C
a
o

■o
o

CD
Q .

■D
CD

C/)
C/)

No Testing Utterances Sem #1 
( 0/25)
(N:21,I:4)

Sem #4( 0 
US)
(N:20,1: 5) :# t  121:4)

Sya#«
(IM S )

1)„

Wd Seq #3
(2/25) 
(N:13,1:10)

Wd Seq #6
(2/25)
(N:11,I:12)

1 Does a mountain contain a moon N N M C I N
2 Does a gas contain a planet N N C N N N
3 Does a river contain a continent N N N C N N
4 Was phobos discovered by a moon N N N I I
5 Does water contain a river N N N N N
6 Is a crater found in nitrogen I I .c N N N
7 Does ariel neighbour hall N N 1 c  . I C
8 Does a moon neighbour a person N N ;C ; c I I
9 Does a crater contain saturn N N N N N
10 Does a red mountain contain phobos N N c N I I
11 Does nitrogen contain janus N I c C I I
12 Did berlin discover a moon I I c C C
13 Which mountain is found on bond I I ■c • c I I
14 Which moon is found in a gas I I C c I I
15 Which mountains were discovered by pacific N N N N N
16 Which river orbits a planet N N M c N N
17 How many people neighbour satum N N , c  . I C I
18 Was neptune discovered by dollfus or lyon N N M N N I
19 Does triton orbit pluto or frankfurt N N 'M M N N
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20 Does gold contain a sea or a mountain N N :» N N I
21 How many moons are found in atlantic N N H M N I
22 How many craters were discovered by nile N N ■H c I I
23 Is gold found in cassini N N 1 ; c I N
24 Which chemicals are found on bond N N ■ c N I
25 How many chemicals are found on galileo N N V. N N N

Table Appendix D (4): experiment result of Person #2 on grammars before extended using syntax set (Cont’d)

CD Table Appendix D (5): experiment result of Person #2 on grammars before extended using word-sequence set

3-
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N
o

Testing Utterances Sem #1 
(0/24)
(N:21,1:3)

Sem #4 
(0/24)
(N:22,1:2)

 ̂Syii..#2 Syn #5
(0/24
CN:17I:7)

Word Seq 
#3(4/24
(N:8I:12)

Word Seq
#6 (3 /24 
(N:61: 15

1 Is a mountain contain a moon N N M N I N
2 Does a gas a planet N N N N I N
3 Is a river found a continent N N M N N I
4 Phobos discovered by a moon N N N N I I
5 Does water exist a river N N m M N I
6 Is a crater contain nitrogen N N I . N C C
7 Is ariel neighbour a planet N N 1 N N N
8 Is a moon discover a people N N I I C N
9 Which crater contain on satum N N M I N I
10 Is a red phobos contain a mountain N N M N I I
11 Is janus contain nitrogen I I I i T ~ ~ ~ C C
12 Is jupiter discovered bemard N N N N N N
13 Which mountain is found dione and phoebe N N i N N I
14 Which gas found moon I N I N I I
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15 Which mountain discovered by metotte N N i I I
16 Which moon orbits on a planet N N «  -  ' :S I I
17 How many moons neighbour on satum N N M, .1̂ . I I
18 Was neptune discovered dollfus and kowal N N M c c
19 Is triton orbit pluto or venus N N N I
20 Is gold contained a moon N N t I I
21 How many mountains found on oberon I N I I
22 How many craters are found earth N N . . . . . I I I
23 Is gold found cassini N N . 1 . ■'I I I
24 Which chemicals are found bond N I m N N N

Table Appendix D (5): experiment result of Person #2 on grammars before extended using word-sequence set (Cont’d)

Table Appendix D (6): experiment result of Person #1 on extended grammars using semantics set 
Person #1 (English Male):

No Testing Utterances
■ {-W fW N iiM I

Sem ext #3 
(66113 )(N:5,1:2)

Syn ext #2 
(58 /73)(N:2I;13)

Syn ext 4 
(54/73 )(N:41:15)

1 Was phobos discovered by a person C C m C
2 Is titania a mountain C c c
3 Is cassini a moon e  . . C c c
4 Is pluto a mountain or a moon N C G c
5 Is pluto an atmospheric crater C C -G c
6 Does pluto exist c C C c
7 Does ariel neighbour pluto € C e c
8 Does a moon neighbour a planet C N ■C c
9 Does every person worship a planet 1 N c
10 Does satum contain a crater f C G c
11 Does phobos contain a red mountain ■G C c c
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12 Does janus contain nitrogen :c c c
13 Did bemard discover a mountain c t . I
14 Who discovered a crater c  .. c I c
15 Which mountain is found on uranus c ■G. ■ c
16 Which gas is found on a moon €  . ■. c G c
17 What is contained by venus c I  ^ c
18 What is contained by phobos e :  . /  . c i c
19 Which mountain is found on janus C . c G c
20 Which sea exists c c . i c
21 Which mountains were discovered by hall e. , c ...€ c
22 Which moon orbits a planet G . c c  . c
23 How many moons neighbour satum € c c c
24 Was neptune discovered by dollfus or cassini c c c
25 Does triton orbit pluto or satum C c € c
26 Does neptune contain hydrogen or nitrogen C c 6 c
27 Does jupitereighth contain a sea or a mountain c e I
28 Does jupiter contain hydrogen or oxygen € c c c
29 Does earth contain oxygen € c G N
30 Does a moon contain hydrogen S  , . ..............;.. c € c
31 Does a moon neighbour a planet c c I
32 How many gases are found on mars I c I N
33 How many craters are found on a moon C c c c
34 How many oceans were discovered by hall ■ ■ c € c
35 How many mountains are found on earth C . I I I
36 Is gold found on earth c I , , ........, ; I
37 Is silver found on janus C c c I
38 Is a chemical found on triton I I I I
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39 Is dioxide found on phoebe e c c
40 Is sulphur found on luna ■ C . c c
41 Is oxygen found on mars : c .  : . . c c I
42 Is a metal found on a planet : c  ; c : c c
43 Is a nonmetai found on pluto - C  f c :C c
44 Is a river found on neptune c c :€ c
45 Is a lake found on venus c :.c c
46 Which gas is found on titan C c G c
47 Which chemicals are found on rhea c  . c c c
48 Which nonmetals are found on jupiter C :  , c .-G I
49 Which metals are found on a moon C c c c
50 Which river is found on hyperion C c c c
51 Which mountains are found on rhea ■ C . N c c
52 How many chemicals are found on pluto M N N c
53 How many metals are found on a moon C c : c c
54 How many nonmetals are found on jupiter c  ■" ■■ c i c
55 How many gases are found on mars N . N I I
56 How many continents are found on earth N c I N
57 Is berlin a capital c . . . . . . . c G" c
58 Is beijing a city c c C c
59 Is lyon a moon C ' c C c
60 Is india an ocean or a country c c C N
61 Is Canada a mountain e c C c
62 Is england an atmospheric planet c c I I
63 Which mountain is found on jupiter c c ■e I
64 Which rivers are found on io c c c c
65 Which nonmetals are found on a planet c c c c
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■D
CD

C/)(/)

Oo■D
cq'

66 Which gases are found on a moon C c c c
67 Is an ocean found on mercury ;:C- c ■ c c
68 How many rivers are found on miranda e.. ., j .  ; c G c
69 How many chemicals are found on phoebe M c €  ■ c
70 How many continents are found on earth €. : c 1. I
71 Is an ocean found on mercury ,G , c .C c
72 How many gases are contained by earth c I
73 How many gases are found on earth c  , , ' c I I

Table Appendix D (6): experiment result of Person #1 on extended grammars using semantics set (ConPd)

CD
Table Appendix D (7): experiment result of Person #1 on extended grammars using syntax set 

Person #1 (English Male):
T3
oQ.c

N
©

S em  e t i l  (  035)^  ^
(N:2114)

Syn ext #2 ( 20/25 )
(N:41:1)

Syn ext #4  (21/25 )
(N:41:0)

a
o 1 Does a mountain contain a moon N m C C
■O 2 Does a gas contain a planet N ,N C C
o 3 Does a river contain a continent M  . ^ , ' ■ . c c
g; 4 Was phobos discovered by a moon I I c c
Q. 5 Does water contain a river N n I c

6 Is a crater found in nitrogen M s c c
o

7 Does ariel neighbour hall N c c
■D
CD 8 Does a moon neighbour a people N M c c
i. 9 Does a crater contain satum ' M ;N c c
C/)
o' 10 Does a red mountain contain phobos N N c c
o

11 Does nitrogen contain j anus M N c c
12 Did berlin discover a moon N N c c
13 Which mountain is found on bond N N c c
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14 Which moon is found in a gas ■I . . . :: . 1. , . C r c  — —
15 Which mountains are discovered by pacific ■I ; 1 N c
16 Which river orbits a planet ,.N . . . ' N N c
17 How many people neighbour satum M N ■ C c
18 Was neptune discovered by dollfiis or lyon M ■ : I C N
19 Does triton orbit pluto or ffankfurt N H. c c
20 Does gold contain a sea or a mountain I : 'N: : N N
21 How many moons are found in atlantic N K c N
22 How many craters were discovered by nile N N c N
23 Is gold found in cassini N N c C
24 Which chemicals are found on bond N N c c
25 How many chemicals are found on galileo N N. N c

Table Appendix D (7): experiment result of Person #1 on extended grammars using syntax set (Cont’d)

Table Appendix D (8): experiment result of Person #1 on extended word-sequence grammar using semantics set 
Person #1 (English Male):

Note: out of 73 testing utterances, there are 14 recognized correctly, 46 recognized Incorrectly, 13 Not recognized.
No Testing Utterances Recognized As 

(or “Not recognized”)
Correctness 
(C / total words)

1 Was phobos discovered by a person Was phobos discovered by person 5 /6
2 Is titania a mountain Is titania a mountain 4 /4
3 Is cassini a moon Is cassini a moon 4 /4
4 Is pluto a mountain or a moon Is pluto a mountain or moon 6 /7
5 Is pluto an atmospheric crater Is pluto and atmospheric crater 4 /5
6 Does pluto exist Does pluto exist 3 /3
7 Does ariel neighbour pluto Does ariel neighbour pluto 4 /4
8 Does a moon neighbour a planet Does a moon neighbour atlantic 4 /5
9 Does every person worship a planet Does qfrica worship planet 3 /6
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10 Does satum contain a crater Does satum contain qfrica 3 /5
11 Does phobos contain a red mountain Does phobos contain a red mountain 6 /6
12 Does j anus contain nitrogen Does janus contain nitrogen 4 /4
13 Did bemard discover a mountain Did banjul discover a mountain 4 /5
14 Who discovered a crater Who discovered a crater 4 /4
15 Which mountain is formd on uranus Which mountain is yaounde are uranus 4 /6
16 Which gas is found on a moon Which gas is yaounde ghana moon 4 /7
17 What is contained by venus What is contained^ve venus 4 /5
18 What is contained by phobos What is contained/ive phobos 4 /5
19 Which mountain is found on j anus Which mountain is yaounde janus 4 /6
20 Which sea exists Which sea exists 3 /3
21 Which mountains were discovered by hall Which mountains were discovered by hall 6 /6
22 Which moon orbits a planet Which moon dollfus atlantic 2 /5
23 How many moons neighbour satum How many moons neighbour satum 5 /5
24 Was neptune discovered by dollfiis or cassini Was neptune discovered/ive dollfus or cassini 6 /7
25 Does triton orbit pluto or satum Does triton orbit pluto oxygen 4 /6
26 Does neptune contain hydrogen or nitrogen Does neptune contain hydrogen hall nitrogen 5 /6
27 Does phobos contain a sea or a mountain Does phobos contain a sea or mountain 6 /7
28 Does phoebe contain hydrogen or oxygen Does phoebe contain hydrogen/b«r oxygen 5 /6
29 Does oberon contain oxygen Does oberon contain oxygen 4 /4
30 Does a moon contain hydrogen Does a moon contain hydrogen 5 /5
31 Does a moon neighbour a planet Does a moon neighbour atlantic 4 /6
32 How many gases are found on mars How many gases iceland amman 3 /7
33 How many craters are found on a moon Not recognized
34 How many oceans were discovered by hall How nicholson swede discovered by hall 4 /7
35 How many mountains are found on earth How many mountains are saint georges 4 /7
36 Is gold found on earth Not recognized
37 Is silver found on j anus Is Suva yaounde bond janus 2 /5
38 Is a chemical found on triton Not recognized
39 Is dioxide found on phoebe Is nile kazakhstan dione phoebe 2 /6
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40 Is sulphur found on luna Is dollfus yaounde or luna 2 /5
41 Is oxygen foxmd on mars Is oxygen sun amman 2 /5
42 Is a metal found on a planet Not recognized
43 Is a nonmetal found on pluto Not recognized
44 Is a river found on neptune Is aruba yaounde bond neptune 2 /6
45 Is a lake found on venus Is atlantic yaounde bond venus 2 /6
46 Which gas is found on titan Which gas is yaounde bond titan 3 /6
47 Which chemicals are found on rhea Which nicholson Iceland oman rhea 2 /6
48 Which nonmetals are found on jupiter Which monaco sanaa finland hone? jupiter 2 /6
49 Which metals are found on a moon Not recognized
50 Which river is found on hyperion Which aruba is mountain hyperion 3 /6
51 Which mountains are found on rhea Which mountains yaounde austria 2 /6
52 How many chemicals are found on pluto Not recognized
53 How many metals are found on a moon How many brussels iceland oman a moon 4 /8
54 How many nonmetals are found on jupiter How manama togo shanghai hone/jupiter 2 /7
55 How many gases are found on mars How many iceland are mars 4 /8
56 How many continents are found on charon How many contains how yaounde russia 2 /7
57 Is berlin a capital Is berlin atlantic 2 /4
58 Is beijing a city Is beijing a sea 3 /4
59 Is lyon a moon Is lyon a moon 4 /4
60 Is india an ocean or a country Is india are nicholson harare Conakry 2 /7
61 Is Canada a mountain Is Canada a mountain 4 /4
62 Is england an atmospheric planet Is finland and atmospheric planets 3 /5
63 Which mountain is found on jupiter Which mountain is yaounde jupiter 4 /6
64 Which rivers are found on io Not recognized
65 Which nonmetals are found on a planet Not recognized
66 Which gases are found on a moon Not recognized
67 Is an ocean found on mercury Not recognized
68 How many rivers are found on miranda How Maseru is yaounde are miranda 2 /7
69 How many chemicals are found on phoebe How many guinea phobos mountains phoebe 3 /7
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70 How many continents are found on earth Not recognized
71 Is an ocean found on mercury Not recognized
72 How many gases are contained by earth How many gases are contain by pairs 6 /7
73 How many gases are found on earth How many gases yaounde Honduras 3 /7

Table Appendix D (8): experiment result of Person #1 on extended word-sequence grammar using semantics set (Cont’d) 

Table Appendix D (9): experiment result o f Person #2 on extended grammars using semantics set

No Testing Utterances Sem 
ext #1 
43/73 
N:25I:5

Sem 
ext #3 
46/73 
N;23I:4

Sem 
ext #5 
45/73 
N;22I:6

Sem 
ext #7
44/73
N;26I:3

Syaext 
m  29
m  ■
N;35t9

Syn ext 
#4
33/73 
N27I:14:

Synext
m
38/73
H25tf0

Syâ  
ext #8
m m

Wd 
Seq ext 
#9(4/73 
N20I.-49

Wd Seq 
ext
#10(3/73
N; 171:53

1 Was phobos discovered by a person N N N N N N I I N
2 Is titania a mountain N C N C c . C C I I
3 Is cassini a moon C C C C N C C .c I I
4 Is pluto a mountain or a moon N I N N N N N N I I
5 Is pluto an atmospheric crater C c C C C c . C I I C
6 Does pluto exist C c C C c C c c C I
7 Does ariel neighbour pluto N c I c c 1 C ■ ■ N I I
8 Does a moon neighbour a planet C c c c i M N , , C N N
9 Does every person worship a planet C c N c N c . c N I
10 Does satum contain a crater I I I c I I I I I
11 Does phobos contain a red mountain c c c c i I c c I I
12 Does janus contain nitrogen c c c c f c c c I I
13 Did bemard discover a mountain c N c N M w N c N N
14 Who discovered a crater c c c c c ........... c e e  ■ ■ C C
15 Which mountain is found on uranus c c N c c N c I I
16 Which gas is found on a moon c c c c I C c I N

3-O’Q
CD■D
O
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C/)
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■D
CD

17 What is contained by venus N N c N N N e  . I I
18 What is contained by phobos C N c N M m I I
19 Which mountain is found on janus N C c C G ■c -€ c I I
20 Which sea exists C C c c C :c C c c C
21 Which mountains were discovered by 

hall
N c N c N N N M I I

22 Which moon orbits a planet C c c N C c ■ C M I I
23 How many moons neighbour satum C c c c N I s N I
24 Was neptune discovered by dollfus or 

cassini
N N N N N M N N I I

25 Does triton orbit pluto or satum N N N N S N N N N
26 Does neptune contain hydrogen or 

nitrogen
N N C N M N N N I I

27 Does phobos contain a sea or a 
mountain

N N N N S N N . / : C I I

28 Does phoebe contain hydrogen or 
oxygen

N N N N f- -c N N I

29 Does oberon contain oxygen C C C C C c C C I I
30 Does a moon contain hydrogen C c C C .€ c e © I I
31 Does a moon neighbour a planet c c c N e I C ;C I N
32 How many gases are found on mars c c c C c . e I- ' N I
33 How many craters are found on a moon c c c c c C c :€ I I
34 How many oceans were discovered by 

hall
N c N N N N C N N

35 How many mountains are found on 
earth

N c c N 'M C I I I I

36 Is gold found on earth I N c I I .'1 I I I I
37 Is silver found on janus C c c C ■I N C c I I
38 Is a chemical found on triton N c c c c :C c c I I
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■D
CD

39 Is dioxide found on phoebe C c c C w\ : : H C I I
40 Is sulphur found on luna N c c c c  ■: i :c C N N
41 Is oxygen found on mars C c c I

,g  . , c c  . . . I I
42 Is a metal found on a planet C c c c : « . M n : N I
43 Is a nonmetai found on pluto c c c c €  : N C N N
44 Is a river found on neptune N N N N m M N I N N
45 Is a lake found on venus c c c c vW S I N I
46 Which gas is foimd on titan c c c c :€ C c I I
47 Which chemicals are found on rhea c c N c H vC I I I I
48 Which nonmetals are found on jupiter N N N c M .’C c i N I
49 Which metals are found on a moon c c N c H C C I I
50 Which river is found on hyperion N N N N N S N N N I
51 Which mountains are found on rhea C C C c / t I 1 I I
52 How many chemicals are found on 

Pluto
c N c c e € ' C C I I

53 How many metals are found on a moon c C N c c C c c. . I I
54 How many nonmetals are found on 

jupiter
c N N c N ;C c N I N

55 How many gases are found on mars I I I N c M N I I I
56 How many continents are found on 

charon
c C C c I C c C i I

57 Is berlin a capital I C I c 1 I ,I I I I
58 Is beijing a city c c c c N I c c  . I I
59 Is lyon a moon c c I c I c c c C N
60 Is india an ocean or a country N N N N N N N N N N
61 Is Canada a mountain c c C N C C c c I I
62 Is england an atmospheric planet N c N N N N M N I N
63 Which mountain is found on jupiter C c C N N C M N N I
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64 Which rivers are found on io N N N N m M- N N
65 Which nonmetals are found on a planet N N C N N :N: N: N I
66 Which gases are found on a moon N N C N M.;:; : .e . e I I
67 Is an ocean found on mercury C C c C ;ĉ ;f ■ ;; :C , c  , N N
68 How many rivers are found on miranda C N c N B V ' N : R I I
69 How many chemicals are found on 

phoebe
c C c C C ' c: C c I I

70 How many continents are found on 
earth

c I c c i ; I I I , I I

71 Is an ocean found on mercury c N c c I , ■c c I N N
72 How many gases are contained by earth N N N N N ' 1  .. :'N N I I
73 How many gases are found on earth I N I I -N .i: I...........^ i i IO’Q
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(/)(/)

Table Appendix D (9): experiment result of Person #2 on extended grammars using semantics set (Cont’d)

Table Appendix D (10): experiment result o f Person #2 on extended grammars using syntax set 
Person #2 (non-English Female):

N
o

Testing Utterances Sem ext #1 
( 0/25)
N:20,1: 5

Sem ext #3 
(0/25)
N;22,1: 3

Sya ext;#!: : 
C12/25 )■ 
N:10T:3

,Sfnext#4
miM}
M: 12.1:1

Wd Seq ext 
#5 (1/25)
N: 9 ,1: 15

Wd Seq ext 
#6 (0/25)
N:11,I: 14

1 Does a mountain contain a moon N N N C I N
2 Does a gas contain a planet N N C c. I I
3 Does a river contain a continent N N N M N N
4 Was phobos discovered by a moon N N H n I N
5 Does water contain a river N N C n I I
6 Is a crater found in nitrogen I N c c N N
7 Does ariel neighbour hall N N I c I N
8 Does a moon neighbour a person N N c C " C I
9 Does a crater contain satum N N I i N N
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10 Does a red mountain contain phobos N N :C : V. .. , :M , : I I
11 Does nitrogen contain janus N I C . C I I
12 Did berlin discover a moon I I M N N
13 Which mountain is found on bond I I e I I
14 Which moon is found in a gas I N M M I I
15 Which mountains were discovered by pacific N N n -W I N
16 Which river orbits a planet N N m I N
17 How many people neighbour satum N N I  ' :C. N I
18 Was neptune discovered by dollfus or lyon N N N N N I
19 Does triton orbit pluto or ffankfurt N N •K : , ;N N I
20 Does gold contain a sea or a mountain N N c i I N
21 How many moons are found in atlantic N N : C .€ I I
22 How many craters were discovered by nile N N 8  , N: I I
23 Is gold found in cassini N N C .G I I
24 Which chemicals are found on bond I N c G N I
25 How many chemicals are found on galileo N N m n N

Table Appendix D (10): experiment result of Person #2 on extended grammars using syntax set (Cont’d)

CD
Q .

■D
CD

C/)
C/)

IkWe Appendix D (11): experiment result o f Person #2 m  extended grammmrs usimg word-sequence set 
Person #2 (non-English Female) i

No Testing Utterances Sem ext #1 
(0/24)
(N:23 I: 1)

Sem ext #4 
(0/24)
N;23,1:1

’ Syn ext #1 
(0/M) 
CN;i8,:I:6)

S p iex tiS
(§/24)
8:17,1:7

Wd Seq ext 
#3 (1/24)
N:5,1:18

Wd Seq ext 
#6 (2/24)
N:81: 14

1 Is a mountain contain a moon N N N M I N
2 Does a gas a planet N N N N I N
3 Is a river found a continent N N N I N N
4 Phobos discovered by a moon N N N N I I
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5 Does water exist a river N N M N' N I
6 Is a crater contain nitrogen N N I . . . A I I
7 Is ariel neighbour a planet N N N M : N I
8 Is a moon discover a people N N I . I . I N
9 Which crater contain on satum N N N 1 N N
10 Is a red phobos contain a mountain N N N M ^ I I
11 Is janus contain nitrogen I N I N I C
12 Is Jupiter discovered bemard N N ,I M I I
13 Which mountain is found dione and phoebe N N N H I I
14 Which gas found moon N N N N I I
15 Which mountains discovered by melotte N N N N I N
16 Which moon orbits on a planet N N N N I N
17 How many moons neighbour on satum N N I I I N
18 Was neptune discovered dollfus and kowal N N N N C C
19 Is triton orbit Pluto or venus N N N N N
20 Is gold contained a moon N N 1 I I I
21 How many mountains found on oberon N N N I I
22 How many craters are found earth N N ;m N I I
23 Is gold found cassini N N N : I I I
24 Which chemicals are found bond N I m N I I

Table Appendix D (11): experiment result of Person #2 on extended grammars using word-sequence set (Cont’d)

(/)
C/)



VitaAuctoris  Page 202

Vita Auctoris

The author was bom in China in 1972. She completed her B.Sc. Degree in Computer 

Science at Southeast University, China, in June 1993. She had been working as a 

software developer, system administrator, and technical support in Northeast Air Traffic 

Administration, Shenyang, China, before she immigrated to Canada in 2001.

She is currently a candidate for the M.Sc. degree in computer science, supervised by Dr. 

Richard A. Frost, at the University of Windsor, Ontario, Canada. Her primary research 

interest is speech recognition in natural-language interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	An investigation of the electrolytic plasma oxidation process for corrosion protection of pure magnesium and magnesium alloy AM50.
	Recommended Citation

	ProQuest Dissertations

