746 research outputs found

    Advanced indoor localisation based on the Viterbi algorithm and semantic data

    Get PDF
    In this work a real-time indoor localisation system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy: i.e., the environment of the object that is being tracked and an adjustable maximum speed. The developed algorithm was verified by simulations and with experiments in a building-wide testbed for sensor and WiFi experiments. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by respectively 26.4% and 63.9%

    Communications systems research - Sequential decoding

    Get PDF
    Error probability and performance of Pioneer-type sequential decoding communications system with noisy oscillator

    Profile Context-Sensitive HMMs for Probabilistic Modeling of Sequences With Complex Correlations

    Get PDF
    The profile hidden Markov model is a specific type of HMM that is well suited for describing the common features of a set of related sequences. It has been extensively used in computational biology, where it is still one of the most popular tools. In this paper, we propose a new model called the profile context-sensitive HMM. Unlike traditional profile-HMMs, the proposed model is capable of describing complex long-range correlations between distant symbols in a consensus sequence. We also introduce a general algorithm that can be used for finding the optimal state-sequence of an observed symbol sequence based on the given profile-csHMM. The proposed model has an important application in RNA sequence analysis, especially in modeling and analyzing RNA pseudoknots

    An improved algorithm for evaluating trellis phase codes

    Get PDF
    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included

    The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying

    Full text link
    Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon (0.23\approx 0.23 aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.Comment: 7 pages, 4 figure
    corecore