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Abstract—In this work a real-time indoor localisation system
based on the Viterbi algorithm is developed. This Viterbi prin-
ciple is used in combination with semantic data to improve the
accuracy: i.e., the environment of the object that is being tracked
and an adjustable maximum speed. The developed algorithm
was verified by simulations and with experiments in a building-
wide testbed for sensor and WiFi experiments. Compared to a
reference algorithm without Viterbi or semantic data, the results
indicated a significant improvement: the mean accuracy and
standard deviation improved by respectively 26.4% and 63.9%.

Index Terms—Localisation, Viterbi Algorithm, Semantic Data,
Wireless Networks, Indoor Environment

I. INTRODUCTION

Indoor localisation systems have applications in many do-
mains, think of the healthcare sector, agricultural sector, indus-
trial sector, cultural sector, etc. Examples of these applications
are: tracking of elderly, monitoring of animals, equipment
tracking and museum guidance. To locate an object, most lo-
calisation systems use a mobile node and a fixed infrastructure,
which consists of static nodes. These static nodes are con-
nected and form the wireless network. The mobile and fixed
nodes exchange signals and the characteristics of these signals
are used to estimate the position of the mobile node. Due
to the complexity of many indoor environments, localisation
systems are often not sufficiently accurate. Current state-of-
the-art localisation systems try to improve the accuracy by
using new technologies like Ultra Wideband (UWB) [1]. The
very large bandwidth enables highly accurate localisation but
the typically smaller ranging coverage makes it more suited
for short-range applications. Other state-of-the-art systems rely
on user interaction or route prior knowledge but this is not
always wanted or even possible [2]. In this paper, an advanced
indoor localisation algorithm for tracking a person in real-
time through a building, is presented. To avoid expensive
hardware costs or a time-consuming measurement campaign,
the existing WiFi or ZigBee infrastructure and an advanced
network planner are used.

II. METHODOLOGY

A. Localisation algorithm

The localisation algorithm is based on the Viterbi algo-
rithm [3]. This dynamic programming algorithm is used to
determine the most likely sequence of hidden states, called
the Viterbi path, resulting in the sequence of observed events.
To apply this technique on a localisation algorithm, the states

have to be interpreted as real locations on a floor plan. Then,
this principle comes down to determining the most likely
sequence of positions instead of only the most likely current
position. All possible trajectories are kept in memory and each
trajectory has an associated cost. This cost is the sum of Mean
Square Errors (MSE) between measurements and reference
values (see Section II-C) and is used as decision metric.
To apply the Viterbi principle in a useful manner (improve
the accuracy), we have to restrict the number of allowed
transitions between two consecutive locations. Therefore, we
use semantic data: the environment of the object that is being
tracked and an adjustable maximum speed. In this way it is
assured that no walls are crossed (doors are used to leave
a room) and no unrealistically large distances are crossed
within a given time frame. Overall, this leads to realistic and
physically possible trajectories. To the best of the author’s
knowledge this is the first localisation algorithm that uses this
combination of techniques.

B. Start position

Because the most likely sequence of positions is determined,
the developed localisation algorithm is sensitive to a wrong
start position. One could start off in the wrong room, which
implies a certain recovery time before predictions can be
accurate again, because walls cannot be crossed. To counteract
this, additional start positions are added as soon as the tracking
begins. These additional start positions lie on circles around
the best initial prediction. In this way the algorithm can easily
correct itself by switching to another trajectory when new
measurements suggest being located inside a different room.
By using this technique also the previous positions will be set
right.

C. RSSI fingerprinting using heuristic indoor network planner

The developed localisation algorithm relies on a Received
Signal Strength Indicator (RSSI) fingerprinting technique to
estimate the most likely position by comparing the measure-
ments with reference values from a radio map. This radio
map (also known as fingerprint database) contains the path
losses to all fixed nodes, for each possible position (grid
point) on the floor plan where the localisation takes place.
The size of the fingerprint database will depend on the size
of the floor plan, the resolution of the possible positions (grid
size) and the number of access points (APs). The path losses
can be calculated with a theoretical model or obtained via
a measurement campaign. Because the latter is an expensive
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and time consuming process, a network planner was used
(WHIPP [4]). This approach results in a slightly reduced
accuracy but allows an immediate deployment. The network
planner uses an advanced heuristic model to predict the path
loss between an AP and a certain location. Three contributions
are taken into account to calculate the total path loss: the sum
of the distance loss along the path, the total wall loss along
the path, and the interaction loss along the path.

To estimate the improvement of the developed localisation
algorithm, a basic algorithm is used for comparison. This basic
localisation algorithm relies only on the RSSI fingerprinting
technique without the added intelligence (i.e. Viterbi principle
and semantic data).

D. Configuration

The experiments are conducted on the third floor of an office
building in Ghent (w-iLab.t office testbed [5]), which measures
90 m by 17 m and consists of several computer classes, offices
and meeting rooms. In Figure 1, a part of the floor plan is
shown: the core consists of concrete walls (gray walls), the
inner structure is movable and made of layered drywall (brown
walls) and the doors are made of wood (yellow walls). The
wireless network consists of 57 fixed nodes that were installed
on a height of 2.5 m (blue dots in Figure 1). When using
a grid size of 1 m this results in 1573 grid points or 89661
reference path loss values (1573·57 = 89661), which results in
a fingerprint database of 350 KB (if we reserve 32 bit for each
value). Nine realistic test trajectories with an average length of
87 m were outlined on the floor plan. Figure 1 shows one such
test trajectory (red) and its reconstruction (black), the starting
point is marked with a black dot.

Figure 1. Part of the floor plan with a test trajectory and its reconstruction

III. EVALUATION

A. Simulation

For the simulations, the reference values from the fingerprint
database are used as input for the localisation algorithm (i.e.,
path loss values from the positions along one of the nine test
trajectories). To simulate real measurements a certain amount
of Gaussian noise is added to these reference values. Next,
the accuracy of the reconstructed trajectories is calculated
for an increasing level of added noise: 0 - 20 dB (i.e., the

standard deviation of the added Gaussian noise with zero
mean). Two localisation systems are used to reconstruct the
trajectories: the developed localisation algorithm and the basic
fingerprinting technique. These experiments are repeated ten
times for averaging. In Fig. 2, the mean and standard deviation
of this accuracy are plotted as a function of the added level
of noise.

Figure 2. Accuracy as a function of the added noise (simulation)

Fig. 2 shows that the developed Viterbi algorithm always
outperforms the basic one, in terms of both mean accuracy and
standard deviation. Compared to the basic algorithm the results
were on average 2.78 m more accurate (3.88 m versus 6.66 m)
with 2.92 m less standard deviation (3.04 m versus 5.96 m),
for the worst test case. The improvement in accuracy can be
explained by the added intelligence in general. The smaller
standard deviation can be explained by the combination of
taking the previous positions into account and a maximum
speed which makes the localisation algorithm more robust to
measurement deviations and outliers.

B. Experimental validation

This time, the test trajectories are conducted by a human
who hand-carried a mobile node with an antenna gain of 5 dBi.
Two wireless technologies were tested: ZigBee and WiFi. The
same two localisation algorithms were used to reconstruct the
same nine trajectories. The results can be found in Table I.

Table I
MEAN ACCURACY (M) AND STANDARD DEVIATION (S)

Algorithm → Basic Viterbi Improvement

Mobile node ↓ M [m] S [m] M [m] S [m] M [%] S [%]

ZigBee 2.96 3.63 2.18 1.31 26.4 63.9

WiFi 3.38 3.13 2.2 1.46 34.9 49.4

Again the developed localisation algorithm was more robust
and achieved a better mean accuracy with lower standard
deviations than the basic algorithm. The relative improvement
in mean accuracy and standard deviation is 26.4% and 63.9%
for the ZigBee node and 34.9% and 49.4% for the Wifi node,
respectively.



C. Sensitivity Analysis

In this section a sensitivity analysis is conducted, based
on the measurements from the experimental validation with
the mobile ZigBee node. This is important to estimate the
influence of the localisation algorithm parameters on the
performance.

The majority of testbeds used for testing a new localization
system have a very high node density. In a typical environment
this node density is typically much lower. When using only
10 out of the 57 fixed nodes, we obtain a mean accuracy
of 6.58 m with the basic algorithm and 3.26 m with the
developed algorithm. As expected the accuracy is a bit lower
but the relative improvement compared to the basic algorithm
is bigger: 50.5% when 10 fixed nodes are used versus 26.4%
when all nodes are used.

The average time needed to calculate one location update
will determine the ability for real-time usage and will depend
on the available computational power but also on the used grid
size and number of paths retained in memory. When using a
grid size of 1 m and retaining only the 100 best paths with
every location update, we obtain a calculation time of 1.5 ms
whilst having no loss in accuracy (compared to the situation
when all paths were retained in memory). This experiment was
conducted on a desktop computer with an Intel Core i7 3.40
GHz processor and 8.00 GB DDR3-SDRAM.

IV. CONCLUSIONS

In this work, a real-time localisation system based on the
Viterbi algorithm and semantic data was developed. The ad-
vantage of this system is the independence of the used wireless
technology or specific indoor environment. The intelligence
is added to the localisation algorithm itself, so there is no
need for extra hardware costs. A network planner was used
to construct the fingerprint database, so there was also no
need for an extensive measurement campaign. Compared to
a basic algorithm, the predictions were more accurate and
there was a huge improvement in standard deviation. More
concrete: the mean accuracy and standard deviation improved
by 26.4% and 63.9%, respectively. In a sensitivity analysis it
was shown that the advantage of the developed localisation
algorithm compared to the basic algorithm was even bigger in
lower node densities and that it is able to work in real-time.
In general, it can be embedded in both existing and future
localisation algorithms to further improve the accuracy.
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