79,305 research outputs found

    Using patterns position distribution for software failure detection

    Get PDF
    Pattern-based software failure detection is an important topic of research in recent years. In this method, a set of patterns from program execution traces are extracted, and represented as features, while their occurrence frequencies are treated as the corresponding feature values. But this conventional method has its limitation due to ignore the pattern’s position information, which is important for the classification of program traces. Patterns occurs in the different positions of the trace are likely to represent different meanings. In this paper, we present a novel approach for using pattern’s position distribution as features to detect software failure. The comparative experiments in both artificial and real datasets show the effectiveness of this method

    DESQ: Frequent Sequence Mining with Subsequence Constraints

    Full text link
    Frequent sequence mining methods often make use of constraints to control which subsequences should be mined. A variety of such subsequence constraints has been studied in the literature, including length, gap, span, regular-expression, and hierarchy constraints. In this paper, we show that many subsequence constraints---including and beyond those considered in the literature---can be unified in a single framework. A unified treatment allows researchers to study jointly many types of subsequence constraints (instead of each one individually) and helps to improve usability of pattern mining systems for practitioners. In more detail, we propose a set of simple and intuitive "pattern expressions" to describe subsequence constraints and explore algorithms for efficiently mining frequent subsequences under such general constraints. Our algorithms translate pattern expressions to compressed finite state transducers, which we use as computational model, and simulate these transducers in a way suitable for frequent sequence mining. Our experimental study on real-world datasets indicates that our algorithms---although more general---are competitive to existing state-of-the-art algorithms.Comment: Long version of the paper accepted at the IEEE ICDM 2016 conferenc

    BIM and forecasting deformations in monitoring structures

    Get PDF
    BIM technologies are becoming more widely used, mainly in the design and operation of buildings and structures, and in most cases this is enough for trouble-free operation. Nevertheless, there is a category of buildings for which the monitoring of the technical condition should be an integral part of the construction and operation. These are the so-called public large-span structures. Unfortunately, the development of BIM technology in the Russian Federation is not at such a level as to answer questions about the behaviour of objects under changing environmental conditions and reveal hidden patterns in the monitoring data. Based on the analysis of literary sources, the authors reviewed various methods for identifying hidden patterns in geodetic measurement data when monitoring buildings and structures. It is noted that modern analysis methods are based on statistical processing of measurement results and on the statistical method of forecasting. However, there are attempts to apply models that take into account the design features and the temperature regime of the object. This type includes the two proposed models, which are used to model the three-dimensional coordinates of the strain marks in the 3D model and only the elevations of the marks in the 1-Z model. The article presents the rationale for the simulated geometric elements and properties of the object. The solution of the equations of both models and the analysis of the results and parameters of the model for measurement epochs are shown. The simulation is shown on the example of a real object, which was monitored by the authors in 2015-2016. The authors believe that the monitoring of large-span structures and the search for patterns of their behaviour should be an integral part of the BIM system for such structures
    corecore