61,726 research outputs found

    Cycle Accurate Energy and Throughput Estimation for Data Cache

    Get PDF
    Resource optimization in energy constrained real-time adaptive embedded systems highly depends on accurate energy and throughput estimates of processor peripherals. Such applications require lightweight, accurate mathematical models to profile energy and timing requirements on the go. This paper presents enhanced mathematical models for data cache energy and throughput estimation. The energy and throughput models were found to be within 95% accuracy of per instruction energy model of a processor, and a full system simulator?s timing model respectively. Furthermore, the possible application of these models in various scenarios is discussed in this paper

    Multimedia courseware: Never mind the quality how much will it cost to develop?

    Get PDF
    This paper evaluates multimedia courseware costing techniques such as the US Airforce Interactive Courseware Method (Golas, 1993), CBT Analyst (Kearsley, 1985), CEAC (Schooley, 1988) and MEEM (Marshall, Samson, Dugard, & Scott, 1994) against the data from ten multimedia courseware developments. The Relative Error and Mean Absolute Relative Error (MARE) are calculated to allow comparison of the different methods

    Decision support for firm performance by real options analytics

    Get PDF
    This paper develops a real options decision support tool for raising the performance of the firm. It shows how entrepreneurs can use our intuitive tool quickly to assess the nature and type of action required for improved performance. This exploits our estimated econometric relationship between precipitators of entrepreneurial opportunities, time until exercise, and firm performance. Our 3D chromaticity plots show how staging investments, investment time, and firm performance support entrepreneurial decisions to embed, or to expedite, investments. Speedy entrepreneurial action is securely supported with this tool, without expertise in econometric estimation or in formulae for real options valuation

    Occupancy Estimation Using Low-Cost Wi-Fi Sniffers

    Full text link
    Real-time measurements on the occupancy status of indoor and outdoor spaces can be exploited in many scenarios (HVAC and lighting system control, building energy optimization, allocation and reservation of spaces, etc.). Traditional systems for occupancy estimation rely on environmental sensors (CO2, temperature, humidity) or video cameras. In this paper, we depart from such traditional approaches and propose a novel occupancy estimation system which is based on the capture of Wi-Fi management packets from users' devices. The system, implemented on a low-cost ESP8266 microcontroller, leverages a supervised learning model to adapt to different spaces and transmits occupancy information through the MQTT protocol to a web-based dashboard. Experimental results demonstrate the validity of the proposed solution in four different indoor university spaces.Comment: Submitted to Balkancom 201

    Hazard Contribution Modes of Machine Learning Components

    Get PDF
    Amongst the essential steps to be taken towards developing and deploying safe systems with embedded learning-enabled components (LECs) i.e., software components that use ma- chine learning (ML)are to analyze and understand the con- tribution of the constituent LECs to safety, and to assure that those contributions have been appropriately managed. This paper addresses both steps by, first, introducing the notion of hazard contribution modes (HCMs) a categorization of the ways in which the ML elements of LECs can contribute to hazardous system states; and, second, describing how argumentation patterns can capture the reasoning that can be used to assure HCM mitigation. Our framework is generic in the sense that the categories of HCMs developed i) can admit different learning schemes, i.e., supervised, unsupervised, and reinforcement learning, and ii) are not dependent on the type of system in which the LECs are embedded, i.e., both cyber and cyber-physical systems. One of the goals of this work is to serve a starting point for systematizing L analysis towards eventually automating it in a tool
    corecore