66 research outputs found

    A Remote Markerless Human Gait Tracking for E-Healthcare Based on Content-Aware Wireless Multimedia Communications

    Get PDF
    Remote human motion tracking and gait analysis over wireless networks can be used for various e-healthcare systems for fast medical prognosis and diagnosis. However, most existing gait tracking systems rely on expensive equipment and take lengthy processes to collect gait data in a dedicated biomechanical environment, limiting their accessibility to small clinics located in remote areas. In this work we propose a new accurate and cost-effective e­ healthcare system for fast human gait tracking over wireless networks, where gait data can be collected by using advanced video content analysis techniques with low-cost cameras in a general clinic environment. Furthermore, based on video content analysis, the extracted human motion region is coded, transmitted, and protected in video encoding with a higher priority against the insignificant background area to cope with limited communication bandwidth. In this way the encoder behavior and the modulation and coding scheme are jointly optimized in a holistic way to achieve the best user-perceived video quality over wireless networks. Experimental results using H.264/AVC demonstrate the validity and efficacy of the proposed system

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Enhanced information extraction in the multi-energy x-ray tomography for security

    Full text link
    Thesis (Ph.D.)--Boston UniversityX-ray Computed Tomography (CT) is an effective nondestructive technology widely used for medical diagnosis and security. In CT, three-dimensional images of the interior of an object are generated based on its X-ray attenuation. Conventional CT is performed with a single energy spectrum and materials can only be differentiated based on an averaged measure of the attenuation. Multi-Energy CT (MECT) methods have been developed to provide more information about the chemical composition of the scanned material using multiple energy-selective measurements of the attenuation. Existing literature on MECT is mostly focused on differentiation between body tissues and other medical applications. The problems in security are more challenging due to the larger range of materials and threats which may be found. Objects may appear in high clutter and in different forms of concealment. Thus, the information extracted by the medical domain methods may not be optimal for detection of explosives and improved performance is desired. In this dissertation, learning and adaptive model-based methods are developed to address the challenges of multi-energy material discrimination for security. First, the fundamental information contained in the X-ray attenuation versus energy curves of materials is studied. For this purpose, a database of these curves for a set of explosive and non-explosive compounds was created. The dimensionality and span of the curves is estimated and their space is shown to be larger than two-dimensional, contrary to what is typically assumed. In addition, optimized feature selection methods are developed and applied to the curves and it is demonstrated that detection performance may be improved by using more than two features and when using features different than the standard photoelectric and Compton coefficients. Second, several MECT reconstruction methods are studied and compared. This includes a new structure-preserving inversion technique which can mitigate metal artifacts and provide precise object localization in the estimated parameter images. Finally, a learning-based MECT framework for joint material classification and segmentation is developed, which can produce accurate material labels in the presence of metal and clutter. The methods are tested on simulated and real multi-energy data and it is shown that they outperform previously published MECT techniques

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation

    Get PDF
    There has been a dramatic increase in the amount of video traffic over the Internet in past several years. For applications like real-time video streaming and video conferencing, retransmission of lost packets is often not permitted. Popular video coding standards such as H.26x and VPx make use of spatial-temporal correlations for compression, typically making compressed bitstreams vulnerable to errors. We propose several adaptive spatial-temporal error concealment approaches for subsampling-based multiple description video coding. These adaptive methods are based on motion and mode information extracted from the H.26x video bitstreams. We also present an error resilience method using data duplication in VPx video bitstreams. A recent challenge in image processing is the analysis of biomedical images acquired using optical microscopy. Due to the size and complexity of the images, automated segmentation methods are required to obtain quantitative, objective and reproducible measurements of biological entities. In this thesis, we present two techniques for microscopy image analysis. Our first method, “Jelly Filling” is intended to provide 3D segmentation of biological images that contain incompleteness in dye labeling. Intuitively, this method is based on filling disjoint regions of an image with jelly-like fluids to iteratively refine segments that represent separable biological entities. Our second method selectively uses a shape-based function optimization approach and a 2D marked point process simulation, to quantify nuclei by their locations and sizes. Experimental results exhibit that our proposed methods are effective in addressing the aforementioned challenges
    • …
    corecore