63 research outputs found

    The Complexity of Order Type Isomorphism

    Full text link
    The order type of a point set in RdR^d maps each (d+1)(d{+}1)-tuple of points to its orientation (e.g., clockwise or counterclockwise in R2R^2). Two point sets XX and YY have the same order type if there exists a mapping ff from XX to YY for which every (d+1)(d{+}1)-tuple (a1,a2,…,ad+1)(a_1,a_2,\ldots,a_{d+1}) of XX and the corresponding tuple (f(a1),f(a2),…,f(ad+1))(f(a_1),f(a_2),\ldots,f(a_{d+1})) in YY have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an O(nd)O(n^d) algorithm for this task, thereby improving upon the O(n⌊3d/2⌋)O(n^{\lfloor{3d/2}\rfloor}) algorithm of Goodman and Pollack (1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.Comment: Preliminary version of paper to appear at ACM-SIAM Symposium on Discrete Algorithms (SODA14

    Kernelization of the Subset General Position Problem in Geometry

    Get PDF
    In this paper, we consider variants of the Geometric Subset General Position problem. In defining this problem, a geometric subsystem is specified, like a subsystem of lines, hyperplanes or spheres. The input of the problem is a set of n points in mathbb{R}^d and a positive integer k. The objective is to find a subset of at least k input points such that this subset is in general position with respect to the specified subsystem. For example, a set of points is in general position with respect to a subsystem of hyperplanes in mathbb{R}^d if no d+1 points lie on the same hyperplane. In this paper, we study the Hyperplane Subset General Position problem under two parameterizations. When parameterized by k then we exhibit a polynomial kernelization for the problem. When parameterized by h=n-k, or the dual parameter, then we exhibit polynomial kernels which are also tight, under standard complexity theoretic assumptions. We can also exhibit similar kernelization results for d-Polynomial Subset General Position, where a vector space of polynomials of degree at most d are specified as the underlying subsystem such that the size of the basis for this vector space is b. The objective is to find a set of at least k input points, or in the dual delete at most h = n-k points, such that no b+1 points lie on the same polynomial. Notice that this is a generalization of many well-studied geometric variants of the Set Cover problem, such as Circle Subset General Position. We also study general projective variants of these problems. These problems are also related to other geometric problems like Subset Delaunay Triangulation problem

    Gravitational-wave imprints of compact and galactic-scale environments in extreme-mass-ratio binaries

    Full text link
    Circumambient and galactic-scale environments are intermittently present around black holes that reside in active galactic nuclei. As supermassive black holes impart energy on their host galaxy, so the galactic environment affects the dynamics of solar-mass objects around black holes and the gravitational waves emitted from non-vacuum asymmetric binaries. Only recently an exact general-relativistic solution has been found that describes a Schwarzschild black hole immersed in a dark matter halo of the Hernquist type. We perform an extensive analysis of generic geodesics delving in such non-vacuum spacetimes and compare our results with those obtained in Schwarzschild, as well as calculate their gravitational-wave emission. Our findings indicate that the radial and polar oscillation frequency ratios descend deeper into the strong gravity region as the compactness of the halo increases. This translates to a redshift of non-vacuum geodesics and their resulting waveforms with respect to the vacuum ones. We calculate the overlap between waveforms resulting from Schwarzschild and non-vacuum geometries and find that it decreases as the halo compactness grows, meaning that dark matter environments should be distinguishable by space-borne detectors. For compact environments, we find that the apsidal precession is strongly affected due to the gravitational pull of dark matter; the orbit's axis can rotate in the opposite direction as that of the orbital motion, leading to a retrograde precession drift that depends on the halo mass, as opposed to the typical prograde precession transpiring in galactic-scale environments. Gravitational waves in retrograde-to-prograde alterations demonstrate transient frequency phenomena around critical non-precessing turning points, thus they may serve as `smoking guns' for the presence of compact dark matter environments around supermassive black holes.Comment: 19 pages, 10 figures, revisions regarding detectability and addition of new figures and sections, abstract reduced to fit arxiv limits, accepted for publication in PR

    Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Get PDF
    This review is focused on tests of Einstein's theory of General Relativity with gravitational waves that are detectable by ground-based interferometers and pulsar timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and compactnesses can reach a half. This review begins with the theoretical basis and the predicted gravitational wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational wave interferometers and pulsar timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational wave tests for compact binary systems.Comment: 123 pages, 5 figures, replaced with version accepted for publication in the Living Reviews in Relativit

    Experimental gravity with electromagnetic and gravitational waves

    Get PDF
    Electromagnetic and gravitational observations can be used to elucidate the nature of compact objects and the fundamental properties of the material in their vicinity. Our ability to extract information about the underlying physics from observations of both electromagnetic and gravitational spectra depends on our understanding of the gravity theory that describes the geometry around these compact objects. For electromagnetic observations, we must also understand the complex astrophysics that produces the observed radiation. In this dissertation, we describe our efforts to constrain and detect deviations from general relativity using: the electromagnetic radiation emitted by an accretion disk around a black hole; the gravitational waves produced when comparable-mass black holes collide; and we have also studied chaotic signatures that could appear when a small compact object falls into a supermassive object during an extreme mass-ratio inspiral. Our analyses combined relativistic ray-tracing and Markov Chain Monte Carlo sampling techniques, as well as analytical and numerical calculations of the motion of particles. We found that even when a simple astrophysical model for the accretion disk is assumed a priori, the uncertainties and covariances between the parameters of the model and the parameters that control a deviation from general relativity make tests of general relativity very challenging when applied to accretion disk spectrum observations. We also found that current gravitational wave observations place constraints on metric deformation parameters that are more stringent than what can be achieved with current X-ray instruments. Based on our numerical findings when studying extreme mass-ratio inspirals, we conjecture that the geodesics of the as-of-yet unknown exact solution for spinning black holes in a dynamical Chern-Simons theory is integrable. Consequently, we predict the existence a fourth integral of motion associated with the exact solution. The work presented in this thesis advances the development of both analytic calculations and computational simulations to test our understanding of gravity’s fundamental properties with electromagnetic and gravitational waves

    New horizons for fundamental physics with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas

    New horizons for fundamental physics with LISA

    Full text link
    The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas

    New horizons for fundamental physics with LISA

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these area

    New horizons for fundamental physics with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas
    • …
    corecore