372 research outputs found

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Collaborative Communication And Storage In Energy-Synchronized Sensor Networks

    Get PDF
    In a battery-less sensor network, all the operation of sensor nodes are strictly constrained by and synchronized with the fluctuations of harvested energy, causing nodes to be disruptive from network and hence unstable network connectivity. Such wireless sensor network is named as energy-synchronized sensor networks. The unpredictable network disruptions and challenging communication environments make the traditional communication protocols inefficient and require a new paradigm-shift in design. In this thesis, I propose a set of algorithms on collaborative data communication and storage for energy-synchronized sensor networks. The solutions are based on erasure codes and probabilistic network codings. The proposed set of algorithms significantly improve the data communication throughput and persistency, and they are inherently amenable to probabilistic nature of transmission in wireless networks. The technical contributions explore collaborative communication with both no coding and network coding methods. First, I propose a collaborative data delivery protocol to exploit the optimal performance of multiple energy-synchronized paths without network coding, i.e. a new max-flow min-variance algorithm. In consort with this data delivery protocol, a localized TDMA MAC protocol is designed to synchronize nodes\u27 duty-cycles and mitigate media access contentions. However, the energy supply can change dynamically over time, making determined duty cycles synchronization difficult in practice. A probabilistic approach is investigated. Therefore, I present Opportunistic Network Erasure Coding protocol (ONEC), to collaboratively collect data. ONEC derives the probability distribution of coding degree in each node and enable opportunistic in-network recoding, and guarantee the recovery of original sensor data can be achieved with high probability upon receiving any sufficient amount of encoded packets. Next, OnCode, an opportunistic in-network data coding and delivery protocol is proposed to further improve data communication under the constraints of energy synchronization. It is resilient to packet loss and network disruptions, and does not require explicit end-to-end feedback message. Moreover, I present a network Erasure Coding with randomized Power Control (ECPC) mechanism for collaborative data storage in disruptive sensor networks. ECPC only requires each node to perform a single broadcast at each of its several randomly selected power levels. Thus it incurs very low communication overhead. Finally, I propose an integrated algorithm and middleware (Ravine Stream) to improve data delivery throughput as well as data persistency in energy-synchronized sensor network
    • …
    corecore