4,776 research outputs found

    A Decoding Algorithm for LDPC Codes Over Erasure Channels with Sporadic Errors

    Get PDF
    none4An efficient decoding algorithm for low-density parity-check (LDPC) codes on erasure channels with sporadic errors (i.e., binary error-and-erasure channels with error probability much smaller than the erasure probability) is proposed and its performance analyzed. A general single-error multiple-erasure (SEME) decoding algorithm is first described, which may be in principle used with any binary linear block code. The algorithm is optimum whenever the non-erased part of the received word is affected by at most one error, and is capable of performing error detection of multiple errors. An upper bound on the average block error probability under SEME decoding is derived for the linear random code ensemble. The bound is tight and easy to implement. The algorithm is then adapted to LDPC codes, resulting in a simple modification to a previously proposed efficient maximum likelihood LDPC erasure decoder which exploits the parity-check matrix sparseness. Numerical results reveal that LDPC codes under efficient SEME decoding can closely approach the average performance of random codes.noneG. Liva; E. Paolini; B. Matuz; M. ChianiG. Liva; E. Paolini; B. Matuz; M. Chian

    Rewriting Flash Memories by Message Passing

    Get PDF
    This paper constructs WOM codes that combine rewriting and error correction for mitigating the reliability and the endurance problems in flash memory. We consider a rewriting model that is of practical interest to flash applications where only the second write uses WOM codes. Our WOM code construction is based on binary erasure quantization with LDGM codes, where the rewriting uses message passing and has potential to share the efficient hardware implementations with LDPC codes in practice. We show that the coding scheme achieves the capacity of the rewriting model. Extensive simulations show that the rewriting performance of our scheme compares favorably with that of polar WOM code in the rate region where high rewriting success probability is desired. We further augment our coding schemes with error correction capability. By drawing a connection to the conjugate code pairs studied in the context of quantum error correction, we develop a general framework for constructing error-correction WOM codes. Under this framework, we give an explicit construction of WOM codes whose codewords are contained in BCH codes.Comment: Submitted to ISIT 201

    RS + LDPC-Staircase Codes for the Erasure Channel: Standards, Usage and Performance

    Get PDF
    Application-Level Forward Erasure Correction (AL-FEC) codes are a key element of telecommunication systems. They are used to recover from packet losses when retransmission are not feasible and to optimize the large scale distribution of contents. In this paper we introduce Reed-Solomon/LDPCStaircase codes, two complementary AL-FEC codes that have recently been recognized as superior to Raptor codes in the context of the 3GPP-eMBMS call for technology [1]. After a brief introduction to the codes, we explain how to design high performance codecs which is a key aspect when targeting embedded systems with limited CPU/battery capacity. Finally we present the performances of these codes in terms of erasure correction capabilities and encoding/decoding speed, taking advantage of the 3GPP-eMBMS results where they have been ranked first

    Structured Random Linear Codes (SRLC): Bridging the Gap between Block and Convolutional Codes

    Get PDF
    Several types of AL-FEC (Application-Level FEC) codes for the Packet Erasure Channel exist. Random Linear Codes (RLC), where redundancy packets consist of random linear combinations of source packets over a certain finite field, are a simple yet efficient coding technique, for instance massively used for Network Coding applications. However the price to pay is a high encoding and decoding complexity, especially when working on GF(28)GF(2^8), which seriously limits the number of packets in the encoding window. On the opposite, structured block codes have been designed for situations where the set of source packets is known in advance, for instance with file transfer applications. Here the encoding and decoding complexity is controlled, even for huge block sizes, thanks to the sparse nature of the code and advanced decoding techniques that exploit this sparseness (e.g., Structured Gaussian Elimination). But their design also prevents their use in convolutional use-cases featuring an encoding window that slides over a continuous set of incoming packets. In this work we try to bridge the gap between these two code classes, bringing some structure to RLC codes in order to enlarge the use-cases where they can be efficiently used: in convolutional mode (as any RLC code), but also in block mode with either tiny, medium or large block sizes. We also demonstrate how to design compact signaling for these codes (for encoder/decoder synchronization), which is an essential practical aspect.Comment: 7 pages, 12 figure
    corecore