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A Decoding Algorithm for LDPC Codes Over Erasure Channels wih
Sporadic Errors

Gianluigi Liva, Enrico Paolini, Balazs Matuz, and Marco &i

Abstract— An efficient decoding algorithm for low-density ~ Such unknowns are usually referred to @isots® and the
parity-check (LDPC) codes on erasure channels with sporadi  a|gorithm to select the pivots is termguivoting algorithm
errors (i.e., binary error-and-erasure channels with errar prob- [12]_2 Once the pivots are solved, the remaining unknowns

ability much smaller than the erasure probability) is proposed . - . . .
and its performance analyzed. A general single-error mulfple- ~ &7€ recovered by the usual iterative decoding algorithrh wit

erasure (SEME) decoding algorithm is first described, which linear complexity.

may be in principle used with any binary linear block code. The erasure channel model is adopted in a number of
The algorithm is optimum whenever the non-erased part of the applications. For example, in wireless communication sys-
received word is affected by at most one error, and is capablef  {ams packets that cannot be correctly decoded are distarde
performing error detection of multiple errors. An upper bou nd th ' haf lidation test involvi d fi

on the average block error probability under SEME decoding (through a frame validation test involving an error deteg '_

is derived for the linear random code ensemble. The bound is €0de), and lost packets are treated as erasures at the higher
tight and easy to implement. The algorithm is then adapted to layers where a packet erasure correcting code may be used
LDPC codes, resulting in a simple modification to a previousl  to recover the missing packets [14]. In optical communica-
proposed efficient maximum likelihood LDPC erasure decoder  tigns with pulse-position modulation (PPM), erasure cleann

which exploits the parity-check matrix sparseness. Numedal .
results reveal that LDPC codes under efficient SEME decoding models have been adopted under the assumptions of absent

can closely approach the average performance of random cose backgrpund radiation and low noise power [15], [16].
Albeit accurate, the erasure channel represents only an

approximation of the actual behavior of these channels.

. INTRODUCTION In wireless communications, the probability of undetected

. . ) ) errors (due to error patterns that satisfy the constraifts o

The design and d_ecodlng of low-density parity-checlf,s gror detection code) is always bounded away from zero
(LDPC) codes [1] applied to erasure channels has been va 3’7]. In optical communication systems, even in absence of

explored in the past dgcade (see e.g. _[2]_[7])' While Origbackground radiation and for low noise power, errors may
nally most of the attention has been paid to the constructiqq, o place, even if with small probabilities [16]. In both

of LDPC codes able to approach the channel capacity und€lses  the channel can be more realistically modeled by
iterative (IT) decoding, more recently practical maximums-

o ) ) an erasure channel witbporadic errors, i.e. by an error-
likelihood (ML) decoding algorithms for LDPC codes over, 4 arasire channel with erasure probabititand error

erasure chgnnels have been dgvised [6], [8], paving the WﬁYobabilityp, wherep < e. For example, when a CRG5
for the design of codes for hybrid IT/ML decoders [9], [10].i5 ;sed to detect errors for an uncoded transmission over

It has been shown that ML decoding of LDPC codes cag pinary symmetric channel (BSC) with error probability
Ia_rgely outperform its iterative counterpart, attaining the — 10~2, undetected errors may happen with probability
binary erasure channel (BEC) performances close to those gf <o to10~5 [17]. Hence, in this case the error probability

idealized maximum distance separable (MDS) codes dowg} e equivalent packet error-and-erasure channel would

to moderate-low error rgtes [91. . ) be p = 107°. Assuming at the higher layers a packet
In general, ML decoding of afw, k) binary linear block graqyre correcting code (i.e. a code only attempting teecorr

code on the erasure channel tums into solving a systeflasures) with block size = 10? packets, undetected errors

of n — k equations (imposed by the parity-check matrix ofyoyid compromise the recovery of a block with probability
the code) in the: unknowns corresponding to theerased p _ | _ (1—p)" ~ 102, so that the block error probability

symbols of the codeword. The system is solved by means Sfter erasure decoding would be bounded By > 102,
Gauss-Jordan elimination (GJE), which is known to have fegardlessthe erasure probability. -
complexity scaling a®(n®). For LDPC codes, the parity- terative belief propagation decoding of LDPC codes over
check mf';ltrlx sparseness can be exploited to heavily redugg, binary error-and-erasure channel (BEEC) can be natural
the fraction of unknowns to be solved by GJE [8], [11]implemented by initializing the decoder with the approferia
log-likelihood ratios (LLRs). According to Fig. 1, assumgin
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at the input of the generic variable node would bg)) =
In[Pr(z = 0]y)/ Pr(z = 1]y)] resulting inA(0) = In|[(1 —
e —p)/p), A(1) = = In[(1 — e —p)/p] and A(?) = 0.

In this paper, we introduce an efficient decoding algorithm
for LDPC codes, which extends the ML erasure decoding
algorithm of [8] in the sense of correcting sporadic errors.
For the sake of simplicity, we focus on the binary case
and assume the BEEC as the channel model. However,
the proposed algorithm may be easily extended to packet
error-and-erasure channels. The proposed algorithmnoesfo
optimum decoding of errors and erasures when a received
word is affected by a single error (also recovering some
erasure patterns containing stopping sets of the IT defoder
and attempts to perform error detection for error patterns

¢ and | realizations of £ and L, respectively. In the case

of larger Hamming weights. For this reason, the algorlthr% — k> e, the number of linearly independent parity-check

'Sh narred_ Elng_le-?rror."multlplz-efrasuhres (SEMF) deCOd_eéQUations in excess with respect to the number of erasures,
The algorithm s first illustrated for the case of a generl%_k_e, is defined to be theverheadand is denoted by.

linear block c_:pde, and a .t'ght upper bound on its average assume now a codeword is transmitted over the BEEC,
error probability for the linear random code ensemble is o . P
. . resulting in a received worg’ with ¢ erasures and non-
developed. The algorithm is then adapted to account for o .
: : . ased bits in error. We 18 be a permuted version of a full-
parity-check matrix sparseness in the LDPC code case. . . .
A .~ rank ((n—k) x n) parity-check matrix of the cod&(n, k), in
is illustrated how LDPC codes can efficiently approach the . . . .
) hich the columns of the parity-check matrix corresponding
average performance of the linear random code ensemble . o
. . . 0 the erased bits occupy theleft-most positions and the
over the BEEC with sporadic errors. We will see that the ; . :
. : columns corresponding to the non-erased hitsf (vhich are
proposed algorithm largely outperforms the IT one in the . " .
: b in error) then—e right-most positions. In this wa§l may be
region where the block error probability is limited by the_ - . )
. splitasH = [H;|Hk], whereH ; is an((n—k) x e) matrix
channel erasures rather than by the (sporadic) channeserrg . . T
: . andHp is an((n — k) x (n — e)) matrix. Similarly, we let
Several previous works focused on the simultaneous cor- . .
) ; x andy be permuted versions of the transmitted codeword
rection of errors and erasures (e.g. [18]—-[21]). In palécu . : .
. . . : . and of the received word, respectively, according to theesam
in [21] some parity-check matrix construction techniques a

mutation leading té1. The vectors andy may be split
developed capable to separate errors and erasures. We Wil g y may P
asx = [xi|xk| andy = [yz|yx], wherex; andy; are

see in Section Il and Section V that the proposed algo- . . . :
: L . . 2vectors of lengthe associated with the erased bits, while
rithm performs a similar separation, properly and effidient . .

L . . x andyx are vectors of length — e associated with the
modifying the parity-check matrix of an LDPC code afternon erased bits (so that the Hamming distance bet n
receiving a word from the BEEC. g X

) . . andy g is equal tol). The vectorx must satisfy the relation
The paper is organized as follows. In Section Il the nota- HT — 0, where H? is the transpose off, which may

tion used throughout the paper is introduced. In Section | . ST T : .
the SEME algorithm is detailed. The average performanc e written asx H; = xxHi. Accordingly, the starting

e . . . . . .
of the binary linear random code ensemble is analyzed %Olr:t o.f th?hpropos?_ctj algorithm will consist of imposing and
Section 1V, while the efficient implementation of SEMEan"leZIng € equalty
decoding for LDPC codes is discussed in Section V. A yrHEL = yxHE . (1)
comparison between the performance of random codes and
that attainable with LDPC codes on the BEEC is given irhe producty x H% in the right-hand side of (1) is a vector
Section VI. Conclusions follow in Section VILI. of lengthn — k that we denote by and, for reasons that
will be clear in Section Ill, refer to as the&yndrome In the
case wherey i is affected by one errorl & 1), we denote
The BEEC channel model is depicted in Fig. 1, wherg¢yy he'* the column ofH associated with the bit in error.

‘7" denotes an erasure and where the erasure and errorrhroughout the paper, we often exploit the following
probabilities are denoted kyandp, respectively. Moreover, result.

we letp* = p/(1—e¢) be the probability that a bit transmitted - _
over the BEEC is received in error given that the bit has Proposition 1:Let A be an((n — k) x ¢) random matrix
not been erased. For a given linear block c6de, k) over With e < n — k and whose entries are independent and
the BEEC, where: is the codeword length ankl the code identically distributed (i.i.d.) Bernoulli random variis with
dimension, we denote by and L the random variables parameten /2. Then

expressing the number of erasures affecting the generic . i

received word of Igngtlm and the numper of errors affecting Pr(rank(A) <e)=1-— H (1 — 2__k) _ 2)

the non-erased bits, respectively. Similarly, we denote by iy 2n

Fig. 1. BEEC channel model.

II. NOTATION AND PRELIMINARIES



- The event that the linear system (1) is impossible is the key
to perform the detection of errors affectigg;. As depicted
o Q U in Fig. 2, assuming < n — k (equivalentlyé > 0) and
- = ranKHjy) = e, GJE performed on the matrHF ; leads to an
equalent linear systemKH . = 8, where the first rows

: 0 r P ST of H form the identity matrix of orde¢ and the lasb rows
Vi L are all-zero. Heres” andH is obtained by performing on
i, i, . s sT andHK.the same row operations IeadingH}g_, andy ; _
YK by performing ony ; the same column permutations leading
. to Hy. Splitting s ass = [Sy|S.], wheresy has lengthe
Fig.~2. Pictorial representation of the equivalent IineﬁtemkaTR = ands; = yKPT has Iength§, detection of errors affecting
yxH. In the figurem = n — k. yx may be performed by simply observing thatsjf # 0,
then the BEEC must have necessarily introduced errors in
M h YK
oreover, we have Next, we derive a tight upper bound on the average
9-(n=k=0)~1 < Pr(rank(A) < ¢) < 2-(»k=)  (3) failure probability P{" 5", of the erasure decoder with

error detection for the ensemble, denoted BRyn, k), of
Equality (2) is a classical result [22]. The lower boundandom binary linear block codes defined by a parity-check

in (3) is proved in [23], while a proof of the upper boundmatrix H with n — k rows andn columns whose entries are
is available [24] where the tightness of both bounds is alsg.d. Bernoulli random variables with parametef2.3 By
illustrated. “failure probability” we mean the probability that eitheet
erasure pattern cannot be recovered due to rank deficiency
of Hiy (rankHjy) < E) or it can be recovered but the
A. Maximum Likelihood Decoding of Linear Block Codeserror pattern onyy is undetected as; = 0. Denoting
over the BEC these two disjoint events by and B, respectively, we have

d, BEEC n _ _
Let us assume that the communication channel is a staﬁ (n,k) = Pr(4) + Pr(B) = 3 ., Pr(A|E = ¢) Pr(E =

dard BEC introducing erasures but not errops= 0). In  €) + >on—o Pr(B|E = ¢) Px(E = ¢).

this casexyx = yx and (1) represents a linear system of Concerning the conditional evefd|E = e}, sinceH
n — k (or more thann — k, if H is redundant) equations is a ((n — k) x e) matrix, we havePr(A|E = ¢) = 1 for
in e unknowns which may be simply written aggH% = e > n — k. Moreover, fore < n — k we havePr(A|E =
xxHE. Here, the unknowns are the elementsxgf and e) < 279 from Proposition 1. In conclusion, we may write
s = xxH% is not affected by any error. Moreover, in this

case we always have rafff ;) = rank[Hy|sT]), so that Pr(A|E = ¢) < min{2~%,1} (4)
the Rouché-Capelli theorem is always satisfied. Hence, the B

system admits a unique solution when réik; ) = ¢ and
multiple solutions when rarflll ;) < e (which is always the
case where > n — k). Provided rankH ;) = ¢ andxg is
the unique solution of the system, we havg = xx with
probability one.

Different decoding algorithms over the BEC attempt toe
solve the system and findy with different approaches
offering a different trade-off between performance and com
plexity. Among them, ML decoding consists of solving the 1-27% < Pr(rank(Hg) =e) <1—-27°"1.  (5)
system by GJE performed on the matkl. The complexity
of GJE decoding is in general cubic with the dimension ofjoreover, since forZ = ¢ the submatrixP has dimension
the system, so that the overall decoding complexit@(g?). (n—k—e)x (n—e)) (as depicted in Fig. 2) we have

Il. SEME DECODING OFLINEAR BLOCK CODES

with equality if and only ife > n — k and where the

compact expression (4) allowssto assume negative values.

Consider now the conditional evedtB|F = e}. Due to

independence we haver(B|F = e) = Pr(rankHjy) =

) Pr(undetected err@FF = ¢). Invoking again Proposition
, fore <n —k, Pr(rank(Hfg) = ¢) can be bounded as

B. Erasure Decoding over the BEEC with Error Detection

Pr(undetected errpf =
When transmitting over the BEEG (> 0), the relation i e bE = e)

rankHy) = rank[Hf|s”]), always valid over the BEC, _ Z (n - 6) 9—(n—k=e) (p¥)(1 — p*)n—e!
may not hold anymore due to the presence of bit errors affect- — l

ing s (throughy ). In this case, (1) admits a unique solution _g—(n—k—e)(] _ (] — p*)n—c 6
when rankH ;) = rank([Hz|s”]) = e. The system admits o (1= =p7)") (©)
multiple solutions when rarffl ;) = rank([Hz|s]) < e.

. S ! ST
Finally, the system is impossible when rdfH z[s"]) = 3Note that the dimension of the generic code belongin@®{a, k) is at
ranKHpy) + 1. most equal tdk but not necessarily equal fa



wherep* = p/(1 — ¢) as defined in Section Il. We obtain whereé is the vector of Hamming weightwhose unique bit

" equal to 1’ corresponds to the columh of P. The vector

pd. BEEC Z (") (1 —e)" ¢ min{2_("_k_e), 1} Xk Is then used to recover the vectof through the first
HR(n.k) I \¢ e equations of the equivalent system, i.e., by simply setting

n—k % equal to the de-permuted version pf = % Q7.
+Z (n)ee(l—e)”e(l—Q(”ke“)) Note that, if P has no all-zero columns and no two
e—0 \°¢ columns of P are equal, therC’ has minimum distance
x 27(=k=e) (1 _ (1 — p*)"e) . (7) dwin > 3 and all single error patterns are correctable with

probability 1. In this case, an error patterd is always

The bound is tight due to the tightness of the bounds in (3)dentified. On the other hand, I has no all-zero columns
. but it has equal columns, the® has minimum distance
C. SEME Decoding over the BEEC dmin = 2. In this case, a uniqub may not exist and the

Besides error detection, correction of errors introducgd balgorithm may be able to only detect some single error
the BEEC may be attempted. In the following, we describpatterns. Finally, if P has all-zero columns thed’ has
a decoding algorithm for the correction of single errorsninimum distanced,,;, = 1 and some error patterns of
affecting yx and of multiple erasures. The algorithm isHamming weightl may be even not detected.
called SEME decoding algorithm.

After a word y has been received from the BEEC, let
us consider performing GJE on the matik;, leading to
H , and performing in parallel the same row operations on We now derive a tight upper bound on the average
Hy, leading toH .. As for Section I1I-A and Section 11I-B, block error probability under SEME decoding for the same
assuming: < n—k and rankH ;) = e, the linear system (1) ensembleR (n, k) introduced in Section Il1-B. Note that by
is transformed into the equivalent systézrpﬁff( = yKﬁI{(, “block error” we denote any instance in which decoding is

whose right-hand side is denoted againdoy: [$y|5;] and  either not feasible (due to rank deficiency of the makiix
whereH% = [Q”|P”] as depicted in Fig. 2. or due to detectable but uncorrectable errors) or incorrect

Let us now focus on the last — k — e parity-check (due to undetected errors). To proceed with the derivation,
equations, assuming raff;) = e. Due to the presence We first determine four mutually exclusive block error ewent
of an((n — k —e) x e) all-zero matrix in the last — k —e  denoted by A, B, C' and D, which cover all possible
rows ofI:IK, these parity-check equations may be exploite@rror types. This allows us to write the average block error
to correct errors affectingx regardless erasures. In a similarprobability as
way as error detection described in the previous subsection  5sene Beec
error correction may be attempted by exploiting the matrix eR(nk) Pr(A) + Pr(B) + Pr(C) + Pr(D).

P. Note in fact that the situation is now equivalent to thelhe four error events are defined as follows.
transmission over a standard BSC of @n— e, k') linear  4: {rank(Hy < E)}.

block codeC’, with k¥’ > k and parity-check matri. The pB: {rank(Hy) = E} N {L > 1}.

vector xx plays the role of the transmitted codewosdy C: {rank(Hg) = E} N {L = 1} N {rank([Hz h*"]) =
of the received word, and; of the syndrome. The code E}.

C’, and therefore its properties and its error correction (ang): {rank(Hg) = E} N {L = 1} N {rank([Hz |h*™]) =
detection) capability, depend on the number and the pasitio E 41} n{b is not unique inP}.

of bit coordinates erased by the BEEC. ~ Note thatC is the event that a single error opx is
~Optimum decoding o’ may be performed, in principle, ndetectable, whil® is the event that a single error g is

via syndrome decoding [25], which requires the constructiogetectable but not correctable. In the following subsestjo

of a decoding table-lookup. Sinc€ is different for different o develop the four conditional probabiliti®s (A|E = e),

received wordsy, the table-lookup forC’ should be con- Pr(B|E = e), Pr(C|E = ¢), Pr(D|E = e), from which

structedon-the-flyfor egch recelve(_j word, after GJE has be-el‘pjlizl\/(ET;EEEC can be obtained as

performed. However, in a sporadic error regime, performing

the correction of only error patterns of Hamming weight _ n

may be sufficient: As illustrated in Section VI, it yields a PeS,EzN(EQ,%EC: ZPY(A|E =e)Pr(E=e)

much better performance than that achieved under a simple

BEC model, where all elements ¢fx are assumed to be

uncorrupted so that all errors are undetected. The key point * Z Z Pr(Z|E =) Pr(E = ).

is that, in the single error correction case, the conswacti Z€{B,C,D} e=0 ®)

on-the-fly of the table-lookup does not require any extra

computation, because the syndrome vectors associated wiiien though in principle it would be possible to develop

the weighti error patterns are the columns of tRematrix. ~exact expressions for the conditional probabilities ugzig

Therefore, if there exists a unique colurbrof P such that we derive upper bounds which exploit again the upper bound

b = 37, then decoding consists of settingc = yx + &, in (3). The resulting bound Oﬁ’jg\ﬁﬁgm is tight and much

IV. PERFORMANCEBOUND FORBINARY RANDOM
LINEAR BLOCK CODESUNDER SEME DECODING

e=1
n—k



simpler to implement. As illustrated in Section VI, the bdun

Substituting (4), (9), (10) and (11) into (8RSE)E BEEC

: . ‘e, R(n,k)
is useful also to predict the performance of LDPC codesan be upper bounded as
under SEME decoding. SEE, BEEC
e, R(n,k
Conditional even{ A|E = e}: The calculation is the same 'r(z )
as for the conditional eventA|E = e} in Section II-B, < Z< > (1 —¢)" “min{2-(""F=¢) 1}
yielding again (4).
Conditional even{ B|E' = e}: Due to independence, we Z (”) €¢(1 — €)"e(1 — g~ (n—h—etD))
have e=0 \©
x\n—e * x\n—e—1
Pr(B|E =e¢) =Pr(rank(Hg) = e¢) Pr(L > 1|E =e). x[L=(1=p)"" = (n—e)p™(1—p7) ]

n—=k
Fore < n —k, Pr(rank(Hj) = e) can be bounded again + Z (n) (1 — e)n—ea=(n—k=e)(1 _ g=(n—k—et1))

as in (5). Moreover, we have

Pr(L > 1|E = ¢) = 1-(1—p")"*~(n—e)p" (1=p")"*"!

wherep* = p/(1 — €) as from Section Il. Hence, we can

upper boun®r(B|E = ¢) as

Pr(B|E =¢) < (1 -27°71)
X [1=(1=p)"" = (n—e)p"(1—p")" 7]
9)
Conditional even{C|FE = e}: We have
Pr(C|E = e) =Pr(rank(Hz|h®") = efrank(Hz = ¢))
x Pr(rank(Hg =e)) Pr(L = |E e).

Fore < n — k, we can write

Pr(rank(Hz|h®") = elrank(Hz =e)) = 270

and
Pr(rank(Hg =¢)) <1—-27°"1

which, combined withPr(L
p*)n—e~! yields

=1E=¢)=(n—e)p*(l—

Pr(C|E =¢) <27%(1 =27 (n—e)p (1 —p")n~ L.

(10)

Conditional evenf{ D|E = e}: Due to independence, we

may write

Pr(D|E =¢)
x Pr(L

= Pr(rank(H; |h®") = e+ 1)

Fore < n — k we have

Pr(rank(Hz|[h*™) =e+1) <1—-27°

and

Pr(b is not unique inP|E =e, L = 1) = 1—(1-27%)"¢1

that yield

Pr(D|E =e¢) <(1=27°)(n—e)p"(1-p")" """

X [1—(1—27%)ne1], (11)

= 1|E = ¢) Pr(b is not unique inP|E =¢, L =1).

(&
e=0

Due to the tightness of the bounds (5), the bound (12) is also
tight. Moreover, it is illustrated that, for sufficiently sh
values ofe, the right-hand side of (12) is dominated by the
second summand, i.e. by the upper bound on the probability
P(B) that the number of errors opk is larger than one,
giving rise to an error floor. The value of this error floor may
be easily expressed analytically as the limit of the second
summand in (12) whea — 0. This yields

2= (M) —pp (1 - p)n !
(1—p)" ' +1].

pPSEME, BEEC (1 _
e,R(n,k)

+p(A-p)" T~ (13)

Finally note that, for a standard BEC introducing no errors,
we havep* = 0 so that only the first summation contributes
to the bound. This yields

P <3 (1)era— o minge 0k, 0y

e

n
_ €1 — nfe27(n7kfe)
()ea-a

% (o

e=n—k+1

(14)

which is a tight upper bound on the average performance of
linear random block codes over the BEC [23].

V. EFFICIENT SEME DECODING OFLDPC CODES

Again, let us assume at first that the communication
channelis a standard BEC introducing erasures but notserror
(p = 0). ML decoding of LDPC codes over the BEC can
be practically implemented following a reduced complexity
approach [8] which exploits the sparseness of the parity-
check matrix and which takes its inspiration from a class

41t is worthwhile pointing out that the bound (14) also holds the
ensemble of binary nonlinear codes of lengttand 2% codewords [26].



of structured GJE algorithms [27]. The algorithm may be
summarized in the following three steps.

Ry

1. Triangularization.The sparse matrid ; is transformed ;
into an approximate triangular matrix, as depicted in ®
Fig. 3(b) by row and column permutations only. The ;
obtained matrix is composed of a lower triangular
matrix T and of the three sparse matric€s Ry,

R . Some of the columns blocking the triangularization
process have been moved to the rightmost pafigf
and hence forniR%|R%]”. Thea unknowns associated
with such columns are referred to as thigots

2. Sparse row additionsT is transformed into an identity
matrix by sparse row additions. Moreovér, is made
equal to the zero matrix by sparse row additions, leading
to the matrix depicted in Fig. 3(c). Note that, due to
the row additions, botlR;; andR; may no longer be
sparse.

3. GJE on a dense matrix3JE is applied t®R , to recover
the o pivots. The remaining — o unknowns are solved
by simple substitution.

(@) (b)

Ry

©

F|g 3. Efficient Gaussian elimination steps on tte — k) x e) matrix
H . (a): Structure ofH z during the triangularization step. (b): Structure
DU”ng the t”angmanzat'on step, the elements of thet H ; at the end of the triangularization step. (c): Structurdig§ at the

vectors” = Hyy% are permuted according to the sameend of the sparse row addition step. In the figure=n — k.
row permutations performed oH ;. Similarly, during the . )
sparse row addition and GJE steps, the elements’cdire M
summed according to the row additions performedtdp,
leading tos” = [sy,5.]7 as depicted in Fig. 4. L R, Q

The complexity of the algorithm is dominated by the - -
third step, consisting of performing GJE on a (usually).
dense matrix. Therefore, the effectiveness of this approac ‘ )
relies on one’s capability to considerably reduce the numbe ‘ 0 : P s
of columns of Ry, on which brute-force GJE has to be % -
applied. The number of columns @&, at the end of the Hie B v
process depends on the adoptedoting algorithm, i.e. on
the procedure to select the pivots during the trianguléidra ~ Fig. 4. Structure of the matricéi -, H . In the figurem = n — k.
step. Having a strong impact on the final numberof
pivots, it heavily influences the achievable decoder speed.
Effective pivoting algorithms are described in [28, Annéx Et0 the unique columrb of P such thatb = s, provided
and in [12], where a practical software ML erasure decod&uch a unique column dP exists.
implementation has been demonstrated w948, 1024
LDPC code, for which decoding rates as \;l\gghlaﬁs Gbp)s VI. PERFORMANCE OFLDPC CODESUNDER SEME

) DECODING

were achieved.

Over the BEC, a decoding failure may take place only if In Fig. 5, performance bounds for tt{g048, 1024) linear
the rank of R, is smaller thana. Over the BEEC, error random ensemble are dep|cted for both the BEC and a BEEC
detection can be performed, as for the general linear blo#th error probabilityp = 107. The performance is given
code case, by S|mp|y Check|ng whethgr is the all-zero in terms of block error probabllityPe. For the BEC, the
vector or not, wheres;, the vector composed by the lastupper bound (14) is displayed. For the BEEC, two cases are
n — k — e symbols ofs (see Fig. 4). Moreover, if the row considered, namely:
additions/permutations performed on the sparse médrix o No error correction is attempted. In this cade, is
are simultaneously applied to the sparse makix, single simply the probability that the erasure pattern is not
error correction can be attempted by the SEME algorithm as  recoverable due to rank deficiency ®i; plus the
for the general linear block code case. Again, the syndrome probability of the even{rankKH ) = E} N {L > 1}.
vectors of the table look-up used to correct single erroes ar « The SEME decoding algorithm is applied. In this case,
given by the columns of th@n — k — e) x (n — e)) matrix the upper bound (12) is displayed. The contributions to
P depicted in Fig. 4 and the algorithm setg = yx + €, the bound of the eventB, C, D defined in Section IV
whereé is the error pattern whose uniqui bit corresponds are reported. Note that the contribution to the bound of

o
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_g|| ——(2048,1024) Random Ensemble - BEC
©(2048,1024) Random Ensemble - BEEC - SEME
-0-(2048,1024) Random Ensemble — BEEC - (no correction)

—P(®)

107y PO

-~ P(D)

* (2048,1024) LDPC - BEEC - BEC-ML (no correction)

O (2048,1024) LDPC - BEEC - SEME

10°} A (2048,1024) LDPC - BEC - ML

—-(2048,1024) LDPC - BEEC - BEC-IT (no correction)

O (2048,1024) LDPC - BEEC - IT

_o[[~2—(2048,1024) LDPC - BEC - IT

I
0.3 0.32 0.34 0.36 0.38 0.4 0.42
€

—e—(1000,500) Random Ensemble - BEC
©(1000,500) Random Ensemble - BEEC - SEME
-0-(1000,500) Random Ensemble - BEEC - (no correction)
—P(B)
P(C)
- - P(D)

I I I I I I I I
0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
B

ll).‘44 0.‘46 0.‘48 0.5 0.4 0’.111
(@ p=10-9.
Fig. 5. Block error probability for §2048,1024) GelRA code over the

i ility — -5 10 T T
BEC and_over a BEEQ with error probabiliy= 10~°, under SEME_ gnd e (1000,500) Random Ensemble - BEG
IT decoding. Comparison with the bounds on the block errabability o (1000,500) Random Ensemble ~ BEEC ~ SEME
for the (2048, 1024) binary |inear ensemble_ 107 -0-(1000,500) Random Ensemble — BEEC - (no correction)
—FP()
P(C)
--P(D)

10

the eventd is equal to the already displayed right-hand
side of (14). y
The gain due to the single error correction capability of the .
SEME algorithm is evident in the error floor region. When
no error correction is attempted, a high floorfat~ n-p ~
2-10~2 affects the ensemble average error probability. On th ool
other hand, if single error correction is performed, therfloo
is lowered by about two orders of magnitude. In this region .|
the error probability for the SEME algorithm is dominated
by the probability of the evenB, i.e. by the probability that

10

-9-0-0-0-0-0-0-0-0-96-0-0-0=-0-0-0-00-

more than one error affects the non-erased bits. Conversel ~ ° 0% o3 0% o4 04 08
in the waterfall region, most of the errors are due to rank () p = 10-5.

deficiencies of the matriH ;z and the error probability is

dominated by the probability of the evert Fig. 6. Bounds on the block error probability for tii€000, 500) binary

In Fig. 5, simulation results are also provided for dinear ensemble over the BEC and BEEC with various error aiiities.
(2048,1024) GelRA code [29] designed for ML erasure
decoding [9]. The code performance has been simulated over
the BEC under efficient ML decoding, and over the BEEGIecoding the target is achieved eat- 0.46. On the BEEC
both under SEME decoding and without error correction. Thehannel, the SEME decoder outperforms the IT one down
simulation results illustrate how LDPC codes can approadb moderate error rates. As the erasure probability deesgas
the average random code ensemble performance in the thtlke performance of the SEME algorithm converges to a block
cases, at least down to moderate to low block error prolerror probability P, ~ 2 - 10—, due to the imposed single
abilities® The performance of the same LDPC code undegrror correction capability of the algorithm. Since the IT
IT decoding is provided too, for three cases: On the BE@ecoder is not limited to correct single errors, at low erasu
(p = 0), on the BEEC with IT erasure decoding (i.e., noprobabilities it outperforms the SEME algorithm. This effe
error correction), and on the BEEC with input LLRs seimay be exploited by a hybrid SEME/IT decoder, e.g. the IT
according to the channel error/erasure probabilitiesi@flyp  decoder might be used whenever multiple errors are detected
outlined in Section I). The performance under IT decodingy the SEME decoder.
on the BEC shows clearly a coding gain loss with respect Siill, in many practical cases, the BEEC error probability
to the ML counterpart. A block error rat®. = 10~* is may be quite below = 105, resulting in a (much) lower
achieved by the IT decoder at~ 0.39, whereas under ML error floor for the SEME algorithm, thus reducing the need
s for an IT decoding stage. In fact, the gain in the error
At_Iow error probabilities, LDPC_codes over _the BEC _under ML - . -
decoding exhibit an error floor that is due to their non-ideghimum floor due to the S'ngle error correction capab|I|ty of the
distance. Therefore, their performance curve deviate® ffee bound (14). SEME algorithm is amplified at lower error probabilities



p. In Fig. 6(a) and Fig. 6(b), the bounds for the averages]
random ensemble block error probability are displayed for
the case ofn = 1000,k = 500 and for two BEEC error
probabilities,p = 10~ andp = 10~8. While in the former
case, the floor is reduced Wyorders of magnitude, in the
latter case under SEME decoding the block error probabilit)}s]
meets the floor aP. < 10~'°, about5 orders of magnitude
lower with respect to the case when no error correction gl
performed. Note that (13) provides an accurate estimation
of the error floor under SEME decoding. For example, for
n = 1000,k = 500,p = 1079, the error floor estimated [10]
by (13) appears aﬁfgﬁzﬁm ~ 4.99 - 1077, while for
n = 1000,k = 500,p = 10~% at P05 BEC ~ 5. 1011,

JR(n,k
This is in accordance with Figures GEa) and 6(b). [11]

[12]
VII. CONCLUSION

We proposed an efficient single-error multiple-erasures
(SEME) decoding algorithm for LDPC codes. The proposeE}3]
algorithm represents an extension of the efficient ML decod-
ing algorithm for LDPC codes over the BEC of [8], which
allows error correction/detection on the BEEC. The block'
error rate of LDPC codes has been compared to the average
block error probability for the random code ensemble ovdt5]
BEECs with sporadic errors, showing that LDPC codes
can attain the performance of random codes under SEME;
decoding. A performance comparison with IT decoding on
the BEEC is provided, showing that down to moderate errdt’]
rates the SEME algorithm brings to a large coding gain with
respect to IT decoding. The additional single error coroect
capability provided by the proposed algorithm allows td18l
reduce the error floors by several orders of magnitude with
respect to the case of pure erasure decoding. [19]

Although for complexity reasons the algorithm has been
analyzed imposing a single error correction limitatiomay o0
be easily extended to correct multiple errors whenever a
higher decoding complexity is affordable by the receiver. T[21]
make the algorithm capable of correcting multiple errats, i
is sufficient to generaten-the-flya decoding table-lookup up
to the desired weight of the error pattern. This usually ltesu (22]
in a heavy improvement of the error floor performance.
For example, assuming agajjm = 10~° and letting the [23]
algorithm correct single and double errors, the error floci !

for the LDPC code in Fig. 5 would be lowered to abou
PSEME,BEEC _ 1 4. 1(—6.

e,R(n,k)
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