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Abstract—Several types of AL-FEC (Application-Level FEC)
codes for the Packet Erasure Channel exist. Random Linear
Codes (RLC), where redundancy packets consist of random linear
combinations of source packets over a certain finite field, are a
simple yet efficient coding technique, for instance massively used
for Network Coding applications. However the price to pay is a
high encoding and decoding complexity, especially when working
on GF (28), which seriously limits the number of packets in the
encoding window. On the opposite, structured block codes have
been designed for situations where the set of source packets is
known in advance, for instance with file transfer applications.
Here the encoding and decoding complexity is controlled, even
for huge block sizes, thanks to the sparse nature of the code and
advanced decoding techniques that exploit this sparseness (e.g.,
Structured Gaussian Elimination). But their design also prevents
their use in convolutional use-cases featuring an encoding window
that slides over a continuous set of incoming packets.

In this work we try to bridge the gap between these two code
classes, bringing some structure to RLC codes in order to enlarge
the use-cases where they can be efficiently used: in convolutional
mode (as any RLC code), but also in block mode with either
tiny, medium or large block sizes. We also demonstrate how to
design compact signaling for these codes (for encoder/decoder
synchronization), which is an essential practical aspect.

I. INTRODUCTION

Application-Level Forward Erasure Correction (AL-FEC)

codes have become a key component of many content delivery

systems. They are widely used as an efficient technique to

recover packet losses in Internet (usually caused by congested

routers) or wireless communications (often caused by a short

term fading problem). Such a network can be regarded as a

packet erasure channel (or equivalently a Bit Erasure Channel,

BEC), characterized by the property that the transmitted data

packets are either received without error or erased (lost).

Packet loss resilience may also be achieved with Automatic

Repeat reQuest (ARQ) techniques (e.g., with TCP), but: a

Round Trip Time (RTT) is needed to recover from a loss,

which can be a issue for delay-sensitive applications (e.g.,

video-conferencing), the return channel may not exist (e.g., in

case of a unidirectional broadcast network), and it does not
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scale well with the number of receivers in case of multicast

or broadcast transmissions.

AL-FEC codes are a key building block of content broadcast

technologies such as the FLUTE/ALC [4] protocol stack for

the reliable and scalable transmission of files to a poten-

tially huge number of receivers, and the FECFRAME frame-

work [22] when dealing with real-time delivery services as in

streaming applications. AL-FEC is now deployed in all sys-

tems relying on FLUTE/ALC (e.g., 3GPP MBMS service [24]

or ISDB-Tmm [5]) and sometimes at the link layer as well

(e.g., the MPE-FEC layer of DVB-H systems [6]).

In all of the previous use-cases (real-time delivery included),

only block codes are considered, and the set of source packets

is first grouped into blocks where AL-FEC encoding/decoding

is performed. In the present work we introduce an alternative

and practical AL-FEC solution that aims at encompassing both

block oriented and sliding window oriented use-cases.

Random Linear Codes (RLC) are another class of AL-FEC

codes. They are increasingly popular due to their simple yet

powerful encoding techniques, in particular in the context

of Random Linear Network Coding (RLNC) where encod-

ing/decoding can be performed at the various network nodes,

namely either at intermediate nodes (e.g., WiFi Access point

or routers) or end nodes [1]. At a source (sender) node or

intermediate node, RLC generates encoded packets (also called

encoded symbols in this paper) just by linearly combining

the available symbols using encoding vectors (also called

coefficients) randomly selected from a given finite field (e.g.,

GF (28)). In general, the set of available symbols evolves over

the time, i.e., RLC are used as convolutional codes. In [7],

RLC is also utilized in a convolutional manner, but end-to-

end (i.e., there is no re-encoding within the core network),

with feedback information from the receiver, which enables to

achieve a full reliability when desired. The authors show that

the recovery delay for lost packets is in that case independent

of the RTT. However the main issue to be considered with

RLC is the high decoding complexity, typically a Gaussian

Elimination (GE) over a dense linear system. This problem

becomes even more pronounced when the number of source

symbols involved is large, and/or when the finite field is

GF (28) (or higher) so as to improve the erasure recovery



capabilities [8].

Since we believe that RLC can play a key role in network

coding systems for the erasure channel [23], we have focused

on the design of new improved RLC techniques. Our goal is

to design RLC codes that:

• can be used either as block or convolutional codes;

• can be used with encoding window sizes in 2–10,000s

symbols range, as very large sizes are beneficial to bulk

file transfers while small values are useful for real-time

contents;

• have excellent erasure recovery performance, and at the

same time enable fast encoding/decoding which is essen-

tial for devices with limited computational and memory

capabilities;

• enable compact signaling (e.g., transmitting the full en-

coding vector does not scale);

In other words, we try to bridge the gap between block and

convolutional AL-FEC codes. With these goals in mind, we

have designed the so-called Structured Random Linear Codes

(SRLC) [18].In the present work, as a first step to a complete

evaluation, we only focus on use-cases that require only end-

to-end encoding (i.e., there is a single end point for AL-FEC

encoding/decoding, no matter whether this end is a “host” or

a “middlebox”) and we evaluate the SRLC effectiveness in

terms of erasure recovery performance only.

The remainder of this paper is organized as follows: Sec-

tion II introduces related work. Section III describes the

proposed Structured Random Linear Codes (SRLC) in detail.

Section IV evaluates the recovery performances of SRLC, and

we conclude in Section V.

II. RELATED WORK

In [2], [3] BATched Sparse (BATS) codes are proposed

for file distribution through a communication network where

intermediate nodes have coding capabilities [9]. These codes

are designed so as to control the computational and storage

requirements at the source, intermediate nodes, and destina-

tion, as well as the transmission overhead when transmitting

the coding vector. This is made possible by the use of both

an outer code (sender), that forms ”batches” of coded packets,

using a specific distribution for defining the number of input

packets considered to create each batch, and inner codes (inter-

mediate nodes) that perform random linear codings of packets

of a given batch. The authors show the good performance

of these BATCH codes, when associated to ”inactivation

decoding” as in [11], [12].

In [13], [14], Gamma Codes are proposed as a family of

sparse random linear network codes with outer code like BATS

codes. The codes also manage “chunked” encoded packets.

The key idea is to enable the outer code to play as soon

as the first chunked packets are recovered, which realizes a

joint decoder scheme that coordinates a proper combination

of an outer coding and a basic sparse random linear network

coding. It was presented that Gamma codes can achieve better

reception overhead while keeping lower encoding/decoding

complexity in fixed block length configuration.

These works differ from ours. We designed RLC in order to

be flexibly used as either block or convolutional codes, over

wide ranges of block/encoding-window sizes. Additionally, we

do not distinguish outer/inner codes per se, but add a structure

to the RLC approach in order to find an appropriate balance

between computational complexity and erasure recovery per-

formance.

III. STRUCTURED RANDOM LINEAR CODES (SRLC)

Let us now describe the SRLC codes, characterized by:

1) a mostly sparse binary structure, which reduces the

number of symbol XOR operations and improves IT-

erative (IT)/Structured Gaussian Elimination (SGE) de-

codings [19][15][16]. It is a key feature to favor high

speed encoding and decoding;

2) a limited use of non-binary (over GF (28)) coefficients

in encoding vectors. It is a key feature to favor a good

erasure recovery performance;

3) the addition of a dedicated repeat-and-accumulate struc-

ture (as in Irregular Repeat-Accumulate (IRA) [25] and

LDPC-Staircase codes). It is a second key feature to

favor a good erasure recovery performance.

In the following, we first explain the SRLC approach when

used in block mode, and later we extend it to the case of

convolutional coding.

A. First Idea: Mixing Binary and Non-Binary Coefficients

The first idea consists in using both binary and non-binary

coefficients. All the examples of this section are for the block

mode case, when considering a fixed set of k source symbols.
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Fig. 1. Example when used as a block code, considering only binary and
non-binary coefficients.

Fig. 1 shows an example parity check matrix, H , when

the number of source symbols is fixed (here k = 40 source

symbols) and both binary and non-binary coefficients are used.

The H matrix is composed of two parts, the left side Hleft

and the right side Hright. The columns of Hleft correspond to

the source symbols from S0 to S39 (A.K.A. source packets),

while those of Hright correspond to the repair symbols to

be generated (A.K.A. repair packets). Each row of Hleft

represents a constraint (or equation) used for instance to

generate the repair symbol of the same row. For example, the

R0 repair symbol in the first row is generated by1:

R0 = S0 + · · ·S18 + 29 ∗ S19 + · · ·S38 + 77 ∗ S39

1NB: “1” coefficients are omitted.



Three key parameters exist:

• k: the source block length (or encoding window size);

• Dbin: the density of each “sparse binary sub-matrix”,

given as the ratio of the number of non-zero coefficients

to the total number of coefficients in a sub-matrix:

Dbin =
nb 1 coeffs

total nb coeffs in binary submatrix

• Dnonbin: the ratio of the number of non-binary columns

to k (i.e., the total number of columns) in Hleft:

Dnonbin =
nb nonbinary columns

k

Hleft should be largely composed of sparse binary parts

so that most equations are sparse with binary coefficients,

because this is a key for high encoding/decoding speeds.

However, a trade-off between speed and erasure recovery

performance must be considered since being too sparse and

binary negatively impacts the erasure recovery performance.

Fig. 2 shows the average erasure recovery performance of a

fully binary RLC with various Dbin values as a function of k.

The performance metric is the “average decoding inefficiency

ratio”, defined as the ratio of the average number of symbols

needed for decoding to complete successfully to k:

inefficiency ratio = (nbsymbols needed)/k = 1 + ǫ

where ǫ is called “decoding overhead”, and also often ex-

pressed as a percentage. The closer to 1 (achieved with ideal

codes) the ratio, the better. Assuming that our target average

decoding overhead is set (arbitrarily) to 0.1%, we can see in

Fig. 2 that none of the codes achieves the goal, even with

binary RLC (where Dbin = 1/2) which performs the best.

On the opposite, we see in Fig. 3 that adding a few dense

non-binary columns (we used Dnonbin = 1/40 and the same

values for Dbin), the target average decoding overhead is

easily achieved with k > 200. And adding more non-binary

columns easily enables to further improve the decoding perfor-

mance with smaller k values. We will address the question of

what are the appropriate {Dnonbin, Dbin} tuples as a function

of k in section III-C.

In the SRLC design, dense non-binary coefficients are

always gathered in columns (i.e., assigned to certain sym-

bols). The motivation is to enable the use of the high speed

Structured Gaussian Elimination optimization [15], [16], [11].

In this approach, when a stopping set is encountered during

IT decoding, certain well chosen symbols of the system (i.e.,

corresponding to unknown/non-recovered source symbols) are

logically removed from the linear system. This process enables

IT decoding to pursue. Finally, decoding finishes with a classic

Gaussian Elimination over the removed symbols, and their

values are finally re-injected into equations where they were

involved. Because non-binary coefficients are affected to well

identified source symbols, these symbols are immediately

logically removed from the linear system. The linear system

therefore remains a sparse binary system, not “polluted” by

non binary coefficients, and most operations consist of fast

XOR operations over symbols, a key for high speed decoding.
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Fig. 2. Average inefficiency ratio of binary RLC, for various binary densities
(1/2, 1/5, 1/10, 1/20), as a function of k.
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Fig. 3. Average inefficiency ratio of RLC with non-binary column (1/40)

with the same binary densities, as a function of k.

B. Second Idea: Adding a Structure

Adding a structure to codes can be highly beneficial.

For instance, the repeat-and-accumulate structure of IRA

and LDPC-staircase codes significantly improves their per-

formance: because the number of source symbols a repair

symbol actually depends on increases with its index, the

erasure recovery performance is improved while keeping a

sparse system. However, adding this particular structure would

make signaling prohibitively complex when the codes are used

in convolutional mode2.

In order to solve this problem, we propose to add a single

accumulative row to create R0, defined as the “heavy repair

symbol”, and to make all repair symbols depend upon R0.

Fig. 4 shows an example of the proposed SRLC in block mode.

In this example, R1 is generated by:

R1 = R0 + S0 + ...+ 77 ∗ Sk−3 + Sk−1

This simple structure enables a compact signaling to enable

a receiver to determine the relationships between source and

repair symbols. This is accomplished, in block mode, by the

knowledge of the matrix generation algorithms (specified in

a non ambiguous way in the specifications), plus the {k,

Dnonbin, Dbin} tuple that is sent once at encoder/decoder

2This is because the encoding window may move in a non predictable way,
and in presence of erasures, identifying the exact way all the previously erased
symbols have been encoded is not easy.
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Fig. 4. SRLC example as a block code.

synchronization time3. Because the full encoding vector is not

sent along with repair packets (it is useless if H is known), the

approach can scale with very large k values. We will see in

section III-D how to perform signaling when SRLC are used

in a sliding window mode.

C. Parameter Settings for Dnonbin and Dbin

Let us now determine the most appropriate values for the

{Dnonbin, Dbin} tuple for a given k and target average

performance. Of course:

• Dnonbin should be as small as possible to reduce com-

putation complexity, and

• Dbin should be as small as possible so that IT decoding

performs well.

To find appropriate values, we did as described in Algorithm 1.

We set the target average overhead to 0.1% (same value as in

Fig. 3) plus a security margin (set to 0.5) so as to accommodate

some fluctuations during the optimization process. As a result,

we obtain a table of {Dnonbin, Dbin} tuples, with an entry

for each k value. Note that this table (not reproduced here)

does not need to be sent to the receiver(s) as the {k, Dnonbin,

Dbin} tuple is communicated at synchronization time to the

receiver(s). This provides additional flexibility since the the

target code performance may be changed dynamically for the

following transfers, at the discretion of the sender.

D. Application to Convolutional Coding

Convolutional coding is appropriate to situations where a

fully or partially reliable delivery of continuous data flows

is needed, especially when these data flows feature real-

time constraints, as in [7]. SRLC can then be used as a

convolutional code, in a systematic way (i.e., source symbols

are sent on the network), as described in Algorithm 2. The

way the encoding window is managed (i.e., how to set the

encoding window start and the number k of source symbols

in the window) is a key aspect that depends on the protocol

in use.

Fig. 5 illustrates the use of SRLC in the simple sliding

window mode. Here the encoding window has a fixed size,

k = 4, and slides in a regular way over the source symbol

flow. The target code rate (CR = 2/3 is such that one repair

3This can take several forms, usually in the “file” description part of a File
Delivery Table (FDT) with FLUTE [4].

Algorithm 1 Finding the right {Dnonbin, Dbin} values.

1: target overhead← 0.001; /* for instance */

2: security margin← 0.5; /* for instance */

3: for k = 2 to 10000 do

4: /* First of all, find Dnonbin if Dbin is set to 0.5 */

5: Dbin ← 0.5;

6: Get nb 1 coeffs(Dbin);
7: for nb nonbinary columns = 0 to k do

8: Get average overhead(k,
9: nb nonbin column, nb 1 coeffs);

10: if (average overhead < target overhead ∗
security margin) then

11: Set Dnonbin(nb nonbinary columns);
12: break;

13: end if

14: end for

15: /* Then find smallest Dbin for the selected Dnonbin */

16: while (true) do

17: nb 1 coeffs−−;

18: Get average overhead(k,
19: nb nonbin column, nb 1 coeffs);
20: if (average overhead > target overhead) then

21: Set Dbin(nb 1 coeffs + 1);
22: break;

23: end if

24: end while

25: store results(k,Dnonbin, Dbin);
26: end for

symbol is sent after two source symbols. The only exception is

at session start: the encoder waits for k = 4 source symbols to

be available, and then generates two repair symbols, including

a heavy repair one, R0−3 (i.e., the XOR sum from S0 to S3).

Then, after sending two more source symbols, S4 and S5, the

SRLC encoder considers the union of the encoding windows

since the previous repair computation (i.e., from S1 to S5)

and generates a new repair symbol, R2. R2 accumulates the

current heavy repair symbol, R0−5 (i.e., the XOR sum from

S0 to S5) to the encoding vector:

R2 = S1 + S4 + 29 ∗ S5 +R0−5

Here also, the encoding vector is set according to the {k,

Dnonbin, Dbin} tuple, using pre-calculated tables as described

in Section III-C, and a Pseudo-Random Number Generator

(PRNG) that can be seeded by a specific value communicated

to the receiver. Note that the repair symbol identifier may be

used as a seed.

From a signaling point of view, we can assume that the {k,

Dnonbin, Dbin} tuple and all the algorithms are known by

both ends. In that case, it is sufficient for the sender to let the

receiver know the union of the encoding windows considered

(e.g., from S1 to S5 in the case of R2), the repair symbol

identifier, along with the PRNG seed (if different from the

repair symbol identifier). This is all the SRLC decoder needs



Algorithm 2 Building repair symbols in convolutional mode.

1: Alloc repair symbol buffer(r); /* reset to zero as well */

2: Alloc heavy repair symbol buffer(h); /* reset to zero */

3: while (true) do

4: Wait new src symbols();
5: Send new src symbols();
6: for all (new source symbol s) do

7: h← h ∧ s;

8: end for

9: Set nb repair to send(total new src symbols,
10: code rate);
11: while (nb repair to send > 0) do

12: if (Decide to send heavy repair()) then

13: Send repair symbol(h);
14: else

15: Reset repair symbol memory(r);
16: Set new union of encoding windows(k);
17: for all (src symbol s in encoding window) do

18: if ((src symbol id % Dnonbin) = 0) then

19: /* non-binary col., choose coeff randomly */

20: Set nonbin coefficient();
21: r ← r ∧ (nonbin coefficient ∗ s);
22: else

23: /* binary column, choose 0 or 1 randomly */

24: Set binary coefficient(Dbin);
25: if (binary coefficient = 1) then

26: r ← r ∧ s;

27: end if

28: end if

29: end for

30: r ← r ∧ h;

31: Send repair symbol(r);
32: end if

33: nb repair to send−−;

34: end while

35: end while

to know to generate the constraint equation associated to this

repair symbol, even for large encoding window sizes.

In practice, the heavy repair symbols are transmitted peri-

odically in order to remove the long term dependencies they

create. This is useful if past source symbols remain impossible

to recover by a given receiver (who for instance joined the

session late).

IV. PERFORMANCE EVALUATION RESULTS

In this section we evaluate the SRLC erasure recovery

performance both in block and convolutional modes.

A. Experimental Setup

All the tests are carried out with the performance eval-

uation tools provided by our OpenFEC.org project [17]

and a modified version of the Kodo library [21] for the

codec implementation. We use the pre-calculated values for

{Dnonbin, Dbin} (see Algorithm 1) and we choose CR = 2/3

S0 S1S2S3S4 S6S7 S8 S9S10 S12 . . . . .S5 S11

1  1  1  1
[0--3]

Packet Flow

1  0  0  1
[1--4]
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[1--5]

1  1  1  1  1  1 

1  0  0  1 29
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1  1  1  1  1  1 1 1  
[3--7]

0  1 62 0 1
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1 1
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previous repair computation

Fig. 5. SRLC example as a convolutional code, with fixed k = 4 CR = 2/3
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Fig. 6. On the benefits of heavy repair symbols: average recovery perfor-
mance without and with (i.e., SRLC) this symbol.

in all tests. However SRLC is by nature rateless and the

actual code rate is of little importance (i.e., the decoding

overhead does not depend on the code rate). Because we do

not want to define any specific channel model (e.g., the two

transition probabilities of a Gilbert model), in all tests we

assume the source and repair symbols are transmitted in a fully

random order, which means that only the packet loss rate is

of importance. Finally we assume that Gaussian Elimination

decoding is used for maximum performance, rather than IT

decoding (we do not consider decoding speeds in this work).

B. Recovery Capabilities in Block Mode

Let us focus on the SRLC in block mode. We measure

both the average inefficiency ratio as a function of k and the

decoding failure probability as a function of the number of

received symbols in addition to k (in both cases decoding is

said to fail as soon as at least one erased source symbol can

not be recovered). The first goal of tests is to demonstrate the

efficiency of the use of a heavy repair symbol. The second

goal is to assess the performance of SRLC codes. However,

due to the space limitations, we only show the results when k
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Fig. 7. Decoding failure probability when k = 200 and (Dnonbin, Dbin)
= (1/50, 1/10)

is small, from 50 to 500 symbols.

Fig. 6 compares the two options for {Dnonbin, Dbin} =
{1/50, 1/10} or {1/100, 1/20}. We see the benefits of us-

ing the heavy repair symbol, especially when k is small,

on average. Let us look at Fig. 7, when k = 200 and

{Dnonbin, Dbin} = {1/50, 1/10}. In both cases, the decoding

failure probability curves are similar when the number of

received symbols is only slightly higher than k (i.e., for low

overheads). However we clearly see a difference when the

overhead is higher, meaning that there is a significant number

of tests where decoding fails without any heavy repair symbol:

245 extra symbols need to be received (22.5% overhead) for

the decoding failure probability to go below 10−5. On the

opposite, the full featured SRLC solution reaches a decoding

failure probability lower than 10−5 with 209 symbols only (a

4.5% overhead).

Fig. 7-(b) also confirms the excellent recovery performance

of SRLC codes, not only on average, but also when looking

precisely at the decoding failure probability.

C. Recovery Capabilities in Convolutional Mode

Let us now consider SRLC in convolutional mode. Since

we are focusing on real-time flows, like video/audio real-

time streaming systems, a full reliability is not necessarily

required (this is different from typical use in block mode, for

file transfer applications). Therefore we measure the SRLC
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Fig. 8. Performances of SRLC, Binary RLC and RLC over GF (28) in
a sliding window (convolutional) mode when the total number of source
symbols tot src = 500, encoding window size k = 20, CR = 2/3.

average source packet loss ratio (once decoding is finished)

as a function of packet loss probability, and compare it with

those of binary RLC (i.e., {Dnonbin, Dbin} = {0, 1/2}) and

of RLC over GF (28) (all coefficients are randomly chosen in

GF (28)). Additionally, to make the comparison more visible,

we measure the decoding failure probability of the three codes.

The performance results for the transmission of 500 source

symbols in total and a window of size k = 20 symbols, are

shown in Fig. 8. We see that SRLC performs the best, even

when compared to RLC over GF (28), which is exceptional.

The performance results for a larger encoding window, of

size k = 100 symbols, are shown in Fig. 9(a). We see that

all the average loss ratios improve when compared to the

k = 20 case, because a larger encoding window size offers

better protection. Therefore there is no significant differences

among the three codes especially on average. However, when

looking at the decoding failure probability in Fig. 9(b), the

SRLC performance pronouncedly becomes worse than that of

RLC codes over GF (28). One reason is that SRLC uses the

{Dnonbin, Dbin} table optimized for the block mode case. A

new table should be calculated for the convolutional case.

V. CONCLUSIONS AND FUTURE WORK

This work introduces the SRLC codes, an end-to-end AL-

FEC solution that is sufficiently flexible to be applied in block
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Fig. 9. Performances of SRLC, Binary RLC and RLC over GF (28) in
a sliding window (convolutional) mode when the total number of source
symbols tot src = 2500, encoding window size k = 100, CR = 2/3.

mode and convolutional mode. In order to enable excellent

erasure recovery performance as well as fast encoding and

decoding speeds, these codes have been designed in a manner

that favors a mostly sparse and binary structure, with some

well chosen non binary coefficients, plus a heavy binary row.

Additionally, the design is such that it facilitates an efficient

signaling, the parameters exchanged to synchronize encoder

and decoders being kept to a minimum. These considerations

make SRLC codes a very practical solution, no matter the

block or encoding window size: small, medium or large. Our

evaluation of their erasure recovery performance confirms the

benefits

In future works we will analyze the encoding and decoding

complexity (similarly the associated speeds) of SRLC codes.

We will also further optimize the value of the code internal

parameters when used in convolutional mode, both in a fixed-

size configuration and in elastic window configuration (e.g.,

as in [7]).
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