87 research outputs found

    Virtual Element Method for fourth order problems: L2−L^2-estimates

    Full text link
    We analyse the family of C1C^1-Virtual Elements introduced in \cite{Brezzi:Marini:plates} for fourth-order problems and prove optimal estimates in L2L^2 and in H1H^1 via classical duality arguments

    On the Virtual Element Method for Topology Optimization on polygonal meshes: a numerical study

    Get PDF
    It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods

    Virtual Element Methods for hyperbolic problems on polygonal meshes

    Full text link
    In the present paper we develop the Virtual Element Method for hyperbolic problems on polygonal meshes, considering the linear wave equations as our model problem. After presenting the semi-discrete scheme, we derive the convergence estimates in H^1 semi-norm and L^2 norm. Moreover we develop a theoretical analysis on the stability for the fully discrete problem by comparing the Newmark method and the Bathe method. Finally we show the practical behaviour of the proposed method through a large array of numerical tests

    Some Error Analysis on Virtual Element Methods

    Full text link
    Some error analysis on virtual element methods including inverse inequalities, norm equivalence, and interpolation error estimates are presented for polygonal meshes which admits a virtual quasi-uniform triangulation

    A virtual element method for the vibration problem of Kirchhoff plates

    Get PDF
    The aim of this paper is to develop a virtual element method (VEM) for the vibration problem of thin plates on polygonal meshes. We consider a variational formulation relying only on the transverse displacement of the plate and propose an H2(Ω)H^2(\Omega) conforming discretization by means of the VEM which is simple in terms of degrees of freedom and coding aspects. Under standard assumptions on the computational domain, we establish that the resulting schemeprovides a correct approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. The analysis restricts to simply connected polygonal clamped plates, not necessarily convex. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme and confirming our theoretical results on different families of meshes. Additional examples of cases not covered by our theory are also presented

    Lowest order Virtual Element approximation of magnetostatic problems

    Full text link
    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field H\mathbf{H} on each edge, and the vertex values of the Lagrange multiplier pp (used to enforce the solenoidality of the magnetic induction B=μH\mathbf{B}=\mu\mathbf{H}). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\'ed\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions
    • …
    corecore