research

Virtual Element Methods for hyperbolic problems on polygonal meshes

Abstract

In the present paper we develop the Virtual Element Method for hyperbolic problems on polygonal meshes, considering the linear wave equations as our model problem. After presenting the semi-discrete scheme, we derive the convergence estimates in H^1 semi-norm and L^2 norm. Moreover we develop a theoretical analysis on the stability for the fully discrete problem by comparing the Newmark method and the Bathe method. Finally we show the practical behaviour of the proposed method through a large array of numerical tests

    Similar works