17,557 research outputs found

    Black Holes as Quantum Gravity Condensates

    Full text link
    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalised condensate states, involving sums over arbitrarily refined graphs (dual to 3d triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.Comment: 22 page

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    Fluctuation Statistics in Networks: a Stochastic Path Integral Approach

    Full text link
    We investigate the statistics of fluctuations in a classical stochastic network of nodes joined by connectors. The nodes carry generalized charge that may be randomly transferred from one node to another. Our goal is to find the time evolution of the probability distribution of charges in the network. The building blocks of our theoretical approach are (1) known probability distributions for the connector currents, (2) physical constraints such as local charge conservation, and (3) a time-scale separation between the slow charge dynamics of the nodes and the fast current fluctuations of the connectors. We derive a stochastic path integral representation of the evolution operator for the slow charges. Once the probability distributions on the discrete network have been studied, the continuum limit is taken to obtain a statistical field theory. We find a correspondence between the diffusive field theory and a Langevin equation with Gaussian noise sources, leading nevertheless to non-trivial fluctuation statistics. To complete our theory, we demonstrate that the cascade diagrammatics, recently introduced by Nagaev, naturally follows from the stochastic path integral. We extend the diagrammatics to calculate current correlation functions for an arbitrary network. One primary application of this formalism is that of full counting statistics (FCS). We stress however, that the formalism is suitable for general classical stochastic problems as an alternative to the traditional master equation or Doi-Peliti technique. The formalism is illustrated with several examples: both instantaneous and time averaged charge fluctuation statistics in a mesoscopic chaotic cavity, as well as the FCS and new results for a generalized diffusive wire.Comment: Final version accepted in J. Math. Phys. Discussion of conservation laws, Refs., 1 Fig., and minor extensions added. 23 pages, 9 figs., double-column forma

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure
    • …
    corecore