3,741 research outputs found

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems

    The Spectrum of Strong Behavioral Equivalences for Nondeterministic and Probabilistic Processes

    Full text link
    We present a spectrum of trace-based, testing, and bisimulation equivalences for nondeterministic and probabilistic processes whose activities are all observable. For every equivalence under study, we examine the discriminating power of three variants stemming from three approaches that differ for the way probabilities of events are compared when nondeterministic choices are resolved via deterministic schedulers. We show that the first approach - which compares two resolutions relatively to the probability distributions of all considered events - results in a fragment of the spectrum compatible with the spectrum of behavioral equivalences for fully probabilistic processes. In contrast, the second approach - which compares the probabilities of the events of a resolution with the probabilities of the same events in possibly different resolutions - gives rise to another fragment composed of coarser equivalences that exhibits several analogies with the spectrum of behavioral equivalences for fully nondeterministic processes. Finally, the third approach - which only compares the extremal probabilities of each event stemming from the different resolutions - yields even coarser equivalences that, however, give rise to a hierarchy similar to that stemming from the second approach.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    On overfitting and asymptotic bias in batch reinforcement learning with partial observability

    Full text link
    This paper provides an analysis of the tradeoff between asymptotic bias (suboptimality with unlimited data) and overfitting (additional suboptimality due to limited data) in the context of reinforcement learning with partial observability. Our theoretical analysis formally characterizes that while potentially increasing the asymptotic bias, a smaller state representation decreases the risk of overfitting. This analysis relies on expressing the quality of a state representation by bounding L1 error terms of the associated belief states. Theoretical results are empirically illustrated when the state representation is a truncated history of observations, both on synthetic POMDPs and on a large-scale POMDP in the context of smartgrids, with real-world data. Finally, similarly to known results in the fully observable setting, we also briefly discuss and empirically illustrate how using function approximators and adapting the discount factor may enhance the tradeoff between asymptotic bias and overfitting in the partially observable context.Comment: Accepted at the Journal of Artificial Intelligence Research (JAIR) - 31 page

    Deciding the value 1 problem for probabilistic leaktight automata

    Get PDF
    The value 1 problem is a decision problem for probabilistic automata over finite words: given a probabilistic automaton, are there words accepted with probability arbitrarily close to 1? This problem was proved undecidable recently; to overcome this, several classes of probabilistic automata of different nature were proposed, for which the value 1 problem has been shown decidable. In this paper, we introduce yet another class of probabilistic automata, called leaktight automata, which strictly subsumes all classes of probabilistic automata whose value 1 problem is known to be decidable. We prove that for leaktight automata, the value 1 problem is decidable (in fact, PSPACE-complete) by constructing a saturation algorithm based on the computation of a monoid abstracting the behaviours of the automaton. We rely on algebraic techniques developed by Simon to prove that this abstraction is complete. Furthermore, we adapt this saturation algorithm to decide whether an automaton is leaktight. Finally, we show a reduction allowing to extend our decidability results from finite words to infinite ones, implying that the value 1 problem for probabilistic leaktight parity automata is decidable

    Quantifying Information Leakage of Randomized Protocols

    Get PDF
    International audienceThe quantification of information leakage provides a quantitative evaluation of the security of a system. We propose the usage of Markovian processes to model and analyze the information leakage of deterministic and probabilistic systems. We show that this method generalizes the lattice of information approach and is a natural framework for modeling refined attackers capable to observe the internal behavior of the system. We also use our method to obtain an algorithm for the computation of channel capacity from our Markovian models. Finally, we show how to use the method to analyze timed and non-timed attacks on the Onion Routing protocol

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition
    • …
    corecore