272 research outputs found

    Stochastic and balanced distributed energy-efficient clustering (SBDEEC) for heterogeneous wireless sensor networks

    Get PDF
    Typically, a wireless sensor network contains an important number of inexpensive power constrained sensors which collect data from the environment and transmit them towards the base station in a cooperative way. Saving energy and therefore, extending the wireless sensor networks lifetime, imposes a great challenge. Many new protocols are specifically designed for these raisons where energy awareness is an essential consideration. The clustering techniques are largely used for these purposes.In this paper, we present and evaluate a Stochastic and Balanced Developed Distributed Energy-Efficient Clustering (SBDEEC) scheme for heterogeneous wireless sensor networks. This protocol is based on dividing the network into dynamic clusters. The cluster’s nodes communicate with an elected node called cluster head, and then the cluster heads communicate the information to the base station. SBDEEC introduces a balanced and dynamic method where the cluster head election probability is more efficient. Moreover, it uses a stochastic scheme detection to extend the network lifetime. Simulation results show that our protocol performs better than the Stable Election Protocol (SEP) and than the Distributed Energy-Efficient Clustering (DEEC) in terms of network lifetime. In the proposed protocol the first node death occurs over 90% times longer than the first node death in DEEC protocol and by about 130% than SEP.Postprint (published version

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Elastic hybrid MAC protocol for wireless sensor networks

    Get PDF
    The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    Extending the Lifetime of Wireless Sensor Networks Based on an Improved Multi-objective Artificial Bees Colony Algorithm

    Get PDF
    Reducing the sensors\u27 energy expenditure to prolong the network lifespan as long as possible remains a fundamental problem in the field of wireless networks. Particularly in applications with inaccessible environments, which impose crucial constraints on sensor replacement. It is, therefore, necessary to design adaptive routing protocols, taking into account the environmental constraints and the limited energy of sensors. To have an energy-efficient routing protocol, a new cluster heads’ (CHs) selection strategy using a modified multi-objective artificial bees colony (MOABC) optimization is defined. The modified MOABC is based on the roulette wheel selection over non-dominated solutions of the repository (hyper-cubes) in which a rank is assigned to each hypercube based on its density in dominated solutions of the current iteration and then a random food source is elected by roulette from the densest hypercube. The proposed work aims to find the optimal set of CHs based on their residual energies to ensure an optimal balance between the nodes\u27 energy consumption. The achieved results proved that the proposed MOABC-based protocol considerably outperforms recent studies and well-known energy-efficient protocols, namely: LEACH, C-LEACH, SEP, TSEP, DEEC, DDEEC, and EDEEC in terms of energy efficiency, stability, and network lifespan extension

    Spider monkey optimization routing protocol for wireless sensor networks

    Get PDF
    Uneven energy consumption (UEC) is latent trouble in wireless sensor networks (WSNs) that feature a multiple motion pattern and a multi-hop routing. UEC often splits the network, reduces network life, and leads to performance degradation. Sometimes, improving energy consumption is more complicated because it does not reduce energy consumption only, but it also extends network life. This makes energy consumption balancing critical to WSN design calling for energy-efficient routing protocols that increase network life. Some energy-saving protocols have been applied to make the energy consumption among all nodes inside the network equilibrate in the expectancy and end power in almost all nodes simultaneously. This work has suggested a protocol of energy-saving routing named spider monkey optimization routing protocol (SMORP), which aims to probe the issue of network life in WSNs. The proposed protocol reduces excessive routing messages that may lead to the wastage of significant energy by recycling frequent information from the source node into the sink. This routing protocol can choose the optimal routing path. That is the preferable node can be chosen from nodes of the candidate in the sending ways by preferring the energy of maximum residual, the minimum traffic load, and the least distance to the sink. Simulation results have proved the effectiveness of the proposed protocol in terms of decreasing end-to-end delay, reducing energy consumption compared to well-known routing protocols

    An Energy Efficient Evo-Fuzzy Sleep Scheduling Protocol for Stationary Target Coverage in Wireless Sensor Networks

    Get PDF
    Target coverage is a fundamental problem that needs to be addressed in sensor networks for a variety of applications such as environment monitoring and surveillance purposes. A typical approach to prolong network lifetime would entail the partitioning of the sensors capable of sensing the targets, in a network for target monitoring into several disjoint subsets such that each subset can cover all the targets. Thus, each time only the sensors in one of such subsets are activated. In this paper, we have proposed a novel sleep scheduling protocol, abbreviated as EEFSSP, based on this concept which incorporates three novel features. Firstly, it paves way for an equitable distribution of nodes while forming cover sets through the proposed CSGH heuristic. Secondly, it schedules the cover sets using an evolutionary approach with the objective being to optimize the maximum breach interval. Thirdly, the EEFSSP introduces a novel routing protocol abbreviated as DFPRP to establish routes to transfer data packets to the Base Station, with the objective being to ensure energy-efficiency and minimize the number of packet drops. We finally conduct experiments by simulation to evaluate the performance of the proposed scheme under various conditions, and compare its performance with other relevant protocols. The experimental results show that the proposed scheme clearly outperforms its peers by delivering a much longer network lifetime and minimizing the number of packet drops

    Self-Organized Disjoint Service Placement in Future Mobile Communication Networks

    Get PDF
    Future mobile communication networks will offer many ubiquitous services to its clients such as voice and video communication, access to data and files, use of virtual resources in cloud, etc. The provision of these services will have to face the different challenges posed by future wireless networks such as changing network topology, variable load conditions, clients’ distribution, QoS requirements etc. is a very difficult task and requires a high degree of self-organization in network operations. One important problem in this context is the self-organized service placement which refers to the problem of finding optimal nodes in the network that are most suitable for hosting a particular service type. An optimal placement of a service and its instances (replicas) not only minimizes the service costs but also reduces the overall network traffic and improves connectivity between clients and servers. This paper proposes a novel network service called Self-Organized Disjoint Service Placement (SO-DSP) service which manages other network services and their instances in order to achieve overall network optimization while keeping the individual service’s quality at the same level for its clients. The clients of SO-DSP are not the end-users of the network but the offered network service

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesďż˝ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Energy optimization for wireless sensor networks using hierarchical routing techniques

    Get PDF
    Philosophiae Doctor - PhDWireless sensor networks (WSNs) have become a popular research area that is widely gaining the attraction from both the research and the practitioner communities due to their wide area of applications. These applications include real-time sensing for audio delivery, imaging, video streaming, and remote monitoring with positive impact in many fields such as precision agriculture, ubiquitous healthcare, environment protection, smart cities and many other fields. While WSNs are aimed to constantly handle more intricate functions such as intelligent computation, automatic transmissions, and in-network processing, such capabilities are constrained by their limited processing capability and memory footprint as well as the need for the sensor batteries to be cautiously consumed in order to extend their lifetime. This thesis revisits the issue of the energy efficiency in sensor networks by proposing a novel clustering approach for routing the sensor readings in wireless sensor networks. The main contribution of this dissertation is to 1) propose corrective measures to the traditional energy model adopted in current sensor networks simulations that erroneously discount both the role played by each node, the sensor node capability and fabric and 2) apply these measures to a novel hierarchical routing architecture aiming at maximizing sensor networks lifetime. We propose three energy models for sensor network: a) a service-aware model that account for the specific role played by each node in a sensor network b) a sensor-aware model and c) load-balancing energy model that accounts for the sensor node fabric and its energy footprint. These two models are complemented by a load balancing model structured to balance energy consumption on the network of cluster heads that forms the backbone for any cluster-based hierarchical sensor network. We present two novel approaches for clustering the nodes of a hierarchical sensor network: a) a distanceaware clustering where nodes are clustered based on their distance and the residual energy and b) a service-aware clustering where the nodes of a sensor network are clustered according to their service offered to the network and their residual energy. These approaches are implemented into a family of routing protocols referred to as EOCIT (Energy Optimization using Clustering Techniques) which combines sensor node energy location and service awareness to achieve good network performance. Finally, building upon the Ant Colony Optimization System (ACS), Multipath Routing protocol based on Ant Colony Optimization approach for Wireless Sensor Networks (MRACO) is proposed as a novel multipath routing protocol that finds energy efficient routing paths for sensor readings dissemination from the cluster heads to the sink/base station of a hierarchical sensor network. Our simulation results reveal the relative efficiency of the newly proposed approaches compared to selected related routing protocols in terms of sensor network lifetime maximization
    • …
    corecore