6,012 research outputs found

    Equilibrium in Queues Under Unknown Service Times and Service Value

    Get PDF
    In the operations research literature, the queue joining probability is monotonic decreasing in the queue length; the longer the queue, the fewer consumers join. Recent academic and empirical evidence indicates that queue-joining probabilities may not always be decreasing in the queue length. We provide a simple explanation for these nonmonotonic queue-joining strategies by relaxing the informational assumptions in Naor\u27s model. Instead of imposing that the expected service time and service value are common knowledge, we assume that they are unknown to consumers, but positively correlated. Under such informational assumptions, the posterior expected waiting cost and service value increase in the observed queue length. As a consequence, we show that queue-joining equilibria may emerge for which the joining probability increases locally in the queue length. We refer to these as “sputtering equilibria.” We discuss when and why such sputtering equilibria exist for discrete as well as continuously distributed priors on the expected service time (with positively correlated service value)

    Equilibrium in Queues Under Unknown Service Times and Service Value

    Full text link

    Transform-domain analysis of packet delay in network nodes with QoS-aware scheduling

    Get PDF
    In order to differentiate the perceived QoS between traffic classes in heterogeneous packet networks, equipment discriminates incoming packets based on their class, particularly in the way queued packets are scheduled for further transmission. We review a common stochastic modelling framework in which scheduling mechanisms can be evaluated, especially with regard to the resulting per-class delay distribution. For this, a discrete-time single-server queue is considered with two classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2). The steady-state analysis relies on the use of well-chosen supplementary variables and is mainly done in the transform domain. Secondly, we propose and analyse a new type of scheduling mechanism that allows precise control over the amount of delay differentiation between the classes. The idea is to introduce N reserved places in the queue, intended for future arrivals of class 1

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium

    Transient bayesian inference for short and long-tailed GI/G/1 queueing systems

    Get PDF
    In this paper, we describe how to make Bayesian inference for the transient behaviour and busy period in a single server system with general and unknown distribution for the service and interarrival time. The dense family of Coxian distributions is used for the service and arrival process to the system. This distribution model is reparametrized such that it is possible to define a non-informative prior which allows for the approximation of heavytailed distributions. Reversible jump Markov chain Monte Carlo methods are used to estimate the predictive distribution of the interarrival and service time. Our procedure for estimating the system measures is based in recent results for known parameters which are frequently implemented by using symbolical packages. Alternatively, we propose a simple numerical technique that can be performed for every MCMC iteration so that we can estimate interesting measures, such as the transient queue length distribution. We illustrate our approach with simulated and real queues

    Bayesian control of the number of servers in a GI/M/c queuing system

    Get PDF
    In this paper we consider the problem of designing a GI/M/c queueing system. Given arrival and service data, our objective is to choose the optimal number of servers so as to minimize an expected cost function which depends on quantities, such as the number of customers in the queue. A semiparametric approach based on Erlang mixture distributions is used to model the general interarrival time distribution. Given the sample data, Bayesian Markov chain Monte Carlo methods are used to estimate the system parameters and the predictive distributions of the usual performance measures. We can then use these estimates to minimize the steady-state expected total cost rate as a function of the control parameter c. We provide a numerical example based on real data obtained from a bank in Madrid

    Service and price competition when customers are naive

    Full text link
    We consider a system of two service providers each with a separate queue. Customers choose one queue to join upon arrival and can switch between queues in real time before entering service to maximize their spot utility, which is a function of price and queue length. We characterize the steady-state distribution for queue lengths, and then investigate a two-stage game in which the two service providers first simultaneously select service rates and then simultaneously charge prices. Our results indicate that neither service provider will have both a faster service and a lower price than its competitor. When price plays a less significant role in customers service selection relative to queue length or when the two service providers incur comparable costs for building capacities, they will not engage in price competition. When price plays a significant role and the capacity costs at the service providers sufficiently differ, they will adopt substitutable competition instruments: the lower cost service provider will build a faster service and the higher cost service provider will charge a lower price. Comparing our results to those in the existing literature, we find that the service providers invest in lower service rates, engage in less intense price competition, and earn higher profits, while customers wait in line longer when they are unable to infer service rates and are naive in service selection than when they can infer service rates to make sophisticated choices. The customers jockeying behavior further lowers the service providers capacity investment and lengthens the customers duration of stay

    BAYESIAN CONTROL OF THE NUMBER OF SERVERS IN A GI/M/C QUEUING SYSTEM

    Get PDF
    In this paper we consider the problem of designing a GI/M/c queueing system. Given arrival and service data, our objective is to choose the optimal number of servers so as to minimize an expected cost function which depends on quantities, such as the number of customers in the queue. A semiparametric approach based on Erlang mixture distributions is used to model the general interarrival time distribution. Given the sample data, Bayesian Markov chain Monte Carlo methods are used to estimate the system parameters and the predictive distributions of the usual performance measures. We can then use these estimates to minimize the steady-state expected total cost rate as a function of the control parameter c. We provide a numerical example based on real data obtained from a bank in Madrid.
    • 

    corecore