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Abstract

In this paper we consider the problem of designing a GI/M/c queueing system. Given arrival

and service data, our objective is to choose the optimal number of servers so as to minimize

an expected cost function which depends on quantities, such as the number of customers in the

queue. A semiparametric approach based on Erlang mixture distributions is used to model the

general interarrival time distribution. Given the sample data, Bayesian Markov chain Monte Carlo

methods are used to estimate the system parameters and the predictive distributions of the usual

performance measures. We can then use these estimates to minimize the steady-state expected

total cost rate as a function of the control parameter c. We provide a numerical example based

on real data obtained from Madrid bank.
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1 Introduction

Optimal design and control of queues have been extensively investigated from an operational research

point of view, see e.g. Kitaev and Rykov (1995). However, in this framework, the system parameters

are typically assumed known. In practice, the system manager is faced with the problem of estimating

the system parameters before solving the optimization problem. Furthermore, a common approach

consist in selecting a queueing model and estimate the parameters without considering the uncertainty

induced from this estimation in the system design. The Bayesian methodology offers a natural way

to introduce the uncertainty resulting from the parameter estimation and model selection into a cost

function depending on estimated performance measures.

Bayesian analysis of queueing systems is a fairly recent research area. Some recent references

are Armero and Conesa (2000), Auśın et al. (2003, 2004). In these works, Bayesian inference and

prediction is undertaken for different queueing models ranging from the M/M/c system to more general

queues. However, although most Bayesian analyses have considered the estimation of quantities of

interest such as queue size, few studies have been devoted to the design and control problem. In one of

the first works in Bayesian estimation for queues, Bagchi and Cunningham (1972) develop an optimal

design procedure to find the optimum service rate and system capacity in a single server, Markovian

queue. Also, Armero and Bayarri (1996) discusses some criteria for deciding the number of servers

in a M/M/c queue and Wiper (1998) also for the Er/M/1 model, but no systematic procedure for

decision making is proposed. These works motivates the formulation of a closed expression based on

a cost structure to address the decision problem on the number of servers.

On the other hand, most Bayesian analyses have considered queueing systems where the customers

arrive according to a Poisson process. To the best of our knowledge, the only exception is Wiper (1998)

where inference for the Er/M/c model is considered. However, although the Erlang distribution may

be used to fit interarrival (or service) time data with coefficient of variation less than one, it is

inappropriate if the data have large coefficient of variation or are multimodal. Our objective in this
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paper is thus to consider Bayesian control for the general, GI/M/c queueing system.

In
∮

2, we describe the GI/M/c queueing model where we consider a semiparametric approximation

to the general interarrival time distribution based on a mixture of Erlang distributions. Note that

this family includes the Erlang, hyperexponential and exponential distributions, which are commonly

used in the queueing literature, as special cases. It is also dense over the set of distributions on the

positive reals.

The use of mixture distributions to model data is very common and the Bayesian approach provides

an important tool for semiparametric density estimation, see, for example, Diebolt and Robert (1994).

Markov Chain Monte Carlo methods (MCMC), see Robert (1996), have been developed for Bayesian

analyses for mixture models. Recently, MCMC methods for exploring mixture models of unknown

dimension have been proposed. Richardson and Green (1997) introduced the reversible jump technique

to analyze normal mixtures. This type of algorithm was used by Rı́os et al. (1998) for exponential

mixtures and Wiper et al. (2001) for mixtures of gamma distributions. More recently, an alternative

approach to reversible jump based on a birth-death process has been proposed by Stephens (2000). In

∮
3, we make use of the latter methodology to make inference for the system parameters. We define

prior distributions and propose a birth-and death MCMC algorithm to obtain a sample from the joint

posterior distribution of the system parameters and the predictive interarrival time distribution.

In
∮

4 and
∮

5, we describe describe the estimation of various quantities of interest in the system

and address the problem of optimizing the number of servers. Firstly, we estimate the traffic intensity

and the probability that the equilibrium condition holds. Then, assuming a stable system, we estimate

the predictive distributions of the system size and the waiting time in the queue, among other char-

acteristics. Finally, we propose a steady state, average cost function which depends on the number of

servers and some performance measures. The predictive cost and the performance measures are all

estimated using the data generated from the MCMC algorithm.

In
∮

6, we illustrate the methodology with real data obtained from Madrid bank. Conclusions and
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a discussion of possible extensions are included in
∮

7.

2 Queueing model

Throughout, we will consider a multichannel queueing system with c servers FIFO discipline and

independence between interarrival and service times. Furthermore, service times are independent

and exponentially distributed with unknown mean 1/µ. In order to model the general interarrival

time distribution, we use a semiparametric model based on a mixture of Erlang distributions. Thus,

customers are assumed to arrive individually with independent interarrival times distributed as a

mixture of Erlang distributions. If T is a typical interarrival time, we have,

f(t | k,w, λ, ν) =
k∑

r=1

wrEr(t | νr, λr), 0 < t < ∞, (1)

where k is the number of mixture components, w = (w1, ..., wk), are weights and Er(t | νr, λr)

represents the Erlang density function, which has been parameterized to have mean λr, for r = 1, . . . , k,

that is,

Er(t | νr, λr) =
(νr/λr)

νr

Γ(νr)
tνr−1 exp(− νr

λr
t). (2)

For fixed k, this model includes the usual Erlang, hyperexponential and exponential distributions as

special cases and letting k →∞, essentially any distribution on the positive real line can be modeled

as a mixture of Erlang distributions.

We wish to estimate the performance measures and a cost function for the system in equilibrium.

The equilibrium condition for a GI/G/c queue is that the traffic intensity, ρ, is less than the number

of servers, c, see, for example, Gross and Harris (1985). In the GI/M/c model as outlined above, the

traffic intensity is given by,

ρ =

(
µ

k∑
r=1

wrλr

)−1

. (3)
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3 Bayesian inference.

In this section, we develop Bayesian inference techniques for the unknown arrival parameters, k,w,λ =

(λ1, . . . , λk),ν = (ν1, . . . , νk) and for the service parameter µ.

We consider throughout the simple experiment of observing ns service times, s = {s1, ..., sns
},

and na interarrival times, t = {t1, ..., tna
}, which has been considered in a number of earlier articles;

see e.g. Armero and Bayarri (1996). Given this experiment, the likelihood function separates into

two parts, one concerning the arrival parameters, (k,w, λ, ν) and another concerning the service

parameter, µ. Hence, assuming independent prior distributions for the arrival and service parameters,

the corresponding posterior distributions will also be independent a posteriori.

3.1 Prior specification and updating

Here, we assign prior distributions for the system parameters. For the service rate, µ, we can assume

a gamma prior distribution, µ ∼ G (a, b), that is

f(µ | a, b) =
ba

Γ(a)
µa−1e−bµ for µ > 0.

It is straightforward to show that, conditional on the service data, the posterior distribution is also

gamma so that,

µ | s ∼ G

(
a + ns, b +

ns∑

i=1

si

)
. (4)

In order to make inference for the interarrival distribution parameters, following Diebolt and Robert

(1994), it is convenient to introduce a missing data formulation in which we define a set of independent

and identically distributed (i.i.d.) latent variables, Z1, ..., Zna , associated with the interarrival time

variables, T1, ..., Tna , so that,

Ti | Zi = r ∼ Er (νr, µr) , P (Zi = r | k,w) =wr,

for r = 1, ..., k. With this approach, every interarrival data set, t = {t1, ..., tna}, is associated to a
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missing data set, z = {z1, ..., zna
} , indicating the specific components of the mixture from which the

observed interarrival times are assumed to arise.

Now, we can define a joint prior distribution on the mixture parameters, (k,w, λ,ν). Firstly, we

assume a truncated Poisson prior distribution for the mixture size, k, taking values from 1 to kmax,

P (k) ∝ γk

k!
, (5)

In practice we take γ = 2 and kmax = 10 in order to penalize against overfitting the data with mixtures

with a large number of components. We also define prior distributions for the remaining parameters

conditional on k,

w | k ∼ D(φ, ..., φ), νr | k ∼ GE(ϑ), λ−1
r | k ∼ G(α, β),

for r = 1, ..., k, where D(φ, ..., φ) denotes a symmetric Dirichlet distribution,

f(w | k) =
Γ(kφ)
Γ(φ)k

k∏

i=1

wφ−1
i

GE(ϑ) is a geometric distribution with mean 1/ϑ, i.e.

P (νi) = (1− ϑ)νi−1ϑ for νi = 1, 2, . . .

and G(α, β) denotes a gamma distribution. Typically, in practice we set, for all r = 1, ..., k; φr = 1,

which implies a uniform prior for w and α = 1.1, β = 1 and ϑ = 0.01 giving fairly diffuse priors for

λr and νr with finite means.

Conditional on k, and given the interarrival time data, the required posterior conditional distribu-

tions for the MCMC algorithm can be shown to be,

P (Zi = r | t, k,w, λ, ν) ∝ wr
(νr/λr)

νr

Γ(νr)
tνr−1
i exp(− νr

λr
ti), for r = 1, ..., k,

w | t, z,k ∼ D(φ1 + n1, ..., φk + nk),

λr | t, z,k ∼ IG(α + nrνr, β + Trνr),
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and,

f(νr | t, z,k,w, λ) ∝ νnrνr
r

Γ(νr)nr
exp

{
−νr

(
− log(1− ϑ) +

Sr

λr
+ nr log λr − log Pr

)}
, (6)

where nr = #{Zi = r}, Sr =
∑

i:Zi=r

ti and Pr =
∏

i:Zi=r

ti, for r = 1, ..., k.

3.2 BDMCMC algorithm

In this subsection, we propose a birth-death MCMC (BDMCMC) algorithm to obtain a sample from

the joint posterior distribution of the interarrival parameters, k,w, λ and ν. The BDMCMC approach

was introduced by Stephens(2000) for normal mixtures and is based on a birth-death process (BD)

where the mixture size, k, changes so that births and deaths of the mixture components occur in

continuous time. The stationary distribution of the BD process is the joint posterior of the mixture

parameters. In order to improve mixing, the BD process can be combined with a standard MCMC

method where k is kept fixed, as will be shown further on.

In the BD process, births of the mixture components occur at a constant rate which we might set

equal to the parameter, γ, from the prior distribution of k in (5). A birth increases the number of

components by one. The weight of the new component are generated from a beta distribution with

parameters (1, k) and the remaining parameters are sampled from the prior distribution. The death

rate of every mixture component is a likelihood ratio of the model with and without this component,

given by,

δr0 =
na∏

i=1




∑k
r=1
r 6=r0

wr

1−wr0
Er(ti | νr, λr)

∑k
r=1 wrEr(ti | νr, λr)


 , for r0 = 1, ..., k.

Thus, death rates are very low if the corresponding component explains a lot of data and high if it

does not. The total death rate, δ, of the process at any time is the sum of the individual death rates.

A death decreases the number of mixture components by one. The birth and death processes are

independent Poisson processes, thus, the time to next birth/death event is exponentially distributed

with mean 1/ (δ + γ) and a birth or death occur with probabilities proportional to γ and δ, respectively.
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Then, we define an algorithm, based on Stephens(2000), as follows:

1. Set initial values k(0),w(0), λ(0), ν(0).

Birth Death process.

2. Run the birth-death process for a fixed time t0.

2.1. Start from k(j),w(j), λ(j), ν(j).

2.2. Compute the death rates.

2.3. Simulate the exponential time to next jump.

2.4. Simulate the type of jump (birth or death).

2.5. Modify the mixture components and

2.6. if the run time is less than t0 go to 2.2.

MCMC algorithm conditional on k.

3. Update the allocation by sampling from z(j+1) ∼ z| t,k(j+1),w(j), λ(j), ν(j).

4. Update the weights by sampling from w(j+1) ∼ w| t, z(j+1), k(j).

5. For r = 1, ..., k(j+1),

5.1. Update the means by sampling from µ
(j+1)
r ∼ µr| t,z(r+1), k(j+1).

5.2. Update νr using a Metropolis step.

6. j = j + 1. Go to 2.

Step 2 of the algorithm is the BD process described above. The BD process is run for a fixed

time, t0, in each iteration of the algorithm. Following Stephens (2000), we have fixed in our examples

t0 = 1 because doubling t0 is equivalent to doubling γ. As should be expected, we have found in

practice that larger values of the birth rate, γ, produce better mixing but require more time in the

computation of the algorithm.

Steps 3 to 5 are standard Gibbs sampling, see, for example, Gelfand and Smith (1990) whereby

the model parameters are updated conditional on the mixture size, k. The only slightly complicated

step is 5.2. where we introduce a Metropolis Hasting method, see Hastings(1970), to sample from the
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posterior distribution of ν. To do this, we generate candidate values for ν from a negative binomial

proposal distribution. We have chosen this proposal distribution because, for large values of ν, the

conditional distribution in (6) has a similar form to a negative binomial distribution. This part of the

algorithm where the mixture size, k, is kept fixed is very similar to that used in Auśın et al. (2004).

This algorithm can be shown to produce a sample from the joint posterior parameter distribution;

see e.g. Stephens (2000). Thus, given the MCMC output of size J , we can estimate the predictive

density of the interarrival time distribution using,

f(t | s, t) =
1
J

J∑

j=1

k(r)∑
r=1

w(j)
r Er(t | ν(j)

r , λ(j)
r ). (7)

For further details of this type of algorithm in the context of Bayesian inference for a normal

mixture model, see Stephens (2000) or Hurn et al. (2003).

4 Estimation of performance measures in the system

Suppose now that we have obtained a Monte Carlo sample of size J from the posterior distribution of

the arrival parameters, via the BDMCMC algorithm, and the service parameter µ via direct sampling

of the gamma density f(µ | s) as in (4). Then we can estimate the probability of having a stationary

distribution with,

P (ρ < c | s, t) ≈ 1
J

#
{

ρ(j) < c
}

, (8)

where,

ρ(j) =


µ(j)

k(j)∑
r=1

w(j)
r λ(j)

r



−1

, (9)

and {(k(1),w(1), λ(1), ν(1)), ..., (k(J),w(J), λ(J), ν(J))} is the sample obtained from the BDMCMC al-

gorithm and {µ(1), ..., µ(J)} is the sample generated from the posterior distribution of µ given by

(4). If this probability is large, it may be reasonable to assume that the system is stable. Assuming
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equilibrium, we can estimate the traffic intensity, given in (3), as follows,

E [ρ | t, s, ρ < c] ≈ 1
J1

∑

j:ρ(j)<c

ρ(j), (10)

where ρ(j) is given in (9) and,

J1 = #{ρ(j) < c}, (11)

is the size of the MCMC subsample where the equilibrium condition holds.

It is well known, see e.g. Gross and Harris (1985), that in queuing systems with non-Markovian

interarrival process, the stationary distribution of the number of customers, N∗, found in the system

by an arriving customer differs from the stationary distribution of the number of customers, N, found

in the system at an arbitrary time instant. For our GI/M/c model, given the system parameters,

θ = {k,w, λ,ν, µ} , we have that (see e.g. Allen, 1990),

P (N∗ = n | θ) =





c−1∑
m=n

(−1)m−n (
m
n

)
Um for n = 0, 1, ..., c− 2,

Dσn−c n ≥ c− 1,

(12)

where σ is the unique root in the interval (0, 1) of the equation,

σ = f∗A (cµ (1− σ)) , (13)

and f∗A is the Laplace transform of the interarrival time distribution,

f∗A (s) =
k∑

r=1

wr

(
νr/λr

s + νr/λr

)νr

,

and,

gp = f∗A (pµ) , for p = 1, ..., c,

Cp =





1 if p = 0,

p∏
m=1

(
gm

1−gm

)
if p = 1, 2, ..., c,

D =

[
1

1− σ
+

c∑
p=1

(
c
p

)
Cp(1−gp)

c(1−gp)−p
c(1−σ)−p

]−1

,

Un = DCn

c∑
p=n+1

(
c
p

)
Cp(1−gp)

c(1−gp)−p
c(1−σ)−p , for n = 0, 1, ..., c− 1. (14)
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The distribution of N depends on the distribution of N∗ and is given by,

P (N = n | θ) =





1− ρ
c − ρ

c−1∑
p=1

P (N∗ = p− 1 | θ)
(

1
p − 1

c

)
for n = 0,

ρ
nP (N∗ = n− 1 | θ) for n = 1, ..., c− 1,

ρ
c P (N∗ = n− 1 | θ) for n ≥ c.

(15)

Assuming equilibrium, Monte Carlo approximations of the predictive stationary distributions of

N∗and N, can be obtained. For example, we can approximate the predictive distribution of N by,

P (N = n | s, t, ρ < c) ≈ 1
J1

∑

j:ρ(j)<c

P
(
N = n | θ(j)

)
(16)

where θ(j) = (k(j),w(j), λ(j), ν(j), µ(j)) and J1 is given in (11). Note that equation (13) has to be

solved for every θ(j), but it is easy to approximate σ(j) by using the Newton-Raphson method or a

similar procedure. Other quantities such as the stationary distribution of the number of busy servers

can also be estimated although again, we must distinguish between the number of busy servers at

arrival and arbitrary time instants, N∗
b and Nb. Observe that the number of busy servers is equal to

the number of customers in the system if there are less customers than servers and equals c in the

contrary case. Thus,

P (Nb = n | s, t, ρ < c) =





P (N = n | s, t, ρ < c) if n < c,

P (N ≥ c | s, t, ρ < c) if n = c.

(17)

Other important quantities are the predictive distributions of the number of customers in the

queue at arrival and arbitrary time instants, N∗
q and Nq. In the first case, we have,

P (Nq = n | s, t) =





P (N ≤ c | s, t) if n = 0,

P (N = c + n | s, t) if n ≥ 1.

(18)

Another measure which is of interest to arriving customers, is the waiting time in the queue, W .

Given the system parameters, θ, this is exponentially distributed with a jump of height P (W = 0) at

the origin. The distribution function is given by,

FW (x | θ) = 1− P (W > 0) exp {−cµ (1− σ)x} , x ≥ 0, (19)
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see Allen (1990), where,

P (W > 0 | θ) =
D

1− σ
, (20)

and where σ and D are given in (13) and (14), respectively. As above, we can use the following Monte

Carlo approximation,

FW (x | s, t) ≈ 1
J1

∑

j:ρ(j)<1

FW

(
x | θ(j)

)
(21)

Wiper (1998) shows that, for any given GI/M/1 system, where independent, continuous priors

on the arrival and service rates with positive density in ρ = 1 are considered, the moments of the

predictive distributions of waiting time and queue size do not exist. It is straightforward to see that

the moments for N∗, N , Nq, N∗
q and W do not either exist for the multiserver system, GI/M/c,

with the same prior conditions. Thus, the distributions given in (16) and in (21) do not have finite

moments. It is possible however to evaluate the expectations of these predictive distributions if we

assume ρ < c− ε instead of ρ < c, see Lehoczky (1990), but we have found in practical examples that

this procedure is very sensible to the election of ε. Observe, on the other hand, that the predictive

distribution of number of busy servers Nb given in (17) does have finite moments.

5 Cost functions and optimal control for the model.

In this section, we formulate cost functions in order to address the design problem for the GI/M/c

queueing model and determine the optimal number of servers in the system. We consider a classical,

linear, cost structure evaluated in the stationary state. Each cost function will depend linearly on the

expected values of the performance measures considered in the previous section, or equivalently, on

their mean values per unit of time (u.t.). Thus, we are dealing with an infinite horizon problem where

the objective function is the expected cost per u.t. evaluated in the stationary state.

Also, our aim is to construct cost functions which balance the designer’s and the customers’

interests. For that reason, we consider two different classes of costs in the queue: on the one hand,
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costs incurred from servers activities and, on the other hand, costs incurred from the wait of clients.

The first group of costs includes the expenses coming from the number of busy and empty servers

and the benefits obtained from the number of served clients which are all of them associated to the

designers’ interests. The second group of costs represents the customers’ interests and are related

with the number of clients and the period of time they spend waiting in the queue. We introduce the

following notation to define the cost structure:

rb = cost per u.t. per busy server.

re = cost per u.t. per empty server.

rs = cost for each customer that is served.

rq = cost per u.t. per customer waiting in the queue.

rW = cost per unit of waiting time in the queue.

These costs can take positive or negatives values on whether they correspond to profits or losses. As

the problem of designing a queue is not generally a work for clients but for people supervising the

system, we consider performance measures at arbitrary time instants and not at arrival time instants,

both described in the previous section. Under this construction, the total cost per u.t. will be,

Cost = rbNb + re {c−Nb}+ rsNs + rqL (Nq) + rW L (W ) , (22)

where Ns is the number of customers served per u.t. and Nb, Nq and W are the number of busy

servers, the number of customers and the waiting time in the queue, respectively, defined in the

previous section. L (Nq) represents the loss due to the number of people waiting for service and

L (W ) is the loss due to the time they spend waiting in queue. For example, we can consider a loss

formulation with the following structure,

L1 (Nq) =





0 if Nq ≤ n0,

1 if Nq > n0,

(23)

where a cost, rq, is incurred per u.t. if the queue length exceeds a previously specified threshold,
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n0 > 0. A more realistic alternative would be to consider a linear cost proportional to the number of

waiting customers,

L2 (Nq) =





Nq if Nq ≤ n0,

n0 if Nq > n0,

(24)

where a cost, rq, is incurred per u.t. per customer in the queue if the queue length does not exceed

a threshold, n0 < ∞. Similar loss functions, L1 (W ) and L2 (W ) , can be formulated for the waiting

time in the queue, for which a threshold, w0 < ∞, have to be fixed. The values of n0 and w0 are

finite by assumption because, as pointed out, the predictive distribution of W and Nq have no finite

moments, and thus, an infinite value for a threshold will lead to an infinite value of the expected cost.

Given that the system parameters verify the equilibrium condition and considering L1 loss func-

tions, the expected cost per u.t. each c is given by,

g (c | θ) = E [Cost | θ] = rec + (rb − re + rsµ) ρ + rqP (Nq > n0 | θ) + rW P (W > w0 | θ) . (25)

To understand this expression, note that on average, each busy server attends µ clients per u.t. so

that the number of served clients per u.t. is,

E [Ns | θ] = µE [Nb | θ] ,

and also for any GI/G/c system in equilibrium, the expected number of busy servers is,

E [Nb | θ] = ρ, (26)

see e.g. Gross and Harris (1985), which in our queuing model is given by (3). Finally, the required

probability for Nq can be obtained from (15) by using that,

P (Nq > n0 | θ) = 1− P (N ≤ n0 + c | θ) ,

and for W from (19). As an alternative to (25), expected costs can be derived with loss functions as

given in (24). For these cases, the expected losses will be,

E [L2 (Nq) | θ] =
n0∑

n=0

nP (N = n + c | θ) + n0 [1− P (N ≤ n0 + c | θ)] ,
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where the distribution of N is given in (15), and the expected loss for W can be shown to be,

E [L2 (W ) | θ] =
D [1− exp (−cµ (1− σ) w0)]

cµ (1− σ)2
.

For discrete functions, it is possible to find out how many minima there are considering a monotone

optimal procedure, see Lillo and Mart́ın (2000) . This consists in finding a point, c0, of the objective

function, g (c) , where g (c0 + 1) − g (c0) > 0, and such that, g (c + 1) − g (c) > 0 for every c > c0. It

can be shown that the expected cost function (25) allows a monotone optimal procedure if re > 0.

Observe that the probabilities that Nq and W are larger than n0 and w0 approaches to zero as c grows

and then, g (c) will be approximately linearly increasing for large c. The same argument can be used

for expected cost functions with losses with the structure given in (24).

If the system parameters are not known, but we have a sample of interarrival and service times,

{t, s}, we can estimate the mean cost per u.t. given the MCMC output in the usual way,

g (c | t, s, ρ < c) = E [Cost | t, s, ρ < c] ≈ 1
J1

∑

j:ρ(j)<c

E
[
Cost | θ(j)

]
, (27)

where J1 is given in (11).

6 Bank data problem.

In this section, we consider the design of a multiserver real bank in Madrid. Interarrival and service

times of 98 customers are recorded from 10:00 to 11:30 in the morning during three days. The mean

service time is approximately 275.16 seconds. Our Bayesian density estimation method predicts an

exponential distribution for service time distribution. Thus, we assume this model for the service

time. We also use a non-informative prior in (4) by setting a and b equal to zero. Then, the posterior

distribution of the service rate parameter, µ, is G (98, 26965.6) .

Figure 1 shows the histogram of the 98 interarrival times. The estimated density function (7)

using the Erlang mixture with the BDMCMCM algorithm has been superimposed. None of times is
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Figure 1: Histogram of interarrival time data and estimated interarrival time density.

larger than two minutes and the distribution seems to be bimodal. In fact, the posterior probability

of having two Erlang mixture components is very high, P (k = 2 | t) ≈ 0.958.

Given these arrival and service data, we estimate the posterior probability of having a stable

system, see (8), for different values of c, which are shown in Table 1. Observe that at least, 3 servers

are needed to assume that the ergodic condition, ρ < c, holds. However, 3 servers may not satisfy the

optimal conditions resulting from the balance of costs in the system, as will be shown below.

Table 1 also shows the estimations for the traffic intensity for each c, see (10). Note that using

(26), it can be shown that,

E [Nb | s, t, ρ < c] = E [ρ | s, t, ρ < c] .

Then, when there are only 1 or 2 servers, all of them are almost always busy on average as the system

is probably unstable. But, when there are 3 servers or more, the equilibrium condition holds with

high probability and there are approximately 2.66 busy servers on average.

Figure 2 illustrates the estimated probabilities describing the number of customers in the system,

N, see (16), at arbitrary time instants, for 3, 4 and 5 servers. Note that the probability of having

2 or 3 customers in the system are very similar for each number of servers. We have observed that

this feature does not appear in the predictive distribution of N∗ where we have identified the mode
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c 1 2 3 4 5 6

P (ρ < c | s, t) .00001 .00181 .89194 .99996 1.00 1.00

E [ρ | s, t, ρ < c] 0.999 1.976 2.661 2.660 2.660 2.6580

Table 1: Estimations of the posterior probabilities of having a stable system and the expected values

for the traffic intensity for some values of c.
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Figure 2: Predictive probabilities for the number of customers in the system at arbitrary time instants

for queues with 3, 4 and 5 servers.

in 2 customers for any number of servers. This illustrates the fact that, although the mean number of

busy servers at an arbitrary time instant is 2.66, the mean number of busy servers found by an arrival

customer is less than 2.66. It can also be seen that the distribution of N in a system with 3 servers

has a long tail compared to other systems. Note that just by increasing the number of servers from 3

to 4 the probability of having an empty queue, P (Nq = 0 | s, t) , grows from 0.42 to 0.89.

Figure 3 shows the distribution of the waiting time in the queue, W, see (21), for 3, 4 and 5 servers.

Observe that, in a system with 3 servers, the probability of having to wait less than 10 minutes (600

seconds) is fairly large, P (W < 10 | s, t) ≈ 0.85. However, again, if the value of c is increased from 3
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Figure 3: Predictive distribution functions of the waiting time (in seconds) in the queue for systems

with 3, 4 and 5 servers.

to 4 the probability of not having to wait, P (W = 0 | s, t) , obtained from (21), grows from 0.35 to

0.83.

Now, we can address the optimization problem with the bank data. We formulate different cost

functions defined from the minimum number of servers from which we have assumed equilibrium, that

is, 3 servers. In practice, it is not easy to assign costs associated with the wait of customers, but,

in general, the costs incurred from servers activities are known. Thus, we consider fixed costs per

u.t. per busy server, rb = 1.5, per empty server, re = 1, and per served customer, rs = −0.05, and

we consider different values for rq and rW . We assume a L2 loss function for Nq, see (24) and a L1

loss function for W , see (23). Finally, the thresholds for Nq and W are assumed to be n0 = 20 and

w0 = 2000, respectively, as the probability of exceeding these values is very small, see Figures 2 and

3.

Table 2 shows the estimated average cost per u.t. obtained from (27) for different values of rq

and rW . Each column corresponds to an average cost function depending on c. Optimum values are
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indicated in bold. Observe that the first two functions are very similar for c ≥ 4 and same feature is

observed for the last two functions. The reason is that, for c ≥ 4, the increase in rW does not affect

in the cost, because, in this case, the probability of having to wait more than w0 = 2000 seconds is

very close to zero. However, the increase in the cost per customer in the queue, rq, does affect in

the average cost function, as the value of E [Nq | Nq ≤ 20] is larger in this case. Finally, as expected,

Table 2 also shows that for c ≥ 7 all cost functions are very similar and tend to be the same linear

function with slope re = 1 not influenced by the values of rq and rW .

E [Cost | s, t, ρ < c]

c
rW = .01

rq = .01

rW = 1

rq = .01

rW = .01

rq = 1

rW = 1

rq = 1

3 4.3535 4.3584 6.8607 6.8655

4 5.3300 5.3300 5.5159 5.5159

5 6.3284 6.3284 6.3493 6.3493

6 7.3282 7.3282 7.3301 7.3301

7 8.3282 8.3282 8.3283 8.3283

Table 2: Estimated average cost per u.t. for different values of rq and rW . Optimal values are indicated

in bold.

7 Conclusions

In this paper, we have proposed a Bayesian approach for control of the number of servers c in a GI/M/c

system. We have developed a BDMCMC method based on mixtures of Erlang distributions to ap-

proximate the general interarrival time distribution, performance measures have been predicted and

incorporated into average cost functions to determine the optimal number of servers. This methodol-
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ogy have been illustrated with a real data set.

Our Bayesian approach can be extended to the GI/G/c queue considering Erlang mixtures both

for the interarrival and the service times. However, in this case, the stationary distributions are not

easy to calculate. One possibility is to consider the phase type family of distributions (PH) introduced

by Neuts (1981). Some known results of the GI/PH/c model could be used as the Erlang mixture is

a PH distribution. Similar ideas are implemented in Auśın et al. (2004) for the M/PH/1 queue.

A more general extension consists in the design of the GI/G/c/K model, with K ≤ ∞, where K

is the system capacity. It is possible to extend the cost structure to queues with finite capacity by

considering costs based on lost demand. An example for the particular case where the system capacity

equals the number of servers can be found in Auśın et al. (2003).

Some modifications of our analysis could also be carried out. An alternative to the BDMCMC

methodology is the “reversible jump” introduced by Richardson and Green (1997). This type of this

algorithm had been used in a previous work, to make inference on the general service time distribution

for a M/G/1 system, see Auśın et al. (2004). In practice, we have found that both schemes perform

similarly. However, the BDMCMC algorithm is somewhat easier to implement.

We could also have considered approximating the interarrival time with a mixture of gamma

distributions which is a more flexible model; see Wiper et al. (2001). However, a disadvantage of this

model is that the probability that a simpler model (exponential, Erlang or hyperexponential) cannot

be easily calculated; see e.g. Auśın et al. (2004). Another disadvantage is that the gamma mixture is

not PH which means that extension to more complex systems with this model is difficult.

Finally, there are some alternatives to the cost structure defined. For example, costs per unit of

time in the stationary state could be replaced by costs per busy cycle using the cycle criterion, see

Lillo (2000).
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