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Abstract

In this paper, we describe how to make Bayesian inference for the transient behaviour and busy period

in a single server system with general and unknown distribution for the service and interarrival time.

The dense family of Coxian distributions is used for the service and arrival process to the system. This

distribution model is reparametrized such that it is possible to define a non-informative prior which allows

for the approximation of heavy-tailed distributions. Reversible jump Markov chain Monte Carlo methods

are used to estimate the predictive distribution of the interarrival and service time. Our procedure for

estimating the system measures is based in recent results for known parameters which are frequently

implemented by using symbolical packages. Alternatively, we propose a simple numerical technique that

can be performed for every MCMC iteration so that we can estimate interesting measures, such as the

transient queue length distribution. We illustrate our approach with simulated and real queues.
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1 Introduction.

Two of the usual complicating factors in the queueing context are non-stationarity due to time-of-day effects

and non-exponential service (or/and inter-arrival) times. In many practical situations, the estimation of the

transient behaviour in real queues is of great interest, for example, when the system is regularly stopped

and started again, or when the convergence to the steady-state is very slow. On the other hand, systems

with both Poisson arrival process and exponential service times are rarely found in practice. Furthermore,

it is well known that some quantities in many communication systems, such as Internet-related systems,

have long-tailed distribution and cannot be represented by exponential densities. The main contributions of

this work is to show how to address these difficulties which are motivated with a real data problem from an

Israeli bank.

Bayesian estimation of stationary distributions in queueing systems, such as the queue size, is a fairly

developed research area. Some useful references are Armero and Bayarri (1994, 1996), Ríos et al. (1998),

Wiper (1998), Wiper et al. (2001), Armero and Conesa (2000, 2004) and Ausín et al. (2003, 2004) and

the references therein. However, much less progress has been made on transient and busy period analysis.

Some comments about the difficulties for the estimation of the transient behaviour are included in Armero

and Bayarri (1998). Transient analysis of two kind of birth and death Markov processes have been recently

considered in Dauxois (2004). The predictive busy period distribution for the M/M/1 queue is obtained in

Armero and Bayarri (1994) and for the M/G/1 in Ausín et al. (2004) using matrix-analytic methods. Most

of the queueing systems considered in the Bayesian literature assume whether Poisson arrival processes or

exponential service times. To our knowledge, the only exception is Conti (2004), where discrete Geo/G/1

queues are analyzed.

The class of Coxian distributions is considered in this paper to describe the arrival and service processes.

This distribution model is dense over the set of distributions on the positive reals, see e.g. Bertsimas (1990),

and thus, any continuous and positive distribution can be approximated arbitrarily closely with a Coxian

distribution by increasing the number of parameters. The Coxian family is equivalent to the mixtures of

2



generalized Erlang distributions (sum of exponentials with different rates) see Asmussen (2003), and thus, it

includes the exponential, Erlang, hyperexponential and mixtures of Erlang distributions as particular cases.

It is also equivalent to a considerable subset of the versatile class of phase-type distributions, the so-called

acyclic distributions, as shown in Cumani (1982).

The Coxian distribution have been considered in a previous work, see Ausín et al. (2003). We propose

a reparametrization of the Coxian mixture model following the ideas given in Robert and Mengersen (1999)

for normal mixtures and in Gruet et al. (1999) for exponential mixtures. We show that using this new

parametrization, it is possible to develop a non-informative approach which leads to very good approximations

of long-tailed distributions, such as the Pareto or Weibull distributions. Queueing systems with heavy-tailed

interarrival or service time distributions are very difficult to analyze. Abate et al. (1994) calculate the

performance measures for these kind of queues using numerical Laplace transform inversion. However, it is

not always posible to obtain convenient Laplace transforms of the long-tailed distributions as for the Pareto

distribution. The Laplace transform of the Coxian distribution is well known and thus, many results from the

queueing theory can be applied for the Bayesian estimation. Furthermore, it is known that if we approximate

a given general (short or long-tailed) interarrival or service time distributions by another distribution, the

performance measures such as the transient waiting time will also be approximately what it would be with

the original interarrival or service time distribution, see e.g. Feldmand and Whitt (1998) in the context of

exponential mixtures.

Our procedure for estimating the transient behaviour and busy period for the GI/G/1 queueing system

is based in the results obtained by Bertsimas and Nazakato (1992) when the system parameters are known.

These results involve roots of polynomial equations which can not be, in general, computed analytically

and they are frequently obtained by using symbolical packages. This approach is not feasible when using

reversible jump methods and not even the number of roots of the equation to solve is fixed. Alternative,

we describe a simple technique to obtain the polynomial coefficients in order to numerically find the roots

for every MCMC iteration so that we can estimate, for example, the Laplace transform of the busy period

distribution. Numerical inversion methods are also employed to approximate the inverse Laplace transform
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of the distributions under study.

This paper is organized as follows. In Section 2, we first introduce the Coxian distribution model with

a new parametrization. Then, we describe how to make Bayesian inference for this model using a non-

informative prior and a reversible jump MCMC algorithm, see Green (1995) and Richardson and Green

(1997). In Section 3, we start briefly describing the results obtained by Bertsimas and Nazakato (1992).

Then, we explain a numerical procedure to incorporate these results within the reversible jump algorithm

so that we can estimate the transient and busy period distributions given the interarrival and service data.

At the end of each section, our approach is illustrated with simulated and real queueing systems and some

concluding remarks are also included.

2 Fitting interarrival and service time distributions.

We will assume that both interarrival and service times are independent random variables following a Coxian

distribution, also called Mixed Generalized Erlang distribution (MGE), that is defined as follows. Let X be

an interarrival (or service) time, then,

X =



Y1, with probability = P1

Y1 + Y2, with probability = P2

...
...

Y1 + ...+ YL, with probability = PL

(1)

where Yr ∼ exp (λr) , Pr, λr > 0 and
PL

r=1 Pr = 1. This distribution model has a nice visual representation

in terms of exponential phases, see Figure 1. Observe that the interarrival (or service) time of each customer

can be represented by a sequence of a variable number of exponential stages.

The Coxian distribution model (1) can also be expressed as a mixture form,

f (x | L,P,λ) =
LP

r=1
Prfr (x | λ1, ..., λr) , x ≥ 0, (2)

where fr (x | λ1, ..., λr) is the density of a generalized Erlang distribution, i.e. the density of a sum of r
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…

P1P1 P2P2 PL-1 PLPL

λ1 λ2 λL-1 λL

Figure 1: Graphical representation of a Coxian distribution.

exponentials with rates λ1, λ2, ... and λr. If all these rates are unequal, it is given by,

fr (x | λ1, ..., λr) =
rX

j=1

 rY
i=1
i6=j

λi

λi − λj

λj exp (−λjx) , x ≥ 0, (3)

see Johnson and Kotz (1970). It is possible to derive alternative expressions for the general case when there

are one or various groups or equal rates, but the formulas for the pdf are very complicated. In practice, when

some of the rates are equal or very close to each other, it seems to be more efficient to invert numerically

the Laplace transform of (3) given by,

f∗r (s | λ1, ..., λr) =
rY

i=1

µ
λi

λi + s

¶
. (4)

The numerical inversion can be done using the algorithm by Hosono (1981), see Appendix A, or a similar

procedure. In this article, we have determined to invert the Laplace transform (4) in case of having at least

a pair of rates whose difference is less than 10−4.

Cumani (1982) shows that the distribution model (1) is identifiable up to permutation of the rates and

then, we can assume without loss of generality that,

λ1 ≥ λ2 ≥ ... ≥ λL. (5)

The mixture model (1) have been also considered in Ausín et al. (2003) to approximate the general service

time in a M/G/c queue. However, in this work, the restriction (5) was not incorporated. This assumption

offers much advantage to develop inference because of the identifiability of the model and because it is
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possible to consider the following reparametrization,

λr = λ1υ2...υr, with 0 < υ ≤ 1, (6)

which allows improvements in the selection of the distributions a priori and in the implementation of the

MCMC algorithm, as will be shown in next sections. This kind of reparametrization has also been considered

in Robert and Mengersen (1999) for normal mixtures, and in Gruet et al. (1999) for exponential mixtures.

2.1 Bayesian inference.

We wish now to develop Bayesian inference considering a Coxian model for the interarrival and service time

distributions. Suppose that we have observed independently na interarrival times and ns service times. We

assume independence between the arrival and service processes and consider independent prior distributions

for the arrival and service parameters. Thus, the corresponding posterior distributions will also be inde-

pendent a posteriori. This assumptions have been also considered in a number of earlier articles; see e.g.

Armero and Bayarri (1996).

Therefore, we consider in this section that we have a sample of n interarrival (or service) times, x =

{x1, ..., xn}, following a Coxian distribution and we want to make inference over its parameters, (L,P,λ),

that under the reparametrization (6), have been transformed into (L,P, λ1,υ). Considering first that L is

known, we can assume the following improper prior distribution,

P ∼ Dirichlet (1, ..., 1) ,

f (λ1, υ2, ..., υL) ∝ 1

λ1

LQ
r=2

υ−0.1r (1− υr)
−0.1 . (7)

Note that the prior distribution for υ is the product of r Beta distributions, Be (1.1, 1.1). It can be shown

that this choice for the prior leads to a proper posterior distribution, see Appendix B. It is required that

the parameters of the Beta distributions are larger than one for the finiteness of the predictive mean of X,

as shown in Appendix B. Note that using the first parametrization, (L,P,λ), it is not possible to use an

improper prior distribution where the mixture component parameters are independent from each other, see
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e.g. Diebolt and Robert (1994). This type of parametrization and prior choice allows to approximate long-

tailed distributions as will be shown in the examples. This is because we are not making a strong assumption

about the rate of the first component, λ1, and consequently, the means of the mixture components can be

as small or as large as required.

Our task is now to construct an MCMC algorithm to sample from the joint posterior distribution. Firstly,

we assume that the number of components in the mixture, k, is fixed. As is usually done in mixtures models,

see e.g. Diebolt and Robert (1994), we consider a data augmentation setup introducing the component

indicator variables, Zi, such that,

f (xi | Zi = z) = fr (xi | λ1, υ2, ..., υz) ,

where from now on fr (x | λ1, υ2, ..., υz) will denote fr (x | λ1, λ2, .., λz) with the new parametrization. Then,

for i = 1, ..., n,

P (Zi = r | xi,P, λ1,υ) ∝ Prfr (xi | λ1, υ2, ..., υr) , for r = 1, ..., L, (8)

where fr is evaluated by using (3) or inverting (4) depending on the case. Given the missing data, z =

{z1, ..., zn}, the conditional posterior distribution of the weights is explicit and given by,

P | x, z ∼ Dirichlet(1 + n1, ..., 1 + nL), (9)

where nr = #{zi = r} for r = 1, ..., L. The conditional posterior distributions of λ1 and υ have not explicit

expressions but their density functions can be evaluated with,

f (λ1 | x, z,υ) ∝
nQ

i=1
fzi (xi | λ1, υ2, ..., υzi) f (λ1) , (10)

f (υr | x, z,λ1,υ−r) ∝
nQ

i=1
zi≥r

fzi (xi | λ1, υ2, ..., υzi) f (υr) , for r = 2, ..., L. (11)

In Ausín et al. (2003), a larger missing data set was considered in order to obtain explicit conditional

posterior distributions. However, we have observed that, in general, the performance of the algorithm is

better (specially for large L) if we introduce Metropolis Hastings steps within the Gibbs sampler to generate

values from (10) and (11), as shown below.
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We propose the following Gibbs sampling scheme:

1. Set initial values for P(0), λ(0)1 and υ(0).

2. Complete the missing data sampling z(j) from z | x,P(j−1), λ(j−1)1 ,υ(j−1).

3. Generate P(j) from P | x, z(j).

4. Generate λ
(j)
1 from λ1 | x, z(j),υ(j−1).

Use a Metropolis step with a Gamma candidate distribution,

λ̃1 ∼ G
³
m,m/λ

(j−1)
1

´
. (12)

5. Generate υ
(j)
r from υ1 | x, z(j−1), υ(j)1 , ..., υ

(j)
r−1, υ

(j−1)
r+1 , ..., υ

(j−1)
L , for r = 1, ..., L.

Use a Metropolis step with a Beta mixture candidate distribution,

g
³
υ̃r | υ(j−1)r

´
=
1

2
Be

µ
1

1− υ
(j−1)
r

, 2

¶
+
1

2
Be

µ
2,

1

υ
(j−1)
r

¶
, for r = 2, ..., L (13)

6. j = j + 1. Go to 2.

In steps 4 and 5 candidates values for the conditional posterior distributions of λ1 and υr are generated

and accepted with probability,

α = min

 f
³
θ̃ | ·

´
f
³
θ(j−1) | ·

´ g
³
θ(j−1) | θ̃r

´
g
³
θ̃ | θ(j−1)r

´
 ,

where θ represents one of the parameters λ1 or υr; f is given in (10) and (11), respectively, and g is its

candidate distribution given in (12) and (13), respectively. In step 4, the choice for (12) is based on the

similarity of (10) with a Gamma distribution. Note that λ1 follows a Gamma posterior distribution when

a larger missing data set is considered, see Ausín et al. (2003). The value of m can be chosen to give an

adequate acceptance rate. We have found in practice that m = 2 seems to be appropriate. In step5, the

beta mixture (13) has been chosen to avoid generating indefinitely values for υr near to zero or one and

simultaneously preserve the mode of the value of υr in the previous iteration, see Wiper (?).
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We can extend the previous Gibbs sampling algorithm to the case where k is unknown. First, we assume

a discrete uniform prior defined on [1, kmax]. Other choices such as Poisson or geometric prior distributions

are useful when low values of k are desired to be favoured a priori. In order to let the chain move through

the posterior distribution of k, we make use of the reversible jump technique introduced by Green (1995)

and adapted for normal mixtures in Richardson and Green (1997). Specific moves in the parameters are

needed to be defined to allow changing the number of components from k to k± 1.We consider the so called

split and combine moves where one mixture component, r, is splitted into two adjacent components (r1, r2)

or two adjacent components are combined into one, respectively. In the combine move the parameters are

modified such that,

P̃r = Pr1 + Pr2 , υ̃r = υr1υr2 ,

which implies that λ̃r = λr2 . For the case that r = 1 we consider λ̃1 = λ1υ2 . For the split move,

P̃r1 = u1Pr, P̃r2 = (1− u1)Pr,

where u1 ∼ U (0, 1) and,

υ̃r1 = u2 + υr (1− u2) , υ̃r2 =
υr

u2 + υr (1− u2)
,

where u2 ∼ U (0, 1) , which implies that,

λ̃r1 = λr−1u2 + λr (1− u2) , λ̃r2 = λr.

For the case that r = 1, we consider λ̃1 = λ1/u2 and υ̃2 = u2 where u2 ∼ U (0.5, 1) . Also, every observation

such that zi = r is assigned to any of the two components, r1 or r2, with probability,

P
³
Z̃i = rj

´
∝ P̃r1fr1

¡
xi | λ1, υ2, ..., υ̃rj

¢
, for j = 1, 2.

Note that the defined split-combine moves are chosen such that the parameters in the remaining mixture

components are not modified, as considered in Gruet et al. (1999), and do not necessarily preserve the

moments of the distribution of X. The acceptance probability of a split move is min {1, A} where,

A =
P̃

ñr1
r1 P̃

ñr2
r2

Pnr
r

Q
i:z̃i≥r1

fz̃i (xi | λ1, υ2, ..., υ̃z̃i)Q
i:zi≥r1

fzi (xi | λ1, υ2, ..., υzi)
× dL+1

bL
Q

i:zi=r

P
³
Z̃i = z̃i

´ × Pr (1− υr)

u2 + υr (1− u2)

9



when r > 1 and where ñrj is the number of observations assigned to component rj , for j = 1, 2 and dL and

bL are respectively the probabilities of a combine or a split move. The last factor is the determinant of

the Jacobian of the transform from (Pr, υr, u1, u2) to (P̃r1 , P̃r2 , υ̃r1 , υ̃r2). The acceptance probability for the

reverse combine move can be obtained analogously. Note that the acceptance probabilities does not need to

incorporate factorial terms due to the natural order of the rates derived from the new parametrization, see

Gruet et al. (1999). As usual, given a MCMC sample of size J, the predictive distribution of the interarrival

(or service) time can be approximated by,

f(x | x) ≈ 1

J

JX
j=1

L(j)X
r=1

P (j)r fr
³
x | λ(j)1 , υ

(j)
2 , ..., υ(j)r

´
. (14)

2.2 Results for simulated and real data sets.

In this section, we illustrate the performance of the proposed Bayesian density estimation method using

different data samples. We consider four simulated and four real data sets. For the simulated case, we

generate two samples of short-tailed and two of long-tailed distributions. For the real case, we make use

of some interarrival and service data from a face-to-face bank data base downloaded from the Professor

Mandelbaum’s web page, http://iew3.technion.ac.il/serveng.

2.2.1 Simulated examples.

We generate 300 data for each of the following distributions:

1. A single exponential distribution with λ = 1.

2. A Coxian distribution with P =(0.09, 0.7, 0.01, 0.2) and λ =(1.1, 1.0, 0.251, 0.25) .

3. A Weibull distribution, see (15), with c = 0.3 and a = 9.26053.

4. A Pareto distribution, see (16), with a = 2.2 and b = 0.8333.

The exponential distribution is the simplest Coxian case. In case 2, we have chosen very close rates

to illustrate that this does not affect to the stability of the algorithm as commented in Section 2. These
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two first examples are short-tailed distributions. Note that the Coxian distribution is short-tailed as any

phase-type distribution is. However, we show how the Coxian model can be used to approximate a long-tail

behaviour using eventually a large number of components, L. Two well-known examples of heavy-tailed

distributions are the Pareto and the Weibull (with scale parameter, c, less than one) distributions. The

Weibull cumulative distribution function is given by,

F (x) = 1− exp {− (ax)c} x > 0, (15)

and the Pareto cumulative distribution function is,

F (x) = 1− 1

(1 + bx)a
, x > 0. (16)

The cases 3 and 4 are two of the examples considered in Feldman and Whitt (1998) where the parameters

are chosen such that their means are equal to one.

Figure 2 illustrates the empirical against the estimated cdf after running the MCMC algorithm for 100000

burn-in iterations followed by an additional 100000 iterations. Note that the abscissae axis in cases 3 and 4

are displayed in log scale. We can observe that the fits are quite satisfactory even for the heavy-tailed cases.

The proportions of moves accepted vary from 7 to 15 per cent which are reasonable values in reversible jump

setups, see Richardson and Green (1997).

Figure 3 shows the posterior probabilities of the number of components, L. Observe that in cases 1 and

2, the algorithm identifies the correct mixture size and the posterior mode of L is equal to its true value.

The estimated density in case 3 requires a large number of phases to fit the Weibull distribution. However,

it is smaller than the 20 mixture components used in Feldman and Whitt (1998) to fit a hyperexponential

distribution. This benefit is better illustrated in case 4 where the posterior mode of L is 3 in contrast with

the 14 exponential components used in Feldman and Whitt (1998). We have also compared cases 3 and

4 with the Bayesian algorithm for exponential mixtures proposed in Gruet et al. (1999) and the posterior

mode of L results to be one unit larger than using the Coxian distribution. In addition, note that, unlike

the exponential mixtures, the Coxian model can also fit densities with non zero mode such as the given in

case 3 and in a real example below.
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Figure 2: Empirical cummulative distribution functions in comparison with the predictive cumulative distri-

butions. The Weibull and Pareto distributions are displayed in log scale.
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2.2.2 Real data application.

We now illustrate the method with real interarrival and service times taken from a branch of an Israeli

bank. We consider data of two different kind of services: foreign currency exchange and business banking

transactions. This type of services require a single server that works three days a week from 8:30 to 12:00

and two days a week from 8:30 to 12:30 and from 16:00 to 18:00. The data are recorded during 14 days and

consist of 249 interarrival and 270 service times for foreign currency exchange and 822 interarrival and 843

service times of business banking transactions.

Figure 4 shows the histograms of the observed data and the predictive densities obtained after a run of

100000 iterations in equilibrium. Observe that the Coxian distribution can also fit properly non-monotone

densities as the business banking service time density. Interarrival times between customers asking for

currency exchange are larger on average than for business transactions. Their predictive means are 12.3 and

4.70 minutes, respectively. Also the required time for exchange currency services is greater on average than

for business transaction services. Their predictive means are 7.22 and 3.86 minutes, respectively. However,

in this case the business banking service distribution seems quite heterogeneous, with a maximum value of

42.283 minutes, while the currency exchange services seems fairly homogeneous.

Table 3 gives the posterior distribution of L for the four data sets. Observe that our Bayesian density

estimation method predicts with some uncertainty an exponential distribution for the foreign currency service

time and for the business banking interarrival time with estimated rates approximately equal to 0.14 and 0.22,

respectively. For the exchange currency interarrival distribution, the algorithm suggests a two component

mixture . The first component is an exponential and the second an Erlang distribution both with rates close

to 0.1. Finally, the business banking service time distribution requires a fairly large number of components

to be fitted.
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Foreign Currency Business Banking

P (L | data) Arrival Service Arrival Service

1 .22331 .50194 .69997 .00000

2 .64507 .37011 .26687 .00000

3 .11807 .10479 .03198 .00000

4 .01151 .02124 .00108 .33684

5 .00169 .00186 .00010 .42807

6 .00026 .00006 .00000 .18957

7 .00009 .00000 .00000 .04314

8 .00000 .00000 .00000 .00238

9 .00000 .00000 .00000 .00000

Table 1: Posterior probabilitities of the number of components, L, for the four real data sets.

3 Bayesian prediction for the GI/G/1 queueing model.

In this section, we are interested in the performance of the GI/G/1 queueing model. Therefore, we will

assume that the interarrival time, A1, and the service time, S1, are distributed as Coxian distributions with

parameters θλ = {L,P,λ} and θµ = {M,Q,µ} , respectively. Figure 5 illustrates the behaviour of this

queueing system. Observe that each customer must go through 1, 2, ... or L exponential stages of the arrival

timing channel (ATC) with probabilities P1, P2, ... or PL, respectively, before accessing to the waiting line

or, eventually, to the service timing channel (STC), where each service time is the sum of 1, 2, ... or M

exponential stages with probabilities Q1, Q2, ... or QM , respectively.

Assume now that we are given two sets of interarrival and service times, t = {t1, ..., tna
} and s = {s1, ..., sns

},

respectively. Then, using the MCMC output obtained from the algorithm described in the previous section,

we can estimate some measures of interest in the queue. An important measure of the average occupancy is
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Figure 5: Ilustration of the MGE/MGE/1 queueing model.

the traffic intensity, ρ, that for this queueing model is given by,

ρ =
E [S1]

E [A1]
=
ΣM

r=1

¡
1−Σr−1

s=1Qs

¢
1
µr

ΣL
r=1

¡
1−Σr−1

s=1Ps

¢
1
λr

, (17)

and it is well known that the queue is stable if ρ < 1, see e.g. Gross and Harris (1985). The posterior

probability of having a stable queue can be estimated with,

P (ρ < 1 | t, s) ≈ 1

J
#
n
ρ(j) < 1

o
, (18)

where ρ(j) is the value of (17) for each element of the MCMC sample. Usually, if this probability is large

enough, it is assumed that the system is stable, see e.g. Ausín et al. (2004). However, even in a stable system,

it is recommended to make inference on the transient behaviour because the convergence to the steady state

can be very slow or because there can be exogenous changes such that the stationary distributions do not give

a realistic description of the queueing performance. The posterior mean of ρ can be estimated analogously

with,

E [ρ | t, s] ≈ 1

J

JP
j=1

ρ(j). (19)

Note that this expectation is finite because the means of the predictive interarrival and service time distri-

butions are finite as shown in Appendix B. Analogously, we can estimate the posterior mean of ρ assuming

equilibrium, E [ρ | ρ < 1, t, s] , by simply rejecting the draws larger than one.

Given the arrival and service data, we will show in this section how to estimate the transient system size
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and waiting time distributions and the length of the busy period distribution. Firstly, we will introduce some

notation and results obtained by Bertsimas and Nazakato (1992) which consist of the Laplace transforms

of these distributions when the system parameters are known. Then, we describe a numerical technique to

extract the roots of some polynomial equations involved in these Laplace transforms. Finally, we explain

how to combine this numerical procedure with the reversible jump methodology and with Laplace transform

inversion methods in order to estimate the distributions of the quantities of interest.

3.1 Preliminaries.

Let Ak be the random variable representing the remaining time a customer requires to access to the waiting

line if case of being in the kth stage of the ATC. Note that A1 is the whole interarrival time. Its Laplace

transform is given by,

f∗Ak
(s) =

Z ∞

0

e−stfAk
(t) dt =

LX
r=k

Pr

1−Σk−1
s=1Ps

rY
i=k

µ
λi

λi + s

¶
, for k = 1, ..., L. (20)

An analogous random variable, Sk, and its Laplace transform, f∗Sk
(s), can be considered for the STC .

Let Ak,r (x) be the probability that a customer in the ATC move from stage k to the stage r during the

interval t without any new arrival. Note that this probability is zero if k > r. Its Laplace transform is given

by,

A∗k,r (s) =
Z ∞

0

e−stAk,r (t) dx =
1−Σr−1

s=1Ps

1−Σk−1
s=1Ps

Qr−1
i=k λiQr

i=k (λi + s)
, for r = k, ..., L. (21)

An analogous probability, Sk,r (x) , and its Laplace transform, S∗k,r (s) , can be considered for the STC.

Bertsimas and Nazakato (1992) formulate the queueing system as a continuous time Markov chain with

infinite state space,

{(N (τ) , Ra (τ) , Rs (τ)) , N (τ) = 0, 1, ...; Ra (τ) = 1, .., L; Rs (τ) = 1, ...,M.} ,

where N (τ) denotes the number of customers in the system at time τ , Ra (τ) the ATC stage currently

occupied by the arriving customer at time τ and Rs (τ) is the STC stage who is being served at time τ . Let

us denote,

πn,i,j (τ) = Pr (N (τ) = n, Ra (τ) = i, Rs (τ) = j) , if n ≥ 1,
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and

π0,i (τ) = Pr (N (τ) = 0, Ra (τ) = i) , if n = 0. (22)

Assuming that the system is initially empty and ρ < 1, Bertsimas and Nazakato (1992) show that the

Laplace transforms of these probabilities are given by,

π∗n,i,j (s) =
Z ∞

0

e−sτπn,i,j (τ) dτ =
MX
r=1

DrS
∗
1,j (xr (s))A

∗
1,i (s− xr (s))

¡
f∗A1

(s− xr (s))
¢n−1

, (23)

for i = 1, ..., L, and j = 1, ...,M and,

π∗0,i (s) =
Z ∞

0

e−sτπ0,i (τ) dτ =
LX

k=1

π0,k (0)A
∗
k,i (xr (s)) +

MX
r=1

Drf∗S1 (xr (s))
xr (s)

¡
A∗1,i (s− xr (s))−A∗1,i (s)

¢
,

(24)

where,

Dr =

PL
k=1 π0,k (0) f

∗
Ak
(xr (s))

1− f∗A1
(s)

(−1)M S∗1,M (0)

S∗1,M (xr (s))
xr (s)

MY
k=1
k 6=r

xr (s)

xr (s)− xk (s)
(25)

and xr (s) ≡ x, with r = 1, ...,M , are the M roots of the equation,
f∗A1

(s− x) f∗S1 (x) = 1,

Re (x) < 0 for Re (s) > 0.

 (26)

On the other hand, assuming the same conditions and that the elements of the initial probability vector

are given by,

π0,i (0) =

¡
1−Σi−1

s=1Ps

¢
1
λi

ΣL
r=1

¡
1−Σr−1

s=1Ps

¢
1
λr

, for i = 1, ..., L, (27)

Bertsimas and Nazakato (1992) show that the Laplace transform of the waiting time, W (τ) , of a customer

arriving at time τ is given by,Z ∞

0

e−sτ Pr (W (τ) ≤ w) dτ =
1

s
+

MP
r=1

(−1)M
s

S1,M (0)

S1,M (xr (s))

 MQ
k=1
k 6=r

xr (s)

xr (s)− xk (s)

 exr(s)w, (28)

where xr (s), for r = 1, ...,M , are the M roots of equation (26). Bertsimas and Nazakato (1992) also show

that the condition (27) implies that the arrival process is in the steady state at time τ = 0. Note that this

condition simplifies the expression for the coefficients given in (25) as follows,

Dr =
1

sE [A1]

(−1)M S∗1,M (0)

S∗1,M (xr (s))
xr (s)

MY
k=1
k 6=r

xr (s)

xr (s)− xk (s)
, for r = 1, ...,M,

19



see Bertsimas and Nazakato (1992), and then, the probabilities given in (27) will be also assumed to obtain

the distribution of N (τ) in the examples.

Finally, Bertsimas and Nazakato (1992) show that the Laplace transform of the distribution function of

the length of the busy period is given by,

F ∗B (s) =
Z ∞

0

e−st Pr (B ≤ t) dt =
f∗B (s)
s

=
1

s
− 1− f∗S1 (s)

s

QM
k=1 (s+ µk)QM

r=1 (s− xr (s))
(29)

where, again, xr (s), for r = 1, ...,M , are the M roots of equation (26).

3.2 Numerical extraction of the roots of the equation (26).

In this section, we describe a procedure for numerically extracting the M roots of the equation (26) in

order to evaluate the Laplace transforms of N (τ) , W (τ) and B in each MCMC iteration. Given a set of

system parameters, θ = {L,P,λ,M,Q,µ}, we want to solve the equation (26) that, considering (20), can

be expressed as,
LX

r=1

Pr

rY
i=1

µ
λi

λi + s− x

¶
×

MX
t=1

Qt

tY
j=1

µ
µj

µj + s− x

¶
= 1, (30)

such that Re (x) < 0.We could make use of a numerical algorithm such as Newton-Raphson method to solve

this equation. However, note that (30) is a polynomial equation whose roots are the L +M roots of the

following polynomial where M of these roots verify that Re (x) < 0,

P (x) =
 LX
r=1

MX
t=1

PrQt

 rY
i=1

λi

tY
j=1

µj

Qr,t (x)

−Q0,0 (x) , (31)

where Qr,t (x) is another polynomial given by,

Qr,t (x) =
LY

i=r+1

(λi + s− x)
MY

j=t+1

¡
µj + x

¢
(32)

= (−1)L−r
LY

i=r+1

(x− λi − s)
MY

j=t+1

¡
x+ µj

¢
.

Therefore, we have considered the Laguerre method, see e.g. Ralston and Rabinowitz (1978), which is an

algorithm design specifically to find the roots of a complex polynomial given its coefficients. In order to

calculate the coefficients of the polynomial (31), we consider the Taylor expansion of P (x) in x = 0, such
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that each polynomial coefficient is given by P(n) (0) /n!, for n = 0, ..., L+M , where,

P(n) (0) =
 LX
r=1

MX
t=1

PrQt

 rY
i=1

λi

tY
j=1

µj

Q(n)r,t (0)

−Q(n)0,0 (0) . (33)

Thus, we only need to be able to compute the nth derivatives of the polynomial Qr,t (x) given in (32). Note

that this is a polynomial of order (L+M−r−t) whose roots are given by {(λr+1 + s) , ..., (λL + s) ,−µt+1, ...,−µM}

and the coefficient of order (L+M − r− t) is (−1)L−r. We show below how to compute the nth derivative

of a polynomial given its roots and the largest order coefficient so that it is possible to implement a routine

for evaluating Q(n)r,t (0) in (33).

Let Q (x) a polynomial of order N,

Q (x) = aNxN + aN−1xN−1 + ...+ a1x+ a0,

whose N roots are {x1, ..., xN}, such that,

Q (x) = aN (x− x1) ... (x− xN ) . (34)

The Viètas formulas, see e.g. Borwein (1995), allows to obtain the coefficients of Q (x) which are given by,

aN−k = (−1)k aN
X

(i1,...,ik)∈Cn,k

Ã
ikY

i=i1

xi

!
, for k = 1, ..., N,

where Cn,k is the set of the
¡
n
k

¢
combinations of the n elements, {x1, ..., xn}, taking k at a time. Observe

that, given aN , the remaining coefficients can be derived recursively with:

1. Set aN−k = 0, for k = 1, ...,N.

2. For k = 1, ..., N, 
aN−1
...

aN−k

 =


aN−1
...

aN−k

+ xk


aN−1
...

aN−k

 .

Finally, once we know the coefficients, it is straightforward to see that the nth derivatives of the polyno-

mial Q (x) are given by,

Q(n) (x) =
NP
i=n

aN+n−i

Ã
nQ

j=1
(N − i+ j)

!
xN−i,
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and then,

Q(n) (0) =
NP
i=n

aN+n−i

Ã
nQ

j=1

(N − i+ j)

!
.

3.3 Estimation of the transient behaviour and the busy period.

Given a sample realization of the posterior distribution of θ = {L,P,λ,M,Q,µ} , the natural way of esti-

mating the predictive distributions is using Monte Carlo approximations. For example, we can estimate the

transient distribution of the system size, N (τ) , with,

Pr (N (τ) = n | t, s, ρ < 1) ≈ 1

R

X
j:ρ(j)<1

Pr
³
N (τ) = n | θ(j)

´
, (35)

where Pr
³
N (τ) = n | θ(j)

´
can be obtained using a numerical inversion method such as the algorithm by

Hosono (1981), see Appendix A, in order to numerically invert its Laplace transform which is given by,

π∗n
³
s | θ(j)

´
=


PL

i=1 π
∗
0,i (s) , if n = 0,PL

i=1

PM
j=1 π

∗
n,i,j (s) , if n ≥ 1,

(36)

where π∗0,i (s) and π∗n,i,j (s) are given in (24) and (23), respectively, and R = #{ρ(j) < 1}. Observe that we

have assumed that ρ < 1 in (35) because it is a required condition to apply the results obtained in Bertimas

and Nazakato (1992).

Analogously, we can estimate the transient distribution function of the waiting time in the queue by,

Pr (W (τ) ≤ w | t, s, ρ < 1) ≈ 1

R

X
j:ρ(j)<1

Pr
³
W (τ) ≤ w | θ(j)

´
, (37)

where Pr
³
W (τ) ≤ w | θ(j)

´
is obtained inverting numerically its Laplace transform given in (28) and the

predictive distribution of the busy period,

FB (x | t, s, ρ < 1) ≈ 1

R

X
j:ρ(j)<1

FB

³
x | θ(j)

´
, (38)

where FB

³
x | θ(j)

´
is obtained inverting numerically its Laplace transform given in (29).

It can be shown that the estimation of the moments of the stationary system size and waiting time

distributions and the moments of the busy period distribution do not exist with the prior structure that we
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have considered, see e.g. Wiper (1998). Then, the moments of the transient distributions will converge to

infinity as τ goes to infinity. However, we can always estimate the median and quantiles of these distributions.

3.4 Results for simulated and real queues.

In this Section, we illustrate the behaviour of the proposed method with several simulated and real queues.

Most of the simulated interarrival and service times were introduced in Section 2. Also, the two real queueing

systems in the Israeli bank are analyzed.

3.4.1 Simulated queues.

We consider interarrival and service data simulated from the following two queueing systems:

• An M/M/1 system where the service times are the exponential data simulated in Section 2.

• A Coxian/Pareto/1 system where both interarrival and service times were simulated in Section 2.

For the interarrival time in theM/M/1 queue, we simulate 300 exponential data with mean 3.456, which

is approximately equal to the mean of the Coxian interarrival time. As both systems have also the same

service mean time, equal to one, they have also the same traffic intensity, ρ = 0.289. Table 2 shows the

probabilities of having equilibrium in the system and the posterior means of ρ for both queues, see (18) and

(19). Also shown are the MLE estimations of ρ. Observe that the estimations are very close to the true

value.

P (ρ < 1 | data) E [ρ | data] E [ρ < 1 | ρ < 1, data] ρ̂MLE

M/M/1 .99998 .29009 .29008 .28935

Coxian/Pareto/1 .99993 .30740 .30736 .28116

Table 2: Posterior probabilitities that the system is stable and posterior mean values for the traffic intensity

for the two simulated systems.
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Figure 6 illustrates in dotted lines the estimated transient distributions of the queue length and waiting

time, see (35) and (37), as a function of time, τ , for both simulated queues. Note that the estimations

clearly converge to their stationary distributions as τ goes to infinity. Observe that, as commented before,

the convergence can be slow even if the probability of equilibrium is very large. This is specially the case of

the waiting time in the Coxian/Pareto/1 queue. Also note that although the traffic intensity is the same

for both systems, the convergence to the stationary waiting time is much slower in the second than in the

first queue. On the contrary the speed of convergence of the transient queue length distribution is similar

in both examples. These differences are mostly originated by the long-tailed behaviour of the Pareto service

time distribution. It is well known that, in general, the waiting time distributions are very influenced by the

shape of the service time densities, while the queue length distributions are strongly dependent only on their

first moment. Note that as τ goes to infinity, the estimated probability that the queue length is 0 approaches

to one minus the posterior mean of ρ, which is coherent with the known result, P (N = 0) = 1 − ρ, where

N denotes the equilibrium queue length in a GI/G/1 model, see e.g. Gross and Harris (1985). Also, the

waiting time probability, P (W (τ) > 0) approaches to the estimated traffic intensity but only in the M/M/1

queue because, as it is well known, the result P (W = 0) = 1− ρ is only true for Poisson arrivals.

Figure 7 shows the estimated distribution functions of the busy period in dotted lines, see (38). For the

M/M/1 case, it is compared with the theoretical distribution given the parameters in solid line. This is not

done for the second case as the theoretical busy period distribution has not been obtained so far, see e.g.

Gross and Harris (1885). Note that the tail of the busy period distribution is shorter for the Markovian

queue.

3.4.2 Real queues.

We now analyze the real data about foreign currency exchange and business banking transactions in the

Israeli bank. As the bank has a single teller for each kind of service, we have two single server, FIFO,

queueing systems. For both systems, the estimated posterior probability that the system reach the steady-

state is extremely high and the posterior mean values for ρ are close to the MLE estimators, see (18) and (19),
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Figure 6: Transient distributions for the queue length (up) and the waiting time (down) for the two simulated

systems. These approach to their stationary distributions as the time, τ , goes to infinity.
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Figure 7: Estimated busy period distribution functions for the two simulated queues. Also shown is the true

distribution for the M/M/1. It can hardly be distinguished from its estimation.

as given in Table 3. Note that the level of occupancy is larger for business transactions than for currency

exchanges.

P (ρ < 1 | data) E [ρ | data] E [ρ < 1 | ρ < 1, data] ρ̂MLE

Foreign Currency .99957 .59328 .59132 .58691

Business Banking .99954 .82011 .81968 .82149

Table 3: Posterior probabilitities that the system is stable and posterior mean values for the traffic intensity

for the two real bank systems.

Figure 8 illustrates the estimated transient distributions of the queue length and the waiting time, see

(35) and (37), for the two real systems as a function of the time, τ . Note that the assumption of initially

empty systems is true in this context. We observe that the speed of convergence is not very fast in any

case. Note that when τ = 100 minutes, which means that the systems have been running for more than one

hour and a half, the transient distributions have not already converge to the steady-state. In particular, for
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Figure 8: Transient distributions for the queue length (up) and the waiting time (down) for the two real

systems. These approach to their stationary distributions as the time, τ , goes to infinity.

the business banking system, we can still appreciate differences between the distributions when τ is equal

to 500 and 1000 minutes. Observe that using our approach it is possible to estimate the desired transient

probability for any given instant time, τ . For example, the estimated probability that a customer who arrives

at 9:00 am asking for business banking services has to wait more than 8 minutes is 0.306.

Table 4 shows some quantiles of the estimated distributions of the length of the busy period, see (38), for

the two real systems. Observe that the tail of the distribution is heavier for the business bank transactions

case.

Finally, we have developed a naive, ordinary M/M/1 analysis of the bank’s queueing systems in order to

investigate how our Bayesian GI/G/1 approach is an improvement. We have estimated both the transient
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0.25 0.50 0.65 0.80 0.90 0.95 0.97

Foreign Currency 2.3427 6.3239 10.9022 21.2713 41.1081 69.6108 96.2983

Business Banking 2.1132 4.5967 8.4113 19.4524 46.6718 95.4313 148.2902

Table 4: Quantiles of the length of the busy period distribution for the two real bank systems.

queue length and waiting time distributions and the busy period distribution using the MLE estimations

of the traffic intensities given in Table 3. Results are quite different from our previous estimations. This is

illustrated in Figure 9 where the estimated waiting time distributions using the two procedures are compared.

We have also observed that these differences are greater for the waiting time and busy period distributions

than for the queue length distribution. This should be expected because, as commented earlier, the latter is

strongly dependent only on the first moments of the interarrival and service time distributions.
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4 Appendix A: Hosono Algorithm.

In order to invert these Laplace transforms, we have make use of the numerical inversion algorithm proposed

by Hosono (1981) which is easy to implement and accurate in practice. This algorithm was suggested by

Bertsimas and Nazakato (1992) for the case where the parameters are known. It works essentially as follows.

Consider the Laplace transform of a function f (τ) ,

f∗ (s) =
Z ∞

0

e−stf (τ) dτ.

The following steps allows to obtain an absolute error in the numerical inversion less than 10−a+1 |f (τ)|. In

our examples, we have fixed a = 6.

HOSONO ALGORITHM.

For each value of τ ,

1. Set sm = τ−1 (a+ iπ (m− 0.5)), define Fm = (−1)m Im [f∗ (sm)] and find k so that,

¯̄̄̄
aP

r=0

µ
a

r

¶
ea

τ
Fk+r

¯̄̄̄
<

µ
2

e2

¶a

.

2. Compute the following values,

Cm = 0.5
a
Pa−m−1

r=0

¡
a
r

¢
, for m = 0, ..., a− 1. (39)

3. Evaluate,

f (τ) ≈ ea

τ

Ã
k−1X
m=1

Fm +
a−1X
r=0

CrFk+r

!
.
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5 Appendix B. Proper posterior distribution and finite moments.

First, we show that the posterior is indeed proper. The posterior distribution is a sum over all possible

sample configurations, z =(z1, ..., zn), and then, we only need to prove that the following integral is finite,Z
f (λ1,υ)

nQ
i=1

fzi (xi | λ1,υ) dλ1dυ, (40)

where we have integrated out the weights, P. Assume initially that n = 1. Then, we observe only one

observation whose density, fz (x | λ1,υ) , is given in (3). Note that we consider that all rates are unequal

because the set where some of the υ0s are equal to one have measure zero. From (3), the survival distribution

function is given by,

1− Fz (x | λ1,υ) =
zX

j=1

Cj exp

µ
−λ1x

iQ
k=2

υk

¶
, (41)

where the coefficients Cj are given by,

Cj =
zQ

i6=j

Qi
k=2 υkQi

k=2 υk −
Qj

k=2 υk

.

As for any positive continuous distribution, the distribution function, Fz (x | λ1,υ) , is equal to 0 for x = 0.

Therefore, from (41), we obtain that,
zX

j=1

Cj = 1.

Using this property, we can now show that the integral (40) is finite for one observation,

Z
f (υ)

λ1

zX
j=1

Cjλ1
jQ

k=2

υk exp

µ
−λ1x

jQ
k=2

υk

¶
dλ1dτ =

Z
f (υ)

zX
j=1

Cj

1

x
dυ =

1

x
<∞. (42)

Finally, note that it is sufficient to have proved that the integral (40) is finite for n = 1, because now, we can

define f (λ1,υ | x1) as a new proper prior and consider the likelihood based on {x2, ..., xn}, which is regular

and proper, in which case the posterior is known to be proper. Then, the integral (40) is finite for n ≥ 1.

Now, we will prove that the mean of the predictive distribution of X is finite. Firstly, we show that the

density, (3), is bounded as follows,

fr (x | λ1, υ2, ..., υr) ≤ λ1, for r = 1, 2, ... (43)
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This statement can be proved by induction. For r = 1, we have that,

f1 (x | λ1) = λ1 exp {−λ1x} ≤ λ1.

Now, we assume that,

fr−1 (x | λ1,υ) ≤ λ1,

then, as fr is the density of the sum of r exponentials, see (1), it can be expressed as the convolution of the

r-th exponential density and fr−1,

fr (x | λ1,υ) =

Z x

0

λ1
rQ

k=2

υk exp

µ
−λ1x

rQ
k=2

υk

¶
fr−1 (x− u | λ1,υ) du

≤ λ1

·
1− exp

½
−λ1x

rQ
k=2

υk

¾¸
≤ λ1.

The expectation of the Coxian distribution is given as the denominator (or numerator) of (17). Thus, the

predictive mean of X is finite if the posterior mean of 1/λr exists, that is, if the following integral is finite,Z
f (λ1,υ)

λ1
Qr

k=2 υk

nQ
i=1

fzi (xi | λ1,υ) dλ1dυ. (44)

Then, it is clear that if we do not observe at least two data, the predictive mean does not exist. Suppose

first that we observe two data. Using (43), we have that,

Z
f (υ)

λ21
Qr

k=2 υk

fz1 (x1 | λ1,υ) fz2 (x1 | λ1,υ) dλ1dυ ≤
Z

f (υ)

λ1
Qr

k=2 υk

fz1 (x1 | λ1,υ) dλ1dυ,

and using the same arguments as in (42), this integral is proportional to,

Z
f (υ)Qr
k=2 υk

dυ ∝
Z Qr

k=2 υ
−1.1
k (1− υk)

−0.1 dυ <∞.

Note that this is the reason because we have chosen a Beta (1.1, 1.1) for each υr in (7). Finally, as we know

that the integral (44) is finite for n = 2, we can define a new proper prior for (λ1,υ),

g (λ1,υ) ∝ f (λ1,υ)

λ1
Qr

k=2 υk

2Q
i=1

fzi (xi | λ1,υ) ,

which is a proper density. With this prior and the likelihood based on {x3, ..., xn} , the posterior is proper

and then, the integral (44) is finite for n ≥ 2.

34


