73 research outputs found

    A Periodic Transmission Line Model for Body Channel Communication

    Get PDF
    Body channel communication (BCC) is a technique for data transmission exploiting the human body as communication channel. Even though it was pioneered about 25 years ago, the identification of a good electrical model behind its functioning is still an open research question. The proposed distributed model can then serve as a supporting tool for the design, allowing to enhance the performances of any BCC system. A novel finite periodic transmission line model was developed to describe the human body as transmission medium. According to this model, for the first time, the parasitic capacitance between the transmitter and the receiver is assumed to depend on their distance. The parameters related to the body and electrodes are acquired experimentally by fitting the bio-impedentiometric measurements, in the range of frequencies from 1 kHz to 1 MHz, obtaining a mean absolute error lower than 4° and 30 OmegaOmega for the phase angle and impedance modulus, respectively. The proposed mathematical framework has been successfully validated by describing a ground-referred and low-complexity system called Live Wire, suitable as supporting tool for visually impaired people, and finding good agreement between the measured and the calculated data, marking a ±3% error for communication distances ranging from 20 to 150 cm. In this work we introduced a new circuital approach, for capacitive-coupling systems, based on finite periodic transmission line, capable to describe and model BCC systems allowing to optimize the performances of similar systems

    A Periodic Transmission Line Model for Body Channel Communication

    Get PDF
    Body channel communication (BCC) is a technique for data transmission exploiting the human body as communication channel. Even though it was pioneered about 25 years ago, the identification of a good electrical model behind its functioning is still an open research question. The proposed distributed model can then serve as a supporting tool for the design, allowing to enhance the performances of any BCC system. A novel finite periodic transmission line model was developed to describe the human body as transmission medium. According to this model, for the first time, the parasitic capacitance between the transmitter and the receiver is assumed to depend on their distance. The parameters related to the body and electrodes are acquired experimentally by fitting the bio-impedentiometric measurements, in the range of frequencies from 1 kHz to 1 MHz, obtaining a mean absolute error lower than 4° and 30Ω for the phase angle and impedance modulus, respectively. The proposed mathematical framework has been successfully validated by describing a ground-referred and low-complexity system called Live Wire, suitable as supporting tool for visually impaired people, and finding good agreement between the measured and the calculated data, marking a ±3% error for communication distances ranging from 20 to 150 cm. In this work we introduced a new circuital approach, for capacitive-coupling systems, based on finite periodic transmission line, capable to describe and model BCC systems allowing to optimize the performances of similar systems

    New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications

    Full text link
    [EN] This paper proposes and demonstrates the capabilities of a new sensorization system that monitors skin contact between two persons. Based on the intrabody communication standard (802.15.6), the new system allows for interbody communication, through the transmission of messages between di erent persons through the skin when they are touching. The system not only detects if there has been contact between two persons but, as a novelty, is also able to identify the elements that have been in contact. This sensor will be applied to analyze and monitor good follow-up of hand hygiene practice in health care, following the ¿World Health Organization Guidelines on Hand Hygiene in Health Care¿. This guide proposes specific recommendations to improve hygiene practices and reduce the transmission of pathogenic microorganisms between patients and health-care workers (HCW). The transmission of nosocomial infections due to improper hand hygiene could be reduced with the aid of a monitoring system that would prevent HCWs from violating the protocol. The cutting-edge sensor proposed in this paper is a crucial innovation for the development of this automated hand hygiene monitoring system (AHHMS).This research was funded by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.Hernández, D.; Ors Carot, R.; Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC. (2020). New Contact Sensorization Smart System for IoT e-Health Applications Based on IBC IEEE 802.15.6 Communications. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247097S117202

    Analytical Modeling of a Communication Channel Based on Subthreshold Stimulation of Neurobiological Networks

    Get PDF
    The emergence of wearable and implantable machines manufactured artificially or synthesized biologically opens up a new horizon for patient-centered health services such as medical treatment, health monitoring, and rehabilitation with minimized costs and maximized popularity when provided remotely via the Internet. In particular, a swarm of machines at the scale of a single cell down to the nanoscale can be deployed in the body by the non-invasive or minimally invasive operation (e.g., swallowing and injection respectively) to perform various tasks. However, an individual machine is only able to perform basic tasks so it needs to exchange data with the others and outside world through an efficient and reliable communication infrastructure to coordinate and aggregate their functionalities. We introduce in this thesis Neuronal Communication (NC) as a novel paradigm for utilizing the nervous system \emph{in vivo} as a communication medium to transmit artificial data across the body. NC features body-wide communication coverage while it demands zero investment cost on the infrastructure, does not rely on any external energy source, and exposes the body to zero electromagnetic radiation. n addition, unlike many conventional body area networking techniques, NC is able to provide communication among manufactured electronic machines and biologically engineered ones at the same time. We provide a detailed discussion of the theoretical and practical aspects of designing and implementing distinct paradigms of NC. We also discuss NC future perspectives and open challenges. Adviser: Massimiliano Pierobo
    • …
    corecore