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The emergence of wearable and implantable machines manufactured artificially or

synthesized biologically opens up a new horizon for patient-centered health services

such as medical treatment, health monitoring and rehabilitation with minimized costs

and maximized popularity when provided remotely via the Internet. In particular,

a swarm of machines at the scale of a single cell down to the nano scale can be de-

ployed in the body by non-invasive or minimally invasive operation (e.g., swallowing

and injection respectively) to perform various tasks. However, an individual machine

is only able to perform basic tasks so it needs to exchange data with the others

and outside world through an efficient and reliable communication infrastructure to

coordinate and aggregate their functionalities. We introduce in this thesis Neuronal

Communication (NC) as a novel paradigm for utilizing the nervous system in vivo

as a communication medium to transmit artificial data across the body. NC features

body-wide communication coverage while it demands zero investment cost on the

infrastructure, does not rely on any external energy source, and exposes the body

to zero electromagnetic radiation. In addition, unlike many conventional body area

networking techniques, NC is able to provide communication among manufactured

electronic machines and biologically engineered ones at the same time. We provide

a detailed discussion of the theoretical and practical aspects of designing and imple-

menting distinct paradigms of NC. We also discuss NC future perspectives and open



challenges.
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Chapter 1

Introduction

Over the past decade, various techniques have been suggested with respect to commu-

nication among the devices implanted on, around or in the body for medical purposed,

specially with regards to remotely monitoring the health status of patients especially

for those with aging or disability problems. The devices comprise sensors placed on

or under the skin to monitor the body’s vital signals and communicate the readings

to a data sink node. The devices use the air or the body’s tissue as a medium to

propagate their data carrier signals.

A series of rapid technological advances contribute to a paradigm shift in teleme-

dicine from traditional remote health monitoring to novel remote medical diagnosis

and treatment by relying on swarms of very tiny machines to perform complex tasks

including drug delivery, cell diagnostic, cell repair, and fighting against cancer and

aging, among others. In particular, the technological breakthroughs are promising to

manufacture large amounts of inexpensive artificially-made wearable and implantable

machines at the scale of a single cell or even smaller down to the nano scale. In addi-

tion, modern synthetic biology techniques facilitate genetically engineering single cell

organisms (e.g., bacteria) to act as a programmed machine to perform pre-designated
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tasks [2].

The machines mentioned above may comprise of sensors or actuators (robots)

worn on the body (e.g., smart watches), mounted around the body (e.g., clothing

with nano fabric or embedded technology), or implanted in colonies deep in the body

through noninvasive or minimally invasive processes (e.g., swallowing, injection etc).

It is important to note that a single machine of this kind is only able to perform

basic tasks, so the deployed machines need a means to communicate across and out

of the body to coordinate their functionalities and perform the task cooperatively.

Therefore, they must have a means to establish an adequate two-way communication

among themselves inside the body as well as the body’s exterior to transmit data and

control streams.

However, delivering such a high quality communication poses a big hurdle in im-

plementing the mentioned new paradigm and it is yet to be addressed. The problem

stems from the fact that the conventional body area communication techniques have

not been designed originally to support instantaneous, power-aware and large-scale

communication. For this purpose, we introduce the promising idea of Neuronal Com-

munication (NC) of utilizing the nervous system as a living communication medium

for transmitting artificial data. We elaborate on why and how should a NC paradigm

be realized, and what are the promises and the perils of this novel communication pa-

radigm. We will also discuss our vision from the future applications and opportunities

that NC brings forth.
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1.1 Our Contribution

The primary contributions of this thesis are as the follows:

1. We propose Neuronal Communication (NC) as a novel intrabody communicaion

paradigm for transceiving artificial data through the nervous system for medical

applications.

2. We introduced the idea of using subthreshold stimuli for modulating artificial

data.

3. We formulated the response of a neuron to the stimuli through an analytical

model comprised of a base part and an extension.

4. We implemented our model in Python and NEURON. We found the results of

our analytical model compatible with those of simulation.

5. We provided the future perspective of NC with respect to medical and non-

medical applications as well as NC open challenges.

1.2 Thesis Overview

The rest of this thesis is organized as follows. We cover in Chapter 2 the background

of our work. In Chapter 3, we mention prior works with respect to popular moda-

lities used in different intrabody communication methods. We provide a detailed

discussion of the theoretical and practical aspects of designing and implementing of

NC in Chapter 4. In Chapter 5, we introduce an analytical model to explain how

artificial data can be modulated through a neurobiological channel by exciting the

neuron with subthreshold stimuli applied to its soma. We also present in this chapter

the compatibility between the numerical results delivered by our analytical model
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and the simulation results obtained from the NEURON software for the same neuron

cell. In Chapter 6, we extend the model of the previous chapter by formulating a

more natural way of modulating data through distributed data carrier signals applied

to arbitrary branches of the dendritic tree. We also show in this chapter that the

extended model preserves the properties of the base model. Finally in Chapter 7 we

discuss future work that should be done to in designing the protocol stack of NC as

well as the open challenges in its safety and sustainability. At the same chapter we

conclude this thesis.
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Chapter 2

Background

2.1 Motivation

The nervous system delivers a reliable, robust and instantaneous communication

across the body. Acquiring the ability to harness and manipulate this excellent com-

munication infrastructure opens up the possibility of enjoying a body-wide and sus-

tainable communication to disseminate artificial data within the body or in-between

the body’s interior and exterior for medical and non-medical applications. NC aims to

feature such a unique body-wide communication with zero infrastructure preparation

cost, independency of external energy source, and no body exposure to continuous

electromagnetic radiation. In addition, unlike many conventional body area networ-

king techniques, NC is able to provide communication among a heterogeneous set of

manufactured electronic machines and biologically engineered ones at the same time.

2.1.1 Medical Applications

The conventional intrabody communication techniques fall short in establishing a

high quality communication among—possibly heterogeneous—machines deployed in
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swarms in the body, as we will explain in Chapter 3. This problem restricts the

deployment of sensors deep in the body, and hence, restricts the access to the impor-

tant signals of the body (e.g., biochemical changes in the blood or electrical activities

within nerves). Moreover, the broadcasting nature of typical intrabody communica-

tion poses a big hurdle in the realizing pervasive communication in which it is desired

to send control streams onto the body to command actuators (e.g., nanorobots) and

get data streams from individual machines within the implemented colonies. NC

eliminates both problems by supporting a two-way communication with sensors and

actuator machines implanted deep in the body. This is beneficial for several applica-

tions in remote patient health monitoring and treatment, rehabilitation and therapy,

biofeedback, and assisted living. We discuss a number of them as follows.

2.1.1.1 Medical Internet of Things

NC can disseminate deep body signals that otherwise could not be delivered to the

body’s surface. Examples of these signals include chemical signals (e.g., glucose,

oxygen, hormones, cholesterol, and sodium) as well as electrical signals such as cardiac

and respiratory rhythms. These signals can be read by machines that are implanted

very deep inside the body where only the nervous system can reach and convey

the signals to the outside world. Furthermore, NC features unicast and multicast

capabilities (see Section 2.3) that enable us to interact with single or few machines

within a colonies of implanted machines to perform micro-operation in the body

such as stimulating pancreas to secrete insulin or reading vital signals with high

spatial resolution. In this way NC realizes the Internet of Things (IoT) for health

care [19] and Internet of Bio-nano things [2] by featuring a two-way communication

mechanism to connect the body’s internal organs to the Internet as illustrated in

Fig. 2.1. More specifically, the figure illustrates an NC realization scenario of IoT



7

for health care. In this scenario, some implanted sensors measure the level of a

chemical (e.g., glucose) and communicate the data through the nervous system to a

smartwatch. The transmitted data can be transduced into small muscular vibration.

The smartwatch can decode these physical activities into data and send it to a sink

node that is connected to the Internet.

Implanted 
Sensors

Neural 
Data path

Smart
Watch

Figure 2.1. A realization of NC for medical Internet of Things.

2.1.1.2 Neuroprosthetics

NC can be utilized in the field of neuroprosthetics where two or more implanted

devices communicate with the nervous system and bypass a neural deficit by relaying

messages among themselves. The nervous system can adapt and handle signals from

implanted devices thanks to its remarkable plasticity feature. As another example,

instead of using a pacemaker that applies pulses directly to the heart, a group of

machines can monitor the heart rate and provide appropriate feedback to the brain
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to normalize its rhythm. A similar scenario is applicable for other body systems such

as respiratory, and endocrine glands.

2.1.1.3 Stimulation Therapy

The mechanisms within NC can be utilized for the purpose of stimulation therapy

similar to how chiropractic stimulations and craniosacral therapies work. More speci-

fically, it is possible to leverage the mechanisms of NC to apply stimulation through

a proper interface on the right neurobiological path to adjust operations of the body

organs.

2.1.2 Non-medical Applications

Several non-medical applications are imaginable from approaching the nervous sy-

stem with a communication engineering perspective. We mention a number of these

applications as follows.

2.1.2.1 Novel Biometrics for Security Systems

In Section 2.3.2, we will explain how stimulating the senses can create distinguishable

patterns of activity in the brain and we will provide an example in Fig. 2.5. It is ima-

ginable to utilize NC to generate proper stimulations within the nervous system to

make distinguishable patterns of activities in functional cortical areas and read them

through electrodiagnostic techniques (e.g., EEC, EMG, etc.) The brain’s spatiotem-

poral patterns from different individuals may be used as a biometric for generating

distinct security keys.
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2.1.2.2 Human Machine Interface and Cybernetics

NC facilitate the interaction between machines and humans by including the elements

of stimulation and response. More specifically, NC provides a means to connect the

nervous system to the machines or cybernetic agents implanted in or mounted on

the body. For instance, input machines can respond to the activities in the ner-

vous system (e.g., muscular micro vibrations) and output machines can stimulate the

nervous system to cause desired responses from the nervous system. A proper enco-

ding system can be devised to interpret these activities as meaningful two-way data

streams between the human body and machines. As an instance, NC may be used

in regulating sympathetic or parasympathetic body reactions for persons in harsh

situations (e.g. a battle field).

2.1.2.3 Defensive Applications

NC uses an unconventional communication infrastructure which is almost impossible

to eavesdrop or collapse. This is a big advantage for military and defensive applicati-

ons. In addition, using extra sensing modalities can be utilized through a circuit NC

paradigm to increase the performance and efficacy of communications with personnel.

As an instance, a haptic (tactile) stimulator may add another cognitive dimension to

fighter pilots saturated by visual stimulations.

2.2 The Nervous System

The building blocks of the nervous system are neuron cells or neurons. Fig. 2.2 shows

a picture of a real neuron and illustrates the three main organs of a neuron cell. The

soma is considered to be the main body of the neuron that performs vital activities

such as metabolism and protein synthesis. The dendritic tree is a hierarchical bran-
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Dendritic Tree

Axon

Soma

Figure 2.2. Picture of a real neuron.

ching system of projections of the neuronal membrane that preliminarily integrate

stimulations toward the soma. Each branch of a dendritic tree is called a dendrite.

An axon is an individual projection of the soma that propagates the generated electri-

cal signals out of the soma. The initial part of the axon is called hillock. It integrates

the signals received from the dendritic tree and spikes Action Potentials (APs) in

case, as explained later in this section.

The neuron membrane is capable of exchanging ions with extracellular fluid through

its ion channels. This changes the concentration of ions inside the neuron, and, con-

sequently, causes a change in the cross membrane voltage. An artificial electrical

current injected into the neuron can also change the voltage difference accross the

two sides of the membrane. In particular, the neuron membrane depolarizes when the

positive graded potentials—caused by the applied stimuli—decrease the membrane’s

voltage negativity. The graded potentials ripple through the membrane toward the

soma and integrate at the junction point of the soma and axon—the axon hillock. If

the integrated potentials at the hillock become more positive than a certain voltage

threshold, the applied stimuli are considered to be Suprathreshold. Otherwise they

are Subthreshold. Neurons respond to suprathreshold stimuli by spiking uniform APs

that can propagate through multiple neurons. Although subthreshold stimuli do not

generate APs, they result in graded potentials that propagate to the end of the axon.
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We rely on this fact to introduce our novel idea of transmitting artificial data across

a neurons by applying subthreshold stimuli. We call this concept Cellular NC Para-

digm, as we explain later in Section 2.3.1.

A large number of neurons connect to each other and build an intricate neuronal

network in the body. This sophisticated network is called nervous system. It carries

out very complex tasks, including, among others, communication among the body’s

parts and control over their activities. Three distinct parts of the nervous system are

illustrated in Fig. 2.3 including the brain, spinal cord and periphery nerve bundles.

The nervous system has two division namely, the Central Nervous System (CNS) and

the Peripheral Nervous System (PNS). The former consists of the brain and spinal

cord, while latter comprises neuronal paths each reaching to distinct body interior and

exterior parts. In particular, the PNS comprises the Autonomous and Somatosensory

subdivisions.

Figure 2.3a illustrates a simplified map of the autonomous subdivision in the body

with dashed lines. This subdivision is responsible for controlling involuntary activities

of many internal organs. The somatosensory subdivision mostly comprises afferent

and efferent neural pathways to the limbs and the body’s surface, as shown with

dash lines in Fig. 2.3b. As it can be seen, a considerable area of the body’s exterior

is innervated by somatosensory nerves, and hence, is easily accessible for interfacing

with outside world through gateway devices (e.g., smartwatches) as we later explain

in Section 2.3.2. The PNS innervates the body’s organs through neuronal paths from

fixed originations to certain destinations. Each path consists of several neurons that

are interconnected via electrical junctions or chemical synapses. These separated neu-

ronal paths that exist between two points in the nervous system resemble a hardwired

circuit between a sender and a receiver in a communication network and a circuit-

switched network. We depend on this feature to propose the Circuit NC Paradigm
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(a) Autonomous Nerves (b) Somatosensory Nerves

Figure 2.3. The nervous system.

for communicating artificial data through the PNS in Section 2.3.2. In this paradigm,

a communication path between source and destination may be formed over a selected

neurobiological circuit.

A successful realization of a circuit NC paradigm relies on selecting a proper neu-

ronal path. For instance, it is possible to lessen the brain’s irritation that NC artificial

activities may cause by using spinal closed-loop circuits like reflex paths, or by using

single neurons with long axons. Therefore, in order to design an adequate circuit NC

system, it is needed to have a comprehensive knowledge about the numerous neu-

robiological circuits with various neuron and interconnections types in the nervous

system. Although the neurological paths are well investigated in the literature [36],

finding the actual paths in the nervous system in vivo needs to leverage practical
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techniques. Therefore, in rest of this subsection we mention a handful of tracing

techniques that can be utilized for this purpose.

2.2.1 Neuronal Circuits

As we will mention later in this subsection, it is important to know what neural tract

is used for a specific realization of NC. Fortunately, there are several techniques for

tracing neural tract in vivo. The majority of these techniques rely on axonal transport

of a tracer substance. The direction of transportation can be anterograde from soma

to the axon terminals or retrograde if in the opposite direction. The tracer currently

being used are florescent dye [45], immunostain [39] (e.g. immunoperoxidase, im-

munofluorescence, immunoradioactive, etc) or genetic tracers including proteins and

viruses (e.g. herpes, pseudo-rabies etc.) The viral tracers can perform transneural

tracing by crossing synapses, and can be used to trace neurons from body organs

to the brain. A rather dissimilar technique is Diffusion MRI [24] in which diffu-

sion of water molecules is used to generate magnetic resonance (MR) images. As we

discussed earlier, some of the communication parameters such as propagation delay,

attenuation, and signal to noise ratio depend on the underlying tract that is used as

the network circuit.

2.2.2 Neuronal Interconnection

The interconnection points between neurons are called synapses. Two neurons can be

connected to each other through either chemical or electrical synapses. When the elec-

trical signal from a pre-synaptic neuron reaches to a chemical synapse, it transduces

into neurotransmitter molecules and diffuses toward the post-synaptic neuron where

it regenerates an electrical signal. A chemical synapse is basically the environment in
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which neurotransmitters diffuse from one neuron to another. Therefore, a chemical

synapse forms a molecular communication channel with its characteristics modeled

in [35]. However, whether or not a neuron secretes neurotransmitters in response

to subthreshold stimuli (see Section. 4.1.1 for definition) depends on the particular

neuron type of the species subject to investigation. The other form of neuronal inter-

connection is a direct junction between two neurons through which electrical signals

transfer from one neuron to another and it is called electrical synapse. It is easier

to engineer signal communication through electrical junctions as they do not require

transduction and propagation of chemical molecules to pass the signal to the next

neuron. However, they are less helpful as fewer instances of them are observed.

2.3 The Nervous System For Artificial Data

Communication

We mentioned earlier that the nervous system can be used for NC purposes at cellular

or circuit levels in which a single cell or neural circuit(s) can be exploited as channels

in an NC paradigm, respectively. Accordingly, two biological frameworks for realizing

NC are imaginable—i.e., cell framework and circuit framework. In this section we

elaborate on these biological frameworks, and compare the properties that the two

frameworks deliver to shape two distinguishable NC paradigms—i.e., the cellular

NC paradigm and the circuit NC paradigm. In addition, we provide a conceptual

model for each framework that illustrates an instance of NC realization through the

framework.
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(b) Single Neuron Communication Scheme.

Figure 2.4. Direct interfacing in a cellular NC paradigm.

2.3.1 Cellular NC Paradigm: A Neuron Cell as A Channel

We mentioned in Section 2.2 that applying subthreshold stimuli to a neuron causes

its membrane to generate graded potentials and propagate them through the axon.

In this subsection we elaborate on the details of a NC paradigm that relies on this

mechanism to utilize a neuron cell as a communication channel for transmitting ar-

tificial data—cellular NC paradigm. Figure 2.4 illustrates an instance of cellular NC

paradigm realization. More specifically, Fig. 2.4a illustrates the case in which an

oscillatory subthreshold input signal Ii(t) with varying frequency and fixed ampli-

tude is applied to the neuronal communication channel. The neuronal channel has

a frequency-selective transfer function H(ω) [20] [21] by which the input signal(s)

convolute and result in the output signal Vo(t). In this case, an input signal Ii(t)

represents the data by frequency modulation (FM). The different frequency compo-
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nents attenuate at different rates based on their frequency [20] [21]. This signal is

in the form of electrical current and can be applied anywhere on the dendritic tree

or the soma. The output signal Vo(t) is in the voltage form and can be picked up

at distance x from the soma on the axon (x ≥ 0). It is important to remember

that in a cellular NC paradigm, the magnitude of an input signal Ii(t) must be kept

subthreshold to avoid generating artificial APs. Figure 2.4b illustrates the conceptual

model of the paradigm. The input data carrier signal Ii(t) is in the form of electrical

current and can be applied anywhere on the dendritic tree or the soma. The output

signal Vo(t) is in voltage form and can be picked up on the axon at distance x from

the soma (x ≥ 0). The single neuron cell used in this way can be thought of featuring

a unicast communication as there is a one-to-one relation between the source and the

destination.

The magnitude of an input signal Ii(t) in a cellular NC paradigm is controlled in

such a way that the neuron does not spike APs but yet generates some output i.e.,

the graded potentials. Therefore, an implementation of cellular NC relies on a non-

spiking regime of neuronal functionality. This regime has many advantages such as

utilizing the sub-band capacity of neurons, adjustability of data transmission range,

minimizing interference with normal spiking operation of the nervous system ,and a

linear communication channel that preserves original frequency components of the

input signal.

2.3.2 Circuit NC Paradigm: A Neuronal Circuit As A

Channel

As we mentioned in Section 2.2, the nerve bundles within the nervous system resemble

circuits in a circuit-switching network as every organ in the body is innervated by
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Figure 2.5. An instance of suprathreshold NC.

a distinct neurobiological path within the nervous system. A circuit NC paradigm

can be realized by utilizing these neurobiological circuits as communication paths

between pairs of artificial data senders and receivers. These circuits also provide

the rare opportunity of sampling the body’s vital signals and fixing internal organs’

dysfunctionalities by inducing proper stimulation.

We propose a circuit NC paradigm to be realized by encoding the artificial data

through stimuli applied to the senses. As these stimuli generate natural APs, a re-

alization of this paradigm depends on a spiking regime of neuronal functionality.

Figure 2.5 shows a conceptual model of a circuit NC realization. In this model, a

stimulation signal is applied indirectly to the nervous system (e.g., through tactical

stimulation) and propagates naturally through the nervous system to the brain. The

stimuli make spatiotemporal patterns of activation in the brain as the figure illustra-

tes. These patterns can be read by available technologies (e.g., EEG) and interpreted

by a proper decoding system. Table 2.1 lists a summary of the frameworks discussed

in this section.
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Table 2.1. NC paradigms Summary.

Paradigms
Properties Cell Circuit
Scale Single Neuron Neuronal Path
Regime Non-spiking Spiking
Interfacing Type Direct Natural
Data Modulation Frequency or Amplitude Spatiotemporal Patterns in the Brain
Casting Type * U, M, B M, B

* Considered Types: Unicast, Multicast, Broadcast.
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Chapter 3

Related Work

In this chapter, we mention two main branches of classical techniques with respect

to intrabody communication, and pinpoint their deficiencies. Most of the literature

refer to these techniques collectively as Body Area Networks (BAN). BAN techniques

have been around for more than a decade. They comprise sensors placed on or

under the skin to monitor the body’s vital signals and communicate the readings by

electromagnetic (EM) or electric waves to a sink node. The propagation medium for

their data carrier signal could be air or the body’s tissues. The primary application

of BAN is to remotely monitor the health status of patients especially for those

with aging or disability problems. We also mention in this chapter the Molecular

Communication (MC) as a newer intrabody technique, and explained why despite

some of its advantages it is still not adequate for establishing an adequate intrabody

communication.
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3.1 Wireless Body Area Networks (WBAN)

The classical Wireless Body Area Networks (WBAN) (e.g., IEEE 802.15.6) [15]) [46]

rely on broadcasting short range airborne Electromagnetic (EM) waves with relatively

low frequency. For example in Human Body Communication (HBC) applications,

WBAN uses 16Hz and 24Hz frequency bands [42]. However, lower frequencies do not

work with the small-scale machines deployed as swarms. This is because the thinner

machines must have an antenna with a small size due to which the machine has to

transceive high frequency EM waves very close to the resonance frequency of the

water molecules. But higher EM frequencies increase the wave damping because of

excess water molecules resonance. So the machines should emit high power EM waves

with two penalties: heating up (and probably deforming) the tissues, and exhausting

their scarce energy resources.

In addition, WBAN relies on using license-free radio frequency band such as In-

dustrial, Scientific and Medical (ISM) [42]. This makes WBAN vulnerable to noise

and interference from the other networks with the same frequency band such as the

so-called WiFi networks (i.e. IEEE 802.11). It also turned out that relying on elec-

tromagnetic waves for communicating over the body perimeter brings about concerns

with respect to patient safety [12] [25] and security [46] [41].

There are also some other reasons for WBAN inadequacy when it comes to pur-

veying communication to future heterogeneous machines. More specifically, the future

machines deployed in the body are not necessarily electrical, and hence, they may

not be able to transceive EM waves. Rather, they can be mechanical machines (e.g.

DNA origami) or they could be made of biological species synthesized through genetic

engineering [2]. With respect to the problems we mentioned above, it would not be

possible to provide an adequate communication to the miniature machines using the
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conventional WBAN techniques.

3.2 Intra-body Communication (IBC)

Intra-body Communication (IBC) techniques use an alternative way to airborne EM

waves. They use the body’s surface tissues (e.g., skin and muscles) as a guided pro-

pagation media to propagate electric and electromagnetic signals [46] or ultrasound

waves [13]. In particular, Galvanic Coupling [49] [4] uses the body’s surface tis-

sues to transmit electrical current signals among the sensors deployed on the body.

However, the characteristics of galvanic coupling communication channels are not

deterministic as they depend on physiological variations of individuals (e.g. tissue

properties, body geometry) as well as the physical factors of the environment such

as humidity. Ultrasound waves as a modality for in-body communication is initially

suggested in [13] [9] [44] and improved by opto-ultrasonics [43]. These mechanical

waves have a good propagation through the body which is composed mostly of water.

While side effects of short-time application of ultrasound waves in medical imaging is

usually considered as negligible, using these waves for communication purposes in the

long run could yield to tissue overheating or deformation, as ultrasonic waves make

tissue molecules vibrate at a fast rate.

In addition, both ultrasound and galvanic coupling techniques suffer from several

common problems. They present broadcast communication which degrades communi-

cation performance and scalability. Both techniques also show big signal attenuation

at distal extremities not longer than a hundred centimeters [13] [4]. These techniques

are also very energy demanding despite the limited strength of batteries that typically

run implanted devices. Therefore, none of the above techniques have the capability

of addressing distinct machines on top of its other problems such as excessive power
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loss, variant channel properties, and impacts of ambient factors (e.g., temperature

and humidity). Furthermore, it is not natural for the body’s tissues to conduct such

an extra amount of energy stream. Therefore, using IBC techniques over a long period

of time may result in deformation of tissues.

3.3 Molecular Communication (MC)

Molecular nano-communication (MC) [35] is a bio-inspired communication para-

digm in which the spatiotemporal changes in the concentration of chemical species,

and the chemical species themselves, carry information between a transmitter and a

receiver. The particles can passively propagate through Brownian motion diffusion

(e.g. calcium signaling) or they can be actively transported with the help of flagellated

bacteria [14], nanomotors [30], cardiovascular system [8] or nervous system [5]. This

is a recent paradigm for establishing communication among intrabody nanomachines

in a way compatible to biological communication processes. In 2015 IEEE Communi-

cation Society Standard Development Board published IEEE P1906.1 Recommended

Best Practice for Nanoscale and Molecular Communication [1]. MC naturally occurs

in the body and it is an abstraction of many communication mechanisms in biology,

including the main communication systems in the human body—i.e., the endocrine

system and the nervous system. The communication engineering community has rea-

sonably recognized the merit of MC for serving broadcast communication in the body.

For instance, a linear end-to-end communication channel model for using MC in nano-

networks is introduced in [35]. IEEE has also published a set of recommendations in

its P1906.1 [1] document. It may be tempting to think of MC as a biocompatible mo-

dality for realizing an intrabody communication through either of the body’s natural

communication systems. The intrinsic dynamics of each system present a seemingly
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insurmountable obstacle to such an achievement. More specifically, the endocrine

system is a widespread but slow communication system as it relies on cardiovascular

system to propagate molecules. On the other hand, neurotransmitter molecules in

the nervous system propagate fast but their propagation distance is through a very

narrow synaptic cleft. Therefore, MC would not be the primary means for a fast and

extensive intrabody communication.

3.4 Neuronal Communication by Artificial

Spiking

Few efforts such as [18] have been made to model the nervous system with a com-

munication perspective. However, they rely on the assumption that neurons linearly

transfuse synaptic stimuli to action potentials. This impedes a real world implemen-

tation of the communication system based on their model. More specifically, the

studies in [6] and [26] focus on how a synaptic connection can be modeled as a com-

munication channel between two neurons. However, the authors did not discuss the

communication within a neuron cell. Instead, the study in [18] models a communica-

tion with a postsynaptic neuron as a part of the channel. The authors used a linear

RC circuit as the equivalent model of an isopotential patch of the neuron’s mem-

brane. However, by taking assumption, they overlooked the fact that actual neuron

cells have a nonlinear transfer function as it is demonstrated in the gold standard

Hodgkin-Huxley (HH) [16] model (see Section 4.1.1 for more details). There exist se-

veral concerns that make the practicality of all the mentioned approaches even more

unlikely. All the approaches rely on modulating artificial action potentials (APs) as

data carrier signals.
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First, modulating artificial APs increases the risk of conflict between natural and

artificial data flow in the nervous system, and hence, can cause distortions in the

body’s regulatory systems. For example, the neuroendocrine system may be affected

by these artificial APs and secrete inappropriate amount or type of neurotransmitters

and hormones. Second, an extra amount of artificially-generated APs can modify the

normal synaptic strength within the nervous system. In particular, increasing the

activities in synaptic connections over a long period of time may cause the Long-term

Potentiation (LTP) and Long-term Depression (LTD) processes to kick off and make

abnormal changes in synaptic efficacy which may result in behavioral and cognitive

disorders in the person.

Despite the impracticality of the previous efforts, an adequate approach to NC

implementation can deliver a fast, reliable and inclusive communication among the

devices implanted on/in the body. We will discuss the implementation aspects of NC

with novel approaches in more detail in Chapter 4. We finish this section by listing

in Table 3.1 a summary of the benefits that a desired NC realization can bring forth

compared to the mentioned three conventional intrabody techniques.

Table 3.1. Signal state in time domain.

Communication Paradigm
Properties NC WBAN IBC MC
Direction two-way two-way one-way one-way
Deployment Scale Swarm A Few Number A Few Number Swarm
Casting Type * U,M,B M,B M M

* Considered Types: Unicast, Multicast, Broadcast.
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Chapter 4

Neuronal Communication (NC)

Implementation

In this section, we explain the of utilizing the nervous system as a backbone for

artificial data communication by stimuli. For this purpose, we elaborate on how

to model the neurons’ response to stimuli with different characteristics. Also, we

introduce techniques and technologies for direct or indirect interfacing with neurons

in a compatible way to the normal operation of the nervous system.

4.1 Modeling Neurons Response to Stimuli

In order to generate data carrier signals by stimulation in a NC system, one must know

how the response of the neuronal communication channel varies with the changes

in the stimulation signal. More specifically, the neurons respond to variations in

amplitude and frequency of the stimulation signal by generating neuronal signals

with different characteristics.
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4.1.1 Magnitude

As we mentioned in Section 2.3.1, the neurons generate two distinct responses to

subthreshold and suprathreshold stimuli. The quasi-active model [22] explains how

the neurons generate non-spiking graded potential in response to the applied sub-

threshold stimuli. In [20] and [21], we elaborated on how neurons present a linear

transfer function when propagating these graded potentials. This linearity offers a

promising opportunity to transfer artificial data in a cellular NC paradigm by modu-

lating the data through subthreshold stimulation. However, this is not the case for

suprathreshold stimuli as in this case, the neuronal channel responds nonlinearly as

it is demonstrated in the widely accepted Hodgkin and Huxley (HH) model of spiking

neurons [16]. However, we work around this problem by encoding the data as spati-

otemporal patterns of naturally generated action potentials in the nervous system in

a circuit NC paradigm as we discussed in Section 2.3.2.

4.1.2 Frequency

The neurons are frequency selective [20] as they respond differently to oscillatory

stimuli with different frequencies. This implies that the transfer function (i.e., the

electrical impedance) of a neuronal communication channel varies with the frequency

of an oscillatory input signal. In particular, the neurons act as band pass filter. The

received stimuli in their soma [20] or their dendritic tree [21]. Therefore, the ideal

frequency for data carrier signals is the neuron’s resonance frequency as it results

in the maximum magnitude of the output voltage signal for a same level of input

electrical current.
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4.2 Stimulating and Interfacing with Neurons

There are two ways imaginable for interfacing between neurons and stimulator devices.

The simplest approach is to utilize the natural way that the body uses to generate and

propagate signals across the nervous system, i.e., through the five senses. We call this

method Natural Interfacing. The other way is to stimulate the neurons in an artificial

way. This approach is more complicated and involves applying direct stimulation onto

the neurons, namely Direct Interfacing. In this subsection we introduce workable ideas

for realizing each of the interfacing techniques.

4.2.1 Natural Stimulation and Interfacing

We mentioned in Section 2.3.2 that in a circuit NC paradigm the artificial data are

communicated through a neurobiological path consisting of multiple neurons. Fi-

gure 2.5 illustrates a conceptual model of circuit NC paradigm in which the tactile

sense acts as a natural interface to encode mechanical energy to neuronal data car-

rier signals. Each neurobiological path reaches to distinct body interior and exterior.

Therefore, it is very important to choose right neurological path in order to have a

proper NC implementation. Furthermore, closed-loop spinal neurological paths (e.g.,

reflex paths) or long-axons neurons (e.g., from shoulder to arm) avoid the brain enga-

gement in a circuit NC paradigm. The characteristics of neurological paths are well

investigated in neurophysiology literature. However, practical techniques are needed

to be actually leveraged to find and interface with them in vivo. In this subsection,

we mention a handful of tracing techniques that can be utilized for this purpose.

The majority of these techniques rely on axonal transport of a tracer substance. The

direction of transportation can be anterograde from soma to the axon terminals or

retrograde for the opposite direction. The tracer currently being used are florescent
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dye [45] , immunostain [39] (e.g. immunoperoxidase, immunofluorescence, immu-

noradioactive, etc.) or genetic tracers including proteins and viruses (e.g. herpes,

pseudo-rabies etc.) These viral tracers can perform transneural tracing by crossing

synapses and can be used to trace neurons from body organs to the brain. A rather

dissimilar technique is Diffusion MRI [24] in which diffusion of water molecules is

used to generate magnetic resonance (MR) images.

4.2.2 Direct Stimulation and Interfacing

In the rest of this subsection we introduce some practical techniques to directly sti-

mulate and interface with the neurons. These techniques are originally proposed for

Central Nervous System (CNS) disease treatment but they actually prove the feasi-

bility of the direct stimulation concept. Therefore, it is also possible to utilize very

similar techniques to stimulate peripheral nerves for performing neuronal commu-

nication in the Peripheral Nervous System (PNS). A class of older techniques use

micro-electrodes to directly inject electrical current into the neurons. These include

Transcranial Direct Current Stimulation (tDCS), Transspinal Direct Current Stimu-

lation (tsDCS), Deep Brain Stimulation (DBS) and Spinal Cord Stimulation (SCS).

Although the above techniques are invasive, they prove the feasibility of the direct

stimulation concept. Furthermore, less invasive electrodes are imaginable to be built

with future advances in nanotechnology.

Transcranial Direct Current Stimulation (tDCS) [31] is a non-invasive technique

that uses two electrodes to modulate neural activities by passing a low strength

electrical current through cranial nerves. Transspinal Direct Current Stimulation

(tsDCS) [32] is very similar to tDCS but it excites spinal nerves. tsDCS seems to

be promising for neuronal communication as there are many spinal nerves close to
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the body exterior especially around the neck and shoulders (cervical nerves) as well

as waist and hips (lumbar nerves). Deep Brain Stimulation (DBS) [34] technique

uses two microelectrodes implanted under the scalp along with a neurostimulator to

stimulate designated targets in parts of the brain beneath the cortex such as basal

ganglia and ventral intermediate nucleus of the thalamus. DBS is usually used on

the part of the brain that has many efferent nerves attached to muscles to control

voluntary movements. Therefore, the effect of applied stimuli by DBS may be picked

up in motor nerves and muscles. Spinal Cord Stimulation (SCS) [47] is an older

technique based on the idea of applying electrical current stimulation onto the nerves

in the spinal cord. However, it requires a surgery for implanting the related devices.

Fortunately, there are also non-invasive techniques that exist. For instance Transcra-

nial Magnetic Stimulation (TMS) uses electromagnetic pulses to stimulate neurons.

The benefits of this technique justify the hope to develop further non-invasive techni-

ques to stimulate neurons from the body’s exterior. This is a non-invasive technique

that uses electromagnetic pulses to stimulate neurons. As the name suggests, this

technique proposes a means to electromagnetically stimulate cranial neurons. The

benefits of this technique justifies the hope to develop further non-invasive techniques

to stimulate neurons in vivo from the body’s exterior.

The above mentioned techniques are primary designed for medical purposes. They

actually stimulate a coarse grained level of neuron ensembles. Therefore, they are in-

adequate for the applications in which finer grained stimulations are desired, e.g., a

one-to-one communication between machines. More modern techniques have been

recently proposed to perform finer grained levels of stimulation up to individual neu-

rons. For example, [40] suggests to use chemical compositions to make pores on the

neuron membrane to conduct depolarizing current and stimulate the neuron. A very

known technique of this kind is optogenetics [11]. In this technique opsin genes are
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engineered in the neurons to synthesize special types of protein that act as light-gated

channels through which the ionic current can get into the neuron and depolarize the

membrane. The light-gated ion channels can be excited by visible light of a certain

wavelength. The light source can be external or be implanted inside the body. Op-

togenetics delivers a high spatiotemporal resolution thanks to its optical regulation

of ionic stimulation. Therefore, it is able to precisely modulate the desired graded

potentials in a cellular NC paradigm.

Alternatives to optogenetics may evolve over the time by developing novel machine-

to-neuron techniques. For example in [33], a nanowire FET transistor is reported to

be successfully used to interface electrical signals with a neuron. In particular, it

would be possible to manufacture very tiny stimulator devices and getting them into

the body by minimally invasive methods such as injection or swallowing. We also

envision novel machine-to-neuron direct stimulation techniques emerge in the future

to stimulate the neurons with a natural approach. This can be accomplished, for ex-

ample, by releasing neurotransmitter-like ligands through artificial-made devices or

genetically-engineered species (e.g., bacteria) produced by synthetic biology techni-

ques. This method does not need to make changes in the neuronal membrane.
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Chapter 5

Somato-axonal Communication

Channel

In this chapter we elaborate the concept of transmitting artificial data through a

neuron cell by modulating the data with applying stimulation signals to the soma.

In particular, we explain the details of our analytical model stemmed from the fact

that neurons show a deterministic linear (in the frequency domain) transfer function

in response to subthreshold stimuli. We will also provide the relevant maths and

symbolic formulation of a linear communication channel based on an in vivo neuron

cell.

5.1 A Neuron-based Communication System

We proposed earlier in Section 2.3.1 a novel communication paradigm that utilizes a

neuron cell (neuron) to transmit artificial data signals between a sender and a receiver

using subthreshold stimuli. For the purpose of the following analysis, a neuron can

be considered as an electrically excitable structure that propagates electrical stimuli
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Figure 5.1. The scheme of the proposed neuron-based communication system.
along its length. We assume that when no external perturbation is applied to the

neuron, the membrane potential is constant and homogeneous throughout the neuron,

and equal to the resting potential Em, in agreement with widely accepted models

from the neurophysiology literature [48]. The communication system proposed in this

thesis, as shown in Fig. 5.1, is composed of a Sender, which modulates the injection of

an electrical current into the soma according to a signal to be transmitted; a Channel,

which corresponds to the membrane potential perturbation resulting from the current

injection, and its propagation along the axon; and a Receiver, which recovers the

transmitted signal by reading the membrane potential at a location along the axon

away from the soma. In particular, we assume that the sender injects the current Ii(t),

as function of the time t, into the soma through a technique called somatic current

injection [37], where a microelectrode penetrates the membrane at the soma and

releases electrical current into the intracellular space. The injected current, and the

consequent local perturbation of the membrane potential around the aforementioned
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resting potential, are propagated within the neuron in two main directions, namely,

within the dendritic tree displaced around the soma, and along the axon. we assume

that the receiver is realized through an intracellular electrode through which we read

the membrane voltage Vo(t) at a distance x along the axon projection axis from the

soma.

Within the aforementioned system, we obtain a communication channel model

based on the propagation of the membrane potential perturbation from the current

injection to a location x along the axon. As detailed in Sec. 5.2, while the physical

processes underlying this model are in general characterized by non-linear behaviors,

it is possible to obtain a linear channel model when the proposed communication

system meets determinate conditions, i.e., subthreshold stimulation. The obtained

channel model is deterministic, since within the scope of this thesis we do not take

into account noise arising from natural stochastic perturbations observed in neuronal

membrane potential [27]. Nevertheless, we believe that this deterministic channel

model is the first necessary step to explore the proposed communication system, and

in our future work we plan to incorporate on top of it realistic models of the potential

noise sources as well as the impact of interference with natural communication in the

nervous system. we also plan to assess the performance of our model by analyzing

throughput, packet loss, and average delay.

5.2 Linear Channel Model

We express a linear channel model of a neuron betwwen a sender that injects the

current Ii(t), as function of the time t at the soma, and a receiver that reads the

membrane potential Vo(t) = V (x, t) at distance x along the axon at time t. This
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model is expressed in the frequency ω domain as follows:

Ṽo(ω) = Z(x, ω)Ĩi(ω) , (5.1)

where Ĩi(ω) and Ṽo(ω) are the Fourier transforms of Ii(t) and Vo(t), respectively.

The equivalent circuit of the linear channel model is shown in Fig. 5.2, which is

valid if the injected current Ĩi(ω) satisfies the subthreshold stimulation conditions,

expressed in Section. 5.2.1. In this circuit, the dendritic tree is modeled as an impe-

dance Zdendrites(ω) as function of the frequency ω, whose calculation is expressed in

Section. 5.2.4, while the axon is modeled as an infinite transmission line extending

from the soma with characteristic impedance Z0(ω), expressed in (5.9). According

to transmission lines and lumped circuit theory [28], the transimpedance Z(x, ω) as

function of the distance x along the axon and the frequency ω is expressed as follows:

Z(x, ω) =
Zsoma(ω)

Z0(ω)
Zaxon(x, ω) , (5.2)

where Zaxon(x, ω) is the transimpedance of the axon at distance x from the soma and

frequency ω, expressed in Sec. 5.2.3, and Zsoma(ω) is the equivalent impedance at the

soma where the sender injects the current Ĩi(ω), and it is expressed as the electrical

parallel [28] between Zdendrites(ω) and Z0(ω):

Zsoma(ω) =
Zdendrites(ω)Z0(ω)

Zdendrites(ω) + Z0(ω)
. (5.3)

As detailed in the following, Zdendrites(ω), Zaxon(x, ω), and Z0(ω) are functions of the

transmembrane impedance Zm(ω) expressed in (5.5).
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Figure 5.2. Equivalent circuit of the linear channel model.

5.2.1 Subthreshold Stimulation Condition

Upon injection of electrical current, the membrane potential of a neuron varies around

the aforementioned resting potential Em. If the membrane potential of a neuron

exceeds a value termed as threshold potential Vth, the neuron undergoes a process

called action potential stimulation, where the membrane potential raises and falls

with a predetermined trajectory as function of the time [36].

The linear channel model expressed in this section is valid only when the mem-

brane potential maintains a value less than Vth, named subthreshold condition. This

is realized when the current Ĩi(ω) injected by the sender in the neuron soma satisfies

the subthreshold stimulation condition, expressed as

Ĩi(ω) : Ṽo(x, ω) |x=0 = Zsoma(ω)Ĩi(ω) < Vth , (5.4)

where x = 0 denotes the location of the soma along the axon coordinate x. If (6.2)

is satisfied (at the soma), then the subthreshold condition is satisfied at any other

membrane location, since the equivalent circuit in Fig. 5.2 is composed of passive

elements other than the current injection at the soma [28]. Vth typically ranges

from −60mV to −55mV, depending on the electrophysiological characteristics of the
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Figure 5.3. Hodgkin-Huxley model of an isopotential membrane patch.

neuron [36].

5.2.2 Transmembrane Impedance Zm(ω)

The transmembrane impedance of a neuron is here defined as the ratio between the

membrane potential Ṽm(ω) and the transmembrane current Ĩm(ω) of an area of neuron

membrane where the membrane potential can be approximated as homogeneous, i.e.,

isopotential membrane patch. In this section, by applying the quasi-active neuron

membrane model [22], we express of the transmembrane impedance as follows:

Zm(ω) =
Ṽm(ω)

Ĩm(ω)
=

α3ω
3 + α2ω

2 + α1ω + α0

β4ω4 + β3ω3 + β2ω2 + β1ω + β0

, (5.5)

where αi, i = 0, 1, 2, 3, and βj, j = 0, 1, 2, 3, 4 are in (5.6) and (5.7), respectively. In

the following, I motivate this result.

The relation between the membrane potential vm(t) and the transmembrane cur-

rent Im(t) of an isopotential membrane patch of a neuron, as functions of the time
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t, is generally represented through the widely accepted Hodgkin-Huxley model as

an electrical circuit with terminals at each side of the membrane [16], as shown in

Fig. 5.3. The capacitance Cm models the lipid bilayer of the membrane patch, and

the conductances gNa and gK model the voltage-gated ion channels, i.e., membrane

pores that allow ions to pass through depending on the membrane voltage itself, for

the sodium Na+ and potassium K+, respectively. The leak conductance gl models

leak channels, i.e., membrane pores that allow ions of various types to pass through

independently from the membrane voltage, and the voltage sources ENa+ , EK , and El

model the differences in the concentration of different ion species that drive the flow

of ions through the membrane channels. The aforementioned resting potential Em

of the neuron is equal to the average of the voltage sources ENa+ , EK , and El weig-

hted by each corresponding conductance. In general, the conductances gNa and gK

are non-linear functions of the membrane voltage vm(t), which results in a non-linear

relation between vm(t) and the transmembrane current Im(t).

In the case when the membrane potential vm(t) satisfies the subthreshold con-

dition at any isopotential membrane patch, corresponding to vm(t) < Vth, the afo-

rementioned Hodgkin-Huxley model for the isopotential membrane patch reduces to

the quasi-active model detailed in [22]. This model corresponds to the electrical ci-

rcuit shown in Fig. 5.4, which, in contrast to the Hodgkin-Huxley’s, is composed of

linear elements. The expressions for the conductances G, gn, gh and g′m, the induc-

tances Ln and Lh, and the capacitance C ′
m are provided in [23] as functions of the

aforementioned Hodgkin-Huxley parameters. In this thesis, we make the following

assumptions: i) at the moment when the sender starts the injection of the current

Ii(t) into the soma, the membrane potential at any location of the neuron is equal to

the aforementioned resting potential Em; ii) during the injection of the current Ii(t)

into the soma, no other external perturbation is induced on the membrane potential;
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Figure 5.4. Quasi-active model of an isopotential membrane patch in subthreshold
condition.
iii) The injection of the current Ii(t) satisfies the subthreshold stimulation condition

expressed in (6.2) for its Fourier transform Ĩi(ω).

As a consequence, during the transmission of information through the commu-

nication system proposed in this thesis, every isopotential membrane patch of the

neuron satisfies the aforementioned subthreshold condition, and can be modeled with

the linear electrical circuit shown in Fig. 5.4.

According to the quasi-active model, the relation between the Fourier transform

Ṽm(ω) of the membrane potential vm(t) and the Fourier transform Ĩm(ω) of the trans-

membrane current Im(t) of an isopotential membrane patch, the functions of the fre-

quency ω, can be defined as the transmembrane impedance Zm(ω) expressed in (5.5),

computed at the terminals of the circuit in Fig. 5.4 by applying electrical circuit
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analysis [28]. The parameters αi, i = 0, 1, 2, 3 in (5.5) have the following expressions:

α0 = Ggngh (5.6)

α1 = jG (Lngh + Lhgn + C ′
mg

′
mghgn)

α2 = −G (LnLh + LnC
′
mg

′
mgh + LhC

′
mg

′
mgn)

α3 = −jGLnLhC
′
mg

′
m ,

while the parameters βj, j = 0, 1, 2, 3, 4 have the following expressions:

β0 = gnG+ ghG+ ghgn (5.7)

β1 = j (ghgnGCm + C ′
mghgnG+ LnG+ C ′

mg
′
mgnG

+LhG+ C ′
mg

′
mghG+ Lngh + Lhgn + C ′

mg
′
mghgn)

β2 = − (LnghGCm + LhgnGCm + C ′
mg

′
mghgnGCm

+LnC
′
mghG+ LhC

′
mgnG+ LnC

′
mg

′
mG

+LhC
′
mg

′
mG+ LnLh + LnC

′
mg

′
mgh + LnC

′
mg

′
mgn)

β3 = −j (LnLhGCm + LnC
′
mg

′
mghGCm

+LhC
′
mg

′
mgnGCm + LnLhC

′
mG+ LnLhC

′
mg

′
m)

β4 = LnLhC
′
mg

′
mGCm .

5.2.3 Axon Transimpedance Zaxon(x, ω)

The axon transimpedance of a neuron is here defined as the ratio between the mem-

brane potential Ṽ (x, ω) at distance x along the axon and the current Ĩi(ω) injected by

the sender into the soma in the case where we exclude the electrical contribution of

the dendritic tree, which corresponds to substituting the impedance of the dendritic
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Figure 5.5. Transmission line model of the axon obtained through the Cable Theory.

tree in Fig. 5.2 with an open circuit, i.e., Zdendrites(ω) → ∞. This is expressed as

follows:

Zaxon(x, ω) = 0.5Z0(ω)e
−x

√
4Ra

Zm(ω)da , (5.8)

where Z0(ω) is defined in (5.9), Ra is the membrane axial resistance, which is a para-

meter determined experimentally, and Zm(ω) is the transmembrane impedance (5.5),

respectively. In the following, we detail the derivation of (5.8).

The neuron axon is a projection from the soma, and its electrical properties in

terms of the aforementioned impedance can be quantified by applying the Cable

Theory [38] to the isopotential membrane patch model presented in Sec. 5.2.2. In

particular, the neuron axon is modeled through the electrical transmission line shown

in Fig. 5.5, where Zm(ω) is the transmembrane impedance of an isopotential mem-

brane patch, expressed in (5.5), and Ra is the axial resistance of the axon, defined as

the ratio between the membrane potential difference Va of two adjacent membrane

patches, and the ion current flowing in the axon intracellular environment (axoplasm)

adjacent to the patches, termed axial current Ia. In agreement with [38], the axial re-

sistance Ra is here considered constant and homogeneous along the axon. According

to transmission line theory [48], we define the characteristic impedance Z0(ω) of the
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axon as

Z0(ω) =

√
4RaZm(ω)

π2d3a
, (5.9)

Where da is the diameter (average) of the axon. In the following derivations, we make

the assumption [38] L ≫ λ, where L is the length of the axon, and λ is the membrane's

length constant, defined as follows [48]: λ =
√

ℜ{Zm}da
4Ra

, where ℜ{.} denotes the real

part. As a consequence, the electrical transmission line model shown in Fig. 5.5

has infinite extension in the axon projection direction. In addition, the soma is

here considered as having negligible size with respect to the axon, and therefore

approximated as a point at location 0 along the axon projection axis.

To analytically obtain the axon transimpedance Zaxon(x, ω), with reference to

Fig. 5.5, we express the Kirchhoff's current law [28] at a location x along the axon as

follows:

Ĩm(x, ω) =
Ĩa(x− δx, ω)− Ĩa(x, ω)

δx
+ Ĩi(ω)δ(x) , (5.10)

where Ĩm(x, ω) and Ĩa(x, ω), are the Fourier transforms of the current per unit length

flowing through the isopotential membrane patch and the current through the axial

resistance Ra, respectively, at location x along the axon projection axis and frequency

ω, and Ĩi(ω) is the Fourier transform of the current injected by the sender into the

soma. δx is an infinitesimal distance along the axon projection axis, while δ(.) is the

Dirac delta operator. Through electrical circuit analysis [28], we obtain the following

expressions:

Ĩa(x− δx, ω) = πd2aṼa(x−δx,ω)
4Ra

= πd2a(Ṽm(x−δx,ω)−Ṽm(x,ω))
δx4Ra

,

Ĩa(x, ω) =
πd2aṼa(x,ω)

4Ra
= πd2a(Ṽm(x,ω)−Ṽm(x+δx,ω))

δx4Ra
,

Ĩm(x, ω) =
πdaṼm(x,ω)

Zm(ω)
,
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where Ṽa(x, ω) and Ṽm(x, ω) are the voltage at the the axial resistance Ra and the

membrane potential, respectively, at location x along the axon projection axis and

frequency ω. By substituting (5.11) into (5.10), and taking the limit for δx → 0, we

obtain the following relation between the membrane potential Ṽ (x, ω) at distance x

along the axon and the current Ĩi(ω) injected by the sender into the soma:

πdaṼm(x, ω)

Zm(ω)
=

πd2a
4Ra

∂2Ṽm(x, ω)

∂x2
+ Ĩi(ω)δ(x) , (5.11)

which corresponds to a second order linear partial differential equation with the fol-

lowing solution [22]:

Ṽm(x, ω) =
1

2

√
4RaZm(ω)

π2d3a
e
−x

√
4Ra

Zm(ω)da Ĩi(ω) , (5.12)

where Ṽm(x, ω) is the membrane potential at distance x along the axon and Ĩi(ω) is

the current injected by the sender into the soma as functions of the frequency ω, Ra

is the axon axial resistance, and Zm(ω) is the transmembrane impedance expressed

in (5.5). As a consequence, the axon transimpedance as defined above corresponds

to the expression in (5.8).

5.2.4 Dendritic Tree Impedance Zdendrites(ω)

The dendritic tree impedance of a neuron is here defined as the ratio between the

membrane potential Ṽ (0, ω) at the soma and the current Ĩi(ω) injected by the sender

into the soma in the case where we exclude the electrical contribution of the axon,

which corresponds to substituting the axon transmission line model in Fig. 5.2 with

an open circuit, i.e., Zaxon(x, ω) → ∞. This is computed recursively through a depth-

first search with post-order traverse method [10] detailed in Algorithm 2.
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Algorithm 1 Recursive calculation of Zdendrites(ω).
1: procedure DendTreeImpedance (node dendrite)
2: if dendrite ! = NULL then
3: for node i : dendrite.GetChildren () do
4: DendTreeImpedance (i)
5: Compute Zdendrites(ω) = Zd,i(ω) with (6.4)
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Figure 5.6. Transmission line model of the dendritic tree obtained through the Cable
Theory.

From the electrical perspective, the dendritic tree can be modeled through Cable

Theory [38] as a branched transmission line, as shown in Fig 5.6, with characteristic

impedance Z0(ω), expressed in (5.9). In the transmission line model, each branch of

the dendritic tree can be either a leaf dendrite, which have an open circuit as end

load, or a parent dendrite, whose load is given by the equivalent load of the parallel

branching transmission lines, named Children in Algorithm 2.

To analytically obtain the impedance Zd,i(ω) of a dendrite i, we apply Transmis-

sion Line Theory [28] to compute the equivalent impedance of a transmission line
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having a characteristic impedance Z0,i(ω) =
√

4RaZm(ω)/(π2d3i ), di being the den-

drite’s diameter, a length equal to the physical length of the dendrite ldi , and a load

ZL,i(ω). This is expressed as

Zd,i(ω) = Z0,i(ω) (5.13)

· ZL,i(ω) cosh(γ(ω)ldi) + Z0(ω) sinh(γ(ω)ldi)

ZL,i(ω) sinh(γ(ω)ldi)Z0(ω) cosh(γ(ω)ldi)
,

where γ(ω) =
√

4Ra/(Zm(ω)di) and Ra is the axial resistance defined in Sec. 5.2.3. If

dendrite i is a leaf, the load ZL,i(ω) → ∞, otherwise, if dendrite i is a parent, ZL,i(ω)

is expressed as the equivalent load of N parallel transmission lines branching from

the dendrite i. This is expressed as follows:

ZL,i(ω) =

∑N
n=1 Zd,n(ω)∏N
n=1 Zd,n(ω)

, (5.14)

where N is the number of dendrites branching out from dendrite i, and Zd,n(ω) is

the impedance of the dendrite n computed at an earlier step in the recursion of

Algorithm 2.

5.3 Numerical Results

We present a preliminary comparison of numerical results, obtained by evaluating the

analytical expressions of the linear channel model detailed in Sec. 5.2, with results of

simulations performed through the NEURON software [7], which is based on the nu-

merical computation of the Hodgkin-Huxley (non-linear) model throughout a neuron

with a defined shape, or morphology. we based our results on the biophysical para-

meters of the giant squid axon, which are considered as standard for neurophysiology

model comparison [23]. For these preliminary results, we used a simplified dendritic



45

Figure 5.7. NEURON software [7] screenshot showing the neuron morphology used
to compute our numerical results.

tree having only one dendrite, as shown in the screenshot of the NEURON software

in Fig. 5.7. The parameters are as follows: the lumped elements of the quasi-active

model of a membrane patch in Fig. 5.4 are G = 0.246 mS/cm2, gn = 0.894 mS/cm2,

gh = 0.072 mS/cm2 , g′m = 0.432 mS/cm2, Ln = 6.43 H.cm2, Lh = 119 H.cm2 ,

Cm = 1 µF/cm2 and C ′
m = 0.102 µF/cm2; the value of the membrane axial resistance

is Ra = 100 ohm.cm; the length of the axon is L = 1500 µm and the length of the

single dendrite is ld1 = 3400 µm. Additional parameters used in the NEURON soft-

ware are as follows: dendrites, soma, and axon diameters are equal to 50 µm, 50 µm,

and 10 µm, respectively, the number of simulation segments is equal to 70, 5, and 50,

respectively, and the length of the soma is equal to 100 µm, which can be considered

negligible when compared to the axon and dendrite lengths. The parameter values

of the Hodgkin-Huxley model for the giant squid axon [29] used in the NEURON

simulations correspond to ḡNa = 0.12 S/cm2, ḡK = 0.036 S/cm2, gl = 0.0003 S/cm2,

and El = −54.3 mV.

In Fig. 5.8 and Fig. 5.9 we show the numerical results in terms of magnitude
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Figure 5.8. Magnitude of the neuron transimpedance |Z(x, ω)| for a distance x =
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Fig. 5.8).
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and phase, respectively, of the neuron transimpedance Z(x, ω) when the receiver

performs the voltage reading at a distance x = 0.0675 cm from the soma along the

axon projection axis, as shown in Fig. 5.1. The analytical transimpedance values

are computed with the linear channel model presented in this thesis by evaluating

the formulas in (5.2), (5.3), (5.5), (5.8), and Algorithm 2 for the aforementioned

parameters. The simulation-based transimpedance values are computed by running

the NEURON software [7] with the following parameters: initial membrane potential

equal to the resting potential -65 mV, total simulation time 1000 msec, simulation

time step 0.01 msec, and different voltage outputs are computed for sinusoidal injected

currents with amplitude 5 nA, which satisfies the subthreshold condition as detailed

in the following, and having frequencies from 1 Hz to 1000 Hz.

The preliminary results in Fig. 5.8 and Fig. 5.9 show as similar trend with nu-

merical values of comparable magnitude computed through the linear channel model

proposed in this thesis and those computed through numerical simulation with the

NEURON software. In particular, we notice that both the two strategies reveal a

resonant frequency around 70 Hz, where the curves of the transimpedance magnitude

|Z(x, ω)| show a maximum value. This is in agreement with experimental results,

such as in [17]. We think that the main differences observed in the curves at low

frequencies might be due to the aforementioned simplified dendritic tree. In the fu-

ture, we plan to validate our models on neurons with more realistic morphology and

geometry

In Fig. 5.10 we show different values of the output voltage Vo(x, t) from NEURON

simulations corresponding to sinusoidal injected currents with frequency 50 Hz and

varying amplitude ranging from 1 nA to 10 nA. we can observe that for low amplitudes

of the injected current the output voltage maintains a sinusoidal shape with the

same frequency, therefore confirming a linear behavior in subthreshold stimulation
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conditions. For high amplitudes, action potential stimulation occurs, and the output

voltage shows the emergence of spikes.
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Chapter 6

Dendritic Tree Communication

Channel

In the previous chapter, we elaborated the case in which a neuron receives stimulation

signals to its soma. In this chapter, we consider a more natural circumstance in which

the dendritic tree receives stimuli through its branches and integrates them towards

the soma. This is a rather complicated analysis as individual neurons have dendritic

trees with distinct pattern of branching. We also take into account the morphological

and biophysical differences between individual neurons.

6.1 Computational Model of a Dendritic Tree in

Subthreshold Regime

In Fig. 6.1 we show a scheme of the computational model detailed in this section.

In particular, we consider only the portion of a neuron within the Nervous Sy-

stem composed of the Soma, which is the main cell’s body that contains the nucleus

and other organelles, and the dendritic tree, which is an arbitrary hierarchical bran-
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ching of Dendrites, electrically-conductive projections from the soma [36]. Along

the dendrites, special protrusions called dendritic spines allow the connection of the

dendritic tree to multiple other neurons, which send electrochemical signals to the

dendritic spines through their corresponding extremities, or synapses. Neurons are

in general composed also of an axon, a thicker and longer projection from the soma

that propagates the electrical excitation along its length and terminates into the syn-

apses. The electrical properties of the dendritic tree, soma, and axon derive from

the fact that the neuron is bound by a lipid bylayered membrane that maintains a

difference between inner and outer concentrations of ions (electrically-charged mo-

lecules), resulting in an electrical potential across the membrane itself. we assume

that when no external perturbation is applied to the neuron, the membrane poten-

tial is constant and homogeneous throughout the neuron, and equal to the resting

potential Em, in agreement with widely accepted models from the neurophysiology

literature [48]. Nevertheless, in this thesis we focus on the propagation of information

between the extremities of the dendrites, also called leaves in the rest of the thesis,

and the soma. In particular, we abstract the transmission of information through the

injection of electrical currents where a microelectrode penetrates the membrane at

each leaf and releases electrical current into the intracellular space [37]. The injected

current, and the consequent local perturbation of the membrane potential around its

resting potential, are propagated through the dendritic tree until reaching the soma.

We assume that the reception is realized through an intracellular electrode through

which we read the membrane voltage Vo(t) at the soma.

In Chapter 5, we modeled the propagation of information as a linear communica-

tion channel between the soma and a remote location of the axon in similar conditions

(subthreshold regime), where we considered the complete dendritic tree as an impe-
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Figure 6.1. Scheme of the proposed computational model of a dendritic tree.1

dance load connected to the soma, with no input to any dendrite. In this thesis, we

detail the computational model and the development of a tool to model the propaga-

tion of information from a subset of leaves of the dendritic tree, i.e., those abstracting

the connection from a single presynaptic neuron, to the soma. As shown in Fig. 6.1,

we propose a system model where the input is a modulated current Iin(t) as function

of the time t injected at the aforementioned leaves, and the output is the resulting

membrane voltage Vo(t) at the soma. The proposed model is expressed as a linear

filter in the frequency ω domain as follows:

Ṽout(ω) = Zdendtree(ω)Ĩin(ω) , (6.1)

where Ĩin(ω) and Ṽout(ω) are the Fourier transforms of Iin(t) and Vout(t), respectively,
1The neuron morphology shown in the figure has been generated through [3].
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and Zdendtree(ω) is the transimpedance of the dendritic subtree, defined here as the

portion of the dendritic tree that is connected to a single presynaptic neuron, and it

is computed through (2).

6.1.1 The Subthreshold Condition

The linear filter model expressed in (6.1) is valid only when the membrane potential

maintains a value less than Vth at the soma, named subthreshold condition [36].

This is realized when the current Ĩin(ω) injected into the dendritic tree satisfies the

subthreshold stimulation condition, expressed as

Ĩin(ω) : Ṽout(ω) < Vth , (6.2)

Vth typically ranges from −60mV to −55mV, depending on the electrophysiological

characteristics of the neuron [36]. Whenever the subthreshold condition is satisfied,

the dendritic tree can be modeled as a branched transmission line through Cable

Theory [38], as shown in Fig 6.2 and detailed in the following.

6.1.2 The Dendritic Tree Transimpedance Zdendtree(ω)

The dendritic tree transimpedance Zdendtree(ω), defined in (6.1) as the ratio between

the voltage Ṽout(ω) at the soma and the current Ĩin(ω) injected at the leaves con-

nected to a single presynaptic neuron, is computed through a branched transmission

line model, shown in Fig. 6.2. In this model, each dendrite i is modeled by a trans-

mission line with characteristic impedance Z0,i(ω) =
√

4RaZm(ω)/(π2d3i ), di being

the dendrite’s diameter, and length equal to the physical length of the dendrite ldi .

To analytically compute Zdendtree(ω), we make the following assumptions:
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Figure 6.2. Transmission line model of the dendritic tree used for the computation of
the transimpedance Zdendtree(ω).

• The current injected at the leaves Ĩin(ω) and resulting in a voltage Ṽout(ω) at

the soma is equal to the current that would result at the soma Ĩsoma(ω) by

applying a voltage Ṽout(ω) in the condition where the same leaves have zero

impedance at their terminals (short circuit).

• The leaves that do not receive current injection in our model are considered as

open circuits.

These assumptions are justified by taking into account the linearity and reciprocity

of the transmission line abstraction of the dendritic tree, which can be considered
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as a two-port electrical network where one port corresponds to the terminals of the

soma, and the other port corresponds to the terminals connected to the injected

current Ĩin(ω), in parallel to the terminals of the dendrite subtree leaves, as shown in

Fig. 6.2.

As a consequence, we can have the following equivalence:

Zdendtree(ω) = Zsoma(ω) , (6.3)

where Zsoma(ω) is the impedance that would be observed at the soma when the

dendritic subtree leaves have their terminals in short circuit, and the remaining leaves

are open circuits. This can be computed through the computational procedure that we

proposed in Chapter 5, which is a recursive algorithm based on a post-order traverse

method [10], as detailed in Algorithm 2.

Algorithm 2 Recursive calculation of Zsoma(ω).
1: procedure DendTreeSomaImpedance (node dendrite)
2: if dendrite ! = NULL then
3: for node i : dendrite.GetChildren () do
4: DendTreeSomaImpedance (i)
5: Compute Zsoma(ω) = Zd,i(ω) with (6.4)

The impedance Zd,i(ω) at a dendrite i is obtained in Chapter 5 by applying Trans-

mission Line Theory [28] to the transmission line abstraction shown in Fig. 6.2. This

is expressed as follows:

Zd,i(ω) = Z0,i(ω) (6.4)

· ZL,i(ω) cosh(γ(ω)ldi) + Z0,i(ω) sinh(γ(ω)ldi)

ZL,i(ω) sinh(γ(ω)ldi) + Z0,i(ω) cosh(γ(ω)ldi)
,

where γ(ω) =
√
4Ra/ℜ[Zm(ω)]di, Ra is the axial resistance, a parameter determined
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experimentally, and Zm(ω) is the transmembrane impedance, detailed in Chapter 5.

If dendrite i is a leaf subject to current injection, the load ZL,i(ω) = 0, otherwise, if

the dendrite i is a leaf without current injection, ZL,i(ω) → ∞. Finally, if the dendrite

i is a parent, ZL,i(ω) is expressed as the equivalent load of N parallel transmission

lines branching from the dendrite i. This is expressed as follows:

ZL,i(ω) =

∑N
n=1 Zd,n(ω)∏N
n=1 Zd,n(ω)

, (6.5)

where N is the number of dendrites branching out from dendrite i, and Zd,n(ω) is

the impedance of the dendrite n computed at an earlier step in the recursion of

Algorithm 2.

It is also possible to demonstrate that the computational procedure in Algorithm 2

can be simplified by not accounting for dendritic tree branches connected to leaves

that do not receive current injection. In fact, by substituting the open circuit load in

the expression in (6.5), the the time on which impedance Zst,i(ω) of a leaf dendrite i

without current injection can be expressed as

Zst,i(ω) = −jZ0,i(ω) cot(βli) , (6.6)

where β = 2π/λ, λ is the signal wave length, li is the length of the leaf dendrite i,

and cot the cotangent function. Given that the length of a dendrite is in the order

of micrometers [36], and the frequency range that we consider in our model is in

the order of kHz, the resulting Zst,i(ω) will likely assume much higher values than

parallel branches connected to short circuit loads at the leaves subject to the current

injection, and can be safely removed from the computation in Algorithm 2.
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6.2 Computational Tool Implementation

Algorithm 3 Implementation of ZSomaCalculation.
1: procedure LeavesImpedance (list DendriticTree)
2: list LeavesList = Leaf dendrites of DendriticTree
3: list Compute ZLeafDendritei with (6.4) by having ZL → 0

4: procedure ParentsImpedance (list LeavesList)
5: list ParentList = All parents if LeavesList nodes
6: for node Parenti in ParentList do
7: if Parenti already computed then
8: Break
9: else

10: list ChildList = Children of Parenti
11: for node Childj in ChildList do
12: if Childj has any child then
13: list GrandChildrenList = Children of Childj

14: RecursiveCount ++
15: ParentsImpedance(GrandChildrenList)
16: RecursiveCount - -
17: ZL,Parenti = Parallel lump all Childj

18: elseZL,Parenti = Parallel lump all Childj

19: Compute ZParentDendritei with (6.4)
20: if RecursiveCount == 0 then
21: ParentsImpdance(ParentList)

Algorithm 3 lists the steps we took in our implementation. First of all, we separate

out the leaves of the given dendritic tree and set their load impedance to zero. When

a parent dendrite is visited, the software identifies all possible children subtrees,

calculates their impedances, and lumps them considering they are in parallel. This

implementation is compatible with the fact that the impedance of a parent neurite

depends on the parallel-lumped impedance of all the children’s impedances that are

connected to its leaky end, as expressed in (6.4). In the case that the impedance of a

child subtree is not yet computed, we have to recursively call (6.4) for this subtree.
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6.3 Numerical Results

We present a preliminary comparison of numerical results obtained by running the

proposed computational model in Sec. 6.1 through the computational tool detailed

in Sec. 6.2, with results of simulations performed through the NEURON software [7].

We based our results on the biophysical parameters of the giant squid axon, which

are considered as standard for neurophysiology model comparison [23]. These para-

meters are detailed in Chapter 5. The dendritic tree morphology corresponds to the

pyramidal neuron in the nerocortex of the human brain named 2a pyramidal2aF, and

it is extracted from the NeuroMorpho database [3]. The 2a pyramidal2aF was chosen

since it does not have axon, and pyramidal neurons are well investigated in neurology.

Fig. 6.3 and Fig. 6.4 show the magnitude and the phase, respectively, of the

dendritic tree transimpedance Zdendtree(ω). It is important to observe that we have a

maximum (resonant frequency) at 67 Hz, and the general trend of both magnitude

and phase are in agreement in both the computational tool and NEURON simulation

results.
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Figure 6.3. Magnitude of the dendritic tree transimpedance Zdendtree(ω) for frequen-
cies ω ranging from 1 Hz to 1000 Hz.
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Figure 6.4. Phase of the dendritic tree transimpedance Zdendtree(ω) for frequencies ω
ranging from 1 Hz to 1000 Hz.
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Chapter 7

Future Work and Conclusion

7.1 Open Challenges

Just like any other new paradigm, a real world implementation of NC needs to ad-

dress several challenges. In this section, we list some the challenges that we believe

important.

7.1.1 Physical Layer

7.1.1.1 Noise

Noise is a big challenge in NC just like any other communication system. The in-

terpretation of noise varies with different implementation of NC. More specifically,

thermal agitations are the main sources of noise in a cell NC paradigm, as they cause

spontaneous fluctuations in the membrane voltage to which subthreshold stimuli are

susceptible. As for the circuit NC paradigm, noise manifests as organic spiking infe-

rences caused by natural communication within the nervous system. It is necessary

to model each of the noise types to identify important communication channel cha-
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racteristics.

7.1.1.2 Communication Channel Memory

Another important challenge in the NC physical layer is caused by the fact that NC

relies on neurobiological paths that inherit memory from the neurons and synapses

that they are comprised of. Accordingly, the underlying communication channel in

NC has memory.

7.1.2 Medium Access Control

For each of NC paradigms a set of proper protocols must be devised to control the

access to the shared nervous medium. In particular, we need to design channel access

schemes to avoid conflict among multiple data streams flowing through the nervous

system with organic and artificial origins. We should also provide a modulation

scheme compatible with biological limitations of the nervous system. For example,

we need to the neuronal channel resonance frequency in the cellular NC paradigm.

For a circuit NC paradigm with tactile stimulation, we want to modulate the data

with stimulation patterns less annoying to the person but still causing noticeable

spatiotemporal patterns. We also need to provide a practical addressing method to

route the data streams to their designated destinations.

7.1.3 Networking Protocols

In general, few efforts have been undertaken in developing standards for newer intra-

body communication based on the modalities excluding airborne EM signals. To the

best of our knowledge, there is no standard or best practice proposed for designing
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network protocols for NC. Therefore, it is necessary to form working groups and task

forces on these topics.

7.1.4 Safety

7.1.4.1 Regulatory

As we mentioned earlier in Section 2.1, a NC realization contributes to health care

and medical treatment applications. Obviously, this field of applications is highly

regulated by authorities. Therefore, realizing NC in practice requires developing a

new set of regulatory guidelines and measurements to ensure patient safety and to

identify acceptable levels of prospective side effects.

7.1.4.2 Undesired Neuroplasticity

A big increase in synaptic activities due to excessive artificial stimulations may

cause the post-synaptic neuron to undergo a neural plasticity process through which

it acquires some morphological changes. The changes may manifest through up-

regulating the neuron’s receptors (i.e. building up more receptors), or by outgrowing

new dendrites onto the synapse. These changes yield to Long-term Potentiation

(LTP) in which the neuron’s sensitivity is increased and hence causes the neurons to

be more likely excited by stimuli that would not normally excite the neuron. There-

fore, devising safe methods to artificially stimulate neurons are necessary to prevent

undesired side effects.

7.1.5 Sustainability

The idea of transmitting artificial data through the nervous system in NC is a very

novel concept. Therefore, new investments are needed on developing necessary gui-
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delines, proper solutions, and suitable tools and technologies. An investment made

on realizing NC has a high pay off after commercialization thanks to the immense

market NC has in medical and non-medical applications.

7.2 Conclusion

In this thesis, we introduced the Neuronal Communication (NC) as a novel paradigm

for transmitting artificial data through the nervous system. NC addresses inadequa-

cies of so far realized (or proposed) intrabody communication methods that rely on

airborne radio signals, body tissue conduits, or molecular communication. We identi-

fied the potential of the nervous system to serve as a reliable communication channel

free of cost and independent of external energy demands. Such a communication

system is motivated by the need of intra-body communication links for the inter-

connection of the next generation wearable and implantable devices. In particular,

we proposed a novel model to account for the subthreshold stimuli propagation from

the dendritic tree to the soma, and from there to an arbitrary on the axon. Our

model formulates a communication channel model based on a neuron by modulating

information through artificial subthreshold stimulation signals.

A system based on the so-called subthreshold electrical stimulation of a neuron

does not stimulate neuro-spikes, and can potentially minimize the interference with

the normal body functionalities. Moreover, by transmitting information through this

type of stimulation, it is possible to express the communication channel with a linear

model, which we analytically obtained by stemming from neurophysiology studies.

We detailed a computational model and its implementation to obtain the voltage

at the axon resulting from a subthreshold current stimulation at the extremities of

the dendrites. Our model takes into account any given realistic 3D dendritic tree
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with an arbitrary morphology. Numerical results from the model are obtained over a

stimulation signal bandwidth of 1KHz, and compared with the results of a simulation

through the NEURON software. Numerical results show agreement with simulations

made with standard tools.

While this preliminary model does not include stochastic effects that would be

unavoidable in the proposed communication system, we plan to extend this work

by incorporating the modeling of the major noise sources within the electrochemical

processes of neurons. We believe that the results obtained in this preliminary study

encourage a new direction of investigation for the realization of sustainable intra-body

communication systems.

We believe that our proposed model will contribute to the understanding of the

propagation of information in neuron in general, and in particular will go in the

direction of enabling the future design of communication systems based on the trans-

mission of information between neuron-interfaced devices, such as those envisioned

within the paradigm of the Internet of Bio-Nano Things [2].
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