389 research outputs found

    Optical post chromatic dispersion compensation in an optical fiber communication system

    Get PDF

    Optical waveguide analysis using transmission lines

    Get PDF
    Optical fibres have been used as a key medium for telecommunication and networking for more than two decades because in principle they offer sufficient transmission capacity, reaching total rates as high as Tbits/s per fibre. Critical fibre properties such as mode field profiles, single-mode propagation conditions and dispersion characteristics can all be related to the optical fibre refractive index profiles. For this reason, it is of fundamental importance to be able to determine the optical fibre refractive index profiles. In this thesis, a novel Transmission-Line technique has been studied and extended for both the forward and inverse solutions. In the forward solution of the Transmission-Line technique, it is shown that the technique is not only capable of determining exactly the propagation constants in optical fibres with real refractive index profiles, but also evaluating accurately the complex propagation constants in single-mode fibres with arbitrary complex refractive index profiles. To illustrate the effectiveness of this technique, it is applied to the evaluation and manipulation of the gain in a typical 980 nm pumped Erbium-Doped fibre as well as to the calculation of the attenuation of optical fibres when radial loss factors are presented. Moreover, based on the Transmission-Line equivalent circuit model, the exact analytical formulas are derived for a recursive algorithm which allows direct and efficient calculation of dispersion of arbitrary refractive index profile optical fibres. The proposed algorithm computes dispersion directly from the propagation constants without the need for curve fitting and successive subsequent numerical differentiation. The algorithm results in savings for both storage memory and computation time. In the inverse solution using the Transmission-Line technique, the optical fibre refractive index profile synthesis from the given mode electric field distribution is developed and demonstrated. The application of the Transmission-Line principles in the study of optical fibre properties was developed for the first time in the early 80's. However, until now the potential of using Transmission-Line technique for the design of optical fibres based on the given electric field pattern had not been examined. From Maxwell's equations, the Transmission-Line equivalent circuits are derived for a homogeneous symmetric optical fibre. This work demonstrates how to use the Transmission-Line model to reconstruct the exact refractive index profile from the electric field data. The accuracy of the reconstructed optical fibre refractive index profile is examined numerically

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Optical waveguide analysis using transmission lines

    Get PDF
    Optical fibres have been used as a key medium for telecommunication and networking for more than two decades because in principle they offer sufficient transmission capacity, reaching total rates as high as Tbits/s per fibre. Critical fibre properties such as mode field profiles, single-mode propagation conditions and dispersion characteristics can all be related to the optical fibre refractive index profiles. For this reason, it is of fundamental importance to be able to determine the optical fibre refractive index profiles. In this thesis, a novel Transmission-Line technique has been studied and extended for both the forward and inverse solutions. In the forward solution of the Transmission-Line technique, it is shown that the technique is not only capable of determining exactly the propagation constants in optical fibres with real refractive index profiles, but also evaluating accurately the complex propagation constants in single-mode fibres with arbitrary complex refractive index profiles. To illustrate the effectiveness of this technique, it is applied to the evaluation and manipulation of the gain in a typical 980 nm pumped Erbium-Doped fibre as well as to the calculation of the attenuation of optical fibres when radial loss factors are presented. Moreover, based on the Transmission-Line equivalent circuit model, the exact analytical formulas are derived for a recursive algorithm which allows direct and efficient calculation of dispersion of arbitrary refractive index profile optical fibres. The proposed algorithm computes dispersion directly from the propagation constants without the need for curve fitting and successive subsequent numerical differentiation. The algorithm results in savings for both storage memory and computation time. In the inverse solution using the Transmission-Line technique, the optical fibre refractive index profile synthesis from the given mode electric field distribution is developed and demonstrated. The application of the Transmission-Line principles in the study of optical fibre properties was developed for the first time in the early 80's. However, until now the potential of using Transmission-Line technique for the design of optical fibres based on the given electric field pattern had not been examined. From Maxwell's equations, the Transmission-Line equivalent circuits are derived for a homogeneous symmetric optical fibre. This work demonstrates how to use the Transmission-Line model to reconstruct the exact refractive index profile from the electric field data. The accuracy of the reconstructed optical fibre refractive index profile is examined numerically.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Orbital angular momentum in optical fibers

    Full text link
    Thesis (Ph.D.)--Boston UniversityInternet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multimode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist, and be long lived, in a special class of fibers and our data transmission demonstrations show that OAM could be considered an additional degree of freedom for data multiplexing in future optical fiber communication links. Our studies open the doors for other applications such as micro-endoscopy and nanoscale imaging which require fiber based remote delivery of OAM light

    Novel linear and nonlinear optical signal processing for ultra-high bandwidth communications

    Get PDF
    The thesis is articulated around the theme of ultra-wide bandwidth single channel signals. It focuses on the two main topics of transmission and processing of information by techniques compatible with high baudrates. The processing schemes introduced combine new linear and nonlinear optical platforms such as Fourier-domain programmable optical processors and chalcogenide chip waveguides, as well as the concept of neural network. Transmission of data is considered in the context of medium distance links of Optical Time Division Multiplexed (OTDM) data subject to environmental fluctuations. We experimentally demonstrate simultaneous compensation of differential group delay and multiple orders of dispersion at symbol rates of 640 Gbaud and 1.28 Tbaud. Signal processing at high bandwidth is envisaged both in the case of elementary post-transmission analog error mitigation and in the broader field of optical computing for high level operations (“optical processor”). A key innovation is the introduction of a novel four-wave mixing scheme implementing a dot-product operation between wavelength multiplexed channels. In particular, it is demonstrated for low-latency hash-key based all-optical error detection in links encoded with advanced modulation formats. Finally, the work presents groundbreaking concepts for compact implementation of an optical neural network as a programmable multi-purpose processor. The experimental architecture can implement neural networks with several nodes on a single optical nonlinear transfer function implementing functions such as analog-to-digital conversion. The particularity of the thesis is the new approaches to optical signal processing that potentially enable high level operations using simple optical hardware and limited cascading of components

    Design and modelling of photonic crystals with anisotropic components

    Get PDF
    La actual era de las comunicaciones requieren dispositivos para el tratamiento de la información cada vez más eficientes en términos de velocidad, consumo y tamaño. Los dispositivos basados en cristales fotónicos con componentes anisotrópicos pueden aplicarse para el diseño de dispositivos electro-ópticos con características convenientes tales como la sintonizabilidad. En este trabajo se han analizado y diseñado varios dispositivos unidimensionales (1D), bidimensionales (2D) y tridimensionales (3D) sintonizables basados en cristales fotónicos de silicio y cristal líquido. En el caso de los cristales fotónicos 1D se ha propuesto dos ecualizadores ópticos basados en interferómetros Fabry-Pèrot. Estos dispositivos permiten sintonizar 2 resonancias en sus frecuencias y amplitudes de transmisión. En cuanto a los cristales fotónicos 2D, se ha analizado filtros y guías de onda sintonizables, proponiendo en ambos casos aplicaciones como interruptores ópticos. Por último, se ha desarrollado una aproximación para el análisis de cristales fotónicos 3D. Mediante dicha aproximación se ha explicado la presencia de máximos en reflexión en altas frecuencias así como se han analizado 3 muestras experimentales.The present Communications Age requires more and more efficient devices in terms of speed, consumption and size for the treatment of information. Nanoscale photonic crystal devices and anisotropic materials is expected to provide a possibility to create electro-optical devices with required characteristics such us tunability. In this work we have analyzed and designed several tunable one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) devices based on silicon photonic crystals and liquid crystal. In the case of 1D photonic crystals, two optical equalizers based on Fabry-Perot interferometers have been proposed. These devices allow tuning 2 resonances in frequencies and transmission amplitudes. As for 2D photonic crystals, tunable filters and waveguides have been analyzed, offering both applications as optical switches. Finally, we have developed an approach for the analysis of 3D photonic crystals. The presence of reflection peaks in high frequencies has been explained by this approach and 3 experimental samples were analyzed
    corecore