1,131 research outputs found

    Reinstated episodic context guides sampling-based decisions for reward.

    Get PDF
    How does experience inform decisions? In episodic sampling, decisions are guided by a few episodic memories of past choices. This process can yield choice patterns similar to model-free reinforcement learning; however, samples can vary from trial to trial, causing decisions to vary. Here we show that context retrieved during episodic sampling can cause choice behavior to deviate sharply from the predictions of reinforcement learning. Specifically, we show that, when a given memory is sampled, choices (in the present) are influenced by the properties of other decisions made in the same context as the sampled event. This effect is mediated by fMRI measures of context retrieval on each trial, suggesting a mechanism whereby cues trigger retrieval of context, which then triggers retrieval of other decisions from that context. This result establishes a new avenue by which experience can guide choice and, as such, has broad implications for the study of decisions

    Improving Deep Reinforcement Learning Using Graph Convolution and Visual Domain Transfer

    Get PDF
    Recent developments in Deep Reinforcement Learning (DRL) have shown tremendous progress in robotics control, Atari games, board games such as Go, etc. However, model free DRL still has limited use cases due to its poor sampling efficiency and generalization on a variety of tasks. In this thesis, two particular drawbacks of DRL are investigated: 1) the poor generalization abilities of model free DRL. More specifically, how to generalize an agent\u27s policy to unseen environments and generalize to task performance on different data representations (e.g. image based or graph based) 2) The reality gap issue in DRL. That is, how to effectively transfer a policy learned in a simulator to the real world. This thesis makes several novel contributions to the field of DRL which are outlined sequentially in the following. Among these contributions is the generalized value iteration network (GVIN) algorithm, which is an end-to-end neural network planning module extending the work of Value Iteration Networks (VIN). GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. Additionally, this thesis proposes three novel, differentiable kernels as graph convolution operators and shows that the embedding-based kernel achieves the best performance. Furthermore, an improvement upon traditional nn-step QQ-learning that stabilizes training for VIN and GVIN is demonstrated. Additionally, the equivalence between GVIN and graph neural networks is outlined and shown that GVIN can be further extended to address both control and inference problems. The final subject which falls under the graph domain that is studied in this thesis is graph embeddings. Specifically, this work studies a general graph embedding framework GEM-F that unifies most of the previous graph embedding algorithms. Based on the contributions made during the analysis of GEM-F, a novel algorithm called WarpMap which outperforms DeepWalk and node2vec in the unsupervised learning settings is proposed. The aforementioned reality gap in DRL prohibits a significant portion of research from reaching the real world setting. The latter part of this work studies and analyzes domain transfer techniques in an effort to bridge this gap. Typically, domain transfer in RL consists of representation transfer and policy transfer. In this work, the focus is on representation transfer for vision based applications. More specifically, aligning the feature representation from source domain to target domain in an unsupervised fashion. In this approach, a linear mapping function is considered to fuse modules that are trained in different domains. Proposed are two improved adversarial learning methods to enhance the training quality of the mapping function. Finally, the thesis demonstrates the effectiveness of domain alignment among different weather conditions in the CARLA autonomous driving simulator

    Model-Based Reinforcement Learning with Multinomial Logistic Function Approximation

    Full text link
    We study model-based reinforcement learning (RL) for episodic Markov decision processes (MDP) whose transition probability is parametrized by an unknown transition core with features of state and action. Despite much recent progress in analyzing algorithms in the linear MDP setting, the understanding of more general transition models is very restrictive. In this paper, we establish a provably efficient RL algorithm for the MDP whose state transition is given by a multinomial logistic model. To balance the exploration-exploitation trade-off, we propose an upper confidence bound-based algorithm. We show that our proposed algorithm achieves O~(dH3T)\tilde{\mathcal{O}}(d \sqrt{H^3 T}) regret bound where dd is the dimension of the transition core, HH is the horizon, and TT is the total number of steps. To the best of our knowledge, this is the first model-based RL algorithm with multinomial logistic function approximation with provable guarantees. We also comprehensively evaluate our proposed algorithm numerically and show that it consistently outperforms the existing methods, hence achieving both provable efficiency and practical superior performance.Comment: Accepted in AAAI 2023 (Main Technical Track
    • …
    corecore