377 research outputs found

    A Performance Comparison of Neural Network and SVM Classifiers Using EEG Spectral Features to Predict Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological disorders, and aïŹ„icts approximately 70 million people globally. 30-40% of patients have refractory epilepsy, where seizures cannot be controlled by anti-epileptic medication, and surgery is neither appropriate, nor available. The unpredictable nature of epileptic seizures is the primary cause of mortality among patients, and leads to signiïŹcant psychosocial disability. If seizures could be predicted in advance, automatic seizure warning systems could transform the lives of millions of people. This study presents a performance comparison of artiïŹcial neural network and sup port vector machine classiïŹers, using EEG spectral features to predict the onset of epileptic seizures. In addition, the study also examines the inïŹ‚uence of EEG window size, feature selection, and data sampling on classiïŹcation performance. A total of 216 generalised models were trained and tested on a public seizure database, which contained over 1300 hours of EEG data from 7 subjects. The results showed that ANN outperform SVM, when using spectral features (p = 0.035). The beta and gamma frequency bands were shown to be the best predictors of seizure onset. No signiïŹcant diïŹ€erences in performance were determined for the dif ferent window sizes, or for the feature selection methods. The data sampling method signiïŹcantly inïŹ‚uenced the performance (p \u3c 0.001), and highlighted the importance of treating class imbalance in EEG datasets

    Detection of Pathological HFO Using Supervised Machine Learning and iEEG Data

    Get PDF
    Epilepsy is the second most common neurological disorder and it aïŹ€ects approxi mately 50 million people worldwide. One of the main characteristics of this disorder is the presence of recurrent seizures which tend to be controlled through medication. Nonetheless, 20% of the patients with this disorder are resistant to drug treatment meaning that they need to go through alternative procedures

    Epileptic Seizure Detection And Prediction From Electroencephalogram Using Neuro-Fuzzy Algorithms

    Get PDF
    This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based algorithms were developed with the aim to improve quality of life of epilepsy patients by utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the human reasoning and taking advantage of the combination in spatial-temporal domain. Fuzzy c-means clustering technique was utilized for optimizing the membership functions for varying patterns in the feature domain. In addition, application of the adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier was constructed to forecast a seizure followed by postprocessing methods. Three nonlinear seizure predictive features were used to characterize changes prior to seizure. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. The ANFIS classifier was constructed based on these features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. In this dissertation, the application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was demonstrated by applying the methods on different datasets. Several performance measures such as detection delay, sensitivity and specificity were calculated and compared with results reported in literature. The proposed algorithms have potentials to be used in diagnostics and therapeutic applications as they can be implemented in an implantable medical device to detect a seizure, forecast a seizure, and initiate neurostimulation therapy for the purpose of seizure prevention or abortion

    Towards Accurate Forecasting of Epileptic Seizures: Artificial Intelligence and Effective Connectivity Findings

    Get PDF
    L’épilepsie est une des maladies neurologiques les plus frĂ©quentes, touchant prĂšs d’un pourcent de la population mondiale. De nos jours, bien qu’environ deux tiers des patients Ă©pileptiques rĂ©pondent adĂ©quatement aux traitements pharmacologiques, il reste qu’un tiers des patients doivent vivre avec des crises invalidantes et imprĂ©visibles. Quoique la chirurgie d’épilepsie puisse ĂȘtre une autre option thĂ©rapeutique envisageable, le recours Ă  la chirurgie de rĂ©section demeure trĂšs faible en partie pour des raisons diverses (taux de rĂ©ussite modeste, peur des complications, perceptions nĂ©gatives). D’autres avenues de traitement sont donc souhaitables. Une piste actuellement explorĂ©e par des groupes de chercheurs est de tenter de prĂ©dire les crises Ă  partir d’enregistrements de l’activitĂ© cĂ©rĂ©brale des patients. La capacitĂ© de prĂ©dire la survenue de crises permettrait notamment aux patients, aidants naturels ou personnels mĂ©dical de prendre des mesures de prĂ©caution pour Ă©viter les dĂ©sagrĂ©ments reliĂ©s aux crises voire mĂȘme instaurer un traitement pour les faire avorter. Au cours des derniĂšres annĂ©es, d’importants efforts ont Ă©tĂ© dĂ©ployĂ©s pour dĂ©velopper des algorithmes de prĂ©diction de crises et d’en amĂ©liorer les performances. Toutefois, le manque d’enregistrements Ă©lectroencĂ©phalographiques intracrĂąniens (iEEG) de longue durĂ©e de qualitĂ©, la quantitĂ© limitĂ©e de crises, ainsi que la courte durĂ©e des pĂ©riodes interictales constituaient des obstacles majeurs Ă  une Ă©valuation adĂ©quate de la performance des algorithmes de prĂ©diction de crises. RĂ©cemment, la disponibilitĂ© en ligne d’enregistrements iEEG continus avec Ă©chantillonnage bilatĂ©ral (des deux hĂ©misphĂšres) acquis chez des chiens atteints d’épilepsie focale Ă  l’aide du dispositif de surveillance ambulatoire implantable NeuroVista a partiellement facilitĂ© cette tĂąche. Cependant, une des limitations associĂ©es Ă  l’utilisation de ces donnĂ©es durant la conception d’un algorithme de prĂ©diction de crises Ă©tait l’absence d’information concernant la zone exacte de dĂ©but des crises (information non fournie par les gestionnaires de cette base de donnĂ©es en ligne). Le premier objectif de cette thĂšse Ă©tait la mise en oeuvre d’un algorithme prĂ©cis de prĂ©diction de crises basĂ© sur des enregistrements iEEG canins de longue durĂ©e. Les principales contributions Ă  cet Ă©gard incluent une localisation quantitative de la zone d’apparition des crises (basĂ©e sur la fonction de transfert dirigĂ© –DTF), l’utilisation d’une nouvelle fonction de coĂ»t via l’algorithme gĂ©nĂ©tique proposĂ©, ainsi qu’une Ă©valuation quasi-prospective des performances de prĂ©diction (donnĂ©es de test d’un total de 893 jours). Les rĂ©sultats ont montrĂ© une amĂ©lioration des performances de prĂ©diction par rapport aux Ă©tudes antĂ©rieures, atteignant une sensibilitĂ© moyenne de 84.82 % et un temps en avertissement de 10 %. La DTF, utilisĂ©e prĂ©cĂ©demment comme mesure de connectivitĂ© pour dĂ©terminer le rĂ©seau Ă©pileptique (objectif 1), a Ă©tĂ© prĂ©alablement validĂ©e pour quantifier les relations causales entre les canaux lorsque les exigences de quasi-stationnaritĂ© sont satisfaites. Ceci est possible dans le cas des enregistrements canins en raison du nombre relativement faible de canaux. Pour faire face aux exigences de non-stationnaritĂ©, la fonction de transfert adaptatif pondĂ©rĂ©e par le spectre (Spectrum weighted adaptive directed transfer function - swADTF) a Ă©tĂ© introduit en tant qu’une version variant dans le temps de la DTF. Le second objectif de cette thĂšse Ă©tait de valider la possibilitĂ© d’identifier les endroits Ă©metteurs (ou sources) et rĂ©cepteurs d’activitĂ© Ă©pileptiques en appliquant la swADTF sur des enregistrements iEEG de haute densitĂ© provenant de patients admis pour Ă©valuation prĂ©-chirurgicale au CHUM. Les gĂ©nĂ©rateurs d’activitĂ© Ă©pileptique Ă©taient dans le volume rĂ©sĂ©quĂ© pour les patients ayant des bons rĂ©sultats post-chirurgicaux alors que diffĂ©rents foyers ont Ă©tĂ© identifiĂ©s chez les patients ayant eu de mauvais rĂ©sultats postchirurgicaux. Ces rĂ©sultats dĂ©montrent la possibilitĂ© d’une identification prĂ©cise des sources et rĂ©cepteurs d’activitĂ©s Ă©pileptiques au moyen de la swADTF ouvrant la porte Ă  la possibilitĂ© d’une meilleure sĂ©lection d’électrodes de maniĂšre quantitative dans un contexte de dĂ©veloppement d’algorithme de prĂ©diction de crises chez l’humain. Dans le but d’explorer de nouvelles avenues pour la prĂ©diction de crises Ă©pileptiques, un nouveau prĂ©curseur a aussi Ă©tĂ© Ă©tudiĂ© combinant l’analyse des spectres d’ordre supĂ©rieur et les rĂ©seaux de neurones artificiels (objectif 3). Les rĂ©sultats ont montrĂ© des diffĂ©rences statistiquement significatives (p<0.05) entre l’état prĂ©ictal et l’état interictal en utilisant chacune des caractĂ©ristiques extraites du bi-spectre. UtilisĂ©es comme entrĂ©es Ă  un perceptron multicouche, l’entropie bispectrale normalisĂ©e, l’entropie carrĂ© normalisĂ©e, et la moyenne ont atteint des prĂ©cisions respectives de 78.11 %, 72.64% et 73.26%. Les rĂ©sultats de cette thĂšse confirment la faisabilitĂ© de prĂ©diction de crises Ă  partir d’enregistrements d’électroencĂ©phalographie intracrĂąniens. Cependant, des efforts supplĂ©mentaires en termes de sĂ©lection d’électrodes, d’extraction de caractĂ©ristiques, d’utilisation des techniques d’apprentissage profond et d’implĂ©mentation Hardware, sont nĂ©cessaires avant l’intĂ©gration de ces approches dans les dispositifs implantables commerciaux.----------ABSTRACT Epilepsy is a chronic condition characterized by recurrent “unpredictable” seizures. While the first line of treatment consists of long-term drug therapy about one-third of patients are said to be pharmacoresistant. In addition, recourse to epilepsy surgery remains low in part due to persisting negative attitudes towards resective surgery, fear of complications and only moderate success rates. An important direction of research is to investigate the possibility of predicting seizures which, if achieved, can lead to novel interventional avenues. The paucity of intracranial electroencephalography (iEEG) recordings, the limited number of ictal events, and the short duration of interictal periods have been important obstacles for an adequate assessment of seizure forecasting. More recently, long-term continuous bilateral iEEG recordings acquired from dogs with naturally occurring focal epilepsy, using the implantable NeuroVista ambulatory monitoring device have been made available on line for the benefit of researchers. Still, an important limitation of these recordings for seizure-prediction studies was that the seizure onset zone was not disclosed/available. The first objective of this thesis was to develop an accurate seizure forecasting algorithm based on these canine ambulatory iEEG recordings. Main contributions include a quantitative, directed transfer function (DTF)-based, localization of the seizure onset zone (electrode selection), a new fitness function for the proposed genetic algorithm (feature selection), and a quasi-prospective assessment of seizure forecasting on long-term continuous iEEG recordings (total of 893 testing days). Results showed performance improvement compared to previous studies, achieving an average sensitivity of 84.82% and a time in warning of 10 %. The DTF has been previously validated for quantifying causal relations when quasistationarity requirements are met. Although such requirements can be fulfilled in the case of canine recordings due to the relatively low number of channels (objective 1), the identification of stationary segments would be more challenging in the case of high density iEEG recordings. To cope with non-stationarity issues, the spectrum weighted adaptive directed transfer function (swADTF) was recently introduced as a time-varying version of the DTF. The second objective of this thesis was to validate the feasibility of identifying sources and sinks of seizure activity based on the swADTF using high-density iEEG recordings of patients admitted for pre-surgical monitoring at the CHUM. Generators of seizure activity were within the resected volume for patients with good post-surgical outcomes, whereas different or additional seizure foci were identified in patients with poor post-surgical outcomes. Results confirmed the possibility of accurate identification of seizure origin and propagation by means of swADTF paving the way for its use in seizure prediction algorithms by allowing a more tailored electrode selection. Finally, in an attempt to explore new avenues for seizure forecasting, we proposed a new precursor of seizure activity by combining higher order spectral analysis and artificial neural networks (objective 3). Results showed statistically significant differences (p<0.05) between preictal and interictal states using all the bispectrum-extracted features. Normalized bispectral entropy, normalized squared entropy and mean of magnitude, when employed as inputs to a multi-layer perceptron classifier, achieved held-out test accuracies of 78.11%, 72.64%, and 73.26%, respectively. Results of this thesis confirm the feasibility of seizure forecasting based on iEEG recordings; the transition into the ictal state is not random and consists of a “build-up”, leading to seizures. However, additional efforts in terms of electrode selection, feature extraction, hardware and deep learning implementation, are required before the translation of current approaches into commercial devices

    Automatic Seizure Prediction using CNN and LSTM

    Full text link
    The electroencephalogram (EEG) is one of the most precious technologies to understand the happenings inside our brain and further understand our body's happenings. Automatic prediction of oncoming seizures using the EEG signals helps the doctors and clinical experts and reduces their workload. This paper proposes an end-to-end deep learning algorithm to fully automate seizure prediction's laborious task without any heavy pre-processing on the EEG data or feature engineering. The proposed deep learning network is a blend of signal processing and deep learning pipeline, which automates the seizure prediction framework using the EEG signals. This proposed model was evaluated on an open EEG dataset, CHB-MIT. The network achieved an average sensitivity of 97.746\text{\%} and a false positive rate (FPR) of 0.2373 per hour

    A study of EEG feature complexity in epileptic seizure prediction

    Get PDF
    The purpose of this study is (1) to provide EEG feature complexity analysis in seizure prediction by inter-ictal and pre-ital data classification and, (2) to assess the between-subject variability of the considered features. In the past several decades, there has been a sustained interest in predicting epilepsy seizure using EEG data. Most methods classify features extracted from EEG, which they assume are characteristic of the presence of an epilepsy episode, for instance, by distinguishing a pre-ictal interval of data (which is in a given window just before the onset of a seizure) from inter-ictal (which is in preceding windows following the seizure). To evaluate the difficulty of this classification problem independently of the classification model, we investigate the complexity of an exhaustive list of 88 features using various complexity metrics, i.e., the Fisher discriminant ratio, the volume of overlap, and the individual feature efficiency. Complexity measurements on real and synthetic data testbeds reveal that that seizure prediction by pre-ictal/inter-ictal feature distinction is a problem of significant complexity. It shows that several features are clearly useful, without decidedly identifying an optimal set
    • 

    corecore