23 research outputs found

    A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method

    Get PDF
    Electroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy, Parkinson's Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern (QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and 1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN) classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in bigger datasets for more validation

    Automatic Identification of Epileptic Seizures from EEG Signals using Sparse Representation-based Classification

    Get PDF
    Identifying seizure activities in non-stationary electroencephalography (EEG) is a challenging task, since it is time-consuming, burdensome, and dependent on expensive human resources and subject to error and bias. A computerized seizure identification scheme can eradicate the above problems, assist clinicians and benefit epilepsy research. So far, several attempts were made to develop automatic systems to help neurophysiologists accurately identify epileptic seizures. In this research, a fully automated system is presented to automatically detect the various states of the epileptic seizure. The proposed method is based on sparse representation-based classification (SRC) theory and the proposed dictionary learning using electroencephalogram (EEG) signals. Furthermore, the proposed method does not require additional preprocessing and extraction of features which is common in the existing methods. The proposed method reached the sensitivity, specificity and accuracy of 100% in 8 out of 9 scenarios. It is also robust to the measurement noise of level as much as 0 dB. Compared to state-of-the-art algorithms and other common methods, the proposed method outperformed them in terms of sensitivity, specificity and accuracy. Moreover, it includes the most comprehensive scenarios for epileptic seizure detection, including different combinations of 2 to 5 class scenarios. The proposed automatic identification of epileptic seizures method can reduce the burden on medical professionals in analyzing large data through visual inspection as well as in deprived societies suffering from a shortage of functional magnetic resonance imaging (fMRI) equipment and specialized physician

    High-performance detection of epilepsy in seizure-free EEG recordings: A novel machine learning approach using very specific epileptic EEG sub-bands

    Get PDF
    We applied machine learning to diagnose epilepsy based on the fine-graded spectral analysis of seizure-free (resting state) EEG recordings. Despite using unspecific agglomerated EEG spectra, our fine-graded spectral analysis specifically identified the two EEG resting state sub-bands differentiating healthy people from epileptics (1.5-2 Hz and 11-12.5 Hz). The rigorous evaluation of completely unseen data of 100 EEG recordings (50 belonging to epileptics and the other 50 to healthy people) shows that the approach works successfully, achieving an outstanding accuracy of 99 percent, which significantly outperforms the current benchmark of 70% to 95% by a panel of up to three experienced neurologists. Our epilepsy diagnosis classifier can be implemented in modern EEG analysis devices, especially in intensive care units where early diagnosis and appropriate treatment are decisive in life and death scenarios and where physicians’ error rates are particularly high. Our approach is accurate, robust, fast, and cost-efficient and substantially contributes to Information Systems research in healthcare. The approach is also of high practical and theoretical relevance

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo

    Decentralized Federated Learning for Epileptic Seizures Detection in Low-Power Wearable Systems

    Get PDF
    In healthcare, data privacy of patients regulations prohibits data from being moved outside the hospital, preventing international medical datasets from being centralized for AI training. Federated learning (FL) is a data privacy-focused method that trains a global model by aggregating local models from hospitals. Existing FL techniques adopt a central server-based network topology, where the server assembles the local models trained in each hospital to create a global model. However, the server could be a point of failure, and models trained in FL usually have worse performance than those trained in the centralized learning manner when the patient's data are not independent and identically distributed (Non-IID) in the hospitals. This paper presents a decentralized FL framework, including training with adaptive ensemble learning and a deployment phase using knowledge distillation. The adaptive ensemble learning step in the training phase leads to the acquisition of a specific model for each hospital that is the optimal combination of local models and models from other available hospitals. This step solves the non-IID challenges in each hospital. The deployment phase adjusts the model's complexity to meet the resource constraints of wearable systems. We evaluated the performance of our approach on edge computing platforms using EPILEPSIAE and TUSZ databases, which are public epilepsy datasets.RYC2021-032853-

    Performance comparison of machine learning techniques in sleep scoring based on wavelet features and neighboring component analysis

    Get PDF
    Introduction: Sleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques. Methods: Sleep-EDF polysomnography was used in this study as a dataset. Support vector machines and artificial neural network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis. Results: Neighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30 and 89.93 accuracy, respectively. Discussion and Conclusion: Similar to the state of the art performance, the introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders. © 2018 Alizadeh Savareh et al

    Development of electroencephalogram (EEG) signals classification techniques

    Get PDF
    Electroencephalography (EEG) is one of the most important signals recorded from humans. It can assist scientists and experts to understand the most complex part of the human body, the brain. Thus, analysing EEG signals is the most preponderant process to the problem of extracting significant information from brain dynamics. It plays a prominent role in brain studies. The EEG data are very important for diagnosing a variety of brain disorders, such as epilepsy, sleep problems, and also assisting disability patients to interact with their environment through brain computer interface (BCI). However, the EEG signals contain a huge amount of information about the brain’s activities. But the analysis and classification of these kinds of signals is still restricted. In addition, the manual examination of these signals for diagnosing related diseases is time consuming and sometimes does not work accurately. Several studies have attempted to develop different analysis and classification techniques to categorise the EEG recordings. The analysis of EEG recordings can lead to a better understanding of the cognitive process. It is used to extract the important features and reduce the dimensions of EEG data. In the classification process, machine learning algorithms are used to detect the particular class of EEG signal based on its extracted features. The performance of these algorithms, in which the class membership of the input signal is determined, can then be used to infer what event in the real-world process occurred to produce the input signal. The classification procedure has the potential to assist experts to diagnose the related brain disorders. To evaluate and diagnose neurological disorders properly, it is necessary to develop new automatic classification techniques. These techniques will help to classify different EEG signals and determine whether a person is in a good health or not. This project aims to develop new techniques to enhance the analysis and classification of different categories of EEG data. A simple random sampling (SRS) and sequential feature selection (SFS) method was developed and named the SRS_SFS method. In this method, firstly, a SRS technique was used to extract statistical features from the original EEG data in time domain. The extracted features were used as the input to a SFS algorithm for key features selection. A least square support vector machine (LS_SVM) method was then applied for EEG signals classification to evaluate the performance of the proposed approach. Secondly, a novel approach that combines optimum allocation (OA) and spectral density estimation methods was proposed to analyse EEG signals and classify an epileptic seizure. In this study, the OA technique was introduced in two levels to determine representative sample points from the EEG recordings. To reduce the dimensions of sample points and extract representative features from each OA sample segment, two power spectral density estimation methods, periodogram and autoregressive, were used. At the end, three popular machine learning methods (support vector machine (SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN)) were employed to evaluate the performance of the suggested algorithm. Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was developed for epileptic EEG feature extraction. The extracted features were forwarded to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the proposed feature extraction technique. The proposed TQWT method was tested on two different EEG databases. Finally, a new classification system was presented for epileptic seizures detection in EEGs blending frequency domain with information gain (InfoGain) technique. Fast Fourier transform (FFT) or discrete wavelet transform (DWT) were applied individually to analyse EEG recording signals into frequency bands for feature extraction. To select the most important feature, the infoGain technique was employed. A LS_SVM classifier was used to evaluate the performance of this system. The research indicates that the proposed techniques are very practical and effective for classifying epileptic EEG disorders and can assist to present the most important clinical information about patients with brain disorders

    Developing new techniques to analyse and classify EEG signals

    Get PDF
    A massive amount of biomedical time series data such as Electroencephalograph (EEG), electrocardiography (ECG), Electromyography (EMG) signals are recorded daily to monitor human performance and diagnose different brain diseases. Effectively and accurately analysing these biomedical records is considered a challenge for researchers. Developing new techniques to analyse and classify these signals can help manage, inspect and diagnose these signals. In this thesis novel methods are proposed for EEG signals classification and analysis based on complex networks, a statistical model and spectral graph wavelet transform. Different complex networks attributes were employed and studied in this thesis to investigate the main relationship between behaviours of EEG signals and changes in networks attributes. Three types of EEG signals were investigated and analysed; sleep stages, epileptic and anaesthesia. The obtained results demonstrated the effectiveness of the proposed methods for analysing these three EEG signals types. The methods developed were applied to score sleep stages EEG signals, and to analyse epileptic, as well as anaesthesia EEG signals. The outcomes of the project will help support experts in the relevant medical fields and decrease the cost of diagnosing brain diseases

    Machine Learning for Understanding Focal Epilepsy

    Get PDF
    The study of neural dysfunctions requires strong prior knowledge on brain physiology combined with expertise on data analysis, signal processing, and machine learning. One of the unsolved issues regarding epilepsy consists in the localization of pathological brain areas causing seizures. Nowadays the analysis of neural activity conducted with this goal still relies on visual inspection by clinicians and is therefore subjected to human error, possibly leading to negative surgical outcome. In absence of any evidence from standard clinical tests, medical experts resort to invasive electrophysiological recordings, such as stereoelectroencephalography to assess the pathological areas. This data is high dimensional, it could suffer from spatial and temporal correlation, as well as be affected by high variability across the population. These aspects make the automatization attempt extremely challenging. In this context, this thesis tackles the problem of characterizing drug resistant focal epilepsy. This work proposes methods to analyze the intracranial electrophysiological recordings during the interictal state, leveraging on the presurgical assessment of the pathological areas. The first contribution of the thesis consists in the design of a support tool for the identification of epileptic zones. This method relies on the multi-decomposition of the signal and similarity metrics. We built personalized models which share common usage of features across patients. The second main contribution aims at understanding if there are particular frequency bands related to the epileptic areas and if it is worthy to focus on shorter periods of time. Here we leverage on the post-surgical outcome deriving from the Engel classification. The last contribution focuses on the characterization of short patterns of activity at specific frequencies. We argue that this effort could be helpful in the clinical routine and at the same time provides useful insight for the understanding of focal epilepsy
    corecore