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A B S T R A C T

Electroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy,
Parkinson’s Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to
develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning
method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of
pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to
create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are
calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern
(QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-
bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and
1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN)
classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The
proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in
bigger datasets for more validation.

Introduction

In the human brain, there are billions neurons and these neurons
communicate to each other by using tiny electrical signals. By using
these electrical signals, brain activity is measured and these signals are
called Electroencephalogram (EEG) [1–4]. The main objective of the
use of EEG signals is to diagnose brain diseases. Epilepsy is one of the
most commonly seen brain diseases and more than 70 million people
suffer from epilepsy worldwide [5,6]. Epilepsy causes seizures and
these seizures reduce quality of life. In order to predict the seizures of
epilepsy patients and improve their living standards, seizures should be
predicted by using EEG signals. Therefore, many machine learning
based Epileptic EEG signal classification and recognition methods have
been proposed to solve this problem [7–9]. Some studies about EEG
classification are given below.

Richhariya and Tanveer [10] proposed a universum support vector
machine (SVM)-based intelligent system for EEG classification. Their
method consisted of feature extraction with ICA or wavelet transform,
feature reduction using PCA, calculation of class discrimination ratio
and classification with universum SVM. The results were presented with
variable parameters and success rates were compared. Yilmaz et al.

[11] presented quasi-probabilistic-based EEG Classification method.
They used BCI dataset [12] to test the performance of their method.
Accuracy, sensitivity, specificity and F-Measures parameters were uti-
lized as performance metrics. Raghu and Sriraam [13] introduced a tool
for focal and non-focal EEG signals classification. This method consisted
of pre-processing, feature extraction, feature selection and classification
phases. They extracted 28 features and these feature sets involved using
the statistical attributes of EEG signals. Neighborhood Component
Analysis (NCA) was utilized as feature selector. SVM, kNN, Random
Forest (RF) and AdaBoost were used as classifiers. Rincon et al. [14]
proposed an EEG detection method using supervised classification
method for real time applications. Statistical attributes and wavelet
filter were used together in the feature extraction phase and alpha, beta
theta, gamma and delta band were obtained. Approximately higher
than 95% accuracy was calculated for each band using this method and
authors also indicated that this method had a short execution time. Shin
et al. [15] suggested a robust EEG signal classification method against
noise. They used a noise reduction method as a pre-processing step.
They used SVMs and Spearman representation-based classification
method as classifiers. Acharya et al. [16] presented a review about EEG
classification methods based on computer aided detection (CAD). An

https://doi.org/10.1016/j.mehy.2019.109519
Received 5 November 2019; Received in revised form 28 November 2019; Accepted 7 December 2019

⁎ Corresponding author.
E-mail addresses: emrah.aydemir@ahievran.edu.tr (E. Aydemir), turkertuncer@firat.edu.tr (T. Tuncer), sdogan@firat.edu.tr (S. Dogan).

Medical Hypotheses 134 (2020) 109519

0306-9877/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03069877
https://www.elsevier.com/locate/mehy
https://doi.org/10.1016/j.mehy.2019.109519
https://doi.org/10.1016/j.mehy.2019.109519
mailto:emrah.aydemir@ahievran.edu.tr
mailto:turkertuncer@firat.edu.tr
mailto:sdogan@firat.edu.tr
https://doi.org/10.1016/j.mehy.2019.109519
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mehy.2019.109519&domain=pdf


intelligent EEG classification method consisted of pre-processing, fea-
ture extraction, feature ranking and classification phases and it was
claimed that it is a widely used method. Ghayab et al. [17] proposed a
wavelet scheme using Q-factor and this wavelet transform was used in
feature extraction. They presented results for many classes of the EEG.
Kocadagli and Langari [18] presented an EEG signal classification
method using wavelet and fuzzy and used genetic algorithm. Kaya et al.
[19] proposed a 1D local binary pattern (1D-LBP) to extract the features
of EEG signals. They used BayesNet, SVM, Artificial Neural Network
(ANN), logistic regression and functional tree as classifiers. Kaya and
Ertugrul [20] introduced a stable and discriminative feature extraction
using 1D ternary pattern. Orhan et al. [21] presented an approach using
neural network and K-means for EEG signals. In this study, seven cases
were defined as A-B-C-D, E, A, A-B, C-D-E, C-D, A-D-E and confusion
matrixes were given to demonstrate the performance of the classifica-
tion. Bhattacharyya et al. [22] presented a method for epilepsy detec-
tion from EEG signals. Wavelet transform was used to obtain feature
set. Entropy of EEG signal was also calculated in this study. Support
vector machine was utilized as classifier. Comparative results were
presented according to SVM classifier. Sharma et al. [23] proposed a
method for epileptic seizure diagnosis. The proposed method is based
on fractal dimension and wavelet transform. Eight cases were defined as
A-E, B-E, C-E, D-E, AB-E, CD-E, AB-CD, ABCD-E and the results were
compared with current methods in literature. Tzallas et al. [24] pre-
sented an approach using neural networks and time-frequency analysis
methods. The main objective of the study was to automatically detect
the diagnosis of epileptic seizure. EEG signals were used for this ob-
jective and time-frequency analysis of these signals was performed.
Gandhi et al. [25] proposed a method for EEG signal classification. In
this method, wavelet transform and neural network were used to ef-
fectively extract features of EEG signals. The results were presented
according to support vector machine classifier. Nicolaou and Georgiou
[26] suggested an approach using support vector machine and per-
mutation entropy. The results were presented according to average
sensitivity, accuracy, specificity and time. Peker et al. [27] proposed a
method based on wavelet transform and neural networks for EEG sig-
nals. These methods have been preferred for effective feature selection.
The main objective of the study was to detect epilepsy disease auto-
matically. Bhattacharyya et al. [28] presented an approach for EEG
signal analysis. In this study, wavelet transform was used. Support
vector machine and random forest were selected as classifiers. Sharma
et al. [29] introduced a method for EEG signal classification using
wavelet filters. CD-E, ABCD-E cases were defined for experiments. The
comparison results were presented according to accuracy, specificity,
and sensitivity. Higher order spectral (HOS) and deep learning-based
methods have also been widely used in EEG signals classifications
[30–33] As seen from related articles, most of them failed to give
classification accuracy results for all of the five classes. Deep learning
methods have high classification ability but high computational com-
plexity. To solve these problems, a method based on 1D descriptor and
multilevel wavelet is presented. The characteristics and contributions of
this paper are given below.

In this study, TQWT and QSP based feature extraction network is
presented. The main objective of this paper is to achieve high classifi-
cation accuracy using EEG signals. The characteristics and contribu-
tions of the proposed method are given below.

• As we know from the literature, the pooling methods are not ef-
fective for machine learning [34]. Therefore, different methods
should be used instead of pooling methods. In this study, TQWT is
utilized as pooling method. Five Q values are used to generate fre-
quency coefficients of the EEG signal to obtain high classification
accuracy.

• In this study, an image descriptor is utilized as feature extractor and
effectiveness of it is clearly shown. Because, descriptors extract both
distinctive features and have low computational complexity

[35–37]. In this study, QSP which is an image descriptor is utilized
as feature extractor for EEG signals.

• NCA based feature selection method is used and variable features
are selected to test the proposed TQWT and QSP based EEG classi-
fication method. By using variable size of features, high EEG clas-
sification capability of the proposed method is clearly shown.

• The proposed TQWT and QSP based method are tested using seven
cases. Especially, the proposed method has very high results for five
classes and achieved 98.40% classification accuracy.

• A multilevel learning method is presented and the proposed method
has low computational complexity. Because any meta-heuristic op-
timization method is not used in the proposed method to achieve
high classification accuracy. Therefore, the proposed TQWT and
QSP based method is a cognitive method.

Background

In this study, a multilevel feature extraction network is presented.
To construct this network, TQWT, QSP and NCA are used together. The
used methods are explained in this section to better understanding the
proposed method.

Tunable-Q wavelet transform

TQWT is one of the powerful decomposition methods in the litera-
ture and has a wide area of usage. TQWT is the improvement of tra-
ditional one single Q-factor wavelet transform [38]. It is carried out like
discrete wavelet transform (DWT) with double channel multi-rate filter
bank having low and high pass filters [39]. This method is proposed for
discrete-time signal analysis for which the Q-factor is easily tunable and
powerful transform for the analysis of oscillatory signals [40]. TQWT is
fundamentally parameterized by its Q-factor and its redundancy to
analyze signals with different oscillatory behaviors [41]. It has three
main parameters which are Q-factor, oversampling rate (redundancy)
and number of levels. It is also a reversible transformation. Q value
represents oscillations of the wavelet. In Fig. 1, the analysis and
synthesis filters of the TQWT are visually shown [42].

Analysis and synthesis low and high pass filters are sequentially
H z( )a , G z( )a , H z( )s and G z( )s . Low and high pass scaling operators are
sequentially LPS and HPS. For perfect reconstruction, x = y is obtained.
If fs is input signal sampling rate, βfs is sampling rate which low pass
sub-band for level-1 decomposition. a and β (filter scaling factors)
should be selected to meet the following requirements.

< ≤β0 1 (1)

< <a0 1 (2)

+ >a β 1 (3)

The filter banks are rate rollback, and the filter responses are well
oriented locally and capable of perfect reconstruction. By altering a and
β, the filter frequency responses can be adjusted to a desired frequency
of interest. Tunable-Q wavelet transform of a given signal, x , is given by

=w xΦ , where Φ is the matrix regardful to the TQWT for a set of chosen
parameters that are below.

Fig. 1. Graphical demonstration of the analysis and synthesis filters for TQWT.
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= −Q β β(2 )/ (4)

= −r β a/(1 ) (5)

=Q
f
B
w

(6)

where Q is Q-factor, r describes over-sampling rate, fw represents center
frequency, B is bandwidth.

In the TQWT Q, r and number of levels are user defined parameters.
It has a wide area of usage including EEG classification, sEMG signal

recognition, signal processing, signal decomposition, image processing
[43–46].

Quadruple symmetric pattern

QSP is an image descriptor and it extract features by using 4 × 4
size of overlapping blocks and signum function. Then, 8 bits are ex-
tracted by using symmetric pixels of the blocks and signum function
together. The extracted bits are converted to decimal values and these
decimal values are used for feature signal construction. The histogram
of the feature signal is extracted and the extracted histogram is utilized
as feature vector with size of 256. This method is inspired by
Chakraborty et al.’s method [47]. To better understand QSP, a nu-
merical example about QSP is shown in Fig. 2.

As shown in Fig. 1, the QSP uses signum function to extract 8-bits
features. Therefore, QSP extracts 256 features from a signal or image.
The steps of the QSP is shown below.

Step 0: Load raw signal.
Step 1: Divide input signal into 16 sized overlapping blocks.
Step 2: Reshape each block into 4 × 4 sized matrix. This step de-

scribes vector to matrix transformation.
Step 3: Use signum function and Algorithm 1 for binary feature

extraction. The mathematical notation of the signum function is shown
as Eq. (7).

= ⎧
⎨⎩

− <
− ≥

S k l k l
k l

( , ) 0, 0
1, 0 (7)

where S (.,.) is signum function, k and l are input parameters of the
signum function.

Algorithm 1. Binary feature extraction procedure of the QSP.

Input: 4 × 4 sized overlapping block.
Output: Bits with sizes of 8.
1: =counter 1;
2: for i = 1 to 2 do
3: for j = 1 to 4 do
4: = − −bit counter S block i j blok i j( ) ( ( , ), (5 , 5 ));
5: = +counter counter 1;
6: end for j
7: end for i

Step 4: Convert the extracted bits to decimal values by using Eq. (8) and
construct feature values.

∑= = ⋯ −
=

−feat t bit t length signal( ) x2 ; {1, 2, , ( ) 15}S

i
i

i

1

8
8

(8)

where featS is feature signal.
Step 5: Extract histogram of the feature signal.
As seen from these steps, the QSP has a simple mathematical

background. Therefore, its application is simple.

Neighborhood component analysis

NCA [48] is one of the widely used feature selection methods. It is a
distance based feature selector. To select most distinctive features, NCA

Fig. 2. Graphical illustration and numerical example of the QSP.
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generates weights of the features. The generated weights are non-ne-
gative. Firstly, weights of features are randomly assigned. Manhattan
distance are used as fitness function. By using stochastic gradient des-
cend (SGD) optimization methods, weights are updated. NCA is a
backpropagation and non-parametric method. In the NCA, bigger
weights show more distinctive features and lower weights show re-
dundant features [49].

The proposed method

In this paper, a TQWT and QSP based EEG signal classification
method is proposed. The proposed TQWT and QSP based method is a
multilevel method. The main objective of this method is to extract low,
middle and high-levels features like deep learning methods with low
computational cost. The effectiveness of TQWT is directly used.

The proposed multilevel method consists of preprocessing, feature
extraction, feature concatenation and classification phases. The gra-
phical outline of the TQWT-QSP based method is shown in Fig. 3.

As seen Fig. 3, the phases of the proposed are pre-processing, feature
extraction, feature concatenation, feature selection and classification.
These phases are clearly given in subsections.

Preprocessing

As known from computer vision and deep learning methods, the
effectiveness of pooling methods is not sufficient [34]. Therefore,
variable methods should be used in this phase to increase the perfor-
mance of machine learning method. In this study, we used TQWT in the
preprocessing phase. The pseudo code of the TQWT-based preproces-
sing is shown as Algorithm 2.

Algorithm 2. TQWT-based preprocessing procedure.

Input: Input signal (S) with a size of L.
Output: 25 TQWT coefficient bands (R).
1: =cnt 1; // Counter defining.
2: for Q = 1 to 5 do
3: + =R cnt cnt tqwt S Q{ : 4} ( , , 2, 4); // Creating TQWT coefficients of the signal

using 5 different Q values
4: = +cnt cnt 5;
5: end for i

As shown in Algorithm 2, R has five coefficient signals for each Q value.
Graphical examples of the proposed TQWT based preprocessing method
are shown as Fig. 4.

As seen from Fig. 4, 25 sub-bands coefficients are generated by
using TQWT. In the feature extraction phase, original signal and the
generated 25 TQWT sub-bands are used as inputs of the QSP.

Feature extraction

In the TQWT based preprocessing phase, 25 signals with variable
lengths are calculated. To extract fixed sized features, QSP is utilized as
feature extractor. In this section, 25 TQWT signals and the original EEG
signal are utilized as input. The QSP extracts 256 features from each
signal and 256 × 26 = 6656 features are totally extracted. The QSP
based feature extraction procedure is shown in Algorithm 3.

Algorithm 3. QSP based feature extraction process

Input: The original signal (S), data structure of the TQWT R.
Output: Feature (feat) with a size of 256 × 26.
1: =c 1;
2: for i = 1 to 25 do
3: − + =feat c c QSP R i(( 1)x256 1: x256) ( { }) // Feature extraction from TQWT sub-

bands
4: = +c c 1;
5: end for i
6: + =feat QSP S(25x256 1: 26x256) ( ); // Feature extraction from original EEG sig-

nal.

Algorithm 3 defines both feature extraction and feature concatenation
processes. Finally, a feature set with size of 6656 is obtained. A gra-
phical representation of these features by using a sample EEG signal is
graphically shown in Fig. 5.

Feature selection

In the feature extraction and concatenation phases, 6656 features
are obtained. NCA based feature selection phase is used to select dis-
criminative features. NCA is a nonparametric feature selection method.
It generates non-negative weights for all features. To generate weights,
it uses distance metrics [13]. The mathematical representation of the
NCA-based weight generation is shown as Eq. (9). Prior to the weight
generation, features are normalized using min–max normalization and
it is shown as Eq. (10).

=w NCA feat target( , ) (9)

=
−

−
feat

feat feat
feat feat

min

max min (10)

where NCA (.) is weight calculation function of the NCA and w

Fig. 3. The graphical outline of the proposed TQWT-QSP based method.
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Fig. 4. An EEG signal sample and its TQWT coefficients (a) raw EEG signal, (b) Q = 1, (c) Q = 2, (d) Q = 3, (e) Q = 4, (f) Q = 5.
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represents weights of the 6656 features, featmin and featmax are
minimum and maximum values of the feature set respectively.

After the weight generation, the most significant k features are se-
lected. In this study, we selected 128, 256, 512 and 1024 features.
Algorithm 4 explains the used NCA based feature selection procedure.

Algorithm 4. The NCA based feature selection procedure.

Input: Feature set ( feat) with a size of 6656

Output: Selected features ( featS) with sizes of k
1: Use Eq. (9) generates weights (w) with sizes of 6656
2: =a b sort w descending[ , ] ( , ); // Sorting weights. a and b arrays store weights and

indices of the weights by descending.
3: for i = 1 to k do
4: =feat i feat b i( ) ( ( ))S ;
5: end for i

A graphical example of the reduced features is shown in Fig. 6.
Fig. 6 shows selected 128 most distinctive feature of a sample EEG

signal by using the proposed method.

Classification

In order to classify the selected features, we used kNN [50,51]
classifier. kNN is one of the commonly used classifiers in the literature.
It has many variations. By using variable k values and distance metrics,

variable kNN classifiers are presented in the literature. In this study, k
was chosen as 1 and we used city block (Manhattan) distance metrics.
Mathematical notation of the Manhattan distance is shown as Eq. (11)
[52].

= −M x y x y( , ) | | (11)

where M (.,.) expresses Manhattan distance and x y, are its input para-
meters. To obtain train and test results, 10-fold cross validation is se-
lected.

kNN is one of the commonly used conventional classifiers in the
literature. It has basic mathematical background and low computa-
tional complexity. Therefore, implementation of the kNN is easy and it

Fig. 5. A graphical example of the extracted features.

Fig. 6. A graphical example of the reduced features.

Table 1
The defined cases for experiments.

Number Case Classes

1 A-E Classification A and E clusters.
2 A-D Classification A and D clusters.
3 B-E Classification B and E clusters.
4 D-E Classification D and E clusters.
5 C-E Classification C and E clusters.
6 A-D-E Classification A, D and E clusters.
7 A-B-C-D-E Classification A, B, C, D and E clusters.

Table 2
Accuracy, recall, precision and F-Measure values of the proposed method.

Case Acc recall precision F1 Features

A-E 99.5% 99.5% 99.5% 99.5% 128
99.5% 99.5% 99.5% 99.5% 256
99.5% 99.5% 99.5% 99.5% 512
99.5% 99.5% 99.5% 99.5% 1024

A-D 100.0% 100.0% 100.0% 100.0% 128
100.0% 100.0% 100.0% 100.0% 256
100.0% 100.0% 100.0% 100.0% 512
100.0% 100.0% 100.0% 100.0% 1024

B-E 100.0% 100.0% 100.0% 100.0% 128
100.0% 100.0% 100.0% 100.0% 256
100.0% 100.0% 100.0% 100.0% 512
100.0% 100.0% 100.0% 100.0% 1024

D-E 100.0% 100.0% 100.0% 100.0% 128
100.0% 100.0% 100.0% 100.0% 256
100.0% 100.0% 100.0% 100.0% 512
100.0% 100.0% 100.0% 100.0% 1024

C-E 100.0% 100.0% 100.0% 100.0% 128
100.0% 100.0% 100.0% 100.0% 256
100.0% 100.0% 100.0% 100.0% 512
100.0% 100.0% 100.0% 100.0% 1024

A-D-E 99.67% 99.67% 99.67% 99.67% 128
99.67% 99.67% 99.67% 99.67% 256
99.67% 99.67% 99.67% 99.67% 512
99.67% 99.67% 99.67% 99.67% 1024

A-B-C-D-E 98.00% 98.00% 98.00% 98.00% 128
97.40% 97.40% 97.43 97.41% 256
97.80% 97.80% 97.83% 97.82% 512
98.40% 98.40% 98.22% 98.31% 1024

Table 3
Confusion matrix of the A-B-C-D-E classes using 1024 most discriminative
features.

True classes

Predicted classes

A B C D E Average

A 100 0 0 0 0 100.0%
B 2 98 0 0 0 98.0%
C 0 0 97 3 0 97.0%
D 0 0 2 98 0 98.0%
E 0 0 1 0 99 99.0%
Average 98.04% 100.0% 97.0% 97.03% 100.0% 98.41%

Table 4
Computational complexity calculation of the proposed method.

Phase Big O notation

Pre-processing O n( )2

Feature extraction O n(26 )
Feature concatenation O (6656)
Feature selection O k( )
Classification O k(10 )
Total + + +O n n k( 26 11 6656)2
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has short execution time. Methods developed using kNN can be used for
further validation using bigger datasets. kNN is also used to show
strength of the proposed TQWT-QSP based multileveled feature ex-
traction network.

Experimental results

To test the performance of the proposed method, EEG signal dataset
of Bonn University [53] was used. This dataset consists of five classes of
EEG and each class has 100 samples. These classes are called as A, B, C,
D and E. A and B classes belong to healthy people and they were re-
corded when people’s eyes were open and closed respectively. C, D and
E classes express epilepsy patients’ EEG signals. EEG signals of the
classes C, D and E were recorded before epileptic seizure, epileptic zone
and during epileptic seizure respectively. Seven cases were used to
calculate numerical results by using A, B, C, D and E classes. These cases
were listed in Table 1.

The proposed method was implemented by using a personal com-
puter (PC). The attributes of the used PC are given as follows. The used
PC has 8 GB main memory and i5-8250 microprocessor with 1.60 GHz.
The operating system of the PC is Windows 10 professional. The pro-
posed method and tests were implemented by using MATLAB 2019a.

To evaluate classification capability of the proposed method, widely
used performance metrics were used. In the classification methods,
accuracy, recall, precision and F-Measure are widely used. The math-
ematical notations of these performance metrics are shown in Eqs.

(12)–(15) [20]

=
+

+ + +
Acc

tp tn
tp tn fp fn (12)

=
+

recall
tp

tp fn (13)

=
+

precision
tp

fp tp (14)

= ×
+

F
precision recall

precision recall
1 2

x
(15)

where tp is true positive, tn represents true negative, fp describes false
positive, fn is false negative, Acc represents accuracy and F1 expresses
F-measure.

In order to obtain these numerical results, 1NN classifier with
Manhattan distance was used. In the tests, 10-fold cross validation was
chosen. The calculated best scores of the proposed TQWT-QSP based
method were listed in Table 2 according to the defined cases and fea-
ture sizes.

As seen from Table 2, the proposed method achieved 98.40% clas-
sification accuracy for 5 clusters classification. In order to better un-
derstand performance of the proposed TQWT-QSP based method, con-
fusion matrix of this result is given as below.

As seen from the confusion matrix (Table 3), the best accuracy rate
was calculated as 100.0% for A class and the worst classification rate

Fig.7. Statistical analysis of the proposed TQWT-QSP based feature extraction network.
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was calculated as 97.0% for C class.
Computational complexity of the proposed method was also calcu-

lated in this paper. Big O notation was used to calculate computational
complexity of the proposed method. The computational complexity of
each phases are listed in Table 4.

Table 4 clearly show the computational complexity of the proposed
method and it is calculated as O n( )2 .

Discussions

A multilevel TQWT and QSP based feature extraction network is
presented in this paper. By using TQWT, different 25 sub-bands are
calculated. QSP is also utilized as feature extractor. QSP extracts 256
features from each sub-bands and raw EEG signal. These features are
concatenated and 6656 features are finally obtained. A NCA-based

method is utilized as feature selection. The main objective of the pro-
posed method is to extract distinctive features from EEG signals by
using lightweight and cognitive method with high performance. This
method achieved 100.0% success rate in three cases (see Tables 2 and
3). The proposed TQWT-QSP based method distinctively extracts fea-
ture from the EEG signal. Therefore, the proposed method has very high
success rate. In order to show success of the proposed method, the
statistical analysis of extracted features is shown in Fig. 7 using boxplot
analysis.

In Fig. 7, blue boxes represent range of features and red stars are
upper and lower bound values. It clearly shows the statistical attributes
of features and it is demonstrated that the proposed method extracts
separate features. In order to show the effectiveness of extracted fea-
tures, 1NN classifier is used. Seven cases were defined to calculate
success rates and comparison results. The proposed method also
achieved 100% success rate for three cases which were A-D, B-E, and C-
E.

In order to examine the efficiency of the proposed method, it was
compared with the previously presented EEG classification methods
and results are listed in Table 5.

As seen in Table 5, the proposed method achieved high EEG signal
classification capability. Most of the EEG classification methods failed
to give results for all of the five classes. Only two or three classes have
been worked on in most of the studies. Therefore, other methods were
simulated by us.

The proposed TQWT-QSP is a textural feature extraction method
similar to 1D-LBP and 1D-TP. 1D-LBP and 1D-TP were previously used
for EEG classification [19,20,65]. Therefore, this method was also
compared with 1D-LBP and 1D-TP for all of the five classes and the
results are given Table 6 [66]. 1NN classifier was used to measure the
classification abilities of features of these methods, because the best
results were obtained using 1NN with Manhattan distance.

In the literature, the classification rates of A, B, C, D and E were not
given in most of the EEG classification studies because the some pre-
viously presented methods failed to achieve high success rates for five
classes of epilepsy classification in the Bonn dataset. To show the dis-
tinctiveness of our features, classification results for five classes were
listed in Table 6. The best accuracy value of the proposed method was
calculated as 98.4% for all of the five classes by using 10-fold cross
validation. The proposed TQWT-QSP has higher classification accuracy
than other state-of-the-art methods. In addition, 5.4% higher success
rate was calculated than the best of the others. The computational
complexity of the proposed method is calculated as O(n2).

Advantages of the proposed method are listed below.

• The proposed method has a simple mathematical background.
Therefore, the proposed method can be programmed simply by re-
searchers.

• Discriminative features are extracted using the proposed method.
Because, 1NN [67] is one of the simplest conventional classifiers and
98.4% classification rate was achieved by using 1NN.

• As known from the literature, TQWT [43,44] is one of the new
generation wavelet transforms and have been used in signal pro-
cessing and machine learning methods in the literature. Further-
more, the multilevel transformation based methods [68,69] have
achieved high classification accuracies. In order to create a multi-
level EEG classification method [70], TQWT is chosen and 25 TQWT
coefficients are generated using 5 different Q values. Due to the
positive effects of TQWT on feature extraction, a large feature set is
extracted. By using this feature set, distinctive features are easily
selected.

• The computational cost of the proposed method was calculated
using Big O notation [71,72] and it was concluded that the proposed
method has low computational complexity. It is clearly indicated
that this method is a lightweight learning method.

• In some methods, metaheuristic optimization algorithms and

Table 5
Comparison results for A-E, A-D, B-E, D-E, C-E and A-D-E cases.

Case Method Performance (Accuracy %)

A-E Nicolaou and Georgiou. (2012) [26] 93.42
Zhu et al. (2014) [54] 99
Kaya et al. (2014) [19] 99.5
Husain et al. (2014) [55] 99.8
Ghayab et al. (2016) [56] 99.9
Kaya (2015) [57] 100
Fathima et al. (2011) [58] 99.75
Guo et al. (2010) [59] 99.85
Nigam and Graupe (2004) [60] 97.2
Srinivasan et al. (2005) [52] 99.6
Orhan et al. (2011) [21] 100
Kaya and Ertuğrul (2018) [20] 100
Siuly et al. (2018) [61] 99.5
The proposed TQWT-QSP + 1NN 99.5

A-D Kaya et al. (2014) [19] 99.5
Kaya and Ertuğrul (2018) [20] 100
The proposed TQWT-QSP + 1NN 100

B-E Kaya (2015) [57] 96
Kaya and Ertuğrul (2018) [20] 97.5
Siuly et al. (2011) [62] 93.6
Supriya et al. (2016) [63] 95
Zhu et al. (2014) [54] 97
Siuly et al. (2018) [61] 99
The proposed TQWT-QSP + 1NN 100

D-E Zhu et al. (2014) [54] 93
Kumar et al. (2014) [64] 93
Nicolaou and Georgiou (2012) [26] 83.13
Kaya and Ertuğrul (2018) [20] 94.5
Siuly et al. (2018) [61] 97.5
The proposed TQWT-QSP + 1NN 99.5

C-E Zhu et al. (2014) [54] 98
Supriya et al. (2016) [63] 94.5
Kaya and Ertuğrul (2018) [20] 97.5
Siuly et al. (2018) [61] 98.5
The proposed TQWT-QSP + 1NN 100

A-D-E Kaya et al. (2014) [19] 95.67
Kaya and Ertuğrul (2018) [20] 95.7
The proposed TQWT-QSP + 1NN 99.67

Table 6
Comparatively results for A-B-C-D-E classes.

Method Success rate (%) Feature dimension

1D-LBP [19] 66.0 256
1D-TP Lower Features [20] 79.0 256
1D-TP Upper Features [20] 77.6 256
1D-TP Combined Features [20] 79.8 512
1D- CNN [32] 88.7 1000
LSP + SVM [66] 93.0 256
Proposed TQWT-QSP + 1NN 98.0 128
Proposed TQWT-QSP + 1NN 97.4 256
Proposed TQWT-QSP + 1NN 97.8 512
Proposed TQWT-QSP + 1NN 98.4 1024
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ensemble classifiers have been used to obtain high success rates.
However, there is no ensemble and metaheuristic optimization
technique in this study. Hence, the proposed method is a cognitive
method.

• The proposed TQWT-QSP + 1NN [67] method has very high clas-
sification capability by using kNN. This situation clearly indicated
that the proposed method can achieved high success rate in larger
dataset by using deep classifiers.

• The proposed method is superior to 1D-CNN deep learning method
(see Table 6).

The limitation of the proposed method is summarized as follows.
Bonn [21]dataset was used to test the success of the proposed method.
It is a small and homogenous dataset. However, this database has been
widely used in the literature and the results of the previously presented
methods were achieved basically for comparisons. Therefore, Bonn
dataset is utilized as test suit in this paper.

Conclusions and future works

The main objective of this study is to propose a multilevel learning
method to achieve high classification ability using EEG signals. This
method consists of 5 phases and these are TQWT-based preprocessing,
feature extraction with QSP, feature concatenation, feature selection
and classification. 25 TQWT sub-bands were generated using 5 different
Q factors of the TQWT. 6656 features are extracted from the original
EEG signal and the generated 25 TQWT sub-bands. In order to improve
the classification ability of the proposed method, NCA based feature
selection method is used. In the classification phase, 1NN classifier was
chosen. To test performance of this method and obtain comparative
results, seven cases were defined. According to the results, the proposed
method achieved 100% classification accuracy for three cases (see
Table 2). The proposed method was also compared with other EEG
classification methods and the comparisons proved the success of the
proposed method (see Table 6). Especially, this method achieved 98.4%
classification rate calculated for five classes. This result has approxi-
mately 5.4% higher success rate than the best of the other methods (see
Table 6). Also, the proposed method has higher classification ability
than 1D-CNN according to results (see Table 6). Computational com-
plexity of the proposed TQWT-QSP based method was calculated as O
(n2) (see Table 4). This result clearly indicates that the proposed
method is a lightweight EEG classification method. According to the
results, the proposed TQWT and QSP based method is a highly accurate,
cognitive and lightweight EEG classification method.

This paper clearly demonstrates that this method can be utilized as a
healthcare monitoring system for epilepsy patients in the future. A real-
time application can be implemented to predict epilepsy seizures by
using the proposed method. The proposed TQWT-QSP based method
can be applied onto other types of signals. A deep learning method can
also be proposed for 1D signals based on TQWT and QSP for large and
heterogeneous EEG dataset in future works.
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