17,226 research outputs found

    Optimization in Networks

    Full text link
    The recent surge in the network modeling of complex systems has set the stage for a new era in the study of fundamental and applied aspects of optimization in collective behavior. This Focus Issue presents an extended view of the state of the art in this field and includes articles from a large variety of domains where optimization manifests itself, including physical, biological, social, and technological networked systems.Comment: Opening article of the CHAOS Focus Issue "Optimization in Networks", available at http://link.aip.org/link/?CHA/17/2/htmlto

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Research on Multi-Agent Simulation of Epidemic News Spread Characteristics

    Get PDF
    The spread of news about an epidemic can easily lead to a social panic. In order to devise measures to control such a panic, it is necessary to consider characteristics of the spread of epidemic news, based on mechanisms at the individual level. In this paper, first, some features of multi-agent simulation are reviewed. Then a multi-agent simulation model of epidemic news spread (ENS) is designed and realized. Based on simulation experiments and sensitivity analyses, the influence of social relationships, the degree of trust in news of the epidemic, the epidemic spread intensity and the network structure of the epidemic news spread are studied. The research results include: (1) As the number of social relationships increases, the rate of spread of epidemic news rapidly rises, and the ratio of people who have heard the news directly decreases. The result is that the \'radiation effect\' of the epidemic news spread will be enhanced when the number of social relationships increases. (2) With the increase of the degree of trust in the news, the rate of spread of the news will also rapidly increase, but variation in the ratio of the people who have heard the news directly is not significant. This means that the \'radiation effect\' of the spread of the news does not change much more in relation to the degree of trust in the epidemic news. (3) The ratio of the people who have heard the news directly increases when the infection range increases (i.e. the spread intensity of epidemic increases), and vice versa. But the variation of the speed of the epidemic news spread is not significant. (4) When the network structure is assumed to be a small world network, the spread speed will be slower than that in a random network with the same average vertex degree and the forgetting speed will be faster than that in a random network with the same average vertex degree.Multi-Agent Simulation, News Spread, Small World Network , Epidemic

    INDEMICS: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling

    Get PDF
    We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)—a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented

    Aging cellular networks: chaperones as major participants

    Full text link
    We increasingly rely on the network approach to understand the complexity of cellular functions. Chaperones (heat shock proteins) are key "networkers", which have among their functions to sequester and repair damaged protein. In order to link the network approach and chaperones with the aging process, we first summarize the properties of aging networks suggesting a "weak link theory of aging". This theory suggests that age-related random damage primarily affects the overwhelming majority of the low affinity, transient interactions (weak links) in cellular networks leading to increased noise, destabilization and diversity. These processes may be further amplified by age-specific network remodelling and by the sequestration of weakly linked cellular proteins to protein aggregates of aging cells. Chaperones are weakly linked hubs [i.e., network elements with a large number of connections] and inter-modular bridge elements of protein-protein interaction, signalling and mitochondrial networks. As aging proceeds, the increased overload of damaged proteins is an especially important element contributing to cellular disintegration and destabilization. Additionally, chaperone overload may contribute to the increase of "noise" in aging cells, which leads to an increased stochastic resonance resulting in a deficient discrimination between signals and noise. Chaperone- and other multi-target therapies, which restore the missing weak links in aging cellular networks, may emerge as important anti-aging interventions.Comment: 7 pages, 4 figure

    Complexity in forecasting and predictive models

    Get PDF
    Te challenge of this special issue has been to know the state of the problem related to forecasting modeling and the creation of a model to forecast the future behavior that supports decision making by supporting real-world applications. Tis issue has been highlighted by the quality of its research work on the critical importance of advanced analytical methods, such as neural networks, sof computing, evolutionary algorithms, chaotic models, cellular automata, agent-based models, and fnite mixture minimum squares (FIMIX-PLS).info:eu-repo/semantics/publishedVersio

    Social Data Offloading in D2D-Enhanced Cellular Networks by Network Formation Games

    Full text link
    Recently, cellular networks are severely overloaded by social-based services, such as YouTube, Facebook and Twitter, in which thousands of clients subscribe a common content provider (e.g., a popular singer) and download his/her content updates all the time. Offloading such traffic through complementary networks, such as a delay tolerant network formed by device-to-device (D2D) communications between mobile subscribers, is a promising solution to reduce the cellular burdens. In the existing solutions, mobile users are assumed to be volunteers who selfishlessly deliver the content to every other user in proximity while moving. However, practical users are selfish and they will evaluate their individual payoffs in the D2D sharing process, which may highly influence the network performance compared to the case of selfishless users. In this paper, we take user selfishness into consideration and propose a network formation game to capture the dynamic characteristics of selfish behaviors. In the proposed game, we provide the utility function of each user and specify the conditions under which the subscribers are guaranteed to converge to a stable network. Then, we propose a practical network formation algorithm in which the users can decide their D2D sharing strategies based on their historical records. Simulation results show that user selfishness can highly degrade the efficiency of data offloading, compared with ideal volunteer users. Also, the decrease caused by user selfishness can be highly affected by the cost ratio between the cellular transmission and D2D transmission, the access delays, and mobility patterns
    • …
    corecore